Delete got_vision_b.py
Browse files- got_vision_b.py +0 -468
got_vision_b.py
DELETED
|
@@ -1,468 +0,0 @@
|
|
| 1 |
-
import torch
|
| 2 |
-
import torch.nn.functional as F
|
| 3 |
-
from typing import Optional, Tuple, Type
|
| 4 |
-
from functools import partial
|
| 5 |
-
import torch.nn as nn
|
| 6 |
-
from typing import Type
|
| 7 |
-
|
| 8 |
-
|
| 9 |
-
|
| 10 |
-
class MLPBlock(nn.Module):
|
| 11 |
-
def __init__(
|
| 12 |
-
self,
|
| 13 |
-
embedding_dim: int,
|
| 14 |
-
mlp_dim: int,
|
| 15 |
-
act: Type[nn.Module] = nn.GELU,
|
| 16 |
-
) -> None:
|
| 17 |
-
super().__init__()
|
| 18 |
-
self.lin1 = nn.Linear(embedding_dim, mlp_dim)
|
| 19 |
-
self.lin2 = nn.Linear(mlp_dim, embedding_dim)
|
| 20 |
-
self.act = act()
|
| 21 |
-
|
| 22 |
-
def forward(self, x: torch.Tensor) -> torch.Tensor:
|
| 23 |
-
return self.lin2(self.act(self.lin1(x)))
|
| 24 |
-
|
| 25 |
-
|
| 26 |
-
|
| 27 |
-
class LayerNorm2d(nn.Module):
|
| 28 |
-
def __init__(self, num_channels: int, eps: float = 1e-6) -> None:
|
| 29 |
-
super().__init__()
|
| 30 |
-
self.weight = nn.Parameter(torch.ones(num_channels))
|
| 31 |
-
self.bias = nn.Parameter(torch.zeros(num_channels))
|
| 32 |
-
self.eps = eps
|
| 33 |
-
|
| 34 |
-
def forward(self, x: torch.Tensor) -> torch.Tensor:
|
| 35 |
-
u = x.mean(1, keepdim=True)
|
| 36 |
-
s = (x - u).pow(2).mean(1, keepdim=True)
|
| 37 |
-
x = (x - u) / torch.sqrt(s + self.eps)
|
| 38 |
-
x = self.weight[:, None, None] * x + self.bias[:, None, None]
|
| 39 |
-
return x
|
| 40 |
-
|
| 41 |
-
|
| 42 |
-
|
| 43 |
-
class ImageEncoderViT(nn.Module):
|
| 44 |
-
def __init__(
|
| 45 |
-
self,
|
| 46 |
-
img_size: int = 1024,
|
| 47 |
-
patch_size: int = 16,
|
| 48 |
-
in_chans: int = 3,
|
| 49 |
-
embed_dim: int = 768,
|
| 50 |
-
depth: int = 12,
|
| 51 |
-
num_heads: int = 12,
|
| 52 |
-
mlp_ratio: float = 4.0,
|
| 53 |
-
out_chans: int = 256,
|
| 54 |
-
qkv_bias: bool = True,
|
| 55 |
-
norm_layer: Type[nn.Module] = nn.LayerNorm,
|
| 56 |
-
act_layer: Type[nn.Module] = nn.GELU,
|
| 57 |
-
use_abs_pos: bool = True,
|
| 58 |
-
use_rel_pos: bool = False,
|
| 59 |
-
rel_pos_zero_init: bool = True,
|
| 60 |
-
window_size: int = 0,
|
| 61 |
-
global_attn_indexes: Tuple[int, ...] = (),
|
| 62 |
-
) -> None:
|
| 63 |
-
"""
|
| 64 |
-
Args:
|
| 65 |
-
img_size (int): Input image size.
|
| 66 |
-
patch_size (int): Patch size.
|
| 67 |
-
in_chans (int): Number of input image channels.
|
| 68 |
-
embed_dim (int): Patch embedding dimension.
|
| 69 |
-
depth (int): Depth of ViT.
|
| 70 |
-
num_heads (int): Number of attention heads in each ViT block.
|
| 71 |
-
mlp_ratio (float): Ratio of mlp hidden dim to embedding dim.
|
| 72 |
-
qkv_bias (bool): If True, add a learnable bias to query, key, value.
|
| 73 |
-
norm_layer (nn.Module): Normalization layer.
|
| 74 |
-
act_layer (nn.Module): Activation layer.
|
| 75 |
-
use_abs_pos (bool): If True, use absolute positional embeddings.
|
| 76 |
-
use_rel_pos (bool): If True, add relative positional embeddings to the attention map.
|
| 77 |
-
rel_pos_zero_init (bool): If True, zero initialize relative positional parameters.
|
| 78 |
-
window_size (int): Window size for window attention blocks.
|
| 79 |
-
global_attn_indexes (list): Indexes for blocks using global attention.
|
| 80 |
-
"""
|
| 81 |
-
super().__init__()
|
| 82 |
-
self.img_size = img_size
|
| 83 |
-
|
| 84 |
-
self.patch_embed = PatchEmbed(
|
| 85 |
-
kernel_size=(patch_size, patch_size),
|
| 86 |
-
stride=(patch_size, patch_size),
|
| 87 |
-
in_chans=in_chans,
|
| 88 |
-
embed_dim=embed_dim,
|
| 89 |
-
)
|
| 90 |
-
|
| 91 |
-
self.pos_embed: Optional[nn.Parameter] = None
|
| 92 |
-
if use_abs_pos:
|
| 93 |
-
# Initialize absolute positional embedding with pretrain image size.
|
| 94 |
-
self.pos_embed = nn.Parameter(
|
| 95 |
-
torch.zeros(1, img_size // patch_size, img_size // patch_size, embed_dim)
|
| 96 |
-
)
|
| 97 |
-
|
| 98 |
-
self.blocks = nn.ModuleList()
|
| 99 |
-
for i in range(depth):
|
| 100 |
-
block = Block(
|
| 101 |
-
dim=embed_dim,
|
| 102 |
-
num_heads=num_heads,
|
| 103 |
-
mlp_ratio=mlp_ratio,
|
| 104 |
-
qkv_bias=qkv_bias,
|
| 105 |
-
norm_layer=norm_layer,
|
| 106 |
-
act_layer=act_layer,
|
| 107 |
-
use_rel_pos=use_rel_pos,
|
| 108 |
-
rel_pos_zero_init=rel_pos_zero_init,
|
| 109 |
-
window_size=window_size if i not in global_attn_indexes else 0,
|
| 110 |
-
input_size=(img_size // patch_size, img_size // patch_size),
|
| 111 |
-
)
|
| 112 |
-
self.blocks.append(block)
|
| 113 |
-
|
| 114 |
-
self.neck = nn.Sequential(
|
| 115 |
-
nn.Conv2d(
|
| 116 |
-
embed_dim,
|
| 117 |
-
out_chans,
|
| 118 |
-
kernel_size=1,
|
| 119 |
-
bias=False,
|
| 120 |
-
),
|
| 121 |
-
LayerNorm2d(out_chans),
|
| 122 |
-
nn.Conv2d(
|
| 123 |
-
out_chans,
|
| 124 |
-
out_chans,
|
| 125 |
-
kernel_size=3,
|
| 126 |
-
padding=1,
|
| 127 |
-
bias=False,
|
| 128 |
-
),
|
| 129 |
-
LayerNorm2d(out_chans),
|
| 130 |
-
)
|
| 131 |
-
|
| 132 |
-
|
| 133 |
-
self.net_2 = nn.Conv2d(256, 512, kernel_size=3, stride=2, padding=1, bias=False)
|
| 134 |
-
self.net_3 = nn.Conv2d(512, 1024, kernel_size=3, stride=2, padding=1, bias=False)
|
| 135 |
-
|
| 136 |
-
def forward(self, x: torch.Tensor) -> torch.Tensor:
|
| 137 |
-
x = self.patch_embed(x)
|
| 138 |
-
if self.pos_embed is not None:
|
| 139 |
-
x = x + self.pos_embed
|
| 140 |
-
|
| 141 |
-
for blk in self.blocks:
|
| 142 |
-
x = blk(x)
|
| 143 |
-
|
| 144 |
-
x = self.neck(x.permute(0, 3, 1, 2))
|
| 145 |
-
x = self.net_2(x)
|
| 146 |
-
x = self.net_3(x)
|
| 147 |
-
|
| 148 |
-
|
| 149 |
-
return x
|
| 150 |
-
|
| 151 |
-
|
| 152 |
-
class Block(nn.Module):
|
| 153 |
-
"""Transformer blocks with support of window attention and residual propagation blocks"""
|
| 154 |
-
|
| 155 |
-
def __init__(
|
| 156 |
-
self,
|
| 157 |
-
dim: int,
|
| 158 |
-
num_heads: int,
|
| 159 |
-
mlp_ratio: float = 4.0,
|
| 160 |
-
qkv_bias: bool = True,
|
| 161 |
-
norm_layer: Type[nn.Module] = nn.LayerNorm,
|
| 162 |
-
act_layer: Type[nn.Module] = nn.GELU,
|
| 163 |
-
use_rel_pos: bool = False,
|
| 164 |
-
rel_pos_zero_init: bool = True,
|
| 165 |
-
window_size: int = 0,
|
| 166 |
-
input_size: Optional[Tuple[int, int]] = None,
|
| 167 |
-
) -> None:
|
| 168 |
-
"""
|
| 169 |
-
Args:
|
| 170 |
-
dim (int): Number of input channels.
|
| 171 |
-
num_heads (int): Number of attention heads in each ViT block.
|
| 172 |
-
mlp_ratio (float): Ratio of mlp hidden dim to embedding dim.
|
| 173 |
-
qkv_bias (bool): If True, add a learnable bias to query, key, value.
|
| 174 |
-
norm_layer (nn.Module): Normalization layer.
|
| 175 |
-
act_layer (nn.Module): Activation layer.
|
| 176 |
-
use_rel_pos (bool): If True, add relative positional embeddings to the attention map.
|
| 177 |
-
rel_pos_zero_init (bool): If True, zero initialize relative positional parameters.
|
| 178 |
-
window_size (int): Window size for window attention blocks. If it equals 0, then
|
| 179 |
-
use global attention.
|
| 180 |
-
input_size (tuple(int, int) or None): Input resolution for calculating the relative
|
| 181 |
-
positional parameter size.
|
| 182 |
-
"""
|
| 183 |
-
super().__init__()
|
| 184 |
-
self.norm1 = norm_layer(dim)
|
| 185 |
-
self.attn = Attention(
|
| 186 |
-
dim,
|
| 187 |
-
num_heads=num_heads,
|
| 188 |
-
qkv_bias=qkv_bias,
|
| 189 |
-
use_rel_pos=use_rel_pos,
|
| 190 |
-
rel_pos_zero_init=rel_pos_zero_init,
|
| 191 |
-
input_size=input_size if window_size == 0 else (window_size, window_size),
|
| 192 |
-
)
|
| 193 |
-
|
| 194 |
-
self.norm2 = norm_layer(dim)
|
| 195 |
-
self.mlp = MLPBlock(embedding_dim=dim, mlp_dim=int(dim * mlp_ratio), act=act_layer)
|
| 196 |
-
|
| 197 |
-
self.window_size = window_size
|
| 198 |
-
|
| 199 |
-
def forward(self, x: torch.Tensor) -> torch.Tensor:
|
| 200 |
-
shortcut = x
|
| 201 |
-
x = self.norm1(x)
|
| 202 |
-
# Window partition
|
| 203 |
-
if self.window_size > 0:
|
| 204 |
-
H, W = x.shape[1], x.shape[2]
|
| 205 |
-
x, pad_hw = window_partition(x, self.window_size)
|
| 206 |
-
|
| 207 |
-
x = self.attn(x)
|
| 208 |
-
# Reverse window partition
|
| 209 |
-
if self.window_size > 0:
|
| 210 |
-
x = window_unpartition(x, self.window_size, pad_hw, (H, W))
|
| 211 |
-
|
| 212 |
-
x = shortcut + x
|
| 213 |
-
x = x + self.mlp(self.norm2(x))
|
| 214 |
-
|
| 215 |
-
return x
|
| 216 |
-
|
| 217 |
-
|
| 218 |
-
class Attention(nn.Module):
|
| 219 |
-
"""Multi-head Attention block with relative position embeddings."""
|
| 220 |
-
|
| 221 |
-
def __init__(
|
| 222 |
-
self,
|
| 223 |
-
dim: int,
|
| 224 |
-
num_heads: int = 8,
|
| 225 |
-
qkv_bias: bool = True,
|
| 226 |
-
use_rel_pos: bool = False,
|
| 227 |
-
rel_pos_zero_init: bool = True,
|
| 228 |
-
input_size: Optional[Tuple[int, int]] = None,
|
| 229 |
-
) -> None:
|
| 230 |
-
"""
|
| 231 |
-
Args:
|
| 232 |
-
dim (int): Number of input channels.
|
| 233 |
-
num_heads (int): Number of attention heads.
|
| 234 |
-
qkv_bias (bool): If True, add a learnable bias to query, key, value.
|
| 235 |
-
rel_pos (bool): If True, add relative positional embeddings to the attention map.
|
| 236 |
-
rel_pos_zero_init (bool): If True, zero initialize relative positional parameters.
|
| 237 |
-
input_size (tuple(int, int) or None): Input resolution for calculating the relative
|
| 238 |
-
positional parameter size.
|
| 239 |
-
"""
|
| 240 |
-
super().__init__()
|
| 241 |
-
self.num_heads = num_heads
|
| 242 |
-
head_dim = dim // num_heads
|
| 243 |
-
self.scale = head_dim**-0.5
|
| 244 |
-
|
| 245 |
-
self.qkv = nn.Linear(dim, dim * 3, bias=qkv_bias)
|
| 246 |
-
self.proj = nn.Linear(dim, dim)
|
| 247 |
-
|
| 248 |
-
self.use_rel_pos = use_rel_pos
|
| 249 |
-
if self.use_rel_pos:
|
| 250 |
-
assert (
|
| 251 |
-
input_size is not None
|
| 252 |
-
), "Input size must be provided if using relative positional encoding."
|
| 253 |
-
# initialize relative positional embeddings
|
| 254 |
-
self.rel_pos_h = nn.Parameter(torch.zeros(2 * input_size[0] - 1, head_dim))
|
| 255 |
-
self.rel_pos_w = nn.Parameter(torch.zeros(2 * input_size[1] - 1, head_dim))
|
| 256 |
-
|
| 257 |
-
def forward(self, x: torch.Tensor) -> torch.Tensor:
|
| 258 |
-
B, H, W, _ = x.shape
|
| 259 |
-
# qkv with shape (3, B, nHead, H * W, C)
|
| 260 |
-
qkv = self.qkv(x).reshape(B, H * W, 3, self.num_heads, -1).permute(2, 0, 3, 1, 4)
|
| 261 |
-
# q, k, v with shape (B * nHead, H * W, C)
|
| 262 |
-
q, k, v = qkv.reshape(3, B * self.num_heads, H * W, -1).unbind(0)
|
| 263 |
-
|
| 264 |
-
attn = (q * self.scale) @ k.transpose(-2, -1)
|
| 265 |
-
|
| 266 |
-
if self.use_rel_pos:
|
| 267 |
-
attn = add_decomposed_rel_pos(attn, q, self.rel_pos_h, self.rel_pos_w, (H, W), (H, W))
|
| 268 |
-
|
| 269 |
-
attn = attn.softmax(dim=-1)
|
| 270 |
-
x = (attn @ v).view(B, self.num_heads, H, W, -1).permute(0, 2, 3, 1, 4).reshape(B, H, W, -1)
|
| 271 |
-
x = self.proj(x)
|
| 272 |
-
|
| 273 |
-
return x
|
| 274 |
-
|
| 275 |
-
|
| 276 |
-
def window_partition(x: torch.Tensor, window_size: int) -> Tuple[torch.Tensor, Tuple[int, int]]:
|
| 277 |
-
"""
|
| 278 |
-
Partition into non-overlapping windows with padding if needed.
|
| 279 |
-
Args:
|
| 280 |
-
x (tensor): input tokens with [B, H, W, C].
|
| 281 |
-
window_size (int): window size.
|
| 282 |
-
|
| 283 |
-
Returns:
|
| 284 |
-
windows: windows after partition with [B * num_windows, window_size, window_size, C].
|
| 285 |
-
(Hp, Wp): padded height and width before partition
|
| 286 |
-
"""
|
| 287 |
-
B, H, W, C = x.shape
|
| 288 |
-
|
| 289 |
-
pad_h = (window_size - H % window_size) % window_size
|
| 290 |
-
pad_w = (window_size - W % window_size) % window_size
|
| 291 |
-
if pad_h > 0 or pad_w > 0:
|
| 292 |
-
x = F.pad(x, (0, 0, 0, pad_w, 0, pad_h))
|
| 293 |
-
Hp, Wp = H + pad_h, W + pad_w
|
| 294 |
-
|
| 295 |
-
x = x.view(B, Hp // window_size, window_size, Wp // window_size, window_size, C)
|
| 296 |
-
windows = x.permute(0, 1, 3, 2, 4, 5).contiguous().view(-1, window_size, window_size, C)
|
| 297 |
-
return windows, (Hp, Wp)
|
| 298 |
-
|
| 299 |
-
|
| 300 |
-
def window_unpartition(
|
| 301 |
-
windows: torch.Tensor, window_size: int, pad_hw: Tuple[int, int], hw: Tuple[int, int]
|
| 302 |
-
) -> torch.Tensor:
|
| 303 |
-
"""
|
| 304 |
-
Window unpartition into original sequences and removing padding.
|
| 305 |
-
Args:
|
| 306 |
-
windows (tensor): input tokens with [B * num_windows, window_size, window_size, C].
|
| 307 |
-
window_size (int): window size.
|
| 308 |
-
pad_hw (Tuple): padded height and width (Hp, Wp).
|
| 309 |
-
hw (Tuple): original height and width (H, W) before padding.
|
| 310 |
-
|
| 311 |
-
Returns:
|
| 312 |
-
x: unpartitioned sequences with [B, H, W, C].
|
| 313 |
-
"""
|
| 314 |
-
Hp, Wp = pad_hw
|
| 315 |
-
H, W = hw
|
| 316 |
-
B = windows.shape[0] // (Hp * Wp // window_size // window_size)
|
| 317 |
-
x = windows.view(B, Hp // window_size, Wp // window_size, window_size, window_size, -1)
|
| 318 |
-
x = x.permute(0, 1, 3, 2, 4, 5).contiguous().view(B, Hp, Wp, -1)
|
| 319 |
-
|
| 320 |
-
if Hp > H or Wp > W:
|
| 321 |
-
x = x[:, :H, :W, :].contiguous()
|
| 322 |
-
return x
|
| 323 |
-
|
| 324 |
-
|
| 325 |
-
def get_rel_pos(q_size: int, k_size: int, rel_pos: torch.Tensor) -> torch.Tensor:
|
| 326 |
-
"""
|
| 327 |
-
Get relative positional embeddings according to the relative positions of
|
| 328 |
-
query and key sizes.
|
| 329 |
-
Args:
|
| 330 |
-
q_size (int): size of query q.
|
| 331 |
-
k_size (int): size of key k.
|
| 332 |
-
rel_pos (Tensor): relative position embeddings (L, C).
|
| 333 |
-
|
| 334 |
-
Returns:
|
| 335 |
-
Extracted positional embeddings according to relative positions.
|
| 336 |
-
"""
|
| 337 |
-
max_rel_dist = int(2 * max(q_size, k_size) - 1)
|
| 338 |
-
# Interpolate rel pos if needed.
|
| 339 |
-
if rel_pos.shape[0] != max_rel_dist:
|
| 340 |
-
# Interpolate rel pos.
|
| 341 |
-
rel_pos_resized = F.interpolate(
|
| 342 |
-
rel_pos.reshape(1, rel_pos.shape[0], -1).permute(0, 2, 1),
|
| 343 |
-
size=max_rel_dist,
|
| 344 |
-
mode="linear",
|
| 345 |
-
)
|
| 346 |
-
rel_pos_resized = rel_pos_resized.reshape(-1, max_rel_dist).permute(1, 0)
|
| 347 |
-
else:
|
| 348 |
-
rel_pos_resized = rel_pos
|
| 349 |
-
|
| 350 |
-
# Scale the coords with short length if shapes for q and k are different.
|
| 351 |
-
q_coords = torch.arange(q_size)[:, None] * max(k_size / q_size, 1.0)
|
| 352 |
-
k_coords = torch.arange(k_size)[None, :] * max(q_size / k_size, 1.0)
|
| 353 |
-
relative_coords = (q_coords - k_coords) + (k_size - 1) * max(q_size / k_size, 1.0)
|
| 354 |
-
|
| 355 |
-
return rel_pos_resized[relative_coords.long()]
|
| 356 |
-
|
| 357 |
-
|
| 358 |
-
def add_decomposed_rel_pos(
|
| 359 |
-
attn: torch.Tensor,
|
| 360 |
-
q: torch.Tensor,
|
| 361 |
-
rel_pos_h: torch.Tensor,
|
| 362 |
-
rel_pos_w: torch.Tensor,
|
| 363 |
-
q_size: Tuple[int, int],
|
| 364 |
-
k_size: Tuple[int, int],
|
| 365 |
-
) -> torch.Tensor:
|
| 366 |
-
"""
|
| 367 |
-
Args:
|
| 368 |
-
attn (Tensor): attention map.
|
| 369 |
-
q (Tensor): query q in the attention layer with shape (B, q_h * q_w, C).
|
| 370 |
-
rel_pos_h (Tensor): relative position embeddings (Lh, C) for height axis.
|
| 371 |
-
rel_pos_w (Tensor): relative position embeddings (Lw, C) for width axis.
|
| 372 |
-
q_size (Tuple): spatial sequence size of query q with (q_h, q_w).
|
| 373 |
-
k_size (Tuple): spatial sequence size of key k with (k_h, k_w).
|
| 374 |
-
|
| 375 |
-
Returns:
|
| 376 |
-
attn (Tensor): attention map with added relative positional embeddings.
|
| 377 |
-
"""
|
| 378 |
-
q_h, q_w = q_size
|
| 379 |
-
k_h, k_w = k_size
|
| 380 |
-
Rh = get_rel_pos(q_h, k_h, rel_pos_h)
|
| 381 |
-
Rw = get_rel_pos(q_w, k_w, rel_pos_w)
|
| 382 |
-
|
| 383 |
-
B, _, dim = q.shape
|
| 384 |
-
r_q = q.reshape(B, q_h, q_w, dim)
|
| 385 |
-
rel_h = torch.einsum("bhwc,hkc->bhwk", r_q, Rh)
|
| 386 |
-
rel_w = torch.einsum("bhwc,wkc->bhwk", r_q, Rw)
|
| 387 |
-
|
| 388 |
-
attn = (
|
| 389 |
-
attn.view(B, q_h, q_w, k_h, k_w) + rel_h[:, :, :, :, None] + rel_w[:, :, :, None, :]
|
| 390 |
-
).view(B, q_h * q_w, k_h * k_w)
|
| 391 |
-
|
| 392 |
-
return attn
|
| 393 |
-
|
| 394 |
-
|
| 395 |
-
class PatchEmbed(nn.Module):
|
| 396 |
-
"""
|
| 397 |
-
Image to Patch Embedding.
|
| 398 |
-
"""
|
| 399 |
-
|
| 400 |
-
def __init__(
|
| 401 |
-
self,
|
| 402 |
-
kernel_size: Tuple[int, int] = (16, 16),
|
| 403 |
-
stride: Tuple[int, int] = (16, 16),
|
| 404 |
-
padding: Tuple[int, int] = (0, 0),
|
| 405 |
-
in_chans: int = 3,
|
| 406 |
-
embed_dim: int = 768,
|
| 407 |
-
) -> None:
|
| 408 |
-
"""
|
| 409 |
-
Args:
|
| 410 |
-
kernel_size (Tuple): kernel size of the projection layer.
|
| 411 |
-
stride (Tuple): stride of the projection layer.
|
| 412 |
-
padding (Tuple): padding size of the projection layer.
|
| 413 |
-
in_chans (int): Number of input image channels.
|
| 414 |
-
embed_dim (int): Patch embedding dimension.
|
| 415 |
-
"""
|
| 416 |
-
super().__init__()
|
| 417 |
-
|
| 418 |
-
self.proj = nn.Conv2d(
|
| 419 |
-
in_chans, embed_dim, kernel_size=kernel_size, stride=stride, padding=padding
|
| 420 |
-
)
|
| 421 |
-
|
| 422 |
-
def forward(self, x: torch.Tensor) -> torch.Tensor:
|
| 423 |
-
x = self.proj(x)
|
| 424 |
-
# B C H W -> B H W C
|
| 425 |
-
x = x.permute(0, 2, 3, 1)
|
| 426 |
-
return x
|
| 427 |
-
|
| 428 |
-
|
| 429 |
-
|
| 430 |
-
def build_GOT_vit_b(checkpoint=None):
|
| 431 |
-
return _build_GOT_vision(
|
| 432 |
-
encoder_embed_dim=768,
|
| 433 |
-
encoder_depth=12,
|
| 434 |
-
encoder_num_heads=12,
|
| 435 |
-
encoder_global_attn_indexes=[2, 5, 8, 11],
|
| 436 |
-
checkpoint=checkpoint,
|
| 437 |
-
)
|
| 438 |
-
|
| 439 |
-
|
| 440 |
-
def _build_GOT_vision(
|
| 441 |
-
encoder_embed_dim,
|
| 442 |
-
encoder_depth,
|
| 443 |
-
encoder_num_heads,
|
| 444 |
-
encoder_global_attn_indexes,
|
| 445 |
-
checkpoint=None,
|
| 446 |
-
):
|
| 447 |
-
prompt_embed_dim = 256
|
| 448 |
-
image_size = 1024
|
| 449 |
-
vit_patch_size = 16
|
| 450 |
-
image_embedding_size = image_size // vit_patch_size
|
| 451 |
-
image_encoder=ImageEncoderViT(
|
| 452 |
-
depth=encoder_depth,
|
| 453 |
-
embed_dim=encoder_embed_dim,
|
| 454 |
-
img_size=image_size,
|
| 455 |
-
mlp_ratio=4,
|
| 456 |
-
norm_layer=partial(torch.nn.LayerNorm, eps=1e-6),
|
| 457 |
-
num_heads=encoder_num_heads,
|
| 458 |
-
patch_size=vit_patch_size,
|
| 459 |
-
qkv_bias=True,
|
| 460 |
-
use_rel_pos=True,
|
| 461 |
-
global_attn_indexes=encoder_global_attn_indexes,
|
| 462 |
-
window_size=14,
|
| 463 |
-
out_chans=prompt_embed_dim,
|
| 464 |
-
)
|
| 465 |
-
|
| 466 |
-
|
| 467 |
-
return image_encoder
|
| 468 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|