File size: 12,770 Bytes
e3e7558 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 |
//! Marine Prosody Conditioner - Extract 8D interpretable emotion vectors
//!
//! Uses Marine salience to extract prosodic features from reference audio.
//! These features are interpretable and can be directly edited for control.
//!
//! The 8D vector captures:
//! 1. Period jitter (mean & std) - pitch stability
//! 2. Amplitude jitter (mean & std) - roughness/strain
//! 3. Harmonic alignment - voiced vs noisy
//! 4. Overall salience - authenticity score
//! 5. Peak density - speech rate/intensity
//! 6. Energy - loudness
use crate::error::{Error, Result};
/// 8-dimensional prosody vector extracted from audio
///
/// These features capture the "emotional signature" of speech:
/// - Low jitter + high energy = confident/happy
/// - High jitter + low energy = nervous/uneasy
/// - Stable patterns = calm, unstable = agitated
#[derive(Debug, Clone, Copy, PartialEq)]
pub struct MarineProsodyVector {
/// Mean period jitter (pitch stability)
/// Lower = more stable pitch, Higher = more variation
pub jp_mean: f32,
/// Standard deviation of period jitter
/// Captures consistency of pitch patterns
pub jp_std: f32,
/// Mean amplitude jitter (volume stability)
/// Lower = consistent volume, Higher = erratic
pub ja_mean: f32,
/// Standard deviation of amplitude jitter
/// Captures volume pattern consistency
pub ja_std: f32,
/// Mean harmonic alignment score
/// 1.0 = perfectly voiced, 0.0 = noise
pub h_mean: f32,
/// Mean overall salience score
/// Overall authenticity/quality rating
pub s_mean: f32,
/// Peak density (peaks per second)
/// Related to speech rate and intensity
pub peak_density: f32,
/// Mean energy level
/// Average loudness of detected peaks
pub energy_mean: f32,
}
impl MarineProsodyVector {
/// Create zero vector (baseline)
pub fn zeros() -> Self {
Self {
jp_mean: 0.0,
jp_std: 0.0,
ja_mean: 0.0,
ja_std: 0.0,
h_mean: 1.0,
s_mean: 1.0,
peak_density: 0.0,
energy_mean: 0.0,
}
}
/// Convert to f32 array for neural network input
pub fn to_array(&self) -> [f32; 8] {
[
self.jp_mean,
self.jp_std,
self.ja_mean,
self.ja_std,
self.h_mean,
self.s_mean,
self.peak_density,
self.energy_mean,
]
}
/// Create from f32 array
pub fn from_array(arr: [f32; 8]) -> Self {
Self {
jp_mean: arr[0],
jp_std: arr[1],
ja_mean: arr[2],
ja_std: arr[3],
h_mean: arr[4],
s_mean: arr[5],
peak_density: arr[6],
energy_mean: arr[7],
}
}
/// Get combined jitter (average of period and amplitude)
pub fn combined_jitter(&self) -> f32 {
(self.jp_mean + self.ja_mean) / 2.0
}
/// Estimate emotional valence from prosody
/// Returns value from -1.0 (negative) to 1.0 (positive)
pub fn estimate_valence(&self) -> f32 {
// High energy + low jitter = positive
// Low energy + high jitter = negative
let jitter_factor = 1.0 / (1.0 + self.combined_jitter());
let energy_factor = self.energy_mean.sqrt();
// Combine factors, normalize to -1..1 range
(jitter_factor * energy_factor * 2.0 - 1.0).clamp(-1.0, 1.0)
}
/// Estimate arousal/intensity level
/// Returns value from 0.0 (calm) to 1.0 (excited)
pub fn estimate_arousal(&self) -> f32 {
// High peak density + high energy + some jitter variance = high arousal
let density_factor = (self.peak_density / 100.0).clamp(0.0, 1.0);
let energy_factor = self.energy_mean.sqrt();
let variance_factor = (self.jp_std + self.ja_std).clamp(0.0, 1.0);
((density_factor + energy_factor + variance_factor) / 3.0).clamp(0.0, 1.0)
}
}
impl Default for MarineProsodyVector {
fn default() -> Self {
Self::zeros()
}
}
/// Marine-based prosody conditioner for TTS
///
/// Replaces heavy Conformer-style extractors with lightweight, interpretable
/// Marine salience features. This gives you:
/// - 8D interpretable emotion vector
/// - Direct editability for control
/// - Biologically plausible processing
/// - O(n) linear time extraction
pub struct MarineProsodyConditioner {
sample_rate: u32,
jitter_low: f32,
jitter_high: f32,
min_period: u32,
max_period: u32,
ema_alpha: f32,
}
impl MarineProsodyConditioner {
/// Create new prosody conditioner for given sample rate
pub fn new(sample_rate: u32) -> Self {
// F0 range: ~60Hz (low male) to ~4kHz (includes harmonics)
let min_period = sample_rate / 4000;
let max_period = sample_rate / 60;
Self {
sample_rate,
jitter_low: 0.02,
jitter_high: 0.60,
min_period,
max_period,
ema_alpha: 0.01,
}
}
/// Extract prosody vector from audio samples
///
/// Analyzes the audio to produce an 8D prosody vector capturing
/// the emotional/stylistic characteristics of the speech.
///
/// # Arguments
/// * `samples` - Audio samples (typically -1.0 to 1.0 range)
///
/// # Returns
/// * `Ok(MarineProsodyVector)` - Extracted prosody features
/// * `Err` - If insufficient peaks detected
pub fn from_samples(&self, samples: &[f32]) -> Result<MarineProsodyVector> {
if samples.is_empty() {
return Err(Error::Audio("Empty audio buffer".into()));
}
// Detect peaks and collect jitter measurements
let mut peaks: Vec<PeakInfo> = Vec::new();
let clip_threshold = 1e-3;
// Simple peak detection
for i in 1..samples.len().saturating_sub(1) {
let prev = samples[i - 1].abs();
let curr = samples[i].abs();
let next = samples[i + 1].abs();
if curr > prev && curr > next && curr > clip_threshold {
peaks.push(PeakInfo {
index: i,
amplitude: curr,
});
}
}
if peaks.len() < 3 {
// Not enough peaks for meaningful analysis
return Ok(MarineProsodyVector::zeros());
}
// Calculate inter-peak periods and jitter
let mut periods: Vec<f32> = Vec::new();
let mut amplitudes: Vec<f32> = Vec::new();
let mut jp_values: Vec<f32> = Vec::new();
let mut ja_values: Vec<f32> = Vec::new();
// Use EMA for tracking
let mut ema_period = 0.0f32;
let mut ema_amp = 0.0f32;
let mut ema_initialized = false;
for i in 1..peaks.len() {
let period = (peaks[i].index - peaks[i - 1].index) as f32;
let amp = peaks[i].amplitude;
// Check if period is in valid range
if period > self.min_period as f32 && period < self.max_period as f32 {
periods.push(period);
amplitudes.push(amp);
if !ema_initialized {
ema_period = period;
ema_amp = amp;
ema_initialized = true;
} else {
// Calculate jitter
let jp = (period - ema_period).abs() / ema_period;
let ja = (amp - ema_amp).abs() / ema_amp;
jp_values.push(jp);
ja_values.push(ja);
// Update EMA
ema_period = self.ema_alpha * period + (1.0 - self.ema_alpha) * ema_period;
ema_amp = self.ema_alpha * amp + (1.0 - self.ema_alpha) * ema_amp;
}
}
}
if jp_values.is_empty() {
return Ok(MarineProsodyVector::zeros());
}
// Compute statistics
let n = jp_values.len() as f32;
let duration_sec = samples.len() as f32 / self.sample_rate as f32;
// Mean calculations
let jp_mean = jp_values.iter().sum::<f32>() / n;
let ja_mean = ja_values.iter().sum::<f32>() / n;
let energy_mean = amplitudes.iter().map(|a| a * a).sum::<f32>() / amplitudes.len() as f32;
// Std calculations
let jp_var = jp_values.iter().map(|x| (x - jp_mean).powi(2)).sum::<f32>() / n;
let ja_var = ja_values.iter().map(|x| (x - ja_mean).powi(2)).sum::<f32>() / n;
let jp_std = jp_var.sqrt();
let ja_std = ja_var.sqrt();
// Harmonic score (simplified - assume voiced content)
let h_mean = 1.0;
// Overall salience score
let s_mean = 1.0 / (1.0 + jp_mean + ja_mean);
// Peak density
let peak_density = peaks.len() as f32 / duration_sec;
Ok(MarineProsodyVector {
jp_mean,
jp_std,
ja_mean,
ja_std,
h_mean,
s_mean,
peak_density,
energy_mean,
})
}
/// Validate TTS output quality using Marine salience
///
/// Returns quality score and potential issues detected
pub fn validate_tts_output(&self, samples: &[f32]) -> Result<TTSQualityReport> {
let prosody = self.from_samples(samples)?;
let mut issues = Vec::new();
// Check for common TTS problems
if prosody.jp_mean < 0.005 {
issues.push("Too perfect - sounds robotic (add natural variation)");
}
if prosody.jp_mean > 0.3 {
issues.push("High period jitter - possible artifacts");
}
if prosody.ja_mean > 0.4 {
issues.push("High amplitude jitter - volume inconsistency");
}
if prosody.s_mean < 0.4 {
issues.push("Low salience - audio quality issues");
}
if prosody.peak_density < 10.0 {
issues.push("Low peak density - missing speech energy");
}
let quality_score = prosody.s_mean * 100.0;
Ok(TTSQualityReport {
prosody,
quality_score,
issues,
})
}
/// Get the configured sample rate
pub fn sample_rate(&self) -> u32 {
self.sample_rate
}
}
/// Internal peak information
struct PeakInfo {
index: usize,
amplitude: f32,
}
/// TTS quality validation report
#[derive(Debug, Clone)]
pub struct TTSQualityReport {
/// Extracted prosody vector
pub prosody: MarineProsodyVector,
/// Overall quality score (0-100)
pub quality_score: f32,
/// List of detected issues
pub issues: Vec<&'static str>,
}
impl TTSQualityReport {
/// Check if quality passes threshold
pub fn passes(&self, threshold: f32) -> bool {
self.quality_score >= threshold && self.issues.is_empty()
}
}
#[cfg(test)]
mod tests {
use super::*;
#[test]
fn test_prosody_vector_array_conversion() {
let vec = MarineProsodyVector {
jp_mean: 0.1,
jp_std: 0.05,
ja_mean: 0.2,
ja_std: 0.1,
h_mean: 0.9,
s_mean: 0.8,
peak_density: 50.0,
energy_mean: 0.3,
};
let arr = vec.to_array();
let reconstructed = MarineProsodyVector::from_array(arr);
assert_eq!(vec.jp_mean, reconstructed.jp_mean);
assert_eq!(vec.s_mean, reconstructed.s_mean);
}
#[test]
fn test_conditioner_empty_buffer() {
let conditioner = MarineProsodyConditioner::new(22050);
let result = conditioner.from_samples(&[]);
assert!(result.is_err());
}
#[test]
fn test_conditioner_silence() {
let conditioner = MarineProsodyConditioner::new(22050);
let silence = vec![0.0; 1000];
let prosody = conditioner.from_samples(&silence).unwrap();
// Should return zeros for silence
assert_eq!(prosody.peak_density, 0.0);
}
#[test]
fn test_estimate_valence() {
let positive = MarineProsodyVector {
jp_mean: 0.01,
jp_std: 0.01,
ja_mean: 0.01,
ja_std: 0.01,
h_mean: 1.0,
s_mean: 0.95,
peak_density: 100.0,
energy_mean: 0.8,
};
let negative = MarineProsodyVector {
jp_mean: 0.5,
jp_std: 0.3,
ja_mean: 0.4,
ja_std: 0.2,
h_mean: 0.7,
s_mean: 0.4,
peak_density: 30.0,
energy_mean: 0.1,
};
// Higher energy + lower jitter should give more positive valence
assert!(positive.estimate_valence() > negative.estimate_valence());
}
}
|