Create train_infer.py
Browse files- train_infer.py +84 -0
train_infer.py
ADDED
|
@@ -0,0 +1,84 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
# train_infer.py
|
| 2 |
+
# Usage:
|
| 3 |
+
# Train: python train_infer.py --mode train --train_dir data/train --val_dir data/val --epochs 3
|
| 4 |
+
# Predict: python train_infer.py --mode predict --image img.jpg --ckpt ckpt.pth
|
| 5 |
+
|
| 6 |
+
import argparse, os
|
| 7 |
+
from pathlib import Path
|
| 8 |
+
from PIL import Image
|
| 9 |
+
import torch, torch.nn as nn, torch.optim as optim
|
| 10 |
+
from torchvision import transforms, models
|
| 11 |
+
from torchvision.datasets import ImageFolder
|
| 12 |
+
from torch.utils.data import DataLoader
|
| 13 |
+
|
| 14 |
+
def get_loaders(train_dir, val_dir, batch=16, img=224):
|
| 15 |
+
tr = transforms.Compose([transforms.RandomResizedCrop(img), transforms.RandomHorizontalFlip(),
|
| 16 |
+
transforms.ToTensor(), transforms.Normalize([0.485,0.456,0.406],[0.229,0.224,0.225])])
|
| 17 |
+
val = transforms.Compose([transforms.Resize(int(img*1.14)), transforms.CenterCrop(img),
|
| 18 |
+
transforms.ToTensor(), transforms.Normalize([0.485,0.456,0.406],[0.229,0.224,0.225])])
|
| 19 |
+
train_ds = ImageFolder(train_dir, transform=tr)
|
| 20 |
+
val_ds = ImageFolder(val_dir, transform=val)
|
| 21 |
+
return DataLoader(train_ds, batch_size=batch, shuffle=True), DataLoader(val_ds, batch_size=batch), train_ds.classes
|
| 22 |
+
|
| 23 |
+
def train(args):
|
| 24 |
+
train_loader, val_loader, classes = get_loaders(args.train_dir, args.val_dir, args.batch)
|
| 25 |
+
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
| 26 |
+
model = models.resnet18(pretrained=True)
|
| 27 |
+
model.fc = nn.Linear(model.fc.in_features, len(classes))
|
| 28 |
+
model.to(device)
|
| 29 |
+
opt = optim.Adam(model.parameters(), lr=1e-4)
|
| 30 |
+
loss_fn = nn.CrossEntropyLoss()
|
| 31 |
+
best=0
|
| 32 |
+
for e in range(args.epochs):
|
| 33 |
+
model.train()
|
| 34 |
+
for imgs, lbl in train_loader:
|
| 35 |
+
imgs, lbl = imgs.to(device), lbl.to(device)
|
| 36 |
+
opt.zero_grad()
|
| 37 |
+
out = model(imgs)
|
| 38 |
+
loss = loss_fn(out, lbl)
|
| 39 |
+
loss.backward(); opt.step()
|
| 40 |
+
# val
|
| 41 |
+
model.eval()
|
| 42 |
+
correct=total=0
|
| 43 |
+
with torch.no_grad():
|
| 44 |
+
for imgs,lbl in val_loader:
|
| 45 |
+
imgs,lbl = imgs.to(device), lbl.to(device)
|
| 46 |
+
out = model(imgs).argmax(1)
|
| 47 |
+
correct += (out==lbl).sum().item(); total += lbl.size(0)
|
| 48 |
+
acc = correct/total if total else 0
|
| 49 |
+
print(f"Epoch {e+1}/{args.epochs} val_acc={acc:.4f}")
|
| 50 |
+
if acc>best:
|
| 51 |
+
best=acc
|
| 52 |
+
torch.save({'model':model.state_dict(),'classes':classes}, args.ckpt)
|
| 53 |
+
print("Best val acc", best)
|
| 54 |
+
|
| 55 |
+
def predict(args):
|
| 56 |
+
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
| 57 |
+
ck = torch.load(args.ckpt, map_location=device)
|
| 58 |
+
classes = ck['classes']
|
| 59 |
+
model = models.resnet18(pretrained=False)
|
| 60 |
+
model.fc = nn.Linear(model.fc.in_features, len(classes))
|
| 61 |
+
model.load_state_dict(ck['model']); model.to(device).eval()
|
| 62 |
+
tf = transforms.Compose([transforms.Resize(256), transforms.CenterCrop(224),
|
| 63 |
+
transforms.ToTensor(), transforms.Normalize([0.485,0.456,0.406],[0.229,0.224,0.225])])
|
| 64 |
+
img = Image.open(args.image).convert('RGB')
|
| 65 |
+
x = tf(img).unsqueeze(0).to(device)
|
| 66 |
+
with torch.no_grad():
|
| 67 |
+
p = model(x).argmax(1).item()
|
| 68 |
+
print("Predicted:", classes[p])
|
| 69 |
+
|
| 70 |
+
if __name__=="__main__":
|
| 71 |
+
p=argparse.ArgumentParser()
|
| 72 |
+
p.add_argument('--mode', choices=['train','predict'], required=True)
|
| 73 |
+
p.add_argument('--train_dir', default='data/train')
|
| 74 |
+
p.add_argument('--val_dir', default='data/val')
|
| 75 |
+
p.add_argument('--epochs', type=int, default=3)
|
| 76 |
+
p.add_argument('--batch', type=int, default=16)
|
| 77 |
+
p.add_argument('--ckpt', default='ckpt.pth')
|
| 78 |
+
p.add_argument('--image')
|
| 79 |
+
args=p.parse_args()
|
| 80 |
+
if args.mode=='train':
|
| 81 |
+
train(args)
|
| 82 |
+
else:
|
| 83 |
+
if not args.image: raise SystemExit("Provide --image for predict")
|
| 84 |
+
predict(args)
|