Initial GPTQ model commit
Browse files- tokenization_codegen25.py +245 -0
tokenization_codegen25.py
ADDED
|
@@ -0,0 +1,245 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
# Copyright (c) 2023, salesforce.com, inc.
|
| 2 |
+
# All rights reserved.
|
| 3 |
+
# SPDX-License-Identifier: Apache-2.0
|
| 4 |
+
# For full license text, see the LICENSE file in the repo root or https://opensource.org/licenses/Apache-2.0
|
| 5 |
+
"""Tokenization classes for CodeGen2.5."""
|
| 6 |
+
|
| 7 |
+
from typing import List, Optional
|
| 8 |
+
|
| 9 |
+
from transformers.tokenization_utils import AddedToken, PreTrainedTokenizer
|
| 10 |
+
from transformers.utils import logging
|
| 11 |
+
|
| 12 |
+
try:
|
| 13 |
+
import tiktoken
|
| 14 |
+
except ModuleNotFoundError as e:
|
| 15 |
+
raise ModuleNotFoundError("CodeGen2.5 requires the installation of tiktoken. Please install it via `pip install tiktoken`.") from e
|
| 16 |
+
|
| 17 |
+
|
| 18 |
+
logger = logging.get_logger(__name__)
|
| 19 |
+
|
| 20 |
+
MAX_MODEL_INPUT_SIZES = {
|
| 21 |
+
"Salesforce/codegen25-7b-multi": 2048,
|
| 22 |
+
"Salesforce/codegen25-7b-mono": 2048,
|
| 23 |
+
"Salesforce/codegen25-7b-instruct": 2048,
|
| 24 |
+
}
|
| 25 |
+
|
| 26 |
+
|
| 27 |
+
def tiktoken_tokenizer(base="gpt2", pad_token=None, add_special=True):
|
| 28 |
+
if not add_special:
|
| 29 |
+
return tiktoken.get_encoding(base)
|
| 30 |
+
|
| 31 |
+
def include_whitespace(n_min=2, n_max=20):
|
| 32 |
+
whitespaces = [" " * n for n in reversed(range(n_min, n_max))]
|
| 33 |
+
return whitespaces
|
| 34 |
+
|
| 35 |
+
def include_tabs(n_min=2, n_max=20):
|
| 36 |
+
tabs = ["\t" * n for n in reversed(range(n_min, n_max))]
|
| 37 |
+
return tabs
|
| 38 |
+
|
| 39 |
+
def include_fim_tokens():
|
| 40 |
+
fim_tokens = [
|
| 41 |
+
"<fim_prefix>",
|
| 42 |
+
"<fim_middle>",
|
| 43 |
+
"<fim_suffix>",
|
| 44 |
+
"<fim_pad>",
|
| 45 |
+
"<filename>",
|
| 46 |
+
"<gh_stars>",
|
| 47 |
+
"<issue_start>",
|
| 48 |
+
"<issue_comment>",
|
| 49 |
+
"<issue_closed>",
|
| 50 |
+
"<jupyter_start>",
|
| 51 |
+
"<jupyter_text>",
|
| 52 |
+
"<jupyter_code>",
|
| 53 |
+
"<jupyter_output>",
|
| 54 |
+
"<empty_output>",
|
| 55 |
+
"<commit_before>",
|
| 56 |
+
"<commit_msg>",
|
| 57 |
+
"<commit_after>",
|
| 58 |
+
"<reponame>"
|
| 59 |
+
]
|
| 60 |
+
return fim_tokens
|
| 61 |
+
|
| 62 |
+
def include_codegen2_tokens():
|
| 63 |
+
tokens = []
|
| 64 |
+
tokens += [f"<dummy_{i}>" for i in range(4)]
|
| 65 |
+
tokens.append("<sep>") # 50317
|
| 66 |
+
tokens.append("<eom>") # 50318
|
| 67 |
+
tokens += [f"<mask_{i}>" for i in reversed(range(1, 51199-50318+1))]
|
| 68 |
+
return tokens
|
| 69 |
+
|
| 70 |
+
add_whitespaces = include_whitespace(n_min=2, n_max=32)
|
| 71 |
+
add_tabs = include_tabs(n_min=2, n_max=10)
|
| 72 |
+
fim_tokens = include_fim_tokens()
|
| 73 |
+
codegen2_tokens = include_codegen2_tokens()
|
| 74 |
+
|
| 75 |
+
tokenizer = tiktoken.get_encoding(base)
|
| 76 |
+
|
| 77 |
+
idx = tokenizer.n_vocab
|
| 78 |
+
|
| 79 |
+
bpe_ranks = tokenizer._mergeable_ranks
|
| 80 |
+
|
| 81 |
+
for wsp in add_whitespaces:
|
| 82 |
+
bpe_ranks[bytes(wsp, 'ascii')] = idx
|
| 83 |
+
idx += 1
|
| 84 |
+
for t in add_tabs:
|
| 85 |
+
bpe_ranks[bytes(t, 'ascii')] = idx
|
| 86 |
+
idx += 1
|
| 87 |
+
|
| 88 |
+
special_tokens = dict()
|
| 89 |
+
|
| 90 |
+
for sp in fim_tokens:
|
| 91 |
+
special_tokens[sp] = idx
|
| 92 |
+
idx += 1
|
| 93 |
+
for sp in codegen2_tokens:
|
| 94 |
+
special_tokens[sp] = idx
|
| 95 |
+
idx += 1
|
| 96 |
+
|
| 97 |
+
if pad_token and pad_token not in tokenizer._special_tokens and pad_token not in special_tokens:
|
| 98 |
+
special_tokens[pad_token] = idx
|
| 99 |
+
idx += 1
|
| 100 |
+
# In production, load the arguments directly instead of accessing private attributes
|
| 101 |
+
# See openai_public.py for examples of arguments for specific encodings
|
| 102 |
+
enc = tiktoken.Encoding(
|
| 103 |
+
# If you're changing the set of special tokens, make sure to use a different name
|
| 104 |
+
# It should be clear from the name what behaviour to expect.
|
| 105 |
+
name=base.replace("base", "im"),
|
| 106 |
+
pat_str=tokenizer._pat_str,
|
| 107 |
+
mergeable_ranks=bpe_ranks,
|
| 108 |
+
special_tokens={
|
| 109 |
+
**tokenizer._special_tokens,
|
| 110 |
+
**special_tokens
|
| 111 |
+
}
|
| 112 |
+
)
|
| 113 |
+
return enc
|
| 114 |
+
|
| 115 |
+
|
| 116 |
+
class CodeGen25Tokenizer(PreTrainedTokenizer):
|
| 117 |
+
"""
|
| 118 |
+
Construct a CodeGen2.5 tokenizer. Based on byte-level Byte-Pair-Encoding.
|
| 119 |
+
Args:
|
| 120 |
+
vocab_file (`str`):
|
| 121 |
+
Path to the vocabulary file.
|
| 122 |
+
"""
|
| 123 |
+
max_model_input_sizes = MAX_MODEL_INPUT_SIZES
|
| 124 |
+
model_input_names = ["input_ids", "attention_mask"]
|
| 125 |
+
|
| 126 |
+
def __init__(
|
| 127 |
+
self,
|
| 128 |
+
pad_token=None,
|
| 129 |
+
eos_token="<|endoftext|>",
|
| 130 |
+
add_eos_token=False,
|
| 131 |
+
add_special_tokens=True,
|
| 132 |
+
**kwargs,
|
| 133 |
+
):
|
| 134 |
+
pad_token_added = AddedToken(pad_token, lstrip=False, rstrip=False) if isinstance(pad_token, str) else pad_token
|
| 135 |
+
eos_token_added = AddedToken(eos_token, lstrip=False, rstrip=False) if isinstance(eos_token, str) else eos_token
|
| 136 |
+
super().__init__(
|
| 137 |
+
pad_token=pad_token_added,
|
| 138 |
+
eos_token=eos_token_added,
|
| 139 |
+
add_eos_token=add_eos_token,
|
| 140 |
+
add_special_tokens=add_special_tokens,
|
| 141 |
+
**kwargs,
|
| 142 |
+
)
|
| 143 |
+
self.add_eos_token = add_eos_token
|
| 144 |
+
self.encoder = tiktoken_tokenizer(base="gpt2", pad_token=pad_token, add_special=add_special_tokens)
|
| 145 |
+
|
| 146 |
+
@property
|
| 147 |
+
def vocab_size(self):
|
| 148 |
+
"""Returns vocab size"""
|
| 149 |
+
return self.encoder.n_vocab
|
| 150 |
+
|
| 151 |
+
def get_vocab(self):
|
| 152 |
+
"""Returns vocab as a dict"""
|
| 153 |
+
vocab = {self._convert_id_to_token(i): i for i in range(self.vocab_size)}
|
| 154 |
+
return vocab
|
| 155 |
+
|
| 156 |
+
def _tokenize(self, text, **kwargs):
|
| 157 |
+
"""Returns a tokenized string."""
|
| 158 |
+
return self.encoder.encode(text, allowed_special="all")
|
| 159 |
+
|
| 160 |
+
def _convert_token_to_id(self, token):
|
| 161 |
+
"""Converts a token (str) in an id using the vocab."""
|
| 162 |
+
if isinstance(token, str):
|
| 163 |
+
return self.encoder.encode_single_token(token)
|
| 164 |
+
else:
|
| 165 |
+
return token
|
| 166 |
+
|
| 167 |
+
def _convert_id_to_token(self, index):
|
| 168 |
+
"""Converts an index (integer) in a token (str) using the vocab."""
|
| 169 |
+
return self.encoder.decode_single_token_bytes(index).decode("utf-8")
|
| 170 |
+
|
| 171 |
+
def _decode(self, token_ids: List[int], skip_special_tokens: bool = False, **kwargs):
|
| 172 |
+
if skip_special_tokens:
|
| 173 |
+
token_ids = [t for t in token_ids if t not in self.all_special_ids]
|
| 174 |
+
return self.encoder.decode(token_ids)
|
| 175 |
+
|
| 176 |
+
def build_inputs_with_special_tokens(self, token_ids_0, token_ids_1=None) -> List[int]:
|
| 177 |
+
"""Build model inputs from a sequence by appending eos_token_id."""
|
| 178 |
+
eos_token_id = [self.eos_token_id] if self.add_eos_token else []
|
| 179 |
+
|
| 180 |
+
output = token_ids_0 + eos_token_id
|
| 181 |
+
|
| 182 |
+
if token_ids_1 is not None:
|
| 183 |
+
output = output + token_ids_1 + eos_token_id
|
| 184 |
+
|
| 185 |
+
return output
|
| 186 |
+
|
| 187 |
+
def get_special_tokens_mask(
|
| 188 |
+
self, token_ids_0: List[int], token_ids_1: Optional[List[int]] = None,
|
| 189 |
+
already_has_special_tokens: bool = False
|
| 190 |
+
) -> List[int]:
|
| 191 |
+
"""
|
| 192 |
+
Retrieve sequence ids from a token list that has no special tokens added. This method is called when adding
|
| 193 |
+
special tokens using the tokenizer `prepare_for_model` method.
|
| 194 |
+
Args:
|
| 195 |
+
token_ids_0 (`List[int]`):
|
| 196 |
+
List of IDs.
|
| 197 |
+
token_ids_1 (`List[int]`, *optional*):
|
| 198 |
+
Optional second list of IDs for sequence pairs.
|
| 199 |
+
already_has_special_tokens (`bool`, *optional*, defaults to `False`):
|
| 200 |
+
Whether the token list is already formatted with special tokens for the model.
|
| 201 |
+
Returns:
|
| 202 |
+
`List[int]`: A list of integers in the range [0, 1]: 1 for a special token, 0 for a sequence token.
|
| 203 |
+
"""
|
| 204 |
+
if already_has_special_tokens:
|
| 205 |
+
return super().get_special_tokens_mask(
|
| 206 |
+
token_ids_0=token_ids_0, token_ids_1=token_ids_1, already_has_special_tokens=True
|
| 207 |
+
)
|
| 208 |
+
|
| 209 |
+
eos_token_id = [1] if self.add_eos_token else []
|
| 210 |
+
|
| 211 |
+
if token_ids_1 is None:
|
| 212 |
+
return ([0] * len(token_ids_0)) + eos_token_id
|
| 213 |
+
return ([0] * len(token_ids_0)) + eos_token_id + ([0] * len(token_ids_1)) + eos_token_id
|
| 214 |
+
|
| 215 |
+
def create_token_type_ids_from_sequences(
|
| 216 |
+
self, token_ids_0: List[int], token_ids_1: Optional[List[int]] = None
|
| 217 |
+
) -> List[int]:
|
| 218 |
+
"""
|
| 219 |
+
Creates a mask from the two sequences passed to be used in a sequence-pair classification task. An ALBERT
|
| 220 |
+
sequence pair mask has the following format:
|
| 221 |
+
```
|
| 222 |
+
0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1
|
| 223 |
+
| first sequence | second sequence |
|
| 224 |
+
```
|
| 225 |
+
if token_ids_1 is None, only returns the first portion of the mask (0s).
|
| 226 |
+
Args:
|
| 227 |
+
token_ids_0 (`List[int]`):
|
| 228 |
+
List of ids.
|
| 229 |
+
token_ids_1 (`List[int]`, *optional*):
|
| 230 |
+
Optional second list of IDs for sequence pairs.
|
| 231 |
+
Returns:
|
| 232 |
+
`List[int]`: List of [token type IDs](../glossary#token-type-ids) according to the given sequence(s).
|
| 233 |
+
"""
|
| 234 |
+
eos_token_id = [self.eos_token_id] if self.add_eos_token else []
|
| 235 |
+
|
| 236 |
+
output = [0] * len(token_ids_0 + eos_token_id)
|
| 237 |
+
|
| 238 |
+
if token_ids_1 is not None:
|
| 239 |
+
output += [1] * len(token_ids_1 + eos_token_id)
|
| 240 |
+
|
| 241 |
+
return output
|
| 242 |
+
|
| 243 |
+
# has no vocab file
|
| 244 |
+
def save_vocabulary(self, save_directory: str, filename_prefix: Optional[str] = None):
|
| 245 |
+
return ()
|