|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | """PyTorch TELECHAT model.""" | 
					
						
						|  |  | 
					
						
						|  | import warnings | 
					
						
						|  | from typing import Optional, Tuple, Union, List, Dict | 
					
						
						|  | from threading import Thread | 
					
						
						|  |  | 
					
						
						|  | import torch | 
					
						
						|  | import math | 
					
						
						|  | import copy | 
					
						
						|  | from torch import nn | 
					
						
						|  | import torch.utils.checkpoint | 
					
						
						|  | from torch.nn import functional as F | 
					
						
						|  | from torch.nn import BCEWithLogitsLoss, CrossEntropyLoss, LayerNorm, MSELoss | 
					
						
						|  | from transformers.modeling_outputs import ( | 
					
						
						|  | BaseModelOutputWithPastAndCrossAttentions, | 
					
						
						|  | CausalLMOutputWithCrossAttentions | 
					
						
						|  | ) | 
					
						
						|  | from transformers.modeling_utils import PreTrainedModel | 
					
						
						|  | from transformers.utils import logging | 
					
						
						|  | from transformers import GenerationConfig | 
					
						
						|  |  | 
					
						
						|  | from .configuration_telechat import TelechatConfig | 
					
						
						|  | from .generation_utils import History, TelechatIterTextStreamer | 
					
						
						|  |  | 
					
						
						|  | logger = logging.get_logger(__name__) | 
					
						
						|  |  | 
					
						
						|  | _CHECKPOINT_FOR_DOC = "telechat" | 
					
						
						|  | _CONFIG_FOR_DOC = "TelechatConfig" | 
					
						
						|  |  | 
					
						
						|  | TELECHAT_PRETRAINED_MODEL_ARCHIVE_LIST = [] | 
					
						
						|  |  | 
					
						
						|  | try: | 
					
						
						|  | from einops import rearrange | 
					
						
						|  | except ImportError: | 
					
						
						|  | rearrange = None | 
					
						
						|  |  | 
					
						
						|  | use_flash_attn = True | 
					
						
						|  | try: | 
					
						
						|  | from flash_attn.flash_attn_interface import flash_attn_unpadded_func | 
					
						
						|  | except ImportError: | 
					
						
						|  | try: | 
					
						
						|  | from flash_attn.flash_attn_interface import flash_attn_varlen_func as flash_attn_unpadded_func | 
					
						
						|  | except ImportError: | 
					
						
						|  | flash_attn_unpadded_func = None | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | class RotaryEmbedding(torch.nn.Module): | 
					
						
						|  |  | 
					
						
						|  | def __init__(self, dim, config, base=10000, precision=torch.half): | 
					
						
						|  | super().__init__() | 
					
						
						|  | self.config = config | 
					
						
						|  | self.dim = dim | 
					
						
						|  | self.base = base | 
					
						
						|  | self.inv_freq = 1. / (base ** (torch.arange(0, dim, 2).float().half() / dim)).cuda() | 
					
						
						|  | self.max_seq_len_cached = None | 
					
						
						|  | self.cos_cached = None | 
					
						
						|  | self.sin_cached = None | 
					
						
						|  | self.precision = precision | 
					
						
						|  |  | 
					
						
						|  | def get_mscale(self, scale=1): | 
					
						
						|  | if scale <= 1: | 
					
						
						|  | return 1.0 | 
					
						
						|  | return 0.1 * math.log(scale) + 1.0 | 
					
						
						|  |  | 
					
						
						|  | def get_ntk_alpha(self, true_seq_len): | 
					
						
						|  | context_value = math.log(true_seq_len / 4096, 2) + 1 | 
					
						
						|  |  | 
					
						
						|  | ntk_alpha = 2 ** math.ceil(context_value) - 1 | 
					
						
						|  | ntk_alpha = max(ntk_alpha, 1) | 
					
						
						|  | return ntk_alpha | 
					
						
						|  |  | 
					
						
						|  | def forward(self, x, seq_dim=0, seq_len=None): | 
					
						
						|  | seq_len = x.shape[seq_dim] | 
					
						
						|  | seq_len = max(seq_len, self.config.training_seqlen) | 
					
						
						|  | ntk_alpha = self.get_ntk_alpha(seq_len) | 
					
						
						|  | self.mscale = float(self.get_mscale(seq_len / self.config.training_seqlen)) | 
					
						
						|  | if True: | 
					
						
						|  | base = self.base * ntk_alpha ** (self.dim / (self.dim - 2)) | 
					
						
						|  | self.inv_freq = 1.0 / (base ** (torch.arange(0, self.dim, 2, device=x.device).float() / self.dim)) | 
					
						
						|  | self.max_seq_len_cached = seq_len | 
					
						
						|  | t = torch.arange(self.max_seq_len_cached, device=x.device, dtype=self.inv_freq.dtype) | 
					
						
						|  | freqs = torch.einsum('i,j->ij', t, self.inv_freq) | 
					
						
						|  |  | 
					
						
						|  | emb = torch.cat((freqs, freqs), dim=-1).to(x.device) | 
					
						
						|  | if self.precision == torch.bfloat16: | 
					
						
						|  | emb = emb.float() | 
					
						
						|  |  | 
					
						
						|  | self.cos_cached = self.mscale * emb.cos()[:, None, :].half() | 
					
						
						|  | self.sin_cached = self.mscale * emb.sin()[:, None, :].half() | 
					
						
						|  | if self.precision == torch.bfloat16: | 
					
						
						|  | self.cos_cached = self.cos_cached.bfloat16() | 
					
						
						|  | self.sin_cached = self.sin_cached.bfloat16() | 
					
						
						|  | return self.cos_cached[:seq_len, ...], self.sin_cached[:seq_len, ...] | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | def rotate_half(x): | 
					
						
						|  | x1, x2 = x[..., :x.shape[-1] // 2], x[..., x.shape[-1] // 2:] | 
					
						
						|  | return torch.cat((-x2, x1), dim=x1.ndim - 1) | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | def apply_rotary_pos_emb_torch(q, k, cos, sin, offset: int = 0): | 
					
						
						|  | cos, sin = cos[offset:q.shape[0] + offset, ...], sin[offset:q.shape[0] + offset, ...] | 
					
						
						|  | return (q * cos) + (rotate_half(q) * sin), (k * cos) + (rotate_half(k) * sin) | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | class MixedFusedRMSNorm(nn.Module): | 
					
						
						|  |  | 
					
						
						|  | def __init__(self, hidden_size, eps=1e-6): | 
					
						
						|  | super().__init__() | 
					
						
						|  | self.weight = nn.Parameter(torch.ones(hidden_size)) | 
					
						
						|  | self.variance_epsilon = eps | 
					
						
						|  |  | 
					
						
						|  | def forward(self, hidden_states): | 
					
						
						|  | input_dtype = hidden_states.dtype | 
					
						
						|  | hidden_states = hidden_states.to(torch.float32) | 
					
						
						|  | variance = hidden_states.pow(2).mean(-1, keepdim=True) | 
					
						
						|  | hidden_states = hidden_states * torch.rsqrt(variance + self.variance_epsilon) | 
					
						
						|  | return self.weight * hidden_states.to(input_dtype) | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | class FlashSelfAttention(torch.nn.Module): | 
					
						
						|  |  | 
					
						
						|  | """Implement the scaled dot product attention with softmax. | 
					
						
						|  | Arguments | 
					
						
						|  | --------- | 
					
						
						|  | softmax_scale: The temperature to use for the softmax attention. | 
					
						
						|  | (default: 1/sqrt(d_keys) where d_keys is computed at | 
					
						
						|  | runtime) | 
					
						
						|  | attention_dropout: The dropout rate to apply to the attention | 
					
						
						|  | (default: 0.0) | 
					
						
						|  | """ | 
					
						
						|  |  | 
					
						
						|  | def __init__(self, causal=False, softmax_scale=None, attention_dropout=0.0, | 
					
						
						|  | device=None, dtype=None): | 
					
						
						|  | super().__init__() | 
					
						
						|  | assert flash_attn_unpadded_func is not None, ('Please install FlashAttention first, ' | 
					
						
						|  | 'e.g., with pip install flash-attn') | 
					
						
						|  | assert rearrange is not None, 'Please install einops first, e.g., with pip install einops' | 
					
						
						|  | self.causal = causal | 
					
						
						|  | self.softmax_scale = softmax_scale | 
					
						
						|  | self.dropout_p = attention_dropout | 
					
						
						|  |  | 
					
						
						|  | def forward(self, q, k, v): | 
					
						
						|  | """Implements the multihead softmax attention. | 
					
						
						|  | Arguments | 
					
						
						|  | --------- | 
					
						
						|  | q, k, v: The tensor containing the query, key, and value. (B, S, H, D) | 
					
						
						|  | """ | 
					
						
						|  | assert all((i.dtype in [torch.float16, torch.bfloat16] for i in (q, k, v))) | 
					
						
						|  | assert all((i.is_cuda for i in (q, k, v))) | 
					
						
						|  |  | 
					
						
						|  | batch_size, seqlen_q = q.shape[0], q.shape[1] | 
					
						
						|  | seqlen_k = k.shape[1] | 
					
						
						|  |  | 
					
						
						|  | q, k, v = [rearrange(x, 'b s ... -> (b s) ...') for x in [q, k, v]] | 
					
						
						|  | cu_seqlens_q = torch.arange(0, (batch_size + 1) * seqlen_q, step=seqlen_q, dtype=torch.int32, | 
					
						
						|  | device=q.device) | 
					
						
						|  | self.training = False | 
					
						
						|  | if self.training: | 
					
						
						|  |  | 
					
						
						|  | assert seqlen_k == seqlen_q | 
					
						
						|  |  | 
					
						
						|  | is_causal = self.causal | 
					
						
						|  | cu_seqlens_k = cu_seqlens_q | 
					
						
						|  | dropout_p = self.dropout_p | 
					
						
						|  | else: | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | is_causal = seqlen_q == seqlen_k | 
					
						
						|  | cu_seqlens_k = torch.arange(0, (batch_size + 1) * seqlen_k, step=seqlen_k, dtype=torch.int32, | 
					
						
						|  | device=q.device) | 
					
						
						|  | dropout_p = 0 | 
					
						
						|  |  | 
					
						
						|  | output = flash_attn_unpadded_func( | 
					
						
						|  | q, k, v, cu_seqlens_q, cu_seqlens_k, seqlen_q, seqlen_k, | 
					
						
						|  | dropout_p=dropout_p, | 
					
						
						|  | softmax_scale=self.softmax_scale, causal=is_causal | 
					
						
						|  | ) | 
					
						
						|  |  | 
					
						
						|  | output = rearrange(output, '(b s) ... -> b s ...', b=batch_size) | 
					
						
						|  | return output | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | def _make_causal_mask( | 
					
						
						|  | input_ids_shape: torch.Size, device: torch.device, past_key_values_length: int | 
					
						
						|  | ) -> torch.BoolTensor: | 
					
						
						|  | """ | 
					
						
						|  | Make causal mask used for self-attention. | 
					
						
						|  | """ | 
					
						
						|  | batch_size, target_length = input_ids_shape | 
					
						
						|  | mask = torch.empty((target_length, target_length + past_key_values_length), dtype=torch.bool, device=device) | 
					
						
						|  |  | 
					
						
						|  | seq_ids = torch.arange(target_length, device=device) | 
					
						
						|  | mask[:, past_key_values_length:] = seq_ids[:, None] < seq_ids[None, :] | 
					
						
						|  |  | 
					
						
						|  | if past_key_values_length > 0: | 
					
						
						|  | mask[:, :past_key_values_length] = False | 
					
						
						|  |  | 
					
						
						|  | expanded_mask = mask[None, None, :, :].expand(batch_size, 1, target_length, target_length + past_key_values_length) | 
					
						
						|  | return expanded_mask | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | def _expand_mask(mask: torch.Tensor, tgt_length: int) -> torch.BoolTensor: | 
					
						
						|  | """ | 
					
						
						|  | Expands attention_mask from `[batch_size, src_length]` to `[batch_size, 1, tgt_length, src_length]`. | 
					
						
						|  | """ | 
					
						
						|  | batch_size, src_length = mask.shape | 
					
						
						|  | tgt_length = tgt_length if tgt_length is not None else src_length | 
					
						
						|  |  | 
					
						
						|  | expanded_mask = ~(mask[:, None, None, :].to(torch.bool)) | 
					
						
						|  | return expanded_mask.expand(batch_size, 1, tgt_length, src_length) | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | def dropout_add(x: torch.Tensor, residual: torch.Tensor, prob: float, training: bool) -> torch.Tensor: | 
					
						
						|  | """ | 
					
						
						|  | Dropout add function | 
					
						
						|  |  | 
					
						
						|  | Args: | 
					
						
						|  | x (`torch.tensor`, *required*): | 
					
						
						|  | input tensor | 
					
						
						|  | residual (`torch.tensor`, *required*): | 
					
						
						|  | residual tensor | 
					
						
						|  | prob (`float`, *required*): | 
					
						
						|  | dropout probability | 
					
						
						|  | training (`bool`, *required*): | 
					
						
						|  | training mode | 
					
						
						|  | """ | 
					
						
						|  | out = F.dropout(x, p=prob, training=training) | 
					
						
						|  | out = residual + out | 
					
						
						|  | return out | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | def telechat_gelu_forward(x: torch.Tensor) -> torch.Tensor: | 
					
						
						|  | """ | 
					
						
						|  | Custom bias GELU function. Adapted from Megatron-DeepSpeed code. Here we use a simple implementation (inference) to | 
					
						
						|  | make the model jitable. | 
					
						
						|  |  | 
					
						
						|  | Args: | 
					
						
						|  | x (`torch.tensor`, *required*): | 
					
						
						|  | input hidden states | 
					
						
						|  | """ | 
					
						
						|  | return x * 0.5 * (1.0 + torch.tanh(0.79788456 * x * (1 + 0.044715 * x * x))) | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | def telechat_gelu_back(g: torch.Tensor, x: torch.Tensor) -> torch.Tensor: | 
					
						
						|  | """ | 
					
						
						|  | gradient of tanh approximation of gelu gradient of actual gelu is: 0.5 * (1. + torch.erf(x * 0.70710678)) + | 
					
						
						|  | 0.3989423 * x * torch.exp(-0.5 * x * x) | 
					
						
						|  |  | 
					
						
						|  | Args: | 
					
						
						|  | g (`torch.tensor`, *required*): | 
					
						
						|  | gradient output tensor | 
					
						
						|  | x (`torch.tensor`, *required*): | 
					
						
						|  | input tensor | 
					
						
						|  | """ | 
					
						
						|  | x = x[0] | 
					
						
						|  | tanh_out = torch.tanh(0.79788456 * x * (1 + 0.044715 * x * x)) | 
					
						
						|  |  | 
					
						
						|  | ff = 0.5 * x * ((1 - tanh_out * tanh_out) * (0.79788456 + 0.1070322243 * x * x)) + 0.5 * (1 + tanh_out) | 
					
						
						|  | return ff * g | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | class GeLUFunction(torch.autograd.Function): | 
					
						
						|  | @staticmethod | 
					
						
						|  | def forward(ctx, input: torch.Tensor) -> torch.Tensor: | 
					
						
						|  | ctx.save_for_backward(input) | 
					
						
						|  | return telechat_gelu_forward(input) | 
					
						
						|  |  | 
					
						
						|  | @staticmethod | 
					
						
						|  | def backward(ctx, grad_output: torch.Tensor) -> torch.Tensor: | 
					
						
						|  | input = ctx.saved_tensors | 
					
						
						|  | tmp = telechat_gelu_back(grad_output, input) | 
					
						
						|  | return tmp | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | class TelechatGelu(nn.Module): | 
					
						
						|  | """ | 
					
						
						|  | TelechatBiasGelu wrapper function that make use of the simple function on inference mode to make the model | 
					
						
						|  | torchscriptable and use the autograd function in training mode to get the accurate results of the gradients Partly | 
					
						
						|  | copied from Megatron-DeepSpeed code and adapted for our needs | 
					
						
						|  |  | 
					
						
						|  | See here why autograd functions are not torchscriptable: https://github.com/pytorch/pytorch/issues/22329 | 
					
						
						|  | """ | 
					
						
						|  |  | 
					
						
						|  | def __init__(self): | 
					
						
						|  | super().__init__() | 
					
						
						|  |  | 
					
						
						|  | def forward(self, x: torch.Tensor) -> torch.Tensor: | 
					
						
						|  | if self.training: | 
					
						
						|  | return GeLUFunction.apply(x) | 
					
						
						|  | else: | 
					
						
						|  | return telechat_gelu_forward(x) | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | class TelechatAttention(nn.Module): | 
					
						
						|  | def __init__(self, config: TelechatConfig, layer_idx): | 
					
						
						|  | super().__init__() | 
					
						
						|  | self.kv_cache = None | 
					
						
						|  | self.layer_idx = layer_idx | 
					
						
						|  |  | 
					
						
						|  | self.hidden_size = config.hidden_size | 
					
						
						|  | self.num_heads = config.n_head | 
					
						
						|  | self.head_dim = self.hidden_size // self.num_heads | 
					
						
						|  | self.split_size = self.hidden_size | 
					
						
						|  | self.hidden_dropout = config.hidden_dropout | 
					
						
						|  | self.config = config | 
					
						
						|  |  | 
					
						
						|  | if self.head_dim * self.num_heads != self.hidden_size: | 
					
						
						|  | raise ValueError( | 
					
						
						|  | f"`hidden_size` must be divisible by num_heads (got `hidden_size`: {self.hidden_size} and `num_heads`:" | 
					
						
						|  | f" {self.num_heads})." | 
					
						
						|  | ) | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | self.inv_norm_factor = 1.0 / math.sqrt(self.head_dim) | 
					
						
						|  | self.beta = 1.0 | 
					
						
						|  |  | 
					
						
						|  | self.num_key_value_heads = self.num_heads | 
					
						
						|  | kv_projection_size = self.head_dim * self.num_key_value_heads | 
					
						
						|  | self.num_key_value_groups = self.num_heads // self.num_key_value_heads | 
					
						
						|  | self.query = nn.Linear(self.hidden_size, self.hidden_size, bias=False) | 
					
						
						|  | self.key_value = nn.Linear(self.hidden_size, kv_projection_size * 2, bias=False) | 
					
						
						|  | self.dense = nn.Linear(self.hidden_size, self.hidden_size) | 
					
						
						|  | self.attention_dropout = nn.Dropout(config.attention_dropout) | 
					
						
						|  | self.rotary_emb = RotaryEmbedding(self.head_dim, config=config) | 
					
						
						|  |  | 
					
						
						|  | self.core_attention_flash = FlashSelfAttention( | 
					
						
						|  | causal=True, attention_dropout=config.attention_dropout | 
					
						
						|  | ) | 
					
						
						|  |  | 
					
						
						|  | self.last_key_layer = None | 
					
						
						|  |  | 
					
						
						|  | def repeat_kv(self, hidden_states, n_rep): | 
					
						
						|  | slen, batch, num_key_value_heads_per_partition, head_dim = hidden_states.shape | 
					
						
						|  | if n_rep == 1: | 
					
						
						|  | return hidden_states | 
					
						
						|  | hidden_states = hidden_states[:, :, :, None, :].expand(slen, batch, num_key_value_heads_per_partition, n_rep, | 
					
						
						|  | head_dim) | 
					
						
						|  | return hidden_states.reshape(slen, batch, num_key_value_heads_per_partition * n_rep, head_dim) | 
					
						
						|  |  | 
					
						
						|  | def split_tensor_along_last_dim(self, | 
					
						
						|  | tensor: torch.Tensor, | 
					
						
						|  | num_partitions: int, | 
					
						
						|  | contiguous_split_chunks: bool = False, | 
					
						
						|  | ): | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | last_dim = tensor.dim() - 1 | 
					
						
						|  | last_dim_size = tensor.size()[last_dim] // num_partitions | 
					
						
						|  |  | 
					
						
						|  | tensor_list = torch.split(tensor, last_dim_size, dim=last_dim) | 
					
						
						|  |  | 
					
						
						|  | if contiguous_split_chunks: | 
					
						
						|  | return tuple(chunk.contiguous() for chunk in tensor_list) | 
					
						
						|  |  | 
					
						
						|  | return tensor_list | 
					
						
						|  |  | 
					
						
						|  | def _merge_heads(self, x: torch.Tensor) -> torch.Tensor: | 
					
						
						|  | batch_size_and_num_heads, seq_length, _ = x.shape | 
					
						
						|  | batch_size = batch_size_and_num_heads // self.num_heads | 
					
						
						|  | x = x.view(batch_size, self.num_heads, seq_length, self.head_dim) | 
					
						
						|  | x = x.permute(0, 2, 1, 3) | 
					
						
						|  | return x.reshape(batch_size, seq_length, self.num_heads * self.head_dim) | 
					
						
						|  |  | 
					
						
						|  | def forward( | 
					
						
						|  | self, | 
					
						
						|  | hidden_states: torch.Tensor, | 
					
						
						|  | residual: torch.Tensor, | 
					
						
						|  | attention_mask: torch.Tensor, | 
					
						
						|  | layer_past: Optional[Tuple[torch.Tensor, torch.Tensor]] = None, | 
					
						
						|  | use_cache: bool = False, | 
					
						
						|  | output_attentions: bool = False, | 
					
						
						|  | ): | 
					
						
						|  | hidden_states = hidden_states.transpose(1, 0) | 
					
						
						|  | query_layer = self.query(hidden_states) | 
					
						
						|  | new_tensor_shape = query_layer.size()[:-1] + \ | 
					
						
						|  | (self.num_heads, | 
					
						
						|  | self.head_dim) | 
					
						
						|  | query_layer = query_layer.view(*new_tensor_shape) | 
					
						
						|  |  | 
					
						
						|  | mixed_kv_layer = self.key_value(hidden_states) | 
					
						
						|  | new_tensor_shape = mixed_kv_layer.size()[:-1] + \ | 
					
						
						|  | (self.num_key_value_heads, | 
					
						
						|  | 2 * self.head_dim) | 
					
						
						|  | mixed_kv_layer = mixed_kv_layer.view(*new_tensor_shape) | 
					
						
						|  | (key_layer, value_layer) = self.split_tensor_along_last_dim(mixed_kv_layer, 2) | 
					
						
						|  |  | 
					
						
						|  | output_size = (query_layer.size(1), | 
					
						
						|  | query_layer.size(2), | 
					
						
						|  | query_layer.size(0), | 
					
						
						|  | key_layer.size(0)) | 
					
						
						|  |  | 
					
						
						|  | query_layer = query_layer.view(output_size[2], output_size[0] * output_size[1], -1) | 
					
						
						|  | key_layer = key_layer.view(output_size[3], output_size[0] * output_size[1], -1) | 
					
						
						|  |  | 
					
						
						|  | apply_rotary_fn = apply_rotary_pos_emb_torch | 
					
						
						|  |  | 
					
						
						|  | seq_len = key_layer.shape[0] | 
					
						
						|  | offset = 0 | 
					
						
						|  |  | 
					
						
						|  | if use_cache and layer_past != None: | 
					
						
						|  | past_key, past_value = layer_past | 
					
						
						|  | offset = past_key.shape[0] | 
					
						
						|  | seq_len += offset | 
					
						
						|  |  | 
					
						
						|  | cos, sin = self.rotary_emb(value_layer, seq_len=seq_len) | 
					
						
						|  |  | 
					
						
						|  | query_layer, key_layer = apply_rotary_fn(query_layer, key_layer, cos, sin, offset=offset) | 
					
						
						|  | if use_cache: | 
					
						
						|  | if layer_past != None: | 
					
						
						|  | past_key, past_value = layer_past | 
					
						
						|  | key_layer = torch.cat((past_key, key_layer[-1, ...].unsqueeze(0)), dim=0) | 
					
						
						|  | value_layer = torch.cat((past_value, value_layer[-1, ...].unsqueeze(0)), dim=0) | 
					
						
						|  | layer_past = key_layer, value_layer | 
					
						
						|  | s, bz, head, dim = value_layer.shape | 
					
						
						|  | s_key = key_layer.shape[0] | 
					
						
						|  | s_query = query_layer.shape[0] | 
					
						
						|  | query_layer = query_layer.reshape((s_query, bz, head, dim)) | 
					
						
						|  | key_layer = key_layer.reshape((s_key, bz, head, dim)) | 
					
						
						|  |  | 
					
						
						|  | if self.config.flash_attn: | 
					
						
						|  | q, k, v = [rearrange(x, 's b ... -> b s ...').contiguous() for x in | 
					
						
						|  | (query_layer, key_layer, value_layer)] | 
					
						
						|  | context_layer = self.core_attention_flash(q, k, v) | 
					
						
						|  | context_layer = rearrange(context_layer, 'b s h d -> b s (h d)').contiguous() | 
					
						
						|  | else: | 
					
						
						|  |  | 
					
						
						|  | query_layer = query_layer.reshape(s_query, bz * self.num_heads, dim) | 
					
						
						|  |  | 
					
						
						|  | key_layer = key_layer.reshape(s_key, bz * self.num_heads, dim) | 
					
						
						|  | matmul_result = self.inv_norm_factor * torch.einsum('bik,bkj->bij', query_layer.transpose(0, 1), | 
					
						
						|  | key_layer.transpose(0, 1).transpose(1, 2)) | 
					
						
						|  |  | 
					
						
						|  | attention_scores = matmul_result.view(bz, self.num_heads, s_query, s_key) | 
					
						
						|  |  | 
					
						
						|  | input_dtype = attention_scores.dtype | 
					
						
						|  | if input_dtype == torch.float16: | 
					
						
						|  | attention_scores = attention_scores.to(torch.float) | 
					
						
						|  | attn_weights = torch.masked_fill(attention_scores, attention_mask, torch.finfo(attention_scores.dtype).min) | 
					
						
						|  | attention_probs = F.softmax(attn_weights, dim=-1).to(input_dtype) | 
					
						
						|  | attention_probs = self.attention_dropout(attention_probs) | 
					
						
						|  | attention_probs_reshaped = attention_probs.view(bz * self.num_heads, s_query, s_key) | 
					
						
						|  |  | 
					
						
						|  | value_layer = value_layer.reshape(s_key, bz * self.num_heads, dim) | 
					
						
						|  | context_layer = torch.bmm(attention_probs_reshaped, value_layer.transpose(0, 1)) | 
					
						
						|  | context_layer = self._merge_heads(context_layer) | 
					
						
						|  |  | 
					
						
						|  | output_tensor = self.dense(context_layer) | 
					
						
						|  |  | 
					
						
						|  | output_tensor = dropout_add(output_tensor, residual, self.hidden_dropout, self.training) | 
					
						
						|  | present = None | 
					
						
						|  | outputs = (output_tensor, present) | 
					
						
						|  | if output_attentions: | 
					
						
						|  | outputs += (attention_probs,) | 
					
						
						|  |  | 
					
						
						|  | return output_tensor, layer_past | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | class TelechatMLP(nn.Module): | 
					
						
						|  | def __init__(self, config: TelechatConfig): | 
					
						
						|  | super().__init__() | 
					
						
						|  | hidden_size = config.hidden_size | 
					
						
						|  | self.gate_proj = nn.Linear(hidden_size, config.ffn_hidden_size, bias=False) | 
					
						
						|  | self.up_proj = nn.Linear(hidden_size, config.ffn_hidden_size, bias=False) | 
					
						
						|  | self.down_proj = nn.Linear(config.ffn_hidden_size, hidden_size, bias=True) | 
					
						
						|  | self.hidden_dropout = config.hidden_dropout | 
					
						
						|  |  | 
					
						
						|  | def forward(self, hidden_states: torch.Tensor, residual: torch.Tensor) -> torch.Tensor: | 
					
						
						|  | intermediate_output = self.down_proj(F.silu(self.gate_proj(hidden_states)) * self.up_proj(hidden_states)) | 
					
						
						|  | output = dropout_add(intermediate_output, residual, self.hidden_dropout, self.training) | 
					
						
						|  | return output | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | class TelechatBlock(nn.Module): | 
					
						
						|  | def __init__(self, config: TelechatConfig, layer_idx): | 
					
						
						|  | super().__init__() | 
					
						
						|  | hidden_size = config.hidden_size | 
					
						
						|  |  | 
					
						
						|  | self.input_layernorm = MixedFusedRMSNorm(hidden_size, eps=config.layer_norm_epsilon) | 
					
						
						|  | self.num_heads = config.n_head | 
					
						
						|  | self.layer_idx = layer_idx | 
					
						
						|  | self.self_attention = TelechatAttention(config, layer_idx) | 
					
						
						|  | self.post_attention_layernorm = MixedFusedRMSNorm(hidden_size, eps=config.layer_norm_epsilon) | 
					
						
						|  |  | 
					
						
						|  | self.mlp = TelechatMLP(config) | 
					
						
						|  |  | 
					
						
						|  | self.apply_residual_connection_post_layernorm = config.apply_residual_connection_post_layernorm | 
					
						
						|  | self.hidden_dropout = config.hidden_dropout | 
					
						
						|  |  | 
					
						
						|  | def forward( | 
					
						
						|  | self, | 
					
						
						|  | hidden_states: torch.Tensor, | 
					
						
						|  | attention_mask: torch.Tensor, | 
					
						
						|  | layer_past: Optional[Tuple[torch.Tensor, torch.Tensor]] = None, | 
					
						
						|  | use_cache: bool = False, | 
					
						
						|  | output_attentions: bool = False, | 
					
						
						|  | ): | 
					
						
						|  | layernorm_output = self.input_layernorm(hidden_states) | 
					
						
						|  | if self.apply_residual_connection_post_layernorm: | 
					
						
						|  | residual = layernorm_output | 
					
						
						|  | else: | 
					
						
						|  | residual = hidden_states | 
					
						
						|  |  | 
					
						
						|  | attn_outputs = self.self_attention( | 
					
						
						|  | layernorm_output, | 
					
						
						|  | residual, | 
					
						
						|  | layer_past=layer_past, | 
					
						
						|  | attention_mask=attention_mask, | 
					
						
						|  | use_cache=use_cache, | 
					
						
						|  | output_attentions=output_attentions, | 
					
						
						|  | ) | 
					
						
						|  |  | 
					
						
						|  | attention_output = attn_outputs[0] | 
					
						
						|  | outputs = attn_outputs[1:] | 
					
						
						|  | layernorm_output = self.post_attention_layernorm(attention_output) | 
					
						
						|  |  | 
					
						
						|  | if self.apply_residual_connection_post_layernorm: | 
					
						
						|  | residual = layernorm_output | 
					
						
						|  | else: | 
					
						
						|  | residual = attention_output | 
					
						
						|  | output = self.mlp(layernorm_output, residual) | 
					
						
						|  |  | 
					
						
						|  | if use_cache: | 
					
						
						|  | outputs = (output,) + outputs | 
					
						
						|  | else: | 
					
						
						|  | outputs = (output,) + outputs[1:] | 
					
						
						|  |  | 
					
						
						|  | return outputs | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | class TelechatPreTrainedModel(PreTrainedModel): | 
					
						
						|  | config_class = TelechatConfig | 
					
						
						|  | base_model_prefix = "transformer" | 
					
						
						|  | supports_gradient_checkpointing = True | 
					
						
						|  | _no_split_modules = ["TelechatBlock"] | 
					
						
						|  | _skip_keys_device_placement = "past_key_values" | 
					
						
						|  |  | 
					
						
						|  | def __init__(self, *inputs, **kwargs): | 
					
						
						|  | super().__init__(*inputs, **kwargs) | 
					
						
						|  |  | 
					
						
						|  | def _init_weights(self, module: nn.Module): | 
					
						
						|  | """Initialize the weights.""" | 
					
						
						|  | if isinstance(module, nn.Linear): | 
					
						
						|  | module.weight.data.normal_(mean=0.0, std=self.config.initializer_range) | 
					
						
						|  | if module.bias is not None: | 
					
						
						|  | module.bias.data.zero_() | 
					
						
						|  |  | 
					
						
						|  | elif isinstance(module, nn.Embedding): | 
					
						
						|  | module.weight.data.normal_(mean=0.0, std=self.config.initializer_range) | 
					
						
						|  | if module.padding_idx is not None: | 
					
						
						|  | module.weight.data[module.padding_idx].zero_() | 
					
						
						|  |  | 
					
						
						|  | elif isinstance(module, LayerNorm): | 
					
						
						|  | module.bias.data.zero_() | 
					
						
						|  | module.weight.data.fill_(1.0) | 
					
						
						|  |  | 
					
						
						|  | def _set_gradient_checkpointing(self, module: nn.Module, value: bool = False): | 
					
						
						|  | if isinstance(module, TelechatModel): | 
					
						
						|  | module.gradient_checkpointing = value | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | class TelechatModel(TelechatPreTrainedModel): | 
					
						
						|  | def __init__(self, config: TelechatConfig): | 
					
						
						|  | super().__init__(config) | 
					
						
						|  |  | 
					
						
						|  | self.embed_dim = config.hidden_size | 
					
						
						|  | self.num_heads = config.n_head | 
					
						
						|  | self.config = config | 
					
						
						|  | self.word_embeddings = nn.Embedding(config.vocab_size, self.embed_dim) | 
					
						
						|  | if self.config.embed_layernorm: | 
					
						
						|  | self.word_embeddings_layernorm = MixedFusedRMSNorm(self.embed_dim, eps=config.layer_norm_epsilon) | 
					
						
						|  |  | 
					
						
						|  | self.h = nn.ModuleList([TelechatBlock(config, _) for _ in range(config.num_hidden_layers)]) | 
					
						
						|  | self.ln_f = MixedFusedRMSNorm(self.embed_dim, eps=config.layer_norm_epsilon) | 
					
						
						|  | self.gradient_checkpointing = False | 
					
						
						|  | self.post_init() | 
					
						
						|  |  | 
					
						
						|  | def get_input_embeddings(self): | 
					
						
						|  | return self.word_embeddings | 
					
						
						|  |  | 
					
						
						|  | def _prepare_attn_mask( | 
					
						
						|  | self, attention_mask: torch.Tensor, input_shape: Tuple[int, int], past_key_values_length: int | 
					
						
						|  | ) -> torch.BoolTensor: | 
					
						
						|  | combined_attention_mask = None | 
					
						
						|  | device = attention_mask.device | 
					
						
						|  | _, src_length = input_shape | 
					
						
						|  |  | 
					
						
						|  | if src_length > 1: | 
					
						
						|  | combined_attention_mask = _make_causal_mask( | 
					
						
						|  | input_shape, device=device, past_key_values_length=past_key_values_length | 
					
						
						|  | ) | 
					
						
						|  | expanded_attn_mask = _expand_mask(attention_mask, tgt_length=src_length) | 
					
						
						|  | combined_attention_mask = ( | 
					
						
						|  | expanded_attn_mask if combined_attention_mask is None else expanded_attn_mask | combined_attention_mask | 
					
						
						|  | ) | 
					
						
						|  |  | 
					
						
						|  | return combined_attention_mask | 
					
						
						|  |  | 
					
						
						|  | def set_input_embeddings(self, new_embeddings: torch.Tensor): | 
					
						
						|  | self.word_embeddings = new_embeddings | 
					
						
						|  |  | 
					
						
						|  | def forward( | 
					
						
						|  | self, | 
					
						
						|  | input_ids: Optional[torch.LongTensor] = None, | 
					
						
						|  | past_key_values: Optional[Tuple[Tuple[torch.Tensor, torch.Tensor], ...]] = None, | 
					
						
						|  | attention_mask: Optional[torch.Tensor] = None, | 
					
						
						|  | inputs_embeds: Optional[torch.LongTensor] = None, | 
					
						
						|  | use_cache: Optional[bool] = None, | 
					
						
						|  | output_attentions: Optional[bool] = None, | 
					
						
						|  | output_hidden_states: Optional[bool] = None, | 
					
						
						|  | return_dict: Optional[bool] = None, | 
					
						
						|  | **deprecated_arguments, | 
					
						
						|  | ) -> Union[Tuple[torch.Tensor, ...], BaseModelOutputWithPastAndCrossAttentions]: | 
					
						
						|  |  | 
					
						
						|  | output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions | 
					
						
						|  | output_hidden_states = ( | 
					
						
						|  | output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states | 
					
						
						|  | ) | 
					
						
						|  | use_cache = use_cache if use_cache is not None else self.config.use_cache | 
					
						
						|  | return_dict = return_dict if return_dict is not None else self.config.use_return_dict | 
					
						
						|  |  | 
					
						
						|  | if input_ids is not None: | 
					
						
						|  | batch_size, seq_length = input_ids.shape | 
					
						
						|  | elif inputs_embeds is not None: | 
					
						
						|  | batch_size, seq_length, _ = inputs_embeds.shape | 
					
						
						|  |  | 
					
						
						|  | if past_key_values is None: | 
					
						
						|  | past_key_values = tuple([None] * len(self.h)) | 
					
						
						|  |  | 
					
						
						|  | if inputs_embeds is None: | 
					
						
						|  | inputs_embeds = self.word_embeddings(input_ids) | 
					
						
						|  | hidden_states = inputs_embeds | 
					
						
						|  |  | 
					
						
						|  | if self.config.embed_layernorm: | 
					
						
						|  | hidden_states = self.word_embeddings_layernorm(inputs_embeds) | 
					
						
						|  |  | 
					
						
						|  | presents = () if use_cache else None | 
					
						
						|  | all_self_attentions = () if output_attentions else None | 
					
						
						|  | all_hidden_states = () if output_hidden_states else None | 
					
						
						|  |  | 
					
						
						|  | if self.gradient_checkpointing and self.training: | 
					
						
						|  | if use_cache: | 
					
						
						|  | use_cache = False | 
					
						
						|  |  | 
					
						
						|  | seq_length_with_past = seq_length | 
					
						
						|  | past_key_values_length = 0 | 
					
						
						|  | if past_key_values[0] is not None: | 
					
						
						|  | past_key_values_length = past_key_values[0][0].shape[2] | 
					
						
						|  | seq_length_with_past = seq_length_with_past + past_key_values_length | 
					
						
						|  | if attention_mask is None: | 
					
						
						|  | attention_mask = torch.ones((batch_size, seq_length_with_past), device=hidden_states.device) | 
					
						
						|  | else: | 
					
						
						|  | attention_mask = attention_mask.to(hidden_states.device) | 
					
						
						|  | causal_mask = self._prepare_attn_mask( | 
					
						
						|  | attention_mask, | 
					
						
						|  | input_shape=(batch_size, seq_length), | 
					
						
						|  | past_key_values_length=past_key_values_length, | 
					
						
						|  | ) | 
					
						
						|  |  | 
					
						
						|  | for i, (block, layer_past) in enumerate(zip(self.h, past_key_values)): | 
					
						
						|  | if output_hidden_states: | 
					
						
						|  | all_hidden_states = all_hidden_states + (hidden_states,) | 
					
						
						|  |  | 
					
						
						|  | if self.gradient_checkpointing and self.training: | 
					
						
						|  |  | 
					
						
						|  | def create_custom_forward(module): | 
					
						
						|  | def custom_forward(*inputs): | 
					
						
						|  |  | 
					
						
						|  | return module(*inputs, use_cache=use_cache, output_attentions=output_attentions) | 
					
						
						|  |  | 
					
						
						|  | return custom_forward | 
					
						
						|  |  | 
					
						
						|  | outputs = torch.utils.checkpoint.checkpoint( | 
					
						
						|  | create_custom_forward(block), | 
					
						
						|  | hidden_states, | 
					
						
						|  | causal_mask, | 
					
						
						|  | layer_past, | 
					
						
						|  | ) | 
					
						
						|  | else: | 
					
						
						|  | outputs = block( | 
					
						
						|  | hidden_states, | 
					
						
						|  | layer_past=layer_past, | 
					
						
						|  | attention_mask=causal_mask, | 
					
						
						|  | use_cache=use_cache, | 
					
						
						|  | output_attentions=output_attentions, | 
					
						
						|  | ) | 
					
						
						|  |  | 
					
						
						|  | hidden_states = outputs[0] | 
					
						
						|  | if use_cache is True: | 
					
						
						|  | presents = presents + (outputs[1],) | 
					
						
						|  |  | 
					
						
						|  | if output_attentions: | 
					
						
						|  | all_self_attentions = all_self_attentions + (outputs[2 if use_cache else 1],) | 
					
						
						|  | hidden_states = self.ln_f(hidden_states) | 
					
						
						|  | if output_hidden_states: | 
					
						
						|  | all_hidden_states = all_hidden_states + (hidden_states,) | 
					
						
						|  | if not return_dict: | 
					
						
						|  | return tuple(v for v in [hidden_states, presents, all_hidden_states, all_self_attentions] if v is not None) | 
					
						
						|  | return BaseModelOutputWithPastAndCrossAttentions( | 
					
						
						|  | last_hidden_state=hidden_states, | 
					
						
						|  | past_key_values=presents, | 
					
						
						|  | hidden_states=all_hidden_states, | 
					
						
						|  | attentions=all_self_attentions, | 
					
						
						|  | ) | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | class TelechatForCausalLM(TelechatPreTrainedModel): | 
					
						
						|  |  | 
					
						
						|  | _keys_to_ignore_on_load_missing = [r"lm_head.weight"] | 
					
						
						|  |  | 
					
						
						|  | def __init__(self, config: TelechatConfig): | 
					
						
						|  | super().__init__(config) | 
					
						
						|  | self.transformer = TelechatModel(config) | 
					
						
						|  | self.lm_head = nn.Linear(config.hidden_size, config.vocab_size, bias=False) | 
					
						
						|  | self.post_init() | 
					
						
						|  |  | 
					
						
						|  | def get_output_embeddings(self): | 
					
						
						|  | return self.lm_head | 
					
						
						|  |  | 
					
						
						|  | def set_output_embeddings(self, new_embeddings: torch.Tensor): | 
					
						
						|  | self.lm_head = new_embeddings | 
					
						
						|  |  | 
					
						
						|  | def prepare_inputs_for_generation( | 
					
						
						|  | self, | 
					
						
						|  | input_ids: torch.LongTensor, | 
					
						
						|  | past_key_values: Optional[torch.Tensor] = None, | 
					
						
						|  | attention_mask: Optional[torch.Tensor] = None, | 
					
						
						|  | inputs_embeds: Optional[torch.Tensor] = None, | 
					
						
						|  | **kwargs, | 
					
						
						|  | ) -> dict: | 
					
						
						|  | if past_key_values: | 
					
						
						|  | input_ids = input_ids[:, -1].unsqueeze(-1) | 
					
						
						|  | if inputs_embeds is not None and past_key_values is None: | 
					
						
						|  | model_inputs = {"inputs_embeds": inputs_embeds} | 
					
						
						|  | else: | 
					
						
						|  | model_inputs = {"input_ids": input_ids} | 
					
						
						|  |  | 
					
						
						|  | model_inputs.update( | 
					
						
						|  | { | 
					
						
						|  | "past_key_values": past_key_values, | 
					
						
						|  | "use_cache": kwargs.get("use_cache"), | 
					
						
						|  | "attention_mask": attention_mask, | 
					
						
						|  | } | 
					
						
						|  | ) | 
					
						
						|  | return model_inputs | 
					
						
						|  |  | 
					
						
						|  | def forward( | 
					
						
						|  | self, | 
					
						
						|  | input_ids: Optional[torch.LongTensor] = None, | 
					
						
						|  | past_key_values: Optional[Tuple[Tuple[torch.Tensor, torch.Tensor], ...]] = None, | 
					
						
						|  | attention_mask: Optional[torch.Tensor] = None, | 
					
						
						|  | inputs_embeds: Optional[torch.Tensor] = None, | 
					
						
						|  | labels: Optional[torch.Tensor] = None, | 
					
						
						|  | use_cache: Optional[bool] = None, | 
					
						
						|  | output_attentions: Optional[bool] = None, | 
					
						
						|  | output_hidden_states: Optional[bool] = None, | 
					
						
						|  | return_dict: Optional[bool] = None, | 
					
						
						|  | **deprecated_arguments, | 
					
						
						|  | ) -> Union[Tuple[torch.Tensor], CausalLMOutputWithCrossAttentions]: | 
					
						
						|  |  | 
					
						
						|  | return_dict = return_dict if return_dict is not None else self.config.use_return_dict | 
					
						
						|  |  | 
					
						
						|  | transformer_outputs = self.transformer( | 
					
						
						|  | input_ids, | 
					
						
						|  | past_key_values=past_key_values, | 
					
						
						|  | attention_mask=attention_mask, | 
					
						
						|  | inputs_embeds=inputs_embeds, | 
					
						
						|  | use_cache=use_cache, | 
					
						
						|  | output_attentions=output_attentions, | 
					
						
						|  | output_hidden_states=output_hidden_states, | 
					
						
						|  | return_dict=return_dict, | 
					
						
						|  | ) | 
					
						
						|  | hidden_states = transformer_outputs[0] | 
					
						
						|  | lm_logits = self.lm_head(hidden_states) | 
					
						
						|  |  | 
					
						
						|  | loss = None | 
					
						
						|  | if labels is not None: | 
					
						
						|  | labels = labels.to(lm_logits.device) | 
					
						
						|  | shift_logits = lm_logits[..., :-1, :].contiguous() | 
					
						
						|  | shift_labels = labels[..., 1:].contiguous() | 
					
						
						|  | batch_size, seq_length, vocab_size = shift_logits.shape | 
					
						
						|  | loss_fct = CrossEntropyLoss() | 
					
						
						|  | loss = loss_fct( | 
					
						
						|  | shift_logits.view(batch_size * seq_length, vocab_size), shift_labels.view(batch_size * seq_length) | 
					
						
						|  | ) | 
					
						
						|  |  | 
					
						
						|  | if not return_dict: | 
					
						
						|  | output = (lm_logits,) + transformer_outputs[1:] | 
					
						
						|  | return ((loss,) + output) if loss is not None else output | 
					
						
						|  |  | 
					
						
						|  | return CausalLMOutputWithCrossAttentions( | 
					
						
						|  | loss=loss, | 
					
						
						|  | logits=lm_logits, | 
					
						
						|  | past_key_values=transformer_outputs.past_key_values, | 
					
						
						|  | hidden_states=transformer_outputs.hidden_states, | 
					
						
						|  | attentions=transformer_outputs.attentions, | 
					
						
						|  | ) | 
					
						
						|  |  | 
					
						
						|  | def chat(self, tokenizer, question: str = '', history: Union[List[Dict], History] = None, stream: bool = False, | 
					
						
						|  | generation_config: Optional[GenerationConfig] = None, **kwargs): | 
					
						
						|  | """ | 
					
						
						|  | Args: | 
					
						
						|  | tokenizer:  the tokenizer of  telechat | 
					
						
						|  | question: question which the model reply in this turn | 
					
						
						|  | history: history which will format the input for telechat | 
					
						
						|  | stream: if return the full text at last or yield the text in token | 
					
						
						|  | generation_config:  configuration for generation | 
					
						
						|  | **kwargs: args which will update the generation config or pass to model forward | 
					
						
						|  | """ | 
					
						
						|  | generation_config = generation_config or self.generation_config | 
					
						
						|  | if not generation_config: | 
					
						
						|  | logger.error("generation_config is None") | 
					
						
						|  | raise ValueError("generation_config must not be None") | 
					
						
						|  | if not question: | 
					
						
						|  | logger.error("question is empty") | 
					
						
						|  | raise ValueError("question must not be empty") | 
					
						
						|  | if history is None: | 
					
						
						|  | history = [] | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | generation_config = copy.deepcopy(generation_config) | 
					
						
						|  | user_id = generation_config.user_token_id | 
					
						
						|  | bot_id = generation_config.bot_token_id | 
					
						
						|  | model_kwargs = generation_config.update(**kwargs) | 
					
						
						|  | generation_config.validate() | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | if not isinstance(history, History): | 
					
						
						|  | history = History(tokenizer, history) | 
					
						
						|  |  | 
					
						
						|  | inputs = self.build_inputs_for_chat(tokenizer, question, history, generation_config, user_id, bot_id) | 
					
						
						|  | history.append({"role": "user", "content": question}) | 
					
						
						|  | if stream: | 
					
						
						|  | streamer = TelechatIterTextStreamer(tokenizer, history,skip_prompt=True) | 
					
						
						|  | Thread(target=self.generate, kwargs=dict( | 
					
						
						|  | inputs=inputs.to(self.device), streamer=streamer, | 
					
						
						|  | generation_config=generation_config, **model_kwargs | 
					
						
						|  | )).start() | 
					
						
						|  | return streamer | 
					
						
						|  | else: | 
					
						
						|  | outputs = self.generate(inputs.to(self.device), generation_config=generation_config, **model_kwargs) | 
					
						
						|  | response = tokenizer.decode(outputs[0][len(inputs[0]):-1]) | 
					
						
						|  | history.append({"role": "bot", "content": response}) | 
					
						
						|  | return response, history | 
					
						
						|  |  | 
					
						
						|  | def build_inputs_for_chat(self, tokenizer, question, history, generation_config, usr_id, bot_id): | 
					
						
						|  | """ | 
					
						
						|  | check history and  build inputs here | 
					
						
						|  | """ | 
					
						
						|  |  | 
					
						
						|  | q_token = tokenizer(question) | 
					
						
						|  | qa_history = copy.deepcopy(history) | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | model_max_length = self.config.seq_length | 
					
						
						|  | build_max_length = max(0, model_max_length - generation_config.max_new_tokens) \ | 
					
						
						|  | if generation_config.max_new_tokens else max(0, generation_config.max_length) | 
					
						
						|  | if build_max_length < 3: | 
					
						
						|  | logger.warning("the model can not meet the  requirements of input length,Please check config") | 
					
						
						|  | raise ValueError("") | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | input_tokens = [usr_id] + q_token["input_ids"][-build_max_length + 1:] + [bot_id] | 
					
						
						|  | length = len(input_tokens) | 
					
						
						|  |  | 
					
						
						|  | while len(qa_history) != 0: | 
					
						
						|  | message = qa_history.pop() | 
					
						
						|  | if message["role"] == "user": | 
					
						
						|  | tokens = [usr_id] + message["input_ids"] | 
					
						
						|  | elif message["role"] == "bot": | 
					
						
						|  | tokens = [bot_id] + message["input_ids"] + [generation_config.eos_token_id] | 
					
						
						|  | else: | 
					
						
						|  | tokens = [] | 
					
						
						|  | if len(tokens) + length >= build_max_length: | 
					
						
						|  | break | 
					
						
						|  | else: | 
					
						
						|  | input_tokens = tokens + input_tokens | 
					
						
						|  |  | 
					
						
						|  | return torch.tensor([input_tokens], dtype=torch.int64) | 
					
						
						|  |  |