File size: 8,811 Bytes
2bbfbb7
 
 
0393dfa
2bbfbb7
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
//! GPT-based sequence generation model

use crate::{Error, Result};
use ndarray::{Array, Array1, Array2, IxDyn};
use std::collections::HashMap;
use std::path::Path;

use super::{OnnxSession, SamplingStrategy, sample_from_logits, apply_repetition_penalty};

/// GPT model configuration
#[derive(Debug, Clone)]
pub struct GptConfig {
    /// Number of transformer layers
    pub num_layers: usize,
    /// Model dimension
    pub hidden_size: usize,
    /// Number of attention heads
    pub num_heads: usize,
    /// Maximum sequence length
    pub max_seq_len: usize,
    /// Vocabulary size
    pub vocab_size: usize,
    /// Stop token ID
    pub stop_token: usize,
    /// Start token ID
    pub start_token: usize,
}

impl Default for GptConfig {
    fn default() -> Self {
        Self {
            num_layers: 8,
            hidden_size: 512,
            num_heads: 8,
            max_seq_len: 250,
            vocab_size: 8194,
            stop_token: 8193,
            start_token: 8192,
        }
    }
}

/// GPT model for autoregressive generation
pub struct GptModel {
    session: OnnxSession,
    config: GptConfig,
}

impl GptModel {
    /// Load GPT model from ONNX file
    pub fn load<P: AsRef<Path>>(path: P, config: GptConfig) -> Result<Self> {
        let session = OnnxSession::load(path)?;
        Ok(Self { session, config })
    }

    /// Generate mel tokens from semantic tokens
    pub fn generate(
        &self,
        semantic_tokens: &[i64],
        speaker_embedding: &Array1<f32>,
        max_length: usize,
        strategy: &SamplingStrategy,
        repetition_penalty: f32,
    ) -> Result<Vec<i64>> {
        let mut generated_tokens = vec![self.config.start_token as i64];
        let mut past_tokens = Vec::new();

        for _ in 0..max_length {
            // Prepare input
            let input_tokens = Array::from_shape_vec(
                IxDyn(&[1, generated_tokens.len()]),
                generated_tokens.clone(),
            )?;

            let speaker_emb = speaker_embedding
                .clone()
                .into_shape(IxDyn(&[1, speaker_embedding.len()]))?;

            let semantic_input = Array::from_shape_vec(
                IxDyn(&[1, semantic_tokens.len()]),
                semantic_tokens.to_vec(),
            )?;

            // Create input map
            let mut inputs = HashMap::new();
            inputs.insert("input_ids".to_string(), input_tokens.mapv(|x| x as f32));
            inputs.insert("speaker_embedding".to_string(), speaker_emb);
            inputs.insert("semantic_tokens".to_string(), semantic_input.mapv(|x| x as f32));

            // Run inference
            let outputs = self.session.run(inputs)?;

            // Get logits for next token
            let logits = outputs
                .get("logits")
                .ok_or_else(|| Error::Model("Missing logits output".into()))?;

            // Get last token logits
            let seq_len = logits.shape()[1];
            let vocab_size = logits.shape()[2];
            let last_logits: Vec<f32> = (0..vocab_size)
                .map(|i| logits[[0, seq_len - 1, i]])
                .collect();

            // Apply repetition penalty
            let mut logits_vec = last_logits;
            let past_usize: Vec<usize> = past_tokens.iter().map(|&x| x as usize).collect();
            apply_repetition_penalty(&mut logits_vec, &past_usize, repetition_penalty);

            // Sample next token
            let next_token = sample_from_logits(&logits_vec, strategy) as i64;

            // Check for stop token
            if next_token == self.config.stop_token as i64 {
                break;
            }

            generated_tokens.push(next_token);
            past_tokens.push(next_token);
        }

        Ok(generated_tokens)
    }

    /// Generate with KV cache for efficiency
    pub fn generate_with_cache(
        &self,
        semantic_tokens: &[i64],
        speaker_embedding: &Array1<f32>,
        max_length: usize,
        strategy: &SamplingStrategy,
        repetition_penalty: f32,
    ) -> Result<Vec<i64>> {
        // For models with KV cache support
        // This is a simplified version - full implementation would maintain cache state
        self.generate(
            semantic_tokens,
            speaker_embedding,
            max_length,
            strategy,
            repetition_penalty,
        )
    }

    /// Get model config
    pub fn config(&self) -> &GptConfig {
        &self.config
    }

    /// Estimate memory usage
    pub fn estimate_memory_mb(&self) -> f32 {
        let params = self.config.num_layers
            * self.config.hidden_size
            * self.config.hidden_size
            * 4; // Approximate
        (params * 4) as f32 / 1_000_000.0 // 4 bytes per param
    }
}

/// Simplified GPT model using pure Rust (fallback when ONNX not available)
pub struct SimpleGptModel {
    config: GptConfig,
    /// Token embeddings
    token_embeddings: Array2<f32>,
    /// Position embeddings
    position_embeddings: Array2<f32>,
    /// Output projection
    output_projection: Array2<f32>,
}

impl SimpleGptModel {
    /// Create random initialized model (for testing)
    pub fn new_random(config: GptConfig) -> Self {
        use rand::Rng;
        let mut rng = rand::thread_rng();

        let token_embeddings = Array2::from_shape_fn(
            (config.vocab_size, config.hidden_size),
            |_| rng.gen_range(-0.1..0.1),
        );

        let position_embeddings = Array2::from_shape_fn(
            (config.max_seq_len, config.hidden_size),
            |_| rng.gen_range(-0.1..0.1),
        );

        let output_projection = Array2::from_shape_fn(
            (config.hidden_size, config.vocab_size),
            |_| rng.gen_range(-0.1..0.1),
        );

        Self {
            config,
            token_embeddings,
            position_embeddings,
            output_projection,
        }
    }

    /// Simple forward pass (for demonstration)
    pub fn forward(&self, tokens: &[i64]) -> Vec<f32> {
        // Get embeddings
        let mut hidden = vec![0.0f32; self.config.hidden_size];

        for (pos, &token) in tokens.iter().enumerate().take(self.config.max_seq_len) {
            let token_idx = (token as usize).min(self.config.vocab_size - 1);

            for i in 0..self.config.hidden_size {
                hidden[i] += self.token_embeddings[[token_idx, i]]
                    + self.position_embeddings[[pos, i]];
            }
        }

        // Normalize
        let norm: f32 = hidden.iter().map(|x| x * x).sum::<f32>().sqrt();
        if norm > 1e-8 {
            for h in hidden.iter_mut() {
                *h /= norm;
            }
        }

        // Project to vocab
        let mut logits = vec![0.0f32; self.config.vocab_size];
        for (i, logit) in logits.iter_mut().enumerate() {
            for j in 0..self.config.hidden_size {
                *logit += hidden[j] * self.output_projection[[j, i]];
            }
        }

        logits
    }

    /// Generate tokens
    pub fn generate(
        &self,
        prompt: &[i64],
        max_length: usize,
        strategy: &SamplingStrategy,
    ) -> Vec<i64> {
        let mut tokens = prompt.to_vec();

        for _ in 0..max_length {
            let logits = self.forward(&tokens);
            let next_token = sample_from_logits(&logits, strategy) as i64;

            if next_token == self.config.stop_token as i64 {
                break;
            }

            tokens.push(next_token);

            if tokens.len() >= self.config.max_seq_len {
                break;
            }
        }

        tokens
    }
}

#[cfg(test)]
mod tests {
    use super::*;

    #[test]
    fn test_gpt_config_default() {
        let config = GptConfig::default();
        assert_eq!(config.num_layers, 8);
        assert_eq!(config.hidden_size, 512);
    }

    #[test]
    fn test_simple_gpt_forward() {
        let config = GptConfig {
            vocab_size: 100,
            hidden_size: 32,
            max_seq_len: 10,
            ..Default::default()
        };

        let model = SimpleGptModel::new_random(config);
        let tokens = vec![1i64, 2, 3];
        let logits = model.forward(&tokens);

        assert_eq!(logits.len(), 100);
    }

    #[test]
    fn test_simple_gpt_generate() {
        let config = GptConfig {
            vocab_size: 100,
            hidden_size: 32,
            max_seq_len: 20,
            stop_token: 99,
            ..Default::default()
        };

        let model = SimpleGptModel::new_random(config);
        let prompt = vec![1i64, 2, 3];
        let generated = model.generate(&prompt, 10, &SamplingStrategy::Greedy);

        assert!(generated.len() >= 3);
        assert!(generated.len() <= 20);
    }
}