diff --git "a/indextts/gpt/transformers_modeling_utils.py" "b/indextts/gpt/transformers_modeling_utils.py" deleted file mode 100755--- "a/indextts/gpt/transformers_modeling_utils.py" +++ /dev/null @@ -1,5525 +0,0 @@ -# coding=utf-8 -# Copyright 2018 The Google AI Language Team Authors, Facebook AI Research authors and The HuggingFace Inc. team. -# Copyright (c) 2018, NVIDIA CORPORATION. All rights reserved. -# -# Licensed under the Apache License, Version 2.0 (the "License"); -# you may not use this file except in compliance with the License. -# You may obtain a copy of the License at -# -# http://www.apache.org/licenses/LICENSE-2.0 -# -# Unless required by applicable law or agreed to in writing, software -# distributed under the License is distributed on an "AS IS" BASIS, -# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. -# See the License for the specific language governing permissions and -# limitations under the License. -import collections -import copy -import functools -import gc -import importlib.metadata -import inspect -import itertools -import json -import os -import re -import shutil -import tempfile -import warnings -from contextlib import contextmanager -from dataclasses import dataclass -from functools import partial, wraps -from threading import Thread -from typing import Any, Callable, Dict, List, Optional, Set, Tuple, Union -from zipfile import is_zipfile - -import torch -from huggingface_hub import split_torch_state_dict_into_shards -from packaging import version -from torch import Tensor, nn -from torch.nn import CrossEntropyLoss, Identity -from torch.utils.checkpoint import checkpoint -from transformers.activations import get_activation -from transformers.configuration_utils import PretrainedConfig -from transformers.dynamic_module_utils import custom_object_save -from transformers.generation import GenerationConfig -import transformers -from indextts.gpt.transformers_generation_utils import GenerationMixin -from transformers.generation import GenerationConfig - - -from transformers.integrations import PeftAdapterMixin, deepspeed_config, is_deepspeed_zero3_enabled -from transformers.loss.loss_utils import LOSS_MAPPING -from transformers.pytorch_utils import ( # noqa: F401 - Conv1D, - apply_chunking_to_forward, - find_pruneable_heads_and_indices, - id_tensor_storage, - is_torch_greater_or_equal_than_1_13, - prune_conv1d_layer, - prune_layer, - prune_linear_layer, -) -from transformers.quantizers import AutoHfQuantizer, HfQuantizer -from transformers.quantizers.quantizers_utils import get_module_from_name -from transformers.safetensors_conversion import auto_conversion -from transformers.utils import ( - ACCELERATE_MIN_VERSION, - ADAPTER_SAFE_WEIGHTS_NAME, - ADAPTER_WEIGHTS_NAME, - CONFIG_NAME, - DUMMY_INPUTS, - FLAX_WEIGHTS_NAME, - SAFE_WEIGHTS_INDEX_NAME, - SAFE_WEIGHTS_NAME, - TF2_WEIGHTS_NAME, - TF_WEIGHTS_NAME, - WEIGHTS_INDEX_NAME, - WEIGHTS_NAME, - ContextManagers, - ModelOutput, - PushToHubMixin, - cached_file, - copy_func, - download_url, - extract_commit_hash, - has_file, - is_accelerate_available, - is_bitsandbytes_available, - is_flash_attn_2_available, - is_offline_mode, - is_optimum_available, - is_peft_available, - is_remote_url, - is_safetensors_available, - is_torch_sdpa_available, - is_torch_xla_available, - logging, - replace_return_docstrings, - strtobool, -) -from transformers.utils.hub import convert_file_size_to_int, create_and_tag_model_card, get_checkpoint_shard_files -from transformers.utils.import_utils import ( - ENV_VARS_TRUE_VALUES, - is_sagemaker_mp_enabled, - is_torch_fx_proxy, - is_torchdynamo_compiling, -) -from transformers.utils.quantization_config import BitsAndBytesConfig, QuantizationMethod - - -XLA_USE_BF16 = os.environ.get("XLA_USE_BF16", "0").upper() -XLA_DOWNCAST_BF16 = os.environ.get("XLA_DOWNCAST_BF16", "0").upper() - - -if is_accelerate_available(): - from accelerate import dispatch_model, infer_auto_device_map, init_empty_weights - from accelerate.hooks import add_hook_to_module - from accelerate.utils import ( - check_tied_parameters_on_same_device, - extract_model_from_parallel, - find_tied_parameters, - get_balanced_memory, - get_max_memory, - load_offloaded_weights, - offload_weight, - save_offload_index, - set_module_tensor_to_device, - ) - - accelerate_version = version.parse(importlib.metadata.version("accelerate")) - if accelerate_version >= version.parse("0.31"): - from accelerate.utils.modeling import get_state_dict_from_offload - -if is_safetensors_available(): - from safetensors import safe_open - from safetensors.torch import load_file as safe_load_file - from safetensors.torch import save_file as safe_save_file - -logger = logging.get_logger(__name__) - - -_init_weights = True - - -def is_fsdp_enabled(): - return ( - torch.distributed.is_available() - and torch.distributed.is_initialized() - and strtobool(os.environ.get("ACCELERATE_USE_FSDP", "False")) == 1 - and strtobool(os.environ.get("FSDP_CPU_RAM_EFFICIENT_LOADING", "False")) == 1 - ) - - -def is_local_dist_rank_0(): - return ( - torch.distributed.is_available() - and torch.distributed.is_initialized() - and int(os.environ.get("LOCAL_RANK", -1)) == 0 - ) - - -if is_sagemaker_mp_enabled(): - import smdistributed.modelparallel.torch as smp - from smdistributed.modelparallel import __version__ as SMP_VERSION - - IS_SAGEMAKER_MP_POST_1_10 = version.parse(SMP_VERSION) >= version.parse("1.10") -else: - IS_SAGEMAKER_MP_POST_1_10 = False - -if is_peft_available(): - from transformers.utils import find_adapter_config_file - -TORCH_INIT_FUNCTIONS = { - "uniform_": nn.init.uniform_, - "normal_": nn.init.normal_, - "trunc_normal_": nn.init.trunc_normal_, - "constant_": nn.init.constant_, - "xavier_uniform_": nn.init.xavier_uniform_, - "xavier_normal_": nn.init.xavier_normal_, - "kaiming_uniform_": nn.init.kaiming_uniform_, - "kaiming_normal_": nn.init.kaiming_normal_, - "uniform": nn.init.uniform, - "normal": nn.init.normal, - "xavier_uniform": nn.init.xavier_uniform, - "xavier_normal": nn.init.xavier_normal, - "kaiming_uniform": nn.init.kaiming_uniform, - "kaiming_normal": nn.init.kaiming_normal, -} - - -@contextmanager -def no_init_weights(_enable=True): - """ - Context manager to globally disable weight initialization to speed up loading large models. - - TODO(Patrick): Delete safety argument `_enable=True` at next major version. . - """ - global _init_weights - old_init_weights = _init_weights - - if _enable: - _init_weights = False - - def _skip_init(*args, **kwargs): - pass - - # # Save the original initialization functions - for name, init_func in TORCH_INIT_FUNCTIONS.items(): - setattr(torch.nn.init, name, _skip_init) - try: - yield - finally: - _init_weights = old_init_weights - if _enable: - # # Restore the original initialization functions - for name, init_func in TORCH_INIT_FUNCTIONS.items(): - setattr(torch.nn.init, name, init_func) - - -def get_parameter_device(parameter: Union[nn.Module, "ModuleUtilsMixin"]): - try: - return next(parameter.parameters()).device - except StopIteration: - # For nn.DataParallel compatibility in PyTorch 1.5 - - def find_tensor_attributes(module: nn.Module) -> List[Tuple[str, Tensor]]: - tuples = [(k, v) for k, v in module.__dict__.items() if torch.is_tensor(v)] - return tuples - - gen = parameter._named_members(get_members_fn=find_tensor_attributes) - first_tuple = next(gen) - return first_tuple[1].device - - -def get_first_parameter_dtype(parameter: Union[nn.Module, "ModuleUtilsMixin"]): - """ - Returns the first parameter dtype (can be non-floating) or asserts if none were found. - """ - try: - return next(parameter.parameters()).dtype - except StopIteration: - # For nn.DataParallel compatibility in PyTorch > 1.5 - - def find_tensor_attributes(module: nn.Module) -> List[Tuple[str, Tensor]]: - tuples = [(k, v) for k, v in module.__dict__.items() if torch.is_tensor(v)] - return tuples - - gen = parameter._named_members(get_members_fn=find_tensor_attributes) - first_tuple = next(gen) - return first_tuple[1].dtype - - -def get_parameter_dtype(parameter: Union[nn.Module, "ModuleUtilsMixin"]): - """ - Returns the first found floating dtype in parameters if there is one, otherwise returns the last dtype it found. - """ - last_dtype = None - for t in parameter.parameters(): - last_dtype = t.dtype - if t.is_floating_point(): - # Adding fix for https://github.com/pytorch/xla/issues/4152 - # Fixes issue where the model code passes a value that is out of range for XLA_USE_BF16=1 - # and XLA_DOWNCAST_BF16=1 so the conversion would cast it to -inf - # NOTE: `is_torch_xla_available()` is checked last as it induces a graph break in torch dynamo - if XLA_USE_BF16 in ENV_VARS_TRUE_VALUES and is_torch_xla_available(): - return torch.bfloat16 - if XLA_DOWNCAST_BF16 in ENV_VARS_TRUE_VALUES and is_torch_xla_available(): - if t.dtype == torch.float: - return torch.bfloat16 - if t.dtype == torch.double: - return torch.float32 - return t.dtype - - if last_dtype is not None: - # if no floating dtype was found return whatever the first dtype is - return last_dtype - - # For nn.DataParallel compatibility in PyTorch > 1.5 - def find_tensor_attributes(module: nn.Module) -> List[Tuple[str, Tensor]]: - tuples = [(k, v) for k, v in module.__dict__.items() if torch.is_tensor(v)] - return tuples - - gen = parameter._named_members(get_members_fn=find_tensor_attributes) - last_tuple = None - for tuple in gen: - last_tuple = tuple - if tuple[1].is_floating_point(): - return tuple[1].dtype - - if last_tuple is not None: - # fallback to the last dtype - return last_tuple[1].dtype - - # fallback to buffer dtype - for t in parameter.buffers(): - last_dtype = t.dtype - if t.is_floating_point(): - return t.dtype - return last_dtype - - -def get_state_dict_float_dtype(state_dict): - """ - Returns the first found floating dtype in `state_dict` or asserts if none were found. - """ - for t in state_dict.values(): - if t.is_floating_point(): - return t.dtype - - raise ValueError("couldn't find any floating point dtypes in state_dict") - - -def get_state_dict_dtype(state_dict): - """ - Returns the first found floating dtype in `state_dict` if there is one, otherwise returns the first dtype. - """ - for t in state_dict.values(): - if t.is_floating_point(): - return t.dtype - - # if no floating dtype was found return whatever the first dtype is - else: - return next(state_dict.values()).dtype - - -def dtype_byte_size(dtype): - """ - Returns the size (in bytes) occupied by one parameter of type `dtype`. - - Example: - - ```py - >>> dtype_byte_size(torch.float32) - 4 - ``` - """ - if dtype == torch.bool: - return 1 / 8 - bit_search = re.search(r"[^\d](\d+)_?", str(dtype)) - if bit_search is None: - raise ValueError(f"`dtype` is not a valid dtype: {dtype}.") - bit_size = int(bit_search.groups()[0]) - return bit_size // 8 - - -def check_support_param_buffer_assignment(model_to_load, state_dict, start_prefix=""): - """ - Checks if `model_to_load` supports param buffer assignment (such - as when loading in empty weights) by first checking - if the model explicitly disables it, then by ensuring that the state dict keys - are a subset of the model's parameters. - - Note: We fully disable this if we are using `deepspeed` - """ - if len([key for key in state_dict if key.startswith(start_prefix)]) == 0: - return False - - if is_deepspeed_zero3_enabled(): - return False - - # Some models explicitly do not support param buffer assignment - if not getattr(model_to_load, "_supports_param_buffer_assignment", True): - logger.debug( - f"{model_to_load.__class__.__name__} does not support param buffer assignment, loading will be slower" - ) - return False - - # If the model does, the incoming `state_dict` and the `model_to_load` must be the same dtype - first_key = list(model_to_load.state_dict().keys())[0] - if start_prefix + first_key in state_dict: - return state_dict[start_prefix + first_key].dtype == model_to_load.state_dict()[first_key].dtype - - # For cases when the `state_dict` doesn't contain real weights to the model (`test_model_weights_reload_no_missing_tied_weights`) - return False - - -def shard_checkpoint( - state_dict: Dict[str, torch.Tensor], max_shard_size: Union[int, str] = "10GB", weights_name: str = WEIGHTS_NAME -): - """ - Splits a model state dictionary in sub-checkpoints so that the final size of each sub-checkpoint does not exceed a - given size. - - The sub-checkpoints are determined by iterating through the `state_dict` in the order of its keys, so there is no - optimization made to make each sub-checkpoint as close as possible to the maximum size passed. For example, if the - limit is 10GB and we have weights of sizes [6GB, 6GB, 2GB, 6GB, 2GB, 2GB] they will get sharded as [6GB], [6+2GB], - [6+2+2GB] and not [6+2+2GB], [6+2GB], [6GB]. - - - - If one of the model's weight is bigger than `max_shard_size`, it will end up in its own sub-checkpoint which will - have a size greater than `max_shard_size`. - - - - Args: - state_dict (`Dict[str, torch.Tensor]`): The state dictionary of a model to save. - max_shard_size (`int` or `str`, *optional*, defaults to `"10GB"`): - The maximum size of each sub-checkpoint. If expressed as a string, needs to be digits followed by a unit - (like `"5MB"`). - weights_name (`str`, *optional*, defaults to `"pytorch_model.bin"`): - The name of the model save file. - """ - logger.warning( - "Note that `shard_checkpoint` is deprecated and will be removed in v4.44. We recommend you using " - "split_torch_state_dict_into_shards from huggingface_hub library" - ) - max_shard_size = convert_file_size_to_int(max_shard_size) - - sharded_state_dicts = [{}] - last_block_size = 0 - total_size = 0 - storage_id_to_block = {} - - for key, weight in state_dict.items(): - # when bnb serialization is used the weights in the state dict can be strings - # check: https://github.com/huggingface/transformers/pull/24416 for more details - if isinstance(weight, str): - continue - else: - storage_id = id_tensor_storage(weight) - - # If a `weight` shares the same underlying storage as another tensor, we put `weight` in the same `block` - if storage_id in storage_id_to_block and weight.device != torch.device("meta"): - block_id = storage_id_to_block[storage_id] - sharded_state_dicts[block_id][key] = weight - continue - - weight_size = weight.numel() * dtype_byte_size(weight.dtype) - # If this weight is going to tip up over the maximal size, we split, but only if we have put at least one - # weight in the current shard. - if last_block_size + weight_size > max_shard_size and len(sharded_state_dicts[-1]) > 0: - sharded_state_dicts.append({}) - last_block_size = 0 - - sharded_state_dicts[-1][key] = weight - last_block_size += weight_size - total_size += weight_size - storage_id_to_block[storage_id] = len(sharded_state_dicts) - 1 - - # If we only have one shard, we return it - if len(sharded_state_dicts) == 1: - return {weights_name: sharded_state_dicts[0]}, None - - # Otherwise, let's build the index - weight_map = {} - shards = {} - for idx, shard in enumerate(sharded_state_dicts): - shard_file = weights_name.replace(".bin", f"-{idx+1:05d}-of-{len(sharded_state_dicts):05d}.bin") - shard_file = shard_file.replace( - ".safetensors", f"-{idx + 1:05d}-of-{len(sharded_state_dicts):05d}.safetensors" - ) - shards[shard_file] = shard - for key in shard.keys(): - weight_map[key] = shard_file - - # Add the metadata - metadata = {"total_size": total_size} - index = {"metadata": metadata, "weight_map": weight_map} - return shards, index - - -def load_sharded_checkpoint(model, folder, strict=True, prefer_safe=True): - """ - This is the same as - [`torch.nn.Module.load_state_dict`](https://pytorch.org/docs/stable/generated/torch.nn.Module.html?highlight=load_state_dict#torch.nn.Module.load_state_dict) - but for a sharded checkpoint. - - This load is performed efficiently: each checkpoint shard is loaded one by one in RAM and deleted after being - loaded in the model. - - Args: - model (`torch.nn.Module`): The model in which to load the checkpoint. - folder (`str` or `os.PathLike`): A path to a folder containing the sharded checkpoint. - strict (`bool`, *optional`, defaults to `True`): - Whether to strictly enforce that the keys in the model state dict match the keys in the sharded checkpoint. - prefer_safe (`bool`, *optional*, defaults to `False`) - If both safetensors and PyTorch save files are present in checkpoint and `prefer_safe` is True, the - safetensors files will be loaded. Otherwise, PyTorch files are always loaded when possible. - - Returns: - `NamedTuple`: A named tuple with `missing_keys` and `unexpected_keys` fields - - `missing_keys` is a list of str containing the missing keys - - `unexpected_keys` is a list of str containing the unexpected keys - """ - # Load the index - index_file = os.path.join(folder, WEIGHTS_INDEX_NAME) - safe_index_file = os.path.join(folder, SAFE_WEIGHTS_INDEX_NAME) - - index_present = os.path.isfile(index_file) - safe_index_present = os.path.isfile(safe_index_file) - - if not index_present and not (safe_index_present and is_safetensors_available()): - filenames = ( - (WEIGHTS_INDEX_NAME, SAFE_WEIGHTS_INDEX_NAME) if is_safetensors_available() else (WEIGHTS_INDEX_NAME,) - ) - raise ValueError(f"Can't find a checkpoint index ({' or '.join(filenames)}) in {folder}.") - - load_safe = False - if safe_index_present: - if prefer_safe: - if is_safetensors_available(): - load_safe = True # load safe due to preference - else: - logger.warning( - f"Cannot load sharded checkpoint at {folder} safely since safetensors is not installed!" - ) - elif not index_present: - load_safe = True # load safe since we have no other choice - - load_index = safe_index_file if load_safe else index_file - - with open(load_index, "r", encoding="utf-8") as f: - index = json.load(f) - - shard_files = list(set(index["weight_map"].values())) - - # If strict=True, error before loading any of the state dicts. - loaded_keys = index["weight_map"].keys() - model_keys = model.state_dict().keys() - missing_keys = [key for key in model_keys if key not in loaded_keys] - unexpected_keys = [key for key in loaded_keys if key not in model_keys] - if strict and (len(missing_keys) > 0 or len(unexpected_keys) > 0): - error_message = f"Error(s) in loading state_dict for {model.__class__.__name__}" - if len(missing_keys) > 0: - str_missing_keys = ",".join([f'"{k}"' for k in missing_keys]) - error_message += f"\nMissing key(s): {str_missing_keys}." - if len(unexpected_keys) > 0: - str_unexpected_keys = ",".join([f'"{k}"' for k in unexpected_keys]) - error_message += f"\nMissing key(s): {str_unexpected_keys}." - raise RuntimeError(error_message) - - weights_only_kwarg = {"weights_only": True} if is_torch_greater_or_equal_than_1_13 else {} - loader = safe_load_file if load_safe else partial(torch.load, map_location="cpu", **weights_only_kwarg) - - for shard_file in shard_files: - state_dict = loader(os.path.join(folder, shard_file)) - model.load_state_dict(state_dict, strict=False) - - # Make sure memory is freed before we load the next state dict. - del state_dict - gc.collect() - - # Return the same thing as PyTorch load_state_dict function. - return torch.nn.modules.module._IncompatibleKeys(missing_keys, unexpected_keys) - - -def load_state_dict( - checkpoint_file: Union[str, os.PathLike], - is_quantized: bool = False, - map_location: Optional[Union[str, torch.device]] = None, - weights_only: bool = True, -): - """ - Reads a PyTorch checkpoint file, returning properly formatted errors if they arise. - """ - if checkpoint_file.endswith(".safetensors") and is_safetensors_available(): - # Check format of the archive - with safe_open(checkpoint_file, framework="pt") as f: - metadata = f.metadata() - if metadata.get("format") not in ["pt", "tf", "flax", "mlx"]: - raise OSError( - f"The safetensors archive passed at {checkpoint_file} does not contain the valid metadata. Make sure " - "you save your model with the `save_pretrained` method." - ) - return safe_load_file(checkpoint_file) - try: - if map_location is None: - if ( - ( - is_deepspeed_zero3_enabled() - and torch.distributed.is_initialized() - and torch.distributed.get_rank() > 0 - ) - or (is_fsdp_enabled() and not is_local_dist_rank_0()) - ) and not is_quantized: - map_location = "meta" - else: - map_location = "cpu" - extra_args = {} - # mmap can only be used with files serialized with zipfile-based format. - if ( - isinstance(checkpoint_file, str) - and map_location != "meta" - and version.parse(torch.__version__) >= version.parse("2.1.0") - and is_zipfile(checkpoint_file) - ): - extra_args = {"mmap": True} - weights_only_kwarg = {"weights_only": weights_only} if is_torch_greater_or_equal_than_1_13 else {} - return torch.load( - checkpoint_file, - map_location=map_location, - **weights_only_kwarg, - **extra_args, - ) - except Exception as e: - try: - with open(checkpoint_file) as f: - if f.read(7) == "version": - raise OSError( - "You seem to have cloned a repository without having git-lfs installed. Please install " - "git-lfs and run `git lfs install` followed by `git lfs pull` in the folder " - "you cloned." - ) - else: - raise ValueError( - f"Unable to locate the file {checkpoint_file} which is necessary to load this pretrained " - "model. Make sure you have saved the model properly." - ) from e - except (UnicodeDecodeError, ValueError): - raise OSError( - f"Unable to load weights from pytorch checkpoint file for '{checkpoint_file}' " - f"at '{checkpoint_file}'. " - "If you tried to load a PyTorch model from a TF 2.0 checkpoint, please set from_tf=True." - ) - - -def set_initialized_submodules(model, state_dict_keys): - """ - Sets the `_is_hf_initialized` flag in all submodules of a given model when all its weights are in the loaded state - dict. - """ - not_initialized_submodules = {} - for module_name, module in model.named_modules(): - loaded_keys = {k.replace(f"{module_name}.", "") for k in state_dict_keys if k.startswith(f"{module_name}.")} - # When checking if the root module is loaded all state_dict_keys must be used. - if module_name == "": - loaded_keys = set(state_dict_keys) - if loaded_keys.issuperset(module.state_dict()): - module._is_hf_initialized = True - else: - not_initialized_submodules[module_name] = module - return not_initialized_submodules - - -def _end_ptr(tensor: torch.Tensor) -> int: - # extract the end of the pointer if the tensor is a slice of a bigger tensor - if tensor.nelement(): - stop = tensor.view(-1)[-1].data_ptr() + tensor.element_size() - else: - stop = tensor.data_ptr() - return stop - - -def _get_tied_weight_keys(module: nn.Module, prefix=""): - tied_weight_keys = [] - if getattr(module, "_tied_weights_keys", None) is not None: - names = [f"{prefix}.{k}" if prefix else k for k in module._tied_weights_keys] - tied_weight_keys.extend(names) - if getattr(module, "_dynamic_tied_weights_keys", None) is not None: - names = [f"{prefix}.{k}" if prefix else k for k in module._dynamic_tied_weights_keys] - tied_weight_keys.extend(names) - for name, submodule in module.named_children(): - local_prefix = f"{prefix}.{name}" if prefix else name - tied_weight_keys.extend(_get_tied_weight_keys(submodule, prefix=local_prefix)) - return tied_weight_keys - - -def _find_disjoint(tensors: List[Set[str]], state_dict: Dict[str, torch.Tensor]) -> Tuple[List[Set[str]], List[str]]: - filtered_tensors = [] - for shared in tensors: - if len(shared) < 2: - filtered_tensors.append(shared) - continue - - areas = [] - for name in shared: - tensor = state_dict[name] - areas.append((tensor.data_ptr(), _end_ptr(tensor), name)) - areas.sort() - - _, last_stop, last_name = areas[0] - filtered_tensors.append({last_name}) - for start, stop, name in areas[1:]: - if start >= last_stop: - filtered_tensors.append({name}) - else: - filtered_tensors[-1].add(name) - last_stop = stop - disjoint_tensors = [] - shared_tensors = [] - for tensors in filtered_tensors: - if len(tensors) == 1: - disjoint_tensors.append(tensors.pop()) - else: - shared_tensors.append(tensors) - return shared_tensors, disjoint_tensors - - -def _find_identical(tensors: List[Set[str]], state_dict: Dict[str, torch.Tensor]) -> Tuple[List[Set[str]], Set[str]]: - shared_tensors = [] - identical = [] - for shared in tensors: - if len(shared) < 2: - continue - - areas = collections.defaultdict(set) - for name in shared: - tensor = state_dict[name] - area = (tensor.device, tensor.data_ptr(), _end_ptr(tensor)) - areas[area].add(name) - if len(areas) == 1: - identical.append(shared) - else: - shared_tensors.append(shared) - return shared_tensors, identical - - -def _load_state_dict_into_model(model_to_load, state_dict, start_prefix, assign_to_params_buffers=False): - # Convert old format to new format if needed from a PyTorch state_dict - old_keys = [] - new_keys = [] - renamed_keys = {} - renamed_gamma = {} - renamed_beta = {} - warning_msg = f"A pretrained model of type `{model_to_load.__class__.__name__}` " - for key in state_dict.keys(): - new_key = None - if "gamma" in key: - # We add only the first key as an example - new_key = key.replace("gamma", "weight") - renamed_gamma[key] = new_key if not renamed_gamma else renamed_gamma - if "beta" in key: - # We add only the first key as an example - new_key = key.replace("beta", "bias") - renamed_beta[key] = new_key if not renamed_beta else renamed_beta - if new_key: - old_keys.append(key) - new_keys.append(new_key) - renamed_keys = {**renamed_gamma, **renamed_beta} - if renamed_keys: - warning_msg += "contains parameters that have been renamed internally (a few are listed below but more are present in the model):\n" - for old_key, new_key in renamed_keys.items(): - warning_msg += f"* `{old_key}` -> `{new_key}`\n" - warning_msg += "If you are using a model from the Hub, consider submitting a PR to adjust these weights and help future users." - logger.info_once(warning_msg) - for old_key, new_key in zip(old_keys, new_keys): - state_dict[new_key] = state_dict.pop(old_key) - - # copy state_dict so _load_from_state_dict can modify it - metadata = getattr(state_dict, "_metadata", None) - state_dict = state_dict.copy() - if metadata is not None: - state_dict._metadata = metadata - - error_msgs = [] - - # PyTorch's `_load_from_state_dict` does not copy parameters in a module's descendants - # so we need to apply the function recursively. - def load(module: nn.Module, state_dict, prefix="", assign_to_params_buffers=False): - local_metadata = {} if metadata is None else metadata.get(prefix[:-1], {}) - local_metadata["assign_to_params_buffers"] = assign_to_params_buffers - - args = (state_dict, prefix, local_metadata, True, [], [], error_msgs) - # Parameters of module and children will start with prefix. We can exit early if there are none in this - # state_dict - if len([key for key in state_dict if key.startswith(prefix)]) > 0: - if is_deepspeed_zero3_enabled(): - import deepspeed - - # In sharded models, each shard has only part of the full state_dict, so only gather - # parameters that are in the current state_dict. - named_parameters = dict(module.named_parameters(prefix=prefix[:-1], recurse=False)) - params_to_gather = [named_parameters[k] for k in state_dict.keys() if k in named_parameters] - if len(params_to_gather) > 0: - # because zero3 puts placeholders in model params, this context - # manager gathers (unpartitions) the params of the current layer, then loads from - # the state dict and then re-partitions them again - with deepspeed.zero.GatheredParameters(params_to_gather, modifier_rank=0): - if torch.distributed.get_rank() == 0: - module._load_from_state_dict(*args) - else: - module._load_from_state_dict(*args) - - for name, child in module._modules.items(): - if child is not None: - load(child, state_dict, prefix + name + ".", assign_to_params_buffers) - - load(model_to_load, state_dict, prefix=start_prefix, assign_to_params_buffers=assign_to_params_buffers) - # Delete `state_dict` so it could be collected by GC earlier. Note that `state_dict` is a copy of the argument, so - # it's safe to delete it. - del state_dict - - return error_msgs - - -def find_submodule_and_param_name(model, long_key, start_prefix): - """ - A helper util to find the last sub-module and the param/buffer name. If `start_prefix` is supplied it'll be removed - from the start of the key - """ - - if len(start_prefix) > 0 and long_key.startswith(start_prefix): - long_key = ".".join(long_key.split(".")[1:]) - - split_key = long_key.split(".") - submodule = model - while len(split_key) > 1: - if hasattr(submodule, split_key[0]): - submodule = getattr(submodule, split_key[0]) - del split_key[0] - else: - submodule = None - break - if submodule == model: - submodule = None - return submodule, split_key[0] - - -def _move_model_to_meta(model, loaded_state_dict_keys, start_prefix): - """ - Moves `loaded_state_dict_keys` in model to meta device which frees up the memory taken by those params. - - `start_prefix` is used for models which insert their name into model keys, e.g. `bert` in - `bert.pooler.dense.weight` - - """ - - # dematerialize param storage for keys that are going to be replaced by state_dict, by - # putting those on the meta device - for k in loaded_state_dict_keys: - submodule, param_name = find_submodule_and_param_name(model, k, start_prefix) - if submodule is not None: - # selectively switch to the meta device only those params/buffers that will - # be next replaced from state_dict. This a complex way to do p.to_("meta") - # since we have no in-place to_ for tensors. - new_val = getattr(submodule, param_name) - if isinstance(new_val, torch.nn.Parameter): - # isinstance returns False for Params on meta device, so switch after the check - new_val = torch.nn.Parameter(new_val.to("meta")) - else: - new_val = new_val.to("meta") - setattr(submodule, param_name, new_val) - - -def _load_state_dict_into_meta_model( - model, - state_dict, - start_prefix, - expected_keys, - device_map=None, - offload_folder=None, - offload_index=None, - state_dict_folder=None, - state_dict_index=None, - dtype=None, - hf_quantizer=None, - is_safetensors=False, - keep_in_fp32_modules=None, - unexpected_keys=None, # passing `unexpected` for cleanup from quantization items - pretrained_model_name_or_path=None, # for flagging the user when the model contains renamed keys -): - """ - This is somewhat similar to `_load_state_dict_into_model`, but deals with a model that has some or all of its - params on a `meta` device. It replaces the model params with the data from the `state_dict`, while moving the - params back to the normal device, but only for `loaded_state_dict_keys`. - - `start_prefix` is used for models which insert their name into model keys, e.g. `bert` in - `bert.pooler.dense.weight` - - """ - - # XXX: remaining features to implement to be fully compatible with _load_state_dict_into_model - # - deepspeed zero 3 support - # - need to copy metadata if any - see _load_state_dict_into_model - # - handling error_msgs - mimicking the error handling in module._load_from_state_dict() - - error_msgs = [] - - old_keys = [] - new_keys = [] - renamed_gamma = {} - renamed_beta = {} - is_quantized = hf_quantizer is not None - warning_msg = f"This model {type(model)}" - for key in state_dict.keys(): - new_key = None - if "gamma" in key: - # We add only the first key as an example - new_key = key.replace("gamma", "weight") - renamed_gamma[key] = new_key if not renamed_gamma else renamed_gamma - if "beta" in key: - # We add only the first key as an example - new_key = key.replace("beta", "bias") - renamed_beta[key] = new_key if not renamed_beta else renamed_beta - - # To reproduce `_load_state_dict_into_model` behaviour, we need to manually rename parametrized weigth norm, if necessary. - if hasattr(nn.utils.parametrizations, "weight_norm"): - if "weight_g" in key: - new_key = key.replace("weight_g", "parametrizations.weight.original0") - if "weight_v" in key: - new_key = key.replace("weight_v", "parametrizations.weight.original1") - else: - if "parametrizations.weight.original0" in key: - new_key = key.replace("parametrizations.weight.original0", "weight_g") - if "parametrizations.weight.original1" in key: - new_key = key.replace("parametrizations.weight.original1", "weight_v") - if new_key: - old_keys.append(key) - new_keys.append(new_key) - renamed_keys = {**renamed_gamma, **renamed_beta} - if renamed_keys: - warning_msg += "contains parameters that have been renamed internally (a few are listed below but more are present in the model):\n" - for old_key, new_key in renamed_keys.items(): - warning_msg += f"* `{old_key}` -> `{new_key}`\n" - warning_msg += "If you are using a model from the Hub, consider submitting a PR to adjust these weights and help future users." - logger.info_once(warning_msg) - for old_key, new_key in zip(old_keys, new_keys): - state_dict[new_key] = state_dict.pop(old_key) - - is_torch_e4m3fn_available = hasattr(torch, "float8_e4m3fn") - - for param_name, param in state_dict.items(): - if param_name not in expected_keys: - continue - - if param_name.startswith(start_prefix): - param_name = param_name[len(start_prefix) :] - - module_name = param_name - set_module_kwargs = {} - - # We convert floating dtypes to the `dtype` passed except for float8_e4m3fn type. We also want to keep the buffers/params - # in int/uint/bool and not cast them. - is_param_float8_e4m3fn = is_torch_e4m3fn_available and param.dtype == torch.float8_e4m3fn - if dtype is not None and torch.is_floating_point(param) and not is_param_float8_e4m3fn: - if ( - keep_in_fp32_modules is not None - and any( - module_to_keep_in_fp32 in param_name.split(".") for module_to_keep_in_fp32 in keep_in_fp32_modules - ) - and dtype == torch.float16 - ): - param = param.to(torch.float32) - - # For backward compatibility with older versions of `accelerate` - # TODO: @sgugger replace this check with version check at the next `accelerate` release - if "dtype" in list(inspect.signature(set_module_tensor_to_device).parameters): - set_module_kwargs["dtype"] = torch.float32 - else: - param = param.to(dtype) - - # For compatibility with PyTorch load_state_dict which converts state dict dtype to existing dtype in model, and which - # uses `param.copy_(input_param)` that preserves the contiguity of the parameter in the model. - # Reference: https://github.com/pytorch/pytorch/blob/db79ceb110f6646523019a59bbd7b838f43d4a86/torch/nn/modules/module.py#L2040C29-L2040C29 - - old_param = model - splits = param_name.split(".") - for split in splits: - # We shouldn't hit the default value unless for quant methods like hqq that modifies expected_keys. - old_param = getattr(old_param, split, None) - if old_param is None: - break - - if not isinstance(old_param, (torch.nn.Parameter, torch.Tensor)): - old_param = None - - if old_param is not None: - if dtype is None: - param = param.to(old_param.dtype) - - if old_param.is_contiguous(): - param = param.contiguous() - - set_module_kwargs["value"] = param - - if device_map is None: - param_device = "cpu" - else: - # find next higher level module that is defined in device_map: - # bert.lm_head.weight -> bert.lm_head -> bert -> '' - while len(module_name) > 0 and module_name not in device_map: - module_name = ".".join(module_name.split(".")[:-1]) - if module_name == "" and "" not in device_map: - # TODO: group all errors and raise at the end. - raise ValueError(f"{param_name} doesn't have any device set.") - param_device = device_map[module_name] - - if param_device == "disk": - if not is_safetensors: - offload_index = offload_weight(param, param_name, offload_folder, offload_index) - elif param_device == "cpu" and state_dict_index is not None: - state_dict_index = offload_weight(param, param_name, state_dict_folder, state_dict_index) - elif ( - not is_quantized - or (not hf_quantizer.requires_parameters_quantization) - or ( - not hf_quantizer.check_quantized_param( - model, param, param_name, state_dict, param_device=param_device, device_map=device_map - ) - ) - ): - if is_fsdp_enabled(): - param_device = "cpu" if is_local_dist_rank_0() else "meta" - - # For backward compatibility with older versions of `accelerate` and for non-quantized params - set_module_tensor_to_device(model, param_name, param_device, **set_module_kwargs) - else: - hf_quantizer.create_quantized_param(model, param, param_name, param_device, state_dict, unexpected_keys) - # For quantized modules with FSDP/DeepSpeed Stage 3, we need to quantize the parameter on the GPU - # and then cast it to CPU to avoid excessive memory usage on each GPU - # in comparison to the sharded model across GPUs. - if is_fsdp_enabled() or is_deepspeed_zero3_enabled(): - module, tensor_name = get_module_from_name(model, param_name) - value = getattr(module, tensor_name) - param_to = "cpu" - if is_fsdp_enabled() and not is_local_dist_rank_0(): - param_to = "meta" - value = type(value)(value.data.to(param_to), **value.__dict__) - setattr(module, tensor_name, value) - # TODO: consider removing used param_parts from state_dict before return - - return error_msgs, offload_index, state_dict_index - - -def _add_variant(weights_name: str, variant: Optional[str] = None) -> str: - if variant is not None: - splits = weights_name.split(".") - splits = splits[:-1] + [variant] + splits[-1:] - weights_name = ".".join(splits) - - return weights_name - - -class ModuleUtilsMixin: - """ - A few utilities for `torch.nn.Modules`, to be used as a mixin. - """ - - @staticmethod - def _hook_rss_memory_pre_forward(module, *args, **kwargs): - try: - import psutil - except ImportError: - raise ImportError("You need to install psutil (pip install psutil) to use memory tracing.") - - process = psutil.Process(os.getpid()) - mem = process.memory_info() - module.mem_rss_pre_forward = mem.rss - return None - - @staticmethod - def _hook_rss_memory_post_forward(module, *args, **kwargs): - try: - import psutil - except ImportError: - raise ImportError("You need to install psutil (pip install psutil) to use memory tracing.") - - process = psutil.Process(os.getpid()) - mem = process.memory_info() - module.mem_rss_post_forward = mem.rss - mem_rss_diff = module.mem_rss_post_forward - module.mem_rss_pre_forward - module.mem_rss_diff = mem_rss_diff + (module.mem_rss_diff if hasattr(module, "mem_rss_diff") else 0) - return None - - def add_memory_hooks(self): - """ - Add a memory hook before and after each sub-module forward pass to record increase in memory consumption. - - Increase in memory consumption is stored in a `mem_rss_diff` attribute for each module and can be reset to zero - with `model.reset_memory_hooks_state()`. - """ - for module in self.modules(): - module.register_forward_pre_hook(self._hook_rss_memory_pre_forward) - module.register_forward_hook(self._hook_rss_memory_post_forward) - self.reset_memory_hooks_state() - - def reset_memory_hooks_state(self): - """ - Reset the `mem_rss_diff` attribute of each module (see [`~modeling_utils.ModuleUtilsMixin.add_memory_hooks`]). - """ - for module in self.modules(): - module.mem_rss_diff = 0 - module.mem_rss_post_forward = 0 - module.mem_rss_pre_forward = 0 - - @property - def device(self) -> torch.device: - """ - `torch.device`: The device on which the module is (assuming that all the module parameters are on the same - device). - """ - return get_parameter_device(self) - - @property - def dtype(self) -> torch.dtype: - """ - `torch.dtype`: The dtype of the module (assuming that all the module parameters have the same dtype). - """ - return get_parameter_dtype(self) - - def invert_attention_mask(self, encoder_attention_mask: Tensor) -> Tensor: - """ - Invert an attention mask (e.g., switches 0. and 1.). - - Args: - encoder_attention_mask (`torch.Tensor`): An attention mask. - - Returns: - `torch.Tensor`: The inverted attention mask. - """ - if encoder_attention_mask.dim() == 3: - encoder_extended_attention_mask = encoder_attention_mask[:, None, :, :] - if encoder_attention_mask.dim() == 2: - encoder_extended_attention_mask = encoder_attention_mask[:, None, None, :] - # T5 has a mask that can compare sequence ids, we can simulate this here with this transposition - # Cf. https://github.com/tensorflow/mesh/blob/8d2465e9bc93129b913b5ccc6a59aa97abd96ec6/mesh_tensorflow - # /transformer/transformer_layers.py#L270 - # encoder_extended_attention_mask = (encoder_extended_attention_mask == - # encoder_extended_attention_mask.transpose(-1, -2)) - encoder_extended_attention_mask = encoder_extended_attention_mask.to(dtype=self.dtype) # fp16 compatibility - encoder_extended_attention_mask = (1.0 - encoder_extended_attention_mask) * torch.finfo(self.dtype).min - - return encoder_extended_attention_mask - - @staticmethod - def create_extended_attention_mask_for_decoder(input_shape, attention_mask, device=None): - if device is not None: - warnings.warn( - "The `device` argument is deprecated and will be removed in v5 of Transformers.", FutureWarning - ) - else: - device = attention_mask.device - batch_size, seq_length = input_shape - seq_ids = torch.arange(seq_length, device=device) - causal_mask = seq_ids[None, None, :].repeat(batch_size, seq_length, 1) <= seq_ids[None, :, None] - # in case past_key_values are used we need to add a prefix ones mask to the causal mask - # causal and attention masks must have same type with pytorch version < 1.3 - causal_mask = causal_mask.to(attention_mask.dtype) - - if causal_mask.shape[1] < attention_mask.shape[1]: - prefix_seq_len = attention_mask.shape[1] - causal_mask.shape[1] - causal_mask = torch.cat( - [ - torch.ones((batch_size, seq_length, prefix_seq_len), device=device, dtype=causal_mask.dtype), - causal_mask, - ], - axis=-1, - ) - - extended_attention_mask = causal_mask[:, None, :, :] * attention_mask[:, None, None, :] - return extended_attention_mask - - def get_extended_attention_mask( - self, attention_mask: Tensor, input_shape: Tuple[int], device: torch.device = None, dtype: torch.float = None - ) -> Tensor: - """ - Makes broadcastable attention and causal masks so that future and masked tokens are ignored. - - Arguments: - attention_mask (`torch.Tensor`): - Mask with ones indicating tokens to attend to, zeros for tokens to ignore. - input_shape (`Tuple[int]`): - The shape of the input to the model. - - Returns: - `torch.Tensor` The extended attention mask, with a the same dtype as `attention_mask.dtype`. - """ - if dtype is None: - dtype = self.dtype - - if not (attention_mask.dim() == 2 and self.config.is_decoder): - # show warning only if it won't be shown in `create_extended_attention_mask_for_decoder` - if device is not None: - warnings.warn( - "The `device` argument is deprecated and will be removed in v5 of Transformers.", FutureWarning - ) - # We can provide a self-attention mask of dimensions [batch_size, from_seq_length, to_seq_length] - # ourselves in which case we just need to make it broadcastable to all heads. - if attention_mask.dim() == 3: - extended_attention_mask = attention_mask[:, None, :, :] - elif attention_mask.dim() == 2: - # Provided a padding mask of dimensions [batch_size, seq_length] - # - if the model is a decoder, apply a causal mask in addition to the padding mask - # - if the model is an encoder, make the mask broadcastable to [batch_size, num_heads, seq_length, seq_length] - if self.config.is_decoder: - extended_attention_mask = ModuleUtilsMixin.create_extended_attention_mask_for_decoder( - input_shape, attention_mask, device - ) - else: - extended_attention_mask = attention_mask[:, None, None, :] - else: - raise ValueError( - f"Wrong shape for input_ids (shape {input_shape}) or attention_mask (shape {attention_mask.shape})" - ) - - # Since attention_mask is 1.0 for positions we want to attend and 0.0 for - # masked positions, this operation will create a tensor which is 0.0 for - # positions we want to attend and the dtype's smallest value for masked positions. - # Since we are adding it to the raw scores before the softmax, this is - # effectively the same as removing these entirely. - extended_attention_mask = extended_attention_mask.to(dtype=dtype) # fp16 compatibility - extended_attention_mask = (1.0 - extended_attention_mask) * torch.finfo(dtype).min - return extended_attention_mask - - def get_head_mask( - self, head_mask: Optional[Tensor], num_hidden_layers: int, is_attention_chunked: bool = False - ) -> Tensor: - """ - Prepare the head mask if needed. - - Args: - head_mask (`torch.Tensor` with shape `[num_heads]` or `[num_hidden_layers x num_heads]`, *optional*): - The mask indicating if we should keep the heads or not (1.0 for keep, 0.0 for discard). - num_hidden_layers (`int`): - The number of hidden layers in the model. - is_attention_chunked (`bool`, *optional*, defaults to `False`): - Whether or not the attentions scores are computed by chunks or not. - - Returns: - `torch.Tensor` with shape `[num_hidden_layers x batch x num_heads x seq_length x seq_length]` or list with - `[None]` for each layer. - """ - if head_mask is not None: - head_mask = self._convert_head_mask_to_5d(head_mask, num_hidden_layers) - if is_attention_chunked is True: - head_mask = head_mask.unsqueeze(-1) - else: - head_mask = [None] * num_hidden_layers - - return head_mask - - def _convert_head_mask_to_5d(self, head_mask, num_hidden_layers): - """-> [num_hidden_layers x batch x num_heads x seq_length x seq_length]""" - if head_mask.dim() == 1: - head_mask = head_mask.unsqueeze(0).unsqueeze(0).unsqueeze(-1).unsqueeze(-1) - head_mask = head_mask.expand(num_hidden_layers, -1, -1, -1, -1) - elif head_mask.dim() == 2: - head_mask = head_mask.unsqueeze(1).unsqueeze(-1).unsqueeze(-1) # We can specify head_mask for each layer - assert head_mask.dim() == 5, f"head_mask.dim != 5, instead {head_mask.dim()}" - head_mask = head_mask.to(dtype=self.dtype) # switch to float if need + fp16 compatibility - return head_mask - - def num_parameters(self, only_trainable: bool = False, exclude_embeddings: bool = False) -> int: - """ - Get number of (optionally, trainable or non-embeddings) parameters in the module. - - Args: - only_trainable (`bool`, *optional*, defaults to `False`): - Whether or not to return only the number of trainable parameters - - exclude_embeddings (`bool`, *optional*, defaults to `False`): - Whether or not to return only the number of non-embeddings parameters - - Returns: - `int`: The number of parameters. - """ - - if exclude_embeddings: - embedding_param_names = [ - f"{name}.weight" for name, module_type in self.named_modules() if isinstance(module_type, nn.Embedding) - ] - total_parameters = [ - parameter for name, parameter in self.named_parameters() if name not in embedding_param_names - ] - else: - total_parameters = list(self.parameters()) - - total_numel = [] - is_loaded_in_4bit = getattr(self, "is_loaded_in_4bit", False) - - if is_loaded_in_4bit: - if is_bitsandbytes_available(): - import bitsandbytes as bnb - else: - raise ValueError( - "bitsandbytes is not installed but it seems that the model has been loaded in 4bit precision, something went wrong" - " make sure to install bitsandbytes with `pip install bitsandbytes`. You also need a GPU. " - ) - - for param in total_parameters: - if param.requires_grad or not only_trainable: - # For 4bit models, we need to multiply the number of parameters by 2 as half of the parameters are - # used for the 4bit quantization (uint8 tensors are stored) - if is_loaded_in_4bit and isinstance(param, bnb.nn.Params4bit): - if hasattr(param, "element_size"): - num_bytes = param.element_size() - elif hasattr(param, "quant_storage"): - num_bytes = param.quant_storage.itemsize - else: - num_bytes = 1 - total_numel.append(param.numel() * 2 * num_bytes) - else: - total_numel.append(param.numel()) - - return sum(total_numel) - - def estimate_tokens(self, input_dict: Dict[str, Union[torch.Tensor, Any]]) -> int: - """ - Helper function to estimate the total number of tokens from the model inputs. - - Args: - inputs (`dict`): The model inputs. - - Returns: - `int`: The total number of tokens. - """ - if not hasattr(self, "warnings_issued"): - self.warnings_issued = {} - if self.main_input_name in input_dict: - return input_dict[self.main_input_name].numel() - elif "estimate_tokens" not in self.warnings_issued: - logger.warning( - "Could not estimate the number of tokens of the input, floating-point operations will not be computed" - ) - self.warnings_issued["estimate_tokens"] = True - return 0 - - def floating_point_ops( - self, input_dict: Dict[str, Union[torch.Tensor, Any]], exclude_embeddings: bool = True - ) -> int: - """ - Get number of (optionally, non-embeddings) floating-point operations for the forward and backward passes of a - batch with this transformer model. Default approximation neglects the quadratic dependency on the number of - tokens (valid if `12 * d_model << sequence_length`) as laid out in [this - paper](https://arxiv.org/pdf/2001.08361.pdf) section 2.1. Should be overridden for transformers with parameter - re-use e.g. Albert or Universal Transformers, or if doing long-range modeling with very high sequence lengths. - - Args: - batch_size (`int`): - The batch size for the forward pass. - - sequence_length (`int`): - The number of tokens in each line of the batch. - - exclude_embeddings (`bool`, *optional*, defaults to `True`): - Whether or not to count embedding and softmax operations. - - Returns: - `int`: The number of floating-point operations. - """ - - return 6 * self.estimate_tokens(input_dict) * self.num_parameters(exclude_embeddings=exclude_embeddings) - - -# TODO (joao): remove `GenerationMixin` inheritance in v4.50 -class PreTrainedModel(nn.Module, ModuleUtilsMixin, GenerationMixin, PushToHubMixin, PeftAdapterMixin): - r""" - Base class for all models. - - [`PreTrainedModel`] takes care of storing the configuration of the models and handles methods for loading, - downloading and saving models as well as a few methods common to all models to: - - - resize the input embeddings, - - prune heads in the self-attention heads. - - Class attributes (overridden by derived classes): - - - **config_class** ([`PretrainedConfig`]) -- A subclass of [`PretrainedConfig`] to use as configuration class - for this model architecture. - - **load_tf_weights** (`Callable`) -- A python *method* for loading a TensorFlow checkpoint in a PyTorch model, - taking as arguments: - - - **model** ([`PreTrainedModel`]) -- An instance of the model on which to load the TensorFlow checkpoint. - - **config** ([`PreTrainedConfig`]) -- An instance of the configuration associated to the model. - - **path** (`str`) -- A path to the TensorFlow checkpoint. - - - **base_model_prefix** (`str`) -- A string indicating the attribute associated to the base model in derived - classes of the same architecture adding modules on top of the base model. - - **is_parallelizable** (`bool`) -- A flag indicating whether this model supports model parallelization. - - **main_input_name** (`str`) -- The name of the principal input to the model (often `input_ids` for NLP - models, `pixel_values` for vision models and `input_values` for speech models). - """ - - config_class = None - base_model_prefix = "" - main_input_name = "input_ids" - model_tags = None - - _auto_class = None - _no_split_modules = None - _skip_keys_device_placement = None - _keep_in_fp32_modules = None - - # a list of `re` patterns of `state_dict` keys that should be removed from the list of missing - # keys we find (keys inside the model but not in the checkpoint) and avoid unnecessary warnings. - _keys_to_ignore_on_load_missing = None - # a list of `re` patterns of `state_dict` keys that should be removed from the list of - # unexpected keys we find (keys inside the checkpoint but not the model) and avoid unnecessary - # warnings. - _keys_to_ignore_on_load_unexpected = None - # a list of `state_dict` keys to ignore when saving the model (useful for keys that aren't - # trained, but which are either deterministic or tied variables) - _keys_to_ignore_on_save = None - # a list of `state_dict` keys that are potentially tied to another key in the state_dict. - _tied_weights_keys = None - - is_parallelizable = False - supports_gradient_checkpointing = False - _is_stateful = False - - # Flash Attention 2 support - _supports_flash_attn_2 = False - - # SDPA support - _supports_sdpa = False - - # Has support for a `Cache` instance as `past_key_values`? Does it support a `StaticCache`? - _supports_cache_class = False - _supports_static_cache = False - - # Has support for a `QuantoQuantizedCache` instance as `past_key_values` - _supports_quantized_cache = False - - @property - def dummy_inputs(self) -> Dict[str, torch.Tensor]: - """ - `Dict[str, torch.Tensor]`: Dummy inputs to do a forward pass in the network. - """ - return {"input_ids": torch.tensor(DUMMY_INPUTS)} - - @property - def framework(self) -> str: - """ - :str: Identifies that this is a PyTorch model. - """ - return "pt" - - def __init__(self, config: PretrainedConfig, *inputs, **kwargs): - super().__init__() - if not isinstance(config, PretrainedConfig): - raise ValueError( - f"Parameter config in `{self.__class__.__name__}(config)` should be an instance of class " - "`PretrainedConfig`. To create a model from a pretrained model use " - f"`model = {self.__class__.__name__}.from_pretrained(PRETRAINED_MODEL_NAME)`" - ) - # Save config and origin of the pretrained weights if given in model - if not getattr(config, "_attn_implementation_autoset", False): - config = self._autoset_attn_implementation( - config, torch_dtype=torch.get_default_dtype(), check_device_map=False - ) - self.config = config - - self.name_or_path = config.name_or_path - self.warnings_issued = {} - self.generation_config = GenerationConfig.from_model_config(config) if self.can_generate() else None - # Overwrite the class attribute to make it an instance attribute, so models like - # `InstructBlipForConditionalGeneration` can dynamically update it without modifying the class attribute - # when a different component (e.g. language_model) is used. - self._keep_in_fp32_modules = copy.copy(self.__class__._keep_in_fp32_modules) - - def post_init(self): - """ - A method executed at the end of each Transformer model initialization, to execute code that needs the model's - modules properly initialized (such as weight initialization). - """ - self.init_weights() - self._backward_compatibility_gradient_checkpointing() - - def dequantize(self): - """ - Potentially dequantize the model in case it has been quantized by a quantization method that support - dequantization. - """ - hf_quantizer = getattr(self, "hf_quantizer", None) - - if hf_quantizer is None: - raise ValueError("You need to first quantize your model in order to dequantize it") - - return hf_quantizer.dequantize(self) - - def _backward_compatibility_gradient_checkpointing(self): - if self.supports_gradient_checkpointing and getattr(self.config, "gradient_checkpointing", False): - self.gradient_checkpointing_enable() - # Remove the attribute now that is has been consumed, so it's no saved in the config. - delattr(self.config, "gradient_checkpointing") - - def add_model_tags(self, tags: Union[List[str], str]) -> None: - r""" - Add custom tags into the model that gets pushed to the Hugging Face Hub. Will - not overwrite existing tags in the model. - - Args: - tags (`Union[List[str], str]`): - The desired tags to inject in the model - - Examples: - - ```python - from transformers import AutoModel - - model = AutoModel.from_pretrained("google-bert/bert-base-cased") - - model.add_model_tags(["custom", "custom-bert"]) - - # Push the model to your namespace with the name "my-custom-bert". - model.push_to_hub("my-custom-bert") - ``` - """ - if isinstance(tags, str): - tags = [tags] - - if self.model_tags is None: - self.model_tags = [] - - for tag in tags: - if tag not in self.model_tags: - self.model_tags.append(tag) - - @classmethod - def _from_config(cls, config, **kwargs): - """ - All context managers that the model should be initialized under go here. - - Args: - torch_dtype (`torch.dtype`, *optional*): - Override the default `torch.dtype` and load the model under this dtype. - """ - # when we init a model from within another model (e.g. VLMs) and dispatch on FA2 - # a warning is raised that dtype should be fp16. Since we never pass dtype from within - # modeling code, we can try to infer it here same way as done in `from_pretrained` - torch_dtype = kwargs.pop("torch_dtype", torch.get_default_dtype()) - use_flash_attention_2 = kwargs.pop("use_flash_attention_2", False) - - # override default dtype if needed - dtype_orig = None - if torch_dtype is not None: - dtype_orig = cls._set_default_torch_dtype(torch_dtype) - - config = copy.deepcopy(config) # We do not want to modify the config inplace in _from_config. - - if config._attn_implementation_internal is not None: - # In this case, the config has been created with the attn_implementation set by the user, which we - # should respect. - attn_implementation = config._attn_implementation_internal - else: - attn_implementation = None - - config._attn_implementation = kwargs.pop("attn_implementation", attn_implementation) - if not getattr(config, "_attn_implementation_autoset", False): - config = cls._autoset_attn_implementation( - config, - use_flash_attention_2=use_flash_attention_2, - check_device_map=False, - torch_dtype=torch_dtype, - ) - - if is_deepspeed_zero3_enabled(): - import deepspeed - - logger.info("Detected DeepSpeed ZeRO-3: activating zero.init() for this model") - # this immediately partitions the model across all gpus, to avoid the overhead in time - # and memory copying it on CPU or each GPU first - with deepspeed.zero.Init(config_dict_or_path=deepspeed_config()): - model = cls(config, **kwargs) - - else: - model = cls(config, **kwargs) - - # restore default dtype if it was modified - if dtype_orig is not None: - torch.set_default_dtype(dtype_orig) - - return model - - @classmethod - def _autoset_attn_implementation( - cls, - config, - use_flash_attention_2: bool = False, - torch_dtype: Optional[torch.dtype] = None, - device_map: Optional[Union[str, Dict[str, int]]] = None, - check_device_map: bool = True, - ): - """ - Automatically checks and dispatches to a default attention implementation. In order of priority: - 1. An implementation specified in `config._attn_implementation` (due for example to the argument attn_implementation="sdpa" in from_pretrained). - 2. DEPRECATED: if use_flash_attention_2 is set to `True` and `flash_attn` is available, flash attention. (`LlamaFlashAttention` for example) - 3. SDPA implementation, if available and supported by the model type. (`LlamaSdpaAttention` for example) - 4. The default model's implementation otherwise (`LlamaAttention` for example) . - """ - # Here we use config._attn_implementation_internal to check whether the attention implementation was explicitely set by the user. - # The property `PretrainedConfig._attn_implementation` is never `None`, for backward compatibility (always fall back on "eager"). - # The `hasattr` here is used as some Transformers tests for some reason do not call PretrainedConfig __init__ (e.g. test_no_super_init_config_and_model) - requested_attn_implementation = None - if hasattr(config, "_attn_implementation_internal") and config._attn_implementation_internal is not None: - if config._attn_implementation != "flash_attention_2" and use_flash_attention_2: - raise ValueError( - f'Both attn_implementation="{config._attn_implementation}" and `use_flash_attention_2=True` were used when loading the model, which are not compatible.' - ' We recommend to just use `attn_implementation="flash_attention_2"` when loading the model.' - ) - - if not isinstance(config._attn_implementation, dict) and config._attn_implementation not in [ - "eager", - "sdpa", - "flash_attention_2", - ]: - message = f'Specified `attn_implementation="{config._attn_implementation}"` is not supported. The only possible arguments are `attn_implementation="eager"` (manual attention implementation)' - if cls._supports_flash_attn_2: - message += ', `"attn_implementation=flash_attention_2"` (implementation using flash attention 2)' - if cls._supports_sdpa: - message += ', `"attn_implementation=sdpa"` (implementation using torch.nn.functional.scaled_dot_product_attention)' - raise ValueError(message + ".") - - # If a config is passed with a preset attn_implementation, we skip the automatic dispatch and use the user-provided config, with hard checks that the requested attention implementation is available. - requested_attn_implementation = config._attn_implementation_internal - - # Composite models consisting of several PretrainedModels have to specify attention impl as a dict - # where keys are sub-config names. But most people will specify one `str` which means that should dispatch it - # for all sub-models. - # Below we check if a config is composite and manually prepare a dict of attn impl if not already passed as a dict. - # Later each sub-module will dispatch with its own attn impl, by calling `XXXModel._from_config(config.text_config)` - # If any of sub-modules doesn't support requested attn, an error will be raised. See https://github.com/huggingface/transformers/pull/32238 - for key in config: - if isinstance(getattr(config, key), PretrainedConfig): - sub_config = getattr(config, key) - curr_attn_implementation = ( - requested_attn_implementation - if not isinstance(requested_attn_implementation, dict) - else requested_attn_implementation.get(key, None) - ) - sub_config._attn_implementation_internal = curr_attn_implementation - - if use_flash_attention_2: - logger.warning_once( - 'The model was loaded with use_flash_attention_2=True, which is deprecated and may be removed in a future release. Please use `attn_implementation="flash_attention_2"` instead.' - ) - config._attn_implementation = "flash_attention_2" - - if config._attn_implementation == "flash_attention_2": - cls._check_and_enable_flash_attn_2( - config, - torch_dtype=torch_dtype, - device_map=device_map, - hard_check_only=False, - check_device_map=check_device_map, - ) - elif requested_attn_implementation in [None, "sdpa"] and not is_torch_xla_available(): - # use_flash_attention_2 takes priority over SDPA, hence SDPA treated in this elif. - config = cls._check_and_enable_sdpa( - config, - hard_check_only=False if requested_attn_implementation is None else True, - ) - - if ( - torch.version.hip is not None - and config._attn_implementation == "sdpa" - and torch.cuda.device_count() > 1 - ): - logger.warning_once( - "Using the `SDPA` attention implementation on multi-gpu setup with ROCM may lead to performance issues due to the FA backend. Disabling it to use alternative backends." - ) - torch.backends.cuda.enable_flash_sdp(False) - elif isinstance(requested_attn_implementation, dict): - config._attn_implementation = None - else: - config._attn_implementation = "eager" - - config._attn_implementation_autoset = True - return config - - @classmethod - def _set_default_torch_dtype(cls, dtype: torch.dtype) -> torch.dtype: - """ - Change the default dtype and return the previous one. This is needed when wanting to instantiate the model - under specific dtype. - - Args: - dtype (`torch.dtype`): - a floating dtype to set to. - - Returns: - `torch.dtype`: the original `dtype` that can be used to restore `torch.set_default_dtype(dtype)` if it was - modified. If it wasn't, returns `None`. - - Note `set_default_dtype` currently only works with floating-point types and asserts if for example, - `torch.int64` is passed. So if a non-float `dtype` is passed this functions will throw an exception. - """ - if not dtype.is_floating_point: - raise ValueError( - f"Can't instantiate {cls.__name__} model under dtype={dtype} since it is not a floating point dtype" - ) - - logger.info(f"Instantiating {cls.__name__} model under default dtype {dtype}.") - dtype_orig = torch.get_default_dtype() - torch.set_default_dtype(dtype) - return dtype_orig - - @property - def base_model(self) -> nn.Module: - """ - `torch.nn.Module`: The main body of the model. - """ - return getattr(self, self.base_model_prefix, self) - - @classmethod - def can_generate(cls) -> bool: - """ - Returns whether this model can generate sequences with `.generate()`. - - Returns: - `bool`: Whether this model can generate sequences with `.generate()`. - """ - # Directly inherits `GenerationMixin` -> can generate - if "GenerationMixin" in str(cls.__bases__): - return True - # Model class overwrites `generate` (e.g. time series models) -> can generate - if str(cls.__name__) in str(cls.generate): - return True - # The class inherits from a class that can generate (recursive check) -> can generate - for base in cls.__bases__: - if not hasattr(base, "can_generate"): - continue - if "PreTrainedModel" not in str(base) and base.can_generate(): - return True - # BC: Detects whether `prepare_inputs_for_generation` has been overwritten in the model. Prior to v4.45, this - # was how we detected whether a model could generate. - if "GenerationMixin" not in str(cls.prepare_inputs_for_generation): - logger.warning_once( - f"{cls.__name__} has generative capabilities, as `prepare_inputs_for_generation` is explicitly " - "overwritten. However, it doesn't directly inherit from `GenerationMixin`. From 👉v4.50👈 onwards, " - "`PreTrainedModel` will NOT inherit from `GenerationMixin`, and this model will lose the ability " - "to call `generate` and other related functions." - "\n - If you're using `trust_remote_code=True`, you can get rid of this warning by loading the " - "model with an auto class. See https://huggingface.co/docs/transformers/en/model_doc/auto#auto-classes" - "\n - If you are the owner of the model architecture code, please modify your model class such that " - "it inherits from `GenerationMixin` (after `PreTrainedModel`, otherwise you'll get an exception)." - "\n - If you are not the owner of the model architecture class, please contact the model code owner " - "to update it." - ) - return True - # Otherwise, can't generate - return False - - @classmethod - def _check_and_enable_flash_attn_2( - cls, - config, - torch_dtype: Optional[torch.dtype] = None, - device_map: Optional[Union[str, Dict[str, int]]] = None, - check_device_map: bool = True, - hard_check_only: bool = False, - ) -> PretrainedConfig: - """ - Checks the availability of Flash Attention 2 and compatibility with the current model. - - If all checks pass and `hard_check_only` is False, the method will set the config attribute `attn_implementation` to "flash_attention_2" so that the model can initialize the correct attention module. - """ - if not cls._supports_flash_attn_2: - raise ValueError( - f"{cls.__name__} does not support Flash Attention 2.0 yet. Please request to add support where" - f" the model is hosted, on its model hub page: https://huggingface.co/{config._name_or_path}/discussions/new" - " or in the Transformers GitHub repo: https://github.com/huggingface/transformers/issues/new" - ) - - if not is_flash_attn_2_available(): - preface = "FlashAttention2 has been toggled on, but it cannot be used due to the following error:" - install_message = "Please refer to the documentation of https://huggingface.co/docs/transformers/perf_infer_gpu_one#flashattention-2 to install Flash Attention 2." - - if importlib.util.find_spec("flash_attn") is None: - raise ImportError(f"{preface} the package flash_attn seems to be not installed. {install_message}") - - flash_attention_version = version.parse(importlib.metadata.version("flash_attn")) - if torch.version.cuda: - if flash_attention_version < version.parse("2.1.0"): - raise ImportError( - f"{preface} you need flash_attn package version to be greater or equal than 2.1.0. Detected version {flash_attention_version}. {install_message}" - ) - elif not torch.cuda.is_available(): - raise ValueError( - f"{preface} Flash Attention 2 is not available on CPU. Please make sure torch can access a CUDA device." - ) - else: - raise ImportError(f"{preface} Flash Attention 2 is not available. {install_message}") - elif torch.version.hip: - if flash_attention_version < version.parse("2.0.4"): - raise ImportError( - f"{preface} you need flash_attn package version to be greater or equal than 2.0.4. Make sure to have that version installed - detected version {flash_attention_version}. {install_message}" - ) - else: - raise ImportError(f"{preface} Flash Attention 2 is not available. {install_message}") - - _is_bettertransformer = getattr(cls, "use_bettertransformer", False) - - if _is_bettertransformer: - raise ValueError( - "Flash Attention 2 and BetterTransformer API are not compatible. Please make sure to disable BetterTransformers by doing model.reverse_bettertransformer()" - ) - - if torch_dtype is None: - logger.warning_once( - "You are attempting to use Flash Attention 2.0 without specifying a torch dtype. This might lead to unexpected behaviour" - ) - elif torch_dtype is not None and torch_dtype not in [torch.float16, torch.bfloat16]: - logger.warning_once( - "Flash Attention 2.0 only supports torch.float16 and torch.bfloat16 dtypes, but" - f" the current dype in {cls.__name__} is {torch_dtype}. You should run training or inference using Automatic Mixed-Precision via the `with torch.autocast(device_type='torch_device'):` decorator," - ' or load the model with the `torch_dtype` argument. Example: `model = AutoModel.from_pretrained("openai/whisper-tiny", attn_implementation="flash_attention_2", torch_dtype=torch.float16)`' - ) - - # The check `torch.empty(0).device.type != "cuda"` is needed as the model may be initialized after `torch.set_default_device` has been called, - # or the model may be initialized under the context manager `with torch.device("cuda"):`. - if check_device_map and device_map is None and torch.empty(0).device.type != "cuda": - if torch.cuda.is_available(): - logger.warning_once( - "You are attempting to use Flash Attention 2.0 with a model not initialized on GPU. Make sure to move the model to GPU" - " after initializing it on CPU with `model.to('cuda')`." - ) - else: - raise ValueError( - "You are attempting to use Flash Attention 2.0 with a model not initialized on GPU and with no GPU available. " - "This is not supported yet. Please make sure to have access to a GPU and either initialise the model on a GPU by passing a device_map " - "or initialising the model on CPU and then moving it to GPU." - ) - elif ( - check_device_map - and device_map is not None - and isinstance(device_map, dict) - and ("cpu" in device_map.values() or "disk" in device_map.values()) - ): - raise ValueError( - "You are attempting to use Flash Attention 2.0 with a model dispatched on CPU or disk. This is not supported. Please make sure to " - "initialise the model on a GPU by passing a device_map that contains only GPU devices as keys." - ) - if not hard_check_only: - config._attn_implementation = "flash_attention_2" - return config - - @classmethod - def _check_and_enable_sdpa(cls, config, hard_check_only: bool = False) -> PretrainedConfig: - """ - Checks the availability of SDPA for a given model. - - If all checks pass and `hard_check_only` is False, the method will set the config attribute `_attn_implementation` to "flash_attention_2" so that the model can initialize the correct attention module. - """ - if hard_check_only: - if not cls._supports_sdpa: - raise ValueError( - f"{cls.__name__} does not support an attention implementation through torch.nn.functional.scaled_dot_product_attention yet." - " Please request the support for this architecture: https://github.com/huggingface/transformers/issues/28005. If you believe" - ' this error is a bug, please open an issue in Transformers GitHub repository and load your model with the argument `attn_implementation="eager"` meanwhile. Example: `model = AutoModel.from_pretrained("openai/whisper-tiny", attn_implementation="eager")`' - ) - if not is_torch_sdpa_available(): - raise ImportError( - "PyTorch SDPA requirements in Transformers are not met. Please install torch>=2.1.1." - ) - - if not is_torch_sdpa_available() or not cls._supports_sdpa: - return config - - _is_bettertransformer = getattr(cls, "use_bettertransformer", False) - if _is_bettertransformer: - return config - - if not hard_check_only: - config._attn_implementation = "sdpa" - return config - - def enable_input_require_grads(self): - """ - Enables the gradients for the input embeddings. This is useful for fine-tuning adapter weights while keeping - the model weights fixed. - """ - - def make_inputs_require_grads(module, input, output): - output.requires_grad_(True) - - self._require_grads_hook = self.get_input_embeddings().register_forward_hook(make_inputs_require_grads) - - def disable_input_require_grads(self): - """ - Removes the `_require_grads_hook`. - """ - self._require_grads_hook.remove() - - def get_input_embeddings(self) -> nn.Module: - """ - Returns the model's input embeddings. - - Returns: - `nn.Module`: A torch module mapping vocabulary to hidden states. - """ - base_model = getattr(self, self.base_model_prefix, self) - if base_model is not self: - return base_model.get_input_embeddings() - else: - raise NotImplementedError - - def set_input_embeddings(self, value: nn.Module): - """ - Set model's input embeddings. - - Args: - value (`nn.Module`): A module mapping vocabulary to hidden states. - """ - base_model = getattr(self, self.base_model_prefix, self) - if base_model is not self: - base_model.set_input_embeddings(value) - else: - raise NotImplementedError - - def get_output_embeddings(self) -> nn.Module: - """ - Returns the model's output embeddings. - - Returns: - `nn.Module`: A torch module mapping hidden states to vocabulary. - """ - return None # Overwrite for models with output embeddings - - def _init_weights(self, module): - """ - Initialize the weights. This method should be overridden by derived class and is - the only initialization method that will be called when loading a checkpoint - using `from_pretrained`. Any attempt to initialize outside of this function - will be useless as the torch.nn.init function are all replaced with skip. - """ - pass - - def _initialize_weights(self, module): - """ - Initialize the weights if they are not already initialized. - """ - if getattr(module, "_is_hf_initialized", False): - return - self._init_weights(module) - module._is_hf_initialized = True - - def tie_weights(self): - """ - Tie the weights between the input embeddings and the output embeddings. - - If the `torchscript` flag is set in the configuration, can't handle parameter sharing so we are cloning the - weights instead. - """ - if getattr(self.config, "tie_word_embeddings", True): - output_embeddings = self.get_output_embeddings() - if output_embeddings is not None: - self._tie_or_clone_weights(output_embeddings, self.get_input_embeddings()) - - if getattr(self.config, "is_encoder_decoder", False) and getattr(self.config, "tie_encoder_decoder", False): - if hasattr(self, self.base_model_prefix): - self = getattr(self, self.base_model_prefix) - tied_weights = self._tie_encoder_decoder_weights( - self.encoder, self.decoder, self.base_model_prefix, "encoder" - ) - # Setting a dynamic variable instead of `_tied_weights_keys` because it's a class - # attributed not an instance member, therefore modifying it will modify the entire class - # Leading to issues on subsequent calls by different tests or subsequent calls. - self._dynamic_tied_weights_keys = tied_weights - - for module in self.modules(): - if hasattr(module, "_tie_weights"): - module._tie_weights() - - @staticmethod - def _tie_encoder_decoder_weights( - encoder: nn.Module, decoder: nn.Module, base_model_prefix: str, base_encoder_name: str - ): - uninitialized_encoder_weights: List[str] = [] - tied_weights: List[str] = [] - if decoder.__class__ != encoder.__class__: - logger.info( - f"{decoder.__class__} and {encoder.__class__} are not equal. In this case make sure that all encoder" - " weights are correctly initialized." - ) - - def tie_encoder_to_decoder_recursively( - decoder_pointer: nn.Module, - encoder_pointer: nn.Module, - module_name: str, - base_encoder_name: str, - uninitialized_encoder_weights: List[str], - depth=0, - total_decoder_name="", - total_encoder_name="", - ): - assert isinstance(decoder_pointer, nn.Module) and isinstance( - encoder_pointer, nn.Module - ), f"{decoder_pointer} and {encoder_pointer} have to be of type nn.Module" - if hasattr(decoder_pointer, "weight"): - assert hasattr(encoder_pointer, "weight") - encoder_pointer.weight = decoder_pointer.weight - tied_weights.append(f"{base_encoder_name}{total_encoder_name}.weight") - if hasattr(decoder_pointer, "bias"): - assert hasattr(encoder_pointer, "bias") - tied_weights.append(f"{base_encoder_name}{total_encoder_name}.bias") - encoder_pointer.bias = decoder_pointer.bias - return - - encoder_modules = encoder_pointer._modules - decoder_modules = decoder_pointer._modules - if len(decoder_modules) > 0: - assert ( - len(encoder_modules) > 0 - ), f"Encoder module {encoder_pointer} does not match decoder module {decoder_pointer}" - - all_encoder_weights = {module_name + "/" + sub_name for sub_name in encoder_modules.keys()} - encoder_layer_pos = 0 - for name, module in decoder_modules.items(): - if name.isdigit(): - encoder_name = str(int(name) + encoder_layer_pos) - decoder_name = name - if not isinstance(decoder_modules[decoder_name], type(encoder_modules[encoder_name])) and len( - encoder_modules - ) != len(decoder_modules): - # this can happen if the name corresponds to the position in a list module list of layers - # in this case the decoder has added a cross-attention that the encoder does not have - # thus skip this step and subtract one layer pos from encoder - encoder_layer_pos -= 1 - continue - elif name not in encoder_modules: - continue - elif depth > 500: - raise ValueError( - "Max depth of recursive function `tie_encoder_to_decoder` reached. It seems that there is" - " a circular dependency between two or more `nn.Modules` of your model." - ) - else: - decoder_name = encoder_name = name - tie_encoder_to_decoder_recursively( - decoder_modules[decoder_name], - encoder_modules[encoder_name], - module_name + "/" + name, - base_encoder_name, - uninitialized_encoder_weights, - depth=depth + 1, - total_encoder_name=f"{total_encoder_name}.{encoder_name}", - total_decoder_name=f"{total_decoder_name}.{decoder_name}", - ) - all_encoder_weights.remove(module_name + "/" + encoder_name) - - uninitialized_encoder_weights += list(all_encoder_weights) - - # tie weights recursively - tie_encoder_to_decoder_recursively( - decoder, encoder, base_model_prefix, base_encoder_name, uninitialized_encoder_weights - ) - - if len(uninitialized_encoder_weights) > 0: - logger.warning( - f"The following encoder weights were not tied to the decoder {uninitialized_encoder_weights}" - ) - return tied_weights - - def _tie_or_clone_weights(self, output_embeddings, input_embeddings): - """Tie or clone module weights depending of whether we are using TorchScript or not""" - if self.config.torchscript: - output_embeddings.weight = nn.Parameter(input_embeddings.weight.clone()) - else: - output_embeddings.weight = input_embeddings.weight - - if getattr(output_embeddings, "bias", None) is not None: - output_embeddings.bias.data = nn.functional.pad( - output_embeddings.bias.data, - ( - 0, - output_embeddings.weight.shape[0] - output_embeddings.bias.shape[0], - ), - "constant", - 0, - ) - if hasattr(output_embeddings, "out_features") and hasattr(input_embeddings, "num_embeddings"): - output_embeddings.out_features = input_embeddings.num_embeddings - - def _get_no_split_modules(self, device_map: str): - """ - Get the modules of the model that should not be spit when using device_map. We iterate through the modules to - get the underlying `_no_split_modules`. - - Args: - device_map (`str`): - The device map value. Options are ["auto", "balanced", "balanced_low_0", "sequential"] - - Returns: - `List[str]`: List of modules that should not be split - """ - _no_split_modules = set() - modules_to_check = [self] - while len(modules_to_check) > 0: - module = modules_to_check.pop(-1) - # if the module does not appear in _no_split_modules, we also check the children - if module.__class__.__name__ not in _no_split_modules: - if isinstance(module, PreTrainedModel): - if module._no_split_modules is None: - raise ValueError( - f"{module.__class__.__name__} does not support `device_map='{device_map}'`. To implement support, the model " - "class needs to implement the `_no_split_modules` attribute." - ) - else: - _no_split_modules = _no_split_modules | set(module._no_split_modules) - modules_to_check += list(module.children()) - return list(_no_split_modules) - - def resize_token_embeddings( - self, - new_num_tokens: Optional[int] = None, - pad_to_multiple_of: Optional[int] = None, - mean_resizing: bool = True, - ) -> nn.Embedding: - """ - Resizes input token embeddings matrix of the model if `new_num_tokens != config.vocab_size`. - - Takes care of tying weights embeddings afterwards if the model class has a `tie_weights()` method. - - Arguments: - new_num_tokens (`int`, *optional*): - The new number of tokens in the embedding matrix. Increasing the size will add newly initialized - vectors at the end. Reducing the size will remove vectors from the end. If not provided or `None`, just - returns a pointer to the input tokens `torch.nn.Embedding` module of the model without doing anything. - pad_to_multiple_of (`int`, *optional*): - If set will pad the embedding matrix to a multiple of the provided value.If `new_num_tokens` is set to - `None` will just pad the embedding to a multiple of `pad_to_multiple_of`. - - This is especially useful to enable the use of Tensor Cores on NVIDIA hardware with compute capability - `>= 7.5` (Volta), or on TPUs which benefit from having sequence lengths be a multiple of 128. For more - details about this, or help on choosing the correct value for resizing, refer to this guide: - https://docs.nvidia.com/deeplearning/performance/dl-performance-matrix-multiplication/index.html#requirements-tc - mean_resizing (`bool`): - Whether to initialize the added embeddings from a multivariate normal distribution that has old embeddings' mean and - covariance or to initialize them with a normal distribution that has a mean of zero and std equals `config.initializer_range`. - - Setting `mean_resizing` to `True` is useful when increasing the size of the embeddings of causal language models, - where the generated tokens' probabilities won't be affected by the added embeddings because initializing the new embeddings with the - old embeddings' mean will reduce the kl-divergence between the next token probability before and after adding the new embeddings. - Refer to this article for more information: https://nlp.stanford.edu/~johnhew/vocab-expansion.html - - Return: - `torch.nn.Embedding`: Pointer to the input tokens Embeddings Module of the model. - """ - model_embeds = self._resize_token_embeddings(new_num_tokens, pad_to_multiple_of, mean_resizing) - if new_num_tokens is None and pad_to_multiple_of is None: - return model_embeds - - # Since we are basically resuing the same old embeddings with new weight values, gathering is required - is_quantized = hasattr(self, "hf_quantizer") and self.hf_quantizer is not None - if is_deepspeed_zero3_enabled() and not is_quantized: - import deepspeed - - with deepspeed.zero.GatheredParameters(model_embeds.weight, modifier_rank=None): - vocab_size = model_embeds.weight.shape[0] - else: - vocab_size = model_embeds.weight.shape[0] - - # Update base model and current model config. - self.config.get_text_config().vocab_size = vocab_size - self.vocab_size = vocab_size - - # Tie weights again if needed - self.tie_weights() - - return model_embeds - - def _resize_token_embeddings(self, new_num_tokens, pad_to_multiple_of=None, mean_resizing=True): - old_embeddings = self.get_input_embeddings() - new_embeddings = self._get_resized_embeddings( - old_embeddings, new_num_tokens, pad_to_multiple_of, mean_resizing - ) - if hasattr(old_embeddings, "_hf_hook"): - hook = old_embeddings._hf_hook - add_hook_to_module(new_embeddings, hook) - old_embeddings_requires_grad = old_embeddings.weight.requires_grad - new_embeddings.requires_grad_(old_embeddings_requires_grad) - self.set_input_embeddings(new_embeddings) - is_quantized = hasattr(self, "hf_quantizer") and self.hf_quantizer is not None - - # Update new_num_tokens with the actual size of new_embeddings - if pad_to_multiple_of is not None: - if is_deepspeed_zero3_enabled() and not is_quantized: - import deepspeed - - with deepspeed.zero.GatheredParameters(new_embeddings.weight, modifier_rank=None): - new_num_tokens = new_embeddings.weight.shape[0] - else: - new_num_tokens = new_embeddings.weight.shape[0] - - # if word embeddings are not tied, make sure that lm head is resized as well - if self.get_output_embeddings() is not None and not self.config.tie_word_embeddings: - old_lm_head = self.get_output_embeddings() - if isinstance(old_lm_head, torch.nn.Embedding): - new_lm_head = self._get_resized_embeddings(old_lm_head, new_num_tokens, mean_resizing=mean_resizing) - else: - new_lm_head = self._get_resized_lm_head(old_lm_head, new_num_tokens, mean_resizing=mean_resizing) - if hasattr(old_lm_head, "_hf_hook"): - hook = old_lm_head._hf_hook - add_hook_to_module(new_lm_head, hook) - old_lm_head_requires_grad = old_lm_head.weight.requires_grad - new_lm_head.requires_grad_(old_lm_head_requires_grad) - self.set_output_embeddings(new_lm_head) - - return self.get_input_embeddings() - - def _get_resized_embeddings( - self, - old_embeddings: nn.Embedding, - new_num_tokens: Optional[int] = None, - pad_to_multiple_of: Optional[int] = None, - mean_resizing: bool = True, - ) -> nn.Embedding: - """ - Build a resized Embedding Module from a provided token Embedding Module. Increasing the size will add newly - initialized vectors at the end. Reducing the size will remove vectors from the end - - Args: - old_embeddings (`torch.nn.Embedding`): - Old embeddings to be resized. - new_num_tokens (`int`, *optional*): - New number of tokens in the embedding matrix. - - Increasing the size will add newly initialized vectors at the end. Reducing the size will remove - vectors from the end. If not provided or `None`, just returns a pointer to the input tokens - `torch.nn.Embedding` module of the model without doing anything. - pad_to_multiple_of (`int`, *optional*): - If set will pad the embedding matrix to a multiple of the provided value. If `new_num_tokens` is set to - `None` will just pad the embedding to a multiple of `pad_to_multiple_of`. - - This is especially useful to enable the use of Tensor Cores on NVIDIA hardware with compute capability - `>= 7.5` (Volta), or on TPUs which benefit from having sequence lengths be a multiple of 128. For more - details about this, or help on choosing the correct value for resizing, refer to this guide: - https://docs.nvidia.com/deeplearning/performance/dl-performance-matrix-multiplication/index.html#requirements-tc - mean_resizing (`bool`): - Whether to initialize the added embeddings from a multivariate normal distribution that has old embeddings' mean and - covariance or to initialize them with a normal distribution that has a mean of zero and std equals `config.initializer_range`. - - Setting `mean_resizing` to `True` is useful when increasing the size of the embeddings of causal language models, - where the generated tokens' probabilities will not be affected by the added embeddings because initializing the new embeddings with the - old embeddings' mean will reduce the kl-divergence between the next token probability before and after adding the new embeddings. - Refer to this article for more information: https://nlp.stanford.edu/~johnhew/vocab-expansion.html - - - Return: - `torch.nn.Embedding`: Pointer to the resized Embedding Module or the old Embedding Module if - `new_num_tokens` is `None` - """ - - if pad_to_multiple_of is not None: - if not isinstance(pad_to_multiple_of, int): - raise ValueError( - f"Asking to pad the embedding matrix to a multiple of `{pad_to_multiple_of}`, which is not and integer. Please make sure to pass an integer" - ) - if new_num_tokens is None: - new_num_tokens = old_embeddings.weight.shape[0] - new_num_tokens = ((new_num_tokens + pad_to_multiple_of - 1) // pad_to_multiple_of) * pad_to_multiple_of - else: - logger.info( - "You are resizing the embedding layer without providing a `pad_to_multiple_of` parameter. This means that the new embedding" - f" dimension will be {new_num_tokens}. This might induce some performance reduction as *Tensor Cores* will not be available." - " For more details about this, or help on choosing the correct value for resizing, refer to this guide:" - " https://docs.nvidia.com/deeplearning/performance/dl-performance-matrix-multiplication/index.html#requirements-tc" - ) - - if new_num_tokens is None: - return old_embeddings - - is_quantized = hasattr(self, "hf_quantizer") and self.hf_quantizer is not None - if is_deepspeed_zero3_enabled() and not is_quantized: - import deepspeed - - with deepspeed.zero.GatheredParameters(old_embeddings.weight, modifier_rank=None): - old_num_tokens, old_embedding_dim = old_embeddings.weight.size() - else: - old_num_tokens, old_embedding_dim = old_embeddings.weight.size() - - if old_num_tokens == new_num_tokens and not is_deepspeed_zero3_enabled(): - return old_embeddings - - if not isinstance(old_embeddings, nn.Embedding): - raise TypeError( - f"Old embeddings are of type {type(old_embeddings)}, which is not an instance of {nn.Embedding}. You" - " should either use a different resize function or make sure that `old_embeddings` are an instance of" - f" {nn.Embedding}." - ) - - # Build new embeddings - - # When using DeepSpeed ZeRO-3, we shouldn't create new embeddings with DeepSpeed init - # because the shape of the new embedding layer is used across various modeling files - # as well as to update config vocab size. Shape will be 0 when using DeepSpeed init leading - # to errors when training. - new_embeddings = nn.Embedding( - new_num_tokens, - old_embedding_dim, - device=old_embeddings.weight.device, - dtype=old_embeddings.weight.dtype, - ) - - if new_num_tokens > old_num_tokens and not mean_resizing: - # initialize new embeddings (in particular added tokens) with a mean of 0 and std equals `config.initializer_range`. - self._init_weights(new_embeddings) - - elif new_num_tokens > old_num_tokens and mean_resizing: - # initialize new embeddings (in particular added tokens). The new embeddings will be initialized - # from a multivariate normal distribution that has old embeddings' mean and covariance. - # as described in this article: https://nlp.stanford.edu/~johnhew/vocab-expansion.html - logger.warning_once( - "The new embeddings will be initialized from a multivariate normal distribution that has old embeddings' mean and covariance. " - "As described in this article: https://nlp.stanford.edu/~johnhew/vocab-expansion.html. " - "To disable this, use `mean_resizing=False`" - ) - - added_num_tokens = new_num_tokens - old_num_tokens - if is_deepspeed_zero3_enabled() and not is_quantized: - import deepspeed - - with deepspeed.zero.GatheredParameters([old_embeddings.weight], modifier_rank=None): - self._init_added_embeddings_weights_with_mean( - old_embeddings, new_embeddings, old_embedding_dim, old_num_tokens, added_num_tokens - ) - else: - self._init_added_embeddings_weights_with_mean( - old_embeddings, new_embeddings, old_embedding_dim, old_num_tokens, added_num_tokens - ) - - # Copy token embeddings from the previous weights - - # numbers of tokens to copy - n = min(old_num_tokens, new_num_tokens) - - if is_deepspeed_zero3_enabled() and not is_quantized: - import deepspeed - - params = [old_embeddings.weight, new_embeddings.weight] - with deepspeed.zero.GatheredParameters(params, modifier_rank=0): - new_embeddings.weight.data[:n, :] = old_embeddings.weight.data[:n, :] - else: - new_embeddings.weight.data[:n, :] = old_embeddings.weight.data[:n, :] - - # Replace weights in old_embeddings and return to maintain the same embedding type. - # This ensures correct functionality when a Custom Embedding class is passed as input. - # The input and output embedding types remain consistent. (c.f. https://github.com/huggingface/transformers/pull/31979) - if is_deepspeed_zero3_enabled() and not is_quantized: - import deepspeed - - params = [old_embeddings.weight, new_embeddings.weight] - with deepspeed.zero.GatheredParameters(params, modifier_rank=0): - old_embeddings.weight = new_embeddings.weight - old_embeddings.num_embeddings = new_embeddings.weight.data.shape[0] - - # If the new number of tokens is smaller than the original `padding_idx`, the `padding_idx` - # will be set to `None` in the resized embeddings. - if old_embeddings.padding_idx is not None and (new_num_tokens - 1) < old_embeddings.padding_idx: - old_embeddings.padding_idx = None - else: - old_embeddings.weight.data = new_embeddings.weight.data - old_embeddings.num_embeddings = new_embeddings.weight.data.shape[0] - if old_embeddings.padding_idx is not None and (new_num_tokens - 1) < old_embeddings.padding_idx: - old_embeddings.padding_idx = None - - return old_embeddings - - def _get_resized_lm_head( - self, - old_lm_head: nn.Linear, - new_num_tokens: Optional[int] = None, - transposed: Optional[bool] = False, - mean_resizing: bool = True, - ) -> nn.Linear: - """ - Build a resized Linear Module from a provided old Linear Module. Increasing the size will add newly initialized - vectors at the end. Reducing the size will remove vectors from the end - - Args: - old_lm_head (`torch.nn.Linear`): - Old lm head liner layer to be resized. - new_num_tokens (`int`, *optional*): - New number of tokens in the linear matrix. - - Increasing the size will add newly initialized vectors at the end. Reducing the size will remove - vectors from the end. If not provided or `None`, just returns a pointer to the input tokens - `torch.nn.Linear` module of the model without doing anything. transposed (`bool`, *optional*, defaults - to `False`): Whether `old_lm_head` is transposed or not. If True `old_lm_head.size()` is `lm_head_dim, - vocab_size` else `vocab_size, lm_head_dim`. - mean_resizing (`bool`): - Whether to initialize the added embeddings from a multivariate normal distribution that has old embeddings' mean and - covariance or to initialize them with a normal distribution that has a mean of zero and std equals `config.initializer_range`. - - Setting `mean_resizing` to `True` is useful when increasing the size of the embeddings of causal language models, - where the generated tokens' probabilities will not be affected by the added embeddings because initializing the new embeddings with the - old embeddings' mean will reduce the kl-divergence between the next token probability before and after adding the new embeddings. - Refer to this article for more information: https://nlp.stanford.edu/~johnhew/vocab-expansion.html - - Return: - `torch.nn.Linear`: Pointer to the resized Linear Module or the old Linear Module if `new_num_tokens` is - `None` - """ - if new_num_tokens is None: - return old_lm_head - - is_quantized = hasattr(self, "hf_quantizer") and self.hf_quantizer is not None - if is_deepspeed_zero3_enabled() and not is_quantized: - import deepspeed - - with deepspeed.zero.GatheredParameters(old_lm_head.weight, modifier_rank=None): - old_num_tokens, old_lm_head_dim = ( - old_lm_head.weight.size() if not transposed else old_lm_head.weight.t().size() - ) - else: - old_num_tokens, old_lm_head_dim = ( - old_lm_head.weight.size() if not transposed else old_lm_head.weight.t().size() - ) - - if old_num_tokens == new_num_tokens and not is_deepspeed_zero3_enabled(): - return old_lm_head - - if not isinstance(old_lm_head, nn.Linear): - raise TypeError( - f"Old language model head is of type {type(old_lm_head)}, which is not an instance of {nn.Linear}. You" - " should either use a different resize function or make sure that `old_lm_head` are an instance of" - f" {nn.Linear}." - ) - - # Build new lm head - new_lm_head_shape = (old_lm_head_dim, new_num_tokens) if not transposed else (new_num_tokens, old_lm_head_dim) - has_new_lm_head_bias = old_lm_head.bias is not None - - # When using DeepSpeed ZeRO-3, we shouldn't create new embeddings with DeepSpeed init - # because the shape of the new embedding layer is used across various modeling files - # as well as to update config vocab size. Shape will be 0 when using DeepSpeed init leading - # to errors when training. - new_lm_head = nn.Linear( - *new_lm_head_shape, - bias=has_new_lm_head_bias, - device=old_lm_head.weight.device, - dtype=old_lm_head.weight.dtype, - ) - - if new_num_tokens > old_num_tokens and not mean_resizing: - # initialize new embeddings (in particular added tokens) with a mean of 0 and std equals `config.initializer_range`. - self._init_weights(new_lm_head) - - elif new_num_tokens > old_num_tokens and mean_resizing: - # initialize new lm_head weights (in particular added tokens). The new lm_head weights - # will be initialized from a multivariate normal distribution that has old embeddings' mean and covariance. - # as described in this article: https://nlp.stanford.edu/~johnhew/vocab-expansion.html - logger.warning_once( - "The new lm_head weights will be initialized from a multivariate normal distribution that has old embeddings' mean and covariance. " - "As described in this article: https://nlp.stanford.edu/~johnhew/vocab-expansion.html. " - "To disable this, use `mean_resizing=False`" - ) - - added_num_tokens = new_num_tokens - old_num_tokens - if is_deepspeed_zero3_enabled() and not is_quantized: - import deepspeed - - params = [old_lm_head.weight] - if has_new_lm_head_bias: - params += [old_lm_head.bias] - with deepspeed.zero.GatheredParameters(params, modifier_rank=None): - self._init_added_lm_head_weights_with_mean( - old_lm_head, new_lm_head, old_lm_head_dim, old_num_tokens, added_num_tokens, transposed - ) - if has_new_lm_head_bias: - self._init_added_lm_head_bias_with_mean(old_lm_head, new_lm_head, added_num_tokens) - - else: - self._init_added_lm_head_weights_with_mean( - old_lm_head, new_lm_head, old_lm_head_dim, old_num_tokens, added_num_tokens, transposed - ) - if has_new_lm_head_bias: - self._init_added_lm_head_bias_with_mean(old_lm_head, new_lm_head, added_num_tokens) - - num_tokens_to_copy = min(old_num_tokens, new_num_tokens) - - if is_deepspeed_zero3_enabled() and not is_quantized: - import deepspeed - - params = [old_lm_head.weight, old_lm_head.bias, new_lm_head.weight, new_lm_head.bias] - with deepspeed.zero.GatheredParameters(params, modifier_rank=0): - self._copy_lm_head_original_to_resized( - new_lm_head, old_lm_head, num_tokens_to_copy, transposed, has_new_lm_head_bias - ) - else: - self._copy_lm_head_original_to_resized( - new_lm_head, old_lm_head, num_tokens_to_copy, transposed, has_new_lm_head_bias - ) - - return new_lm_head - - def _init_added_embeddings_weights_with_mean( - self, old_embeddings, new_embeddings, old_embedding_dim, old_num_tokens, added_num_tokens - ): - old_embeddings_weight = old_embeddings.weight.data.to(torch.float32) - mean_embeddings = torch.mean(old_embeddings_weight, axis=0) - old_centered_embeddings = old_embeddings_weight - mean_embeddings - covariance = old_centered_embeddings.T @ old_centered_embeddings / old_num_tokens - - # Check if the covariance is positive definite. - eigenvalues = torch.linalg.eigvals(covariance) - is_covariance_psd = bool( - (covariance == covariance.T).all() and not torch.is_complex(eigenvalues) and (eigenvalues > 0).all() - ) - if is_covariance_psd: - # If covariances is positive definite, a distribution can be created. and we can sample new weights from it. - distribution = torch.distributions.multivariate_normal.MultivariateNormal( - mean_embeddings, covariance_matrix=1e-9 * covariance - ) - new_embeddings.weight.data[-1 * added_num_tokens :, :] = distribution.sample( - sample_shape=(added_num_tokens,) - ).to(old_embeddings.weight.dtype) - else: - # Otherwise, just initialize with the mean. because distribtion will not be created. - new_embeddings.weight.data[-1 * added_num_tokens :, :] = ( - mean_embeddings[None, :].repeat(added_num_tokens, 1).to(old_embeddings.weight.dtype) - ) - - def _init_added_lm_head_weights_with_mean( - self, - old_lm_head, - new_lm_head, - old_lm_head_dim, - old_num_tokens, - added_num_tokens, - transposed=False, - ): - if transposed: - # Transpose to the desired shape for the function. - new_lm_head.weight.data = new_lm_head.weight.data.T - old_lm_head.weight.data = old_lm_head.weight.data.T - - # The same initilization logic as Embeddings. - self._init_added_embeddings_weights_with_mean( - old_lm_head, new_lm_head, old_lm_head_dim, old_num_tokens, added_num_tokens - ) - - if transposed: - # Transpose again to the correct shape. - new_lm_head.weight.data = new_lm_head.weight.data.T - old_lm_head.weight.data = old_lm_head.weight.data.T - - def _init_added_lm_head_bias_with_mean(self, old_lm_head, new_lm_head, added_num_tokens): - bias_mean = torch.mean(old_lm_head.bias.data, axis=0, dtype=torch.float32) - bias_std = torch.std(old_lm_head.bias.data, axis=0).to(torch.float32) - new_lm_head.bias.data[-1 * added_num_tokens :].normal_(mean=bias_mean, std=1e-9 * bias_std) - - def _copy_lm_head_original_to_resized( - self, new_lm_head, old_lm_head, num_tokens_to_copy, transposed, has_new_lm_head_bias - ): - # Copy old lm head weights to new lm head - if not transposed: - new_lm_head.weight.data[:num_tokens_to_copy, :] = old_lm_head.weight.data[:num_tokens_to_copy, :] - else: - new_lm_head.weight.data[:, :num_tokens_to_copy] = old_lm_head.weight.data[:, :num_tokens_to_copy] - - # Copy bias weights to new lm head - if has_new_lm_head_bias: - new_lm_head.bias.data[:num_tokens_to_copy] = old_lm_head.bias.data[:num_tokens_to_copy] - - def resize_position_embeddings(self, new_num_position_embeddings: int): - raise NotImplementedError( - f"`resize_position_embeddings` is not implemented for {self.__class__}`. To implement it, you should " - f"overwrite this method in the class {self.__class__} in `modeling_{self.__class__.__module__}.py`" - ) - - def get_position_embeddings(self) -> Union[nn.Embedding, Tuple[nn.Embedding]]: - raise NotImplementedError( - f"`get_position_embeddings` is not implemented for {self.__class__}`. To implement it, you should " - f"overwrite this method in the class {self.__class__} in `modeling_{self.__class__.__module__}.py`" - ) - - def init_weights(self): - """ - If needed prunes and maybe initializes weights. If using a custom `PreTrainedModel`, you need to implement any - initialization logic in `_init_weights`. - """ - # Prune heads if needed - if self.config.pruned_heads: - self.prune_heads(self.config.pruned_heads) - - if _init_weights: - # Initialize weights - self.apply(self._initialize_weights) - - # Tie weights should be skipped when not initializing all weights - # since from_pretrained(...) calls tie weights anyways - self.tie_weights() - - def prune_heads(self, heads_to_prune: Dict[int, List[int]]): - """ - Prunes heads of the base model. - - Arguments: - heads_to_prune (`Dict[int, List[int]]`): - Dictionary with keys being selected layer indices (`int`) and associated values being the list of heads - to prune in said layer (list of `int`). For instance {1: [0, 2], 2: [2, 3]} will prune heads 0 and 2 on - layer 1 and heads 2 and 3 on layer 2. - """ - # save new sets of pruned heads as union of previously stored pruned heads and newly pruned heads - for layer, heads in heads_to_prune.items(): - union_heads = set(self.config.pruned_heads.get(layer, [])) | set(heads) - self.config.pruned_heads[layer] = list(union_heads) # Unfortunately we have to store it as list for JSON - - self.base_model._prune_heads(heads_to_prune) - - def gradient_checkpointing_enable(self, gradient_checkpointing_kwargs=None): - """ - Activates gradient checkpointing for the current model. - - Note that in other frameworks this feature can be referred to as "activation checkpointing" or "checkpoint - activations". - - We pass the `__call__` method of the modules instead of `forward` because `__call__` attaches all the hooks of - the module. https://discuss.pytorch.org/t/any-different-between-model-input-and-model-forward-input/3690/2 - - Args: - gradient_checkpointing_kwargs (dict, *optional*): - Additional keyword arguments passed along to the `torch.utils.checkpoint.checkpoint` function. - """ - if not self.supports_gradient_checkpointing: - raise ValueError(f"{self.__class__.__name__} does not support gradient checkpointing.") - - if gradient_checkpointing_kwargs is None: - gradient_checkpointing_kwargs = {"use_reentrant": True} - - gradient_checkpointing_func = functools.partial(checkpoint, **gradient_checkpointing_kwargs) - - # For old GC format (transformers < 4.35.0) for models that live on the Hub - # we will fall back to the overwritten `_set_gradient_checkpointing` method - _is_using_old_format = "value" in inspect.signature(self._set_gradient_checkpointing).parameters - - if not _is_using_old_format: - self._set_gradient_checkpointing(enable=True, gradient_checkpointing_func=gradient_checkpointing_func) - else: - self.apply(partial(self._set_gradient_checkpointing, value=True)) - logger.warning( - "You are using an old version of the checkpointing format that is deprecated (We will also silently ignore `gradient_checkpointing_kwargs` in case you passed it)." - "Please update to the new format on your modeling file. To use the new format, you need to completely remove the definition of the method `_set_gradient_checkpointing` in your model." - ) - - if getattr(self, "_hf_peft_config_loaded", False): - # When using PEFT + gradient checkpointing + Trainer we need to make sure the input has requires_grad=True - # we do it also on PEFT: https://github.com/huggingface/peft/blob/85013987aa82aa1af3da1236b6902556ce3e483e/src/peft/peft_model.py#L334 - # When training with PEFT, only LoRA layers will have requires grad set to True, but the output of frozen layers need to propagate - # the gradients to make sure the gradient flows. - self.enable_input_require_grads() - - def _set_gradient_checkpointing(self, enable: bool = True, gradient_checkpointing_func: Callable = checkpoint): - is_gradient_checkpointing_set = False - - # Apply it on the top-level module in case the top-level modules supports it - # for example, LongT5Stack inherits from `PreTrainedModel`. - if hasattr(self, "gradient_checkpointing"): - self._gradient_checkpointing_func = gradient_checkpointing_func - self.gradient_checkpointing = enable - is_gradient_checkpointing_set = True - - for module in self.modules(): - if hasattr(module, "gradient_checkpointing"): - module._gradient_checkpointing_func = gradient_checkpointing_func - module.gradient_checkpointing = enable - is_gradient_checkpointing_set = True - - if not is_gradient_checkpointing_set: - raise ValueError( - f"{self.__class__.__name__} is not compatible with gradient checkpointing. Make sure all the architecture support it by setting a boolean attribute" - " `gradient_checkpointing` to modules of the model that uses checkpointing." - ) - - def gradient_checkpointing_disable(self): - """ - Deactivates gradient checkpointing for the current model. - - Note that in other frameworks this feature can be referred to as "activation checkpointing" or "checkpoint - activations". - """ - if self.supports_gradient_checkpointing: - # For old GC format (transformers < 4.35.0) for models that live on the Hub - # we will fall back to the overwritten `_set_gradient_checkpointing` methid - _is_using_old_format = "value" in inspect.signature(self._set_gradient_checkpointing).parameters - if not _is_using_old_format: - self._set_gradient_checkpointing(enable=False) - else: - logger.warning( - "You are using an old version of the checkpointing format that is deprecated (We will also silently ignore `gradient_checkpointing_kwargs` in case you passed it)." - "Please update to the new format on your modeling file. To use the new format, you need to completely remove the definition of the method `_set_gradient_checkpointing` in your model." - ) - self.apply(partial(self._set_gradient_checkpointing, value=False)) - - if getattr(self, "_hf_peft_config_loaded", False): - self.disable_input_require_grads() - - @property - def is_gradient_checkpointing(self) -> bool: - """ - Whether gradient checkpointing is activated for this model or not. - - Note that in other frameworks this feature can be referred to as "activation checkpointing" or "checkpoint - activations". - """ - return any(hasattr(m, "gradient_checkpointing") and m.gradient_checkpointing for m in self.modules()) - - def save_pretrained( - self, - save_directory: Union[str, os.PathLike], - is_main_process: bool = True, - state_dict: Optional[dict] = None, - save_function: Callable = torch.save, - push_to_hub: bool = False, - max_shard_size: Union[int, str] = "5GB", - safe_serialization: bool = True, - variant: Optional[str] = None, - token: Optional[Union[str, bool]] = None, - save_peft_format: bool = True, - **kwargs, - ): - """ - Save a model and its configuration file to a directory, so that it can be re-loaded using the - [`~PreTrainedModel.from_pretrained`] class method. - - Arguments: - save_directory (`str` or `os.PathLike`): - Directory to which to save. Will be created if it doesn't exist. - is_main_process (`bool`, *optional*, defaults to `True`): - Whether the process calling this is the main process or not. Useful when in distributed training like - TPUs and need to call this function on all processes. In this case, set `is_main_process=True` only on - the main process to avoid race conditions. - state_dict (nested dictionary of `torch.Tensor`): - The state dictionary of the model to save. Will default to `self.state_dict()`, but can be used to only - save parts of the model or if special precautions need to be taken when recovering the state dictionary - of a model (like when using model parallelism). - save_function (`Callable`): - The function to use to save the state dictionary. Useful on distributed training like TPUs when one - need to replace `torch.save` by another method. - push_to_hub (`bool`, *optional*, defaults to `False`): - Whether or not to push your model to the Hugging Face model hub after saving it. You can specify the - repository you want to push to with `repo_id` (will default to the name of `save_directory` in your - namespace). - max_shard_size (`int` or `str`, *optional*, defaults to `"5GB"`): - The maximum size for a checkpoint before being sharded. Checkpoints shard will then be each of size - lower than this size. If expressed as a string, needs to be digits followed by a unit (like `"5MB"`). - We default it to 5GB in order for models to be able to run easily on free-tier google colab instances - without CPU OOM issues. - - - - If a single weight of the model is bigger than `max_shard_size`, it will be in its own checkpoint shard - which will be bigger than `max_shard_size`. - - - - safe_serialization (`bool`, *optional*, defaults to `True`): - Whether to save the model using `safetensors` or the traditional PyTorch way (that uses `pickle`). - variant (`str`, *optional*): - If specified, weights are saved in the format pytorch_model..bin. - token (`str` or `bool`, *optional*): - The token to use as HTTP bearer authorization for remote files. If `True`, or not specified, will use - the token generated when running `huggingface-cli login` (stored in `~/.huggingface`). - save_peft_format (`bool`, *optional*, defaults to `True`): - For backward compatibility with PEFT library, in case adapter weights are attached to the model, all - keys of the state dict of adapters needs to be pre-pended with `base_model.model`. Advanced users can - disable this behaviours by setting `save_peft_format` to `False`. - kwargs (`Dict[str, Any]`, *optional*): - Additional key word arguments passed along to the [`~utils.PushToHubMixin.push_to_hub`] method. - """ - use_auth_token = kwargs.pop("use_auth_token", None) - ignore_metadata_errors = kwargs.pop("ignore_metadata_errors", False) - - if use_auth_token is not None: - warnings.warn( - "The `use_auth_token` argument is deprecated and will be removed in v5 of Transformers. Please use `token` instead.", - FutureWarning, - ) - if token is not None: - raise ValueError( - "`token` and `use_auth_token` are both specified. Please set only the argument `token`." - ) - token = use_auth_token - - if token is not None: - kwargs["token"] = token - - _hf_peft_config_loaded = getattr(self, "_hf_peft_config_loaded", False) - - hf_quantizer = getattr(self, "hf_quantizer", None) - quantization_serializable = ( - hf_quantizer is not None - and isinstance(hf_quantizer, HfQuantizer) - and hf_quantizer.is_serializable(safe_serialization=safe_serialization) - ) - - if hf_quantizer is not None and not _hf_peft_config_loaded and not quantization_serializable: - raise ValueError( - f"The model is quantized with {hf_quantizer.quantization_config.quant_method} and is not serializable - check out the warnings from" - " the logger on the traceback to understand the reason why the quantized model is not serializable." - ) - - if "save_config" in kwargs: - warnings.warn( - "`save_config` is deprecated and will be removed in v5 of Transformers. Use `is_main_process` instead." - ) - is_main_process = kwargs.pop("save_config") - if safe_serialization and not is_safetensors_available(): - raise ImportError("`safe_serialization` requires the `safetensors library: `pip install safetensors`.") - - if os.path.isfile(save_directory): - logger.error(f"Provided path ({save_directory}) should be a directory, not a file") - return - - os.makedirs(save_directory, exist_ok=True) - - if push_to_hub: - commit_message = kwargs.pop("commit_message", None) - repo_id = kwargs.pop("repo_id", save_directory.split(os.path.sep)[-1]) - repo_id = self._create_repo(repo_id, **kwargs) - files_timestamps = self._get_files_timestamps(save_directory) - - # Only save the model itself if we are using distributed training - model_to_save = unwrap_model(self) - - # save the string version of dtype to the config, e.g. convert torch.float32 => "float32" - # we currently don't use this setting automatically, but may start to use with v5 - dtype = get_parameter_dtype(model_to_save) - model_to_save.config.torch_dtype = str(dtype).split(".")[1] - - # Attach architecture to the config - model_to_save.config.architectures = [model_to_save.__class__.__name__] - - # Unset attn implementation so it can be set to another one when loading back - model_to_save.config._attn_implementation_autoset = False - - # If we have a custom model, we copy the file defining it in the folder and set the attributes so it can be - # loaded from the Hub. - if self._auto_class is not None: - custom_object_save(self, save_directory, config=self.config) - - # Save the config - if is_main_process: - if not _hf_peft_config_loaded: - # If the model config has set attributes that should be in the generation config, move them there. - misplaced_generation_parameters = model_to_save.config._get_non_default_generation_parameters() - if self.can_generate() and len(misplaced_generation_parameters) > 0: - warnings.warn( - "Moving the following attributes in the config to the generation config: " - f"{misplaced_generation_parameters}. You are seeing this warning because you've set " - "generation parameters in the model config, as opposed to in the generation config.", - UserWarning, - ) - for param_name, param_value in misplaced_generation_parameters.items(): - setattr(model_to_save.generation_config, param_name, param_value) - setattr(model_to_save.config, param_name, None) - - model_to_save.config.save_pretrained(save_directory) - if self.can_generate(): - model_to_save.generation_config.save_pretrained(save_directory) - - if _hf_peft_config_loaded: - logger.info( - "Detected adapters on the model, saving the model in the PEFT format, only adapter weights will be saved." - ) - state_dict = model_to_save.get_adapter_state_dict() - - if save_peft_format: - logger.info( - "To match the expected format of the PEFT library, all keys of the state dict of adapters will be pre-pended with `base_model.model`." - ) - peft_state_dict = {} - for key, value in state_dict.items(): - peft_state_dict[f"base_model.model.{key}"] = value - state_dict = peft_state_dict - - active_adapter = self.active_adapters() - - if len(active_adapter) > 1: - raise ValueError( - "Multiple active adapters detected, saving multiple active adapters is not supported yet. You can save adapters separately one by one " - "by iteratively calling `model.set_adapter(adapter_name)` then `model.save_pretrained(...)`" - ) - active_adapter = active_adapter[0] - - current_peft_config = self.peft_config[active_adapter] - current_peft_config.save_pretrained(save_directory) - - # for offloaded modules - module_map = {} - - # Save the model - if state_dict is None: - # if any model parameters are offloaded, make module map - if ( - hasattr(self, "hf_device_map") - and len(set(self.hf_device_map.values())) > 1 - and ("cpu" in self.hf_device_map.values() or "disk" in self.hf_device_map.values()) - ): - warnings.warn( - "Attempting to save a model with offloaded modules. Ensure that unallocated cpu memory exceeds the `shard_size` (5GB default)" - ) - for name, module in model_to_save.named_modules(): - if name == "": - continue - module_state_dict = module.state_dict() - - for key in module_state_dict: - module_map[name + f".{key}"] = module - state_dict = model_to_save.state_dict() - - # Translate state_dict from smp to hf if saving with smp >= 1.10 - if IS_SAGEMAKER_MP_POST_1_10: - for smp_to_hf, _ in smp.state.module_manager.translate_functions: - state_dict = smp_to_hf(state_dict) - - # Handle the case where some state_dict keys shouldn't be saved - if self._keys_to_ignore_on_save is not None: - for ignore_key in self._keys_to_ignore_on_save: - if ignore_key in state_dict.keys(): - del state_dict[ignore_key] - if safe_serialization: - # Safetensors does not allow tensor aliasing. - # We're going to remove aliases before saving - ptrs = collections.defaultdict(list) - for name, tensor in state_dict.items(): - # Sometimes in the state_dict we have non-tensor objects. - # e.g. in bitsandbytes we have some `str` objects in the state_dict - if isinstance(tensor, torch.Tensor): - ptrs[id_tensor_storage(tensor)].append(name) - else: - # In the non-tensor case, fall back to the pointer of the object itself - ptrs[id(tensor)].append(name) - - # These are all the pointers of shared tensors - if hasattr(self, "hf_device_map"): - # if the model has offloaded parameters, we must check using find_tied_parameters() - tied_params = find_tied_parameters(self) - if tied_params: - tied_names = tied_params[0] - shared_ptrs = { - ptr: names for ptr, names in ptrs.items() if any(name in tied_names for name in names) - } - else: - shared_ptrs = {} - else: - shared_ptrs = {ptr: names for ptr, names in ptrs.items() if len(names) > 1} - - # Recursively descend to find tied weight keys - _tied_weights_keys = _get_tied_weight_keys(self) - error_names = [] - to_delete_names = set() - for names in shared_ptrs.values(): - # Removing the keys which are declared as known duplicates on - # load. This allows to make sure the name which is kept is consistent. - if _tied_weights_keys is not None: - found = 0 - for name in sorted(names): - matches_pattern = any(re.search(pat, name) for pat in _tied_weights_keys) - if matches_pattern and name in state_dict: - found += 1 - if found < len(names): - to_delete_names.add(name) - # We are entering a place where the weights and the transformers configuration do NOT match. - shared_names, disjoint_names = _find_disjoint(shared_ptrs.values(), state_dict) - # Those are actually tensor sharing but disjoint from each other, we can safely clone them - # Reloaded won't have the same property, but it shouldn't matter in any meaningful way. - for name in disjoint_names: - state_dict[name] = state_dict[name].clone() - - # When not all duplicates have been cleaned, still remove those keys, but put a clear warning. - # If the link between tensors was done at runtime then `from_pretrained` will not get - # the key back leading to random tensor. A proper warning will be shown - # during reload (if applicable), but since the file is not necessarily compatible with - # the config, better show a proper warning. - shared_names, identical_names = _find_identical(shared_names, state_dict) - # delete tensors that have identical storage - for inames in identical_names: - known = inames.intersection(to_delete_names) - for name in known: - del state_dict[name] - unknown = inames.difference(to_delete_names) - if len(unknown) > 1: - error_names.append(unknown) - - if shared_names: - error_names.append(set(shared_names)) - - if len(error_names) > 0: - raise RuntimeError( - f"The weights trying to be saved contained shared tensors {error_names} that are mismatching the transformers base configuration. Try saving using `safe_serialization=False` or remove this tensor sharing.", - ) - - # Shard the model if it is too big. - if not _hf_peft_config_loaded: - weights_name = SAFE_WEIGHTS_NAME if safe_serialization else WEIGHTS_NAME - weights_name = _add_variant(weights_name, variant) - else: - weights_name = ADAPTER_SAFE_WEIGHTS_NAME if safe_serialization else ADAPTER_WEIGHTS_NAME - - filename_pattern = weights_name.replace(".bin", "{suffix}.bin").replace(".safetensors", "{suffix}.safetensors") - state_dict_split = split_torch_state_dict_into_shards( - state_dict, filename_pattern=filename_pattern, max_shard_size=max_shard_size - ) - # Save index if sharded - index = None - if state_dict_split.is_sharded: - index = { - "metadata": state_dict_split.metadata, - "weight_map": state_dict_split.tensor_to_filename, - } - - # Clean the folder from a previous save - for filename in os.listdir(save_directory): - full_filename = os.path.join(save_directory, filename) - # If we have a shard file that is not going to be replaced, we delete it, but only from the main process - # in distributed settings to avoid race conditions. - weights_no_suffix = weights_name.replace(".bin", "").replace(".safetensors", "") - - # make sure that file to be deleted matches format of sharded file, e.g. pytorch_model-00001-of-00005 - filename_no_suffix = filename.replace(".bin", "").replace(".safetensors", "") - reg = re.compile(r"(.*?)-\d{5}-of-\d{5}") - - if ( - filename.startswith(weights_no_suffix) - and os.path.isfile(full_filename) - and filename not in state_dict_split.filename_to_tensors.keys() - and is_main_process - and reg.fullmatch(filename_no_suffix) is not None - ): - os.remove(full_filename) - # Save the model - filename_to_tensors = state_dict_split.filename_to_tensors.items() - if module_map: - filename_to_tensors = logging.tqdm(filename_to_tensors, desc="Saving checkpoint shards") - for shard_file, tensors in filename_to_tensors: - shard = {tensor: state_dict[tensor].contiguous() for tensor in tensors} - # remake shard with onloaded parameters if necessary - if module_map: - if accelerate_version < version.parse("0.31"): - raise ImportError( - f"You need accelerate version to be greater or equal than 0.31 to save models with offloaded parameters. Detected version {accelerate_version}. " - f"Please upgrade accelerate with `pip install -U accelerate`" - ) - # init state_dict for this shard - shard_state_dict = {name: "" for name in shard} - for module_name in shard: - module = module_map[module_name] - # update state dict with onloaded parameters - shard_state_dict = get_state_dict_from_offload(module, module_name, shard_state_dict) - - # assign shard to be the completed state dict - shard = shard_state_dict - del shard_state_dict - gc.collect() - - if safe_serialization: - # At some point we will need to deal better with save_function (used for TPU and other distributed - # joyfulness), but for now this enough. - safe_save_file(shard, os.path.join(save_directory, shard_file), metadata={"format": "pt"}) - else: - save_function(shard, os.path.join(save_directory, shard_file)) - - if index is None: - path_to_weights = os.path.join(save_directory, weights_name) - logger.info(f"Model weights saved in {path_to_weights}") - else: - save_index_file = SAFE_WEIGHTS_INDEX_NAME if safe_serialization else WEIGHTS_INDEX_NAME - save_index_file = os.path.join(save_directory, _add_variant(save_index_file, variant)) - # Save the index as well - with open(save_index_file, "w", encoding="utf-8") as f: - content = json.dumps(index, indent=2, sort_keys=True) + "\n" - f.write(content) - logger.info( - f"The model is bigger than the maximum size per checkpoint ({max_shard_size}) and is going to be " - f"split in {len(state_dict_split.filename_to_tensors)} checkpoint shards. You can find where each parameters has been saved in the " - f"index located at {save_index_file}." - ) - - if push_to_hub: - # Eventually create an empty model card - model_card = create_and_tag_model_card( - repo_id, self.model_tags, token=token, ignore_metadata_errors=ignore_metadata_errors - ) - - # Update model card if needed: - model_card.save(os.path.join(save_directory, "README.md")) - - self._upload_modified_files( - save_directory, - repo_id, - files_timestamps, - commit_message=commit_message, - token=token, - ) - - @wraps(PushToHubMixin.push_to_hub) - def push_to_hub(self, *args, **kwargs): - tags = self.model_tags if self.model_tags is not None else [] - - tags_kwargs = kwargs.get("tags", []) - if isinstance(tags_kwargs, str): - tags_kwargs = [tags_kwargs] - - for tag in tags_kwargs: - if tag not in tags: - tags.append(tag) - - if tags: - kwargs["tags"] = tags - return super().push_to_hub(*args, **kwargs) - - def get_memory_footprint(self, return_buffers=True): - r""" - Get the memory footprint of a model. This will return the memory footprint of the current model in bytes. - Useful to benchmark the memory footprint of the current model and design some tests. Solution inspired from the - PyTorch discussions: https://discuss.pytorch.org/t/gpu-memory-that-model-uses/56822/2 - - Arguments: - return_buffers (`bool`, *optional*, defaults to `True`): - Whether to return the size of the buffer tensors in the computation of the memory footprint. Buffers - are tensors that do not require gradients and not registered as parameters. E.g. mean and std in batch - norm layers. Please see: https://discuss.pytorch.org/t/what-pytorch-means-by-buffers/120266/2 - """ - mem = sum([param.nelement() * param.element_size() for param in self.parameters()]) - if return_buffers: - mem_bufs = sum([buf.nelement() * buf.element_size() for buf in self.buffers()]) - mem = mem + mem_bufs - return mem - - @wraps(torch.nn.Module.cuda) - def cuda(self, *args, **kwargs): - if getattr(self, "quantization_method", None) == QuantizationMethod.HQQ: - raise ValueError("`.cuda` is not supported for HQQ-quantized models.") - # Checks if the model has been loaded in 4-bit or 8-bit with BNB - if getattr(self, "quantization_method", None) == QuantizationMethod.BITS_AND_BYTES: - if getattr(self, "is_loaded_in_8bit", False): - raise ValueError( - "Calling `cuda()` is not supported for `8-bit` quantized models. " - " Please use the model as it is, since the model has already been set to the correct devices." - ) - elif version.parse(importlib.metadata.version("bitsandbytes")) < version.parse("0.43.2"): - raise ValueError( - "Calling `cuda()` is not supported for `4-bit` quantized models with the installed version of bitsandbytes. " - f"The current device is `{self.device}`. If you intended to move the model, please install bitsandbytes >= 0.43.2." - ) - else: - return super().cuda(*args, **kwargs) - - @wraps(torch.nn.Module.to) - def to(self, *args, **kwargs): - # For BNB/GPTQ models, we prevent users from casting the model to another dtype to restrict unwanted behaviours. - # the correct API should be to load the model with the desired dtype directly through `from_pretrained`. - dtype_present_in_args = "dtype" in kwargs - - if not dtype_present_in_args: - for arg in args: - if isinstance(arg, torch.dtype): - dtype_present_in_args = True - break - - if getattr(self, "quantization_method", None) == QuantizationMethod.HQQ: - raise ValueError("`.to` is not supported for HQQ-quantized models.") - # Checks if the model has been loaded in 4-bit or 8-bit with BNB - if getattr(self, "quantization_method", None) == QuantizationMethod.BITS_AND_BYTES: - if dtype_present_in_args: - raise ValueError( - "You cannot cast a bitsandbytes model in a new `dtype`. Make sure to load the model using `from_pretrained` using the" - " desired `dtype` by passing the correct `torch_dtype` argument." - ) - - if getattr(self, "is_loaded_in_8bit", False): - raise ValueError( - "`.to` is not supported for `8-bit` bitsandbytes models. Please use the model as it is, since the" - " model has already been set to the correct devices and casted to the correct `dtype`." - ) - elif version.parse(importlib.metadata.version("bitsandbytes")) < version.parse("0.43.2"): - raise ValueError( - "Calling `to()` is not supported for `4-bit` quantized models with the installed version of bitsandbytes. " - f"The current device is `{self.device}`. If you intended to move the model, please install bitsandbytes >= 0.43.2." - ) - elif getattr(self, "quantization_method", None) == QuantizationMethod.GPTQ: - if dtype_present_in_args: - raise ValueError( - "You cannot cast a GPTQ model in a new `dtype`. Make sure to load the model using `from_pretrained` using the desired" - " `dtype` by passing the correct `torch_dtype` argument." - ) - return super().to(*args, **kwargs) - - def half(self, *args): - # Checks if the model is quantized - if getattr(self, "is_quantized", False): - raise ValueError( - "`.half()` is not supported for quantized model. Please use the model as it is, since the" - " model has already been casted to the correct `dtype`." - ) - else: - return super().half(*args) - - def float(self, *args): - # Checks if the model is quantized - if getattr(self, "is_quantized", False): - raise ValueError( - "`.float()` is not supported for quantized model. Please use the model as it is, since the" - " model has already been casted to the correct `dtype`." - ) - else: - return super().float(*args) - - @classmethod - def from_pretrained( - cls, - pretrained_model_name_or_path: Optional[Union[str, os.PathLike]], - *model_args, - config: Optional[Union[PretrainedConfig, str, os.PathLike]] = None, - cache_dir: Optional[Union[str, os.PathLike]] = None, - ignore_mismatched_sizes: bool = False, - force_download: bool = False, - local_files_only: bool = False, - token: Optional[Union[str, bool]] = None, - revision: str = "main", - use_safetensors: bool = None, - weights_only: bool = True, - **kwargs, - ) -> "PreTrainedModel": - r""" - Instantiate a pretrained pytorch model from a pre-trained model configuration. - - The model is set in evaluation mode by default using `model.eval()` (Dropout modules are deactivated). To train - the model, you should first set it back in training mode with `model.train()`. - - The warning *Weights from XXX not initialized from pretrained model* means that the weights of XXX do not come - pretrained with the rest of the model. It is up to you to train those weights with a downstream fine-tuning - task. - - The warning *Weights from XXX not used in YYY* means that the layer XXX is not used by YYY, therefore those - weights are discarded. - - If model weights are the same precision as the base model (and is a supported model), weights will be lazily loaded - in using the `meta` device and brought into memory once an input is passed through that layer regardless of - `low_cpu_mem_usage`. - - Parameters: - pretrained_model_name_or_path (`str` or `os.PathLike`, *optional*): - Can be either: - - - A string, the *model id* of a pretrained model hosted inside a model repo on huggingface.co. - - A path to a *directory* containing model weights saved using - [`~PreTrainedModel.save_pretrained`], e.g., `./my_model_directory/`. - - A path or url to a *tensorflow index checkpoint file* (e.g, `./tf_model/model.ckpt.index`). In - this case, `from_tf` should be set to `True` and a configuration object should be provided as - `config` argument. This loading path is slower than converting the TensorFlow checkpoint in a - PyTorch model using the provided conversion scripts and loading the PyTorch model afterwards. - - A path or url to a model folder containing a *flax checkpoint file* in *.msgpack* format (e.g, - `./flax_model/` containing `flax_model.msgpack`). In this case, `from_flax` should be set to - `True`. - - `None` if you are both providing the configuration and state dictionary (resp. with keyword - arguments `config` and `state_dict`). - model_args (sequence of positional arguments, *optional*): - All remaining positional arguments will be passed to the underlying model's `__init__` method. - config (`Union[PretrainedConfig, str, os.PathLike]`, *optional*): - Can be either: - - - an instance of a class derived from [`PretrainedConfig`], - - a string or path valid as input to [`~PretrainedConfig.from_pretrained`]. - - Configuration for the model to use instead of an automatically loaded configuration. Configuration can - be automatically loaded when: - - - The model is a model provided by the library (loaded with the *model id* string of a pretrained - model). - - The model was saved using [`~PreTrainedModel.save_pretrained`] and is reloaded by supplying the - save directory. - - The model is loaded by supplying a local directory as `pretrained_model_name_or_path` and a - configuration JSON file named *config.json* is found in the directory. - state_dict (`Dict[str, torch.Tensor]`, *optional*): - A state dictionary to use instead of a state dictionary loaded from saved weights file. - - This option can be used if you want to create a model from a pretrained configuration but load your own - weights. In this case though, you should check if using [`~PreTrainedModel.save_pretrained`] and - [`~PreTrainedModel.from_pretrained`] is not a simpler option. - cache_dir (`Union[str, os.PathLike]`, *optional*): - Path to a directory in which a downloaded pretrained model configuration should be cached if the - standard cache should not be used. - from_tf (`bool`, *optional*, defaults to `False`): - Load the model weights from a TensorFlow checkpoint save file (see docstring of - `pretrained_model_name_or_path` argument). - from_flax (`bool`, *optional*, defaults to `False`): - Load the model weights from a Flax checkpoint save file (see docstring of - `pretrained_model_name_or_path` argument). - ignore_mismatched_sizes (`bool`, *optional*, defaults to `False`): - Whether or not to raise an error if some of the weights from the checkpoint do not have the same size - as the weights of the model (if for instance, you are instantiating a model with 10 labels from a - checkpoint with 3 labels). - force_download (`bool`, *optional*, defaults to `False`): - Whether or not to force the (re-)download of the model weights and configuration files, overriding the - cached versions if they exist. - resume_download: - Deprecated and ignored. All downloads are now resumed by default when possible. - Will be removed in v5 of Transformers. - proxies (`Dict[str, str]`, *optional*): - A dictionary of proxy servers to use by protocol or endpoint, e.g., `{'http': 'foo.bar:3128', - 'http://hostname': 'foo.bar:4012'}`. The proxies are used on each request. - output_loading_info(`bool`, *optional*, defaults to `False`): - Whether ot not to also return a dictionary containing missing keys, unexpected keys and error messages. - local_files_only(`bool`, *optional*, defaults to `False`): - Whether or not to only look at local files (i.e., do not try to download the model). - token (`str` or `bool`, *optional*): - The token to use as HTTP bearer authorization for remote files. If `True`, or not specified, will use - the token generated when running `huggingface-cli login` (stored in `~/.huggingface`). - revision (`str`, *optional*, defaults to `"main"`): - The specific model version to use. It can be a branch name, a tag name, or a commit id, since we use a - git-based system for storing models and other artifacts on huggingface.co, so `revision` can be any - identifier allowed by git. - - - - To test a pull request you made on the Hub, you can pass `revision="refs/pr/"`. - - - - mirror (`str`, *optional*): - Mirror source to accelerate downloads in China. If you are from China and have an accessibility - problem, you can set this option to resolve it. Note that we do not guarantee the timeliness or safety. - Please refer to the mirror site for more information. - _fast_init(`bool`, *optional*, defaults to `True`): - Whether or not to disable fast initialization. - - - - One should only disable *_fast_init* to ensure backwards compatibility with `transformers.__version__ < - 4.6.0` for seeded model initialization. This argument will be removed at the next major version. See - [pull request 11471](https://github.com/huggingface/transformers/pull/11471) for more information. - - - attn_implementation (`str`, *optional*): - The attention implementation to use in the model (if relevant). Can be any of `"eager"` (manual implementation of the attention), `"sdpa"` (using [`F.scaled_dot_product_attention`](https://pytorch.org/docs/master/generated/torch.nn.functional.scaled_dot_product_attention.html)), or `"flash_attention_2"` (using [Dao-AILab/flash-attention](https://github.com/Dao-AILab/flash-attention)). By default, if available, SDPA will be used for torch>=2.1.1. The default is otherwise the manual `"eager"` implementation. - - > Parameters for big model inference - - low_cpu_mem_usage(`bool`, *optional*): - Tries not to use more than 1x model size in CPU memory (including peak memory) while loading the model. - Generally should be combined with a `device_map` (such as `"auto"`) for best results. - This is an experimental feature and a subject to change at any moment. - - If the model weights are in the same precision as the model loaded in, `low_cpu_mem_usage` (without - `device_map`) is redundant and will not provide any benefit in regards to CPU memory usage. However, - this should still be enabled if you are passing in a `device_map`. - - torch_dtype (`str` or `torch.dtype`, *optional*): - Override the default `torch.dtype` and load the model under a specific `dtype`. The different options - are: - - 1. `torch.float16` or `torch.bfloat16` or `torch.float`: load in a specified - `dtype`, ignoring the model's `config.torch_dtype` if one exists. If not specified - - the model will get loaded in `torch.float` (fp32). - - 2. `"auto"` - A `torch_dtype` entry in the `config.json` file of the model will be - attempted to be used. If this entry isn't found then next check the `dtype` of the first weight in - the checkpoint that's of a floating point type and use that as `dtype`. This will load the model - using the `dtype` it was saved in at the end of the training. It can't be used as an indicator of how - the model was trained. Since it could be trained in one of half precision dtypes, but saved in fp32. - - 3. A string that is a valid `torch.dtype`. E.g. "float32" loads the model in `torch.float32`, "float16" loads in `torch.float16` etc. - - - - For some models the `dtype` they were trained in is unknown - you may try to check the model's paper or - reach out to the authors and ask them to add this information to the model's card and to insert the - `torch_dtype` entry in `config.json` on the hub. - - - - device_map (`str` or `Dict[str, Union[int, str, torch.device]]` or `int` or `torch.device`, *optional*): - A map that specifies where each submodule should go. It doesn't need to be refined to each - parameter/buffer name, once a given module name is inside, every submodule of it will be sent to the - same device. If we only pass the device (*e.g.*, `"cpu"`, `"cuda:1"`, `"mps"`, or a GPU ordinal rank - like `1`) on which the model will be allocated, the device map will map the entire model to this - device. Passing `device_map = 0` means put the whole model on GPU 0. - - To have Accelerate compute the most optimized `device_map` automatically, set `device_map="auto"`. For - more information about each option see [designing a device - map](https://hf.co/docs/accelerate/main/en/usage_guides/big_modeling#designing-a-device-map). - max_memory (`Dict`, *optional*): - A dictionary device identifier to maximum memory. Will default to the maximum memory available for each - GPU and the available CPU RAM if unset. - offload_folder (`str` or `os.PathLike`, *optional*): - If the `device_map` contains any value `"disk"`, the folder where we will offload weights. - offload_state_dict (`bool`, *optional*): - If `True`, will temporarily offload the CPU state dict to the hard drive to avoid getting out of CPU - RAM if the weight of the CPU state dict + the biggest shard of the checkpoint does not fit. Defaults to - `True` when there is some disk offload. - offload_buffers (`bool`, *optional*): - Whether or not to offload the buffers with the model parameters. - quantization_config (`Union[QuantizationConfigMixin,Dict]`, *optional*): - A dictionary of configuration parameters or a QuantizationConfigMixin object for quantization (e.g - bitsandbytes, gptq). There may be other quantization-related kwargs, including `load_in_4bit` and - `load_in_8bit`, which are parsed by QuantizationConfigParser. Supported only for bitsandbytes - quantizations and not preferred. consider inserting all such arguments into quantization_config - instead. - subfolder (`str`, *optional*, defaults to `""`): - In case the relevant files are located inside a subfolder of the model repo on huggingface.co, you can - specify the folder name here. - variant (`str`, *optional*): - If specified load weights from `variant` filename, *e.g.* pytorch_model..bin. `variant` is - ignored when using `from_tf` or `from_flax`. - use_safetensors (`bool`, *optional*, defaults to `None`): - Whether or not to use `safetensors` checkpoints. Defaults to `None`. If not specified and `safetensors` - is not installed, it will be set to `False`. - - weights_only (`bool`, *optional*, defaults to `True`): - Indicates whether unpickler should be restricted to loading only tensors, primitive types, - dictionaries and any types added via torch.serialization.add_safe_globals(). - When set to False, we can load wrapper tensor subclass weights. - - kwargs (remaining dictionary of keyword arguments, *optional*): - Can be used to update the configuration object (after it being loaded) and initiate the model (e.g., - `output_attentions=True`). Behaves differently depending on whether a `config` is provided or - automatically loaded: - - - If a configuration is provided with `config`, `**kwargs` will be directly passed to the - underlying model's `__init__` method (we assume all relevant updates to the configuration have - already been done) - - If a configuration is not provided, `kwargs` will be first passed to the configuration class - initialization function ([`~PretrainedConfig.from_pretrained`]). Each key of `kwargs` that - corresponds to a configuration attribute will be used to override said attribute with the - supplied `kwargs` value. Remaining keys that do not correspond to any configuration attribute - will be passed to the underlying model's `__init__` function. - - - - Activate the special ["offline-mode"](https://huggingface.co/transformers/installation.html#offline-mode) to - use this method in a firewalled environment. - - - - Examples: - - ```python - >>> from transformers import BertConfig, BertModel - - >>> # Download model and configuration from huggingface.co and cache. - >>> model = BertModel.from_pretrained("google-bert/bert-base-uncased") - >>> # Model was saved using *save_pretrained('./test/saved_model/')* (for example purposes, not runnable). - >>> model = BertModel.from_pretrained("./test/saved_model/") - >>> # Update configuration during loading. - >>> model = BertModel.from_pretrained("google-bert/bert-base-uncased", output_attentions=True) - >>> assert model.config.output_attentions == True - >>> # Loading from a TF checkpoint file instead of a PyTorch model (slower, for example purposes, not runnable). - >>> config = BertConfig.from_json_file("./tf_model/my_tf_model_config.json") - >>> model = BertModel.from_pretrained("./tf_model/my_tf_checkpoint.ckpt.index", from_tf=True, config=config) - >>> # Loading from a Flax checkpoint file instead of a PyTorch model (slower) - >>> model = BertModel.from_pretrained("google-bert/bert-base-uncased", from_flax=True) - ``` - - * `low_cpu_mem_usage` algorithm: - - This is an experimental function that loads the model using ~1x model size CPU memory - - Here is how it works: - - 1. save which state_dict keys we have - 2. drop state_dict before the model is created, since the latter takes 1x model size CPU memory - 3. after the model has been instantiated switch to the meta device all params/buffers that - are going to be replaced from the loaded state_dict - 4. load state_dict 2nd time - 5. replace the params/buffers from the state_dict - - Currently, it can't handle deepspeed ZeRO stage 3 and ignores loading errors - - """ - state_dict = kwargs.pop("state_dict", None) - from_tf = kwargs.pop("from_tf", False) - from_flax = kwargs.pop("from_flax", False) - resume_download = kwargs.pop("resume_download", None) - proxies = kwargs.pop("proxies", None) - output_loading_info = kwargs.pop("output_loading_info", False) - use_auth_token = kwargs.pop("use_auth_token", None) - trust_remote_code = kwargs.pop("trust_remote_code", None) - _ = kwargs.pop("mirror", None) - from_pipeline = kwargs.pop("_from_pipeline", None) - from_auto_class = kwargs.pop("_from_auto", False) - _fast_init = kwargs.pop("_fast_init", True) - torch_dtype = kwargs.pop("torch_dtype", None) - low_cpu_mem_usage = kwargs.pop("low_cpu_mem_usage", None) - device_map = kwargs.pop("device_map", None) - max_memory = kwargs.pop("max_memory", None) - offload_folder = kwargs.pop("offload_folder", None) - offload_state_dict = kwargs.pop("offload_state_dict", False) - offload_buffers = kwargs.pop("offload_buffers", False) - load_in_8bit = kwargs.pop("load_in_8bit", False) - load_in_4bit = kwargs.pop("load_in_4bit", False) - quantization_config = kwargs.pop("quantization_config", None) - subfolder = kwargs.pop("subfolder", "") - commit_hash = kwargs.pop("_commit_hash", None) - variant = kwargs.pop("variant", None) - adapter_kwargs = kwargs.pop("adapter_kwargs", {}) - adapter_name = kwargs.pop("adapter_name", "default") - use_flash_attention_2 = kwargs.pop("use_flash_attention_2", False) - generation_config = kwargs.pop("generation_config", None) - - gguf_file = kwargs.pop("gguf_file", None) - # Cache path to the GGUF file - gguf_path = None - - if is_fsdp_enabled(): - low_cpu_mem_usage = True - - if use_auth_token is not None: - warnings.warn( - "The `use_auth_token` argument is deprecated and will be removed in v5 of Transformers. Please use `token` instead.", - FutureWarning, - ) - if token is not None: - raise ValueError( - "`token` and `use_auth_token` are both specified. Please set only the argument `token`." - ) - token = use_auth_token - - if token is not None and adapter_kwargs is not None and "token" not in adapter_kwargs: - adapter_kwargs["token"] = token - - if use_safetensors is None and not is_safetensors_available(): - use_safetensors = False - if trust_remote_code is True: - logger.warning( - "The argument `trust_remote_code` is to be used with Auto classes. It has no effect here and is" - " ignored." - ) - - if gguf_file is not None and not is_accelerate_available(): - raise ValueError("accelerate is required when loading a GGUF file `pip install accelerate`.") - - if commit_hash is None: - if not isinstance(config, PretrainedConfig): - # We make a call to the config file first (which may be absent) to get the commit hash as soon as possible - resolved_config_file = cached_file( - pretrained_model_name_or_path, - CONFIG_NAME, - cache_dir=cache_dir, - force_download=force_download, - resume_download=resume_download, - proxies=proxies, - local_files_only=local_files_only, - token=token, - revision=revision, - subfolder=subfolder, - _raise_exceptions_for_gated_repo=False, - _raise_exceptions_for_missing_entries=False, - _raise_exceptions_for_connection_errors=False, - ) - commit_hash = extract_commit_hash(resolved_config_file, commit_hash) - else: - commit_hash = getattr(config, "_commit_hash", None) - - if is_peft_available(): - _adapter_model_path = adapter_kwargs.pop("_adapter_model_path", None) - - if _adapter_model_path is None: - _adapter_model_path = find_adapter_config_file( - pretrained_model_name_or_path, - cache_dir=cache_dir, - force_download=force_download, - resume_download=resume_download, - proxies=proxies, - local_files_only=local_files_only, - _commit_hash=commit_hash, - **adapter_kwargs, - ) - if _adapter_model_path is not None and os.path.isfile(_adapter_model_path): - with open(_adapter_model_path, "r", encoding="utf-8") as f: - _adapter_model_path = pretrained_model_name_or_path - pretrained_model_name_or_path = json.load(f)["base_model_name_or_path"] - else: - _adapter_model_path = None - - # change device_map into a map if we passed an int, a str or a torch.device - if isinstance(device_map, torch.device): - device_map = {"": device_map} - elif isinstance(device_map, str) and device_map not in ["auto", "balanced", "balanced_low_0", "sequential"]: - try: - device_map = {"": torch.device(device_map)} - except RuntimeError: - raise ValueError( - "When passing device_map as a string, the value needs to be a device name (e.g. cpu, cuda:0) or " - f"'auto', 'balanced', 'balanced_low_0', 'sequential' but found {device_map}." - ) - elif isinstance(device_map, int): - if device_map < 0: - raise ValueError( - "You can't pass device_map as a negative int. If you want to put the model on the cpu, pass device_map = 'cpu' " - ) - else: - device_map = {"": device_map} - - if device_map is not None: - if low_cpu_mem_usage is None: - low_cpu_mem_usage = True - elif not low_cpu_mem_usage: - raise ValueError("Passing along a `device_map` requires `low_cpu_mem_usage=True`") - - if low_cpu_mem_usage: - if is_deepspeed_zero3_enabled(): - raise ValueError( - "DeepSpeed Zero-3 is not compatible with `low_cpu_mem_usage=True` or with passing a `device_map`." - ) - elif not is_accelerate_available(): - raise ImportError( - f"Using `low_cpu_mem_usage=True` or a `device_map` requires Accelerate: `pip install 'accelerate>={ACCELERATE_MIN_VERSION}'`" - ) - - # handling bnb config from kwargs, remove after `load_in_{4/8}bit` deprecation. - if load_in_4bit or load_in_8bit: - if quantization_config is not None: - raise ValueError( - "You can't pass `load_in_4bit`or `load_in_8bit` as a kwarg when passing " - "`quantization_config` argument at the same time." - ) - - # preparing BitsAndBytesConfig from kwargs - config_dict = {k: v for k, v in kwargs.items() if k in inspect.signature(BitsAndBytesConfig).parameters} - config_dict = {**config_dict, "load_in_4bit": load_in_4bit, "load_in_8bit": load_in_8bit} - quantization_config, kwargs = BitsAndBytesConfig.from_dict( - config_dict=config_dict, return_unused_kwargs=True, **kwargs - ) - logger.warning( - "The `load_in_4bit` and `load_in_8bit` arguments are deprecated and will be removed in the future versions. " - "Please, pass a `BitsAndBytesConfig` object in `quantization_config` argument instead." - ) - - from_pt = not (from_tf | from_flax) - - user_agent = {"file_type": "model", "framework": "pytorch", "from_auto_class": from_auto_class} - if from_pipeline is not None: - user_agent["using_pipeline"] = from_pipeline - - if is_offline_mode() and not local_files_only: - logger.info("Offline mode: forcing local_files_only=True") - local_files_only = True - - # Load config if we don't provide a configuration - if not isinstance(config, PretrainedConfig): - config_path = config if config is not None else pretrained_model_name_or_path - config, model_kwargs = cls.config_class.from_pretrained( - config_path, - cache_dir=cache_dir, - return_unused_kwargs=True, - force_download=force_download, - resume_download=resume_download, - proxies=proxies, - local_files_only=local_files_only, - token=token, - revision=revision, - subfolder=subfolder, - _from_auto=from_auto_class, - _from_pipeline=from_pipeline, - **kwargs, - ) - else: - # In case one passes a config to `from_pretrained` + "attn_implementation" - # override the `_attn_implementation` attribute to `attn_implementation` of the kwargs - # Please see: https://github.com/huggingface/transformers/issues/28038 - - # Overwrite `config._attn_implementation` by the one from the kwargs --> in auto-factory - # we pop attn_implementation from the kwargs but this handles the case where users - # passes manually the config to `from_pretrained`. - config = copy.deepcopy(config) - - kwarg_attn_imp = kwargs.pop("attn_implementation", None) - if kwarg_attn_imp is not None: - config._attn_implementation = kwarg_attn_imp - - model_kwargs = kwargs - - pre_quantized = getattr(config, "quantization_config", None) is not None - if pre_quantized or quantization_config is not None: - if pre_quantized: - config.quantization_config = AutoHfQuantizer.merge_quantization_configs( - config.quantization_config, quantization_config - ) - else: - config.quantization_config = quantization_config - hf_quantizer = AutoHfQuantizer.from_config(config.quantization_config, pre_quantized=pre_quantized) - else: - hf_quantizer = None - - if hf_quantizer is not None: - hf_quantizer.validate_environment( - torch_dtype=torch_dtype, from_tf=from_tf, from_flax=from_flax, device_map=device_map - ) - torch_dtype = hf_quantizer.update_torch_dtype(torch_dtype) - device_map = hf_quantizer.update_device_map(device_map) - - # In order to ensure popular quantization methods are supported. Can be disable with `disable_telemetry` - user_agent["quant"] = hf_quantizer.quantization_config.quant_method.value - - # Force-set to `True` for more mem efficiency - if low_cpu_mem_usage is None: - low_cpu_mem_usage = True - logger.warning("`low_cpu_mem_usage` was None, now default to True since model is quantized.") - is_quantized = hf_quantizer is not None - - # This variable will flag if we're loading a sharded checkpoint. In this case the archive file is just the - # index of the files. - is_sharded = False - sharded_metadata = None - # Load model - loading_info = None - - # Keep in fp32 modules - keep_in_fp32_modules = None - use_keep_in_fp32_modules = False - - if gguf_file is not None and hf_quantizer is not None: - raise ValueError( - "You cannot combine Quantization and loading a model from a GGUF file, try again by making sure you did not passed a `quantization_config` or that you did not load a quantized model from the Hub." - ) - - if pretrained_model_name_or_path is not None and gguf_file is None: - pretrained_model_name_or_path = str(pretrained_model_name_or_path) - is_local = os.path.isdir(pretrained_model_name_or_path) - if is_local: - if from_tf and os.path.isfile( - os.path.join(pretrained_model_name_or_path, subfolder, TF_WEIGHTS_NAME + ".index") - ): - # Load from a TF 1.0 checkpoint in priority if from_tf - archive_file = os.path.join(pretrained_model_name_or_path, subfolder, TF_WEIGHTS_NAME + ".index") - elif from_tf and os.path.isfile( - os.path.join(pretrained_model_name_or_path, subfolder, TF2_WEIGHTS_NAME) - ): - # Load from a TF 2.0 checkpoint in priority if from_tf - archive_file = os.path.join(pretrained_model_name_or_path, subfolder, TF2_WEIGHTS_NAME) - elif from_flax and os.path.isfile( - os.path.join(pretrained_model_name_or_path, subfolder, FLAX_WEIGHTS_NAME) - ): - # Load from a Flax checkpoint in priority if from_flax - archive_file = os.path.join(pretrained_model_name_or_path, subfolder, FLAX_WEIGHTS_NAME) - elif use_safetensors is not False and os.path.isfile( - os.path.join(pretrained_model_name_or_path, subfolder, _add_variant(SAFE_WEIGHTS_NAME, variant)) - ): - # Load from a safetensors checkpoint - archive_file = os.path.join( - pretrained_model_name_or_path, subfolder, _add_variant(SAFE_WEIGHTS_NAME, variant) - ) - elif use_safetensors is not False and os.path.isfile( - os.path.join( - pretrained_model_name_or_path, subfolder, _add_variant(SAFE_WEIGHTS_INDEX_NAME, variant) - ) - ): - # Load from a sharded safetensors checkpoint - archive_file = os.path.join( - pretrained_model_name_or_path, subfolder, _add_variant(SAFE_WEIGHTS_INDEX_NAME, variant) - ) - is_sharded = True - elif not use_safetensors and os.path.isfile( - os.path.join(pretrained_model_name_or_path, subfolder, _add_variant(WEIGHTS_NAME, variant)) - ): - # Load from a PyTorch checkpoint - archive_file = os.path.join( - pretrained_model_name_or_path, subfolder, _add_variant(WEIGHTS_NAME, variant) - ) - elif not use_safetensors and os.path.isfile( - os.path.join(pretrained_model_name_or_path, subfolder, _add_variant(WEIGHTS_INDEX_NAME, variant)) - ): - # Load from a sharded PyTorch checkpoint - archive_file = os.path.join( - pretrained_model_name_or_path, subfolder, _add_variant(WEIGHTS_INDEX_NAME, variant) - ) - is_sharded = True - # At this stage we don't have a weight file so we will raise an error. - elif not use_safetensors and ( - os.path.isfile(os.path.join(pretrained_model_name_or_path, subfolder, TF_WEIGHTS_NAME + ".index")) - or os.path.isfile(os.path.join(pretrained_model_name_or_path, subfolder, TF2_WEIGHTS_NAME)) - ): - raise EnvironmentError( - f"Error no file named {_add_variant(WEIGHTS_NAME, variant)} found in directory" - f" {pretrained_model_name_or_path} but there is a file for TensorFlow weights. Use" - " `from_tf=True` to load this model from those weights." - ) - elif not use_safetensors and os.path.isfile( - os.path.join(pretrained_model_name_or_path, subfolder, FLAX_WEIGHTS_NAME) - ): - raise EnvironmentError( - f"Error no file named {_add_variant(WEIGHTS_NAME, variant)} found in directory" - f" {pretrained_model_name_or_path} but there is a file for Flax weights. Use `from_flax=True`" - " to load this model from those weights." - ) - elif use_safetensors: - raise EnvironmentError( - f"Error no file named {_add_variant(SAFE_WEIGHTS_NAME, variant)} found in directory" - f" {pretrained_model_name_or_path}." - ) - else: - raise EnvironmentError( - f"Error no file named {_add_variant(WEIGHTS_NAME, variant)}, {_add_variant(SAFE_WEIGHTS_NAME, variant)}," - f" {TF2_WEIGHTS_NAME}, {TF_WEIGHTS_NAME + '.index'} or {FLAX_WEIGHTS_NAME} found in directory" - f" {pretrained_model_name_or_path}." - ) - elif os.path.isfile(os.path.join(subfolder, pretrained_model_name_or_path)): - archive_file = pretrained_model_name_or_path - is_local = True - elif os.path.isfile(os.path.join(subfolder, pretrained_model_name_or_path + ".index")): - if not from_tf: - raise ValueError( - f"We found a TensorFlow checkpoint at {pretrained_model_name_or_path + '.index'}, please set " - "from_tf to True to load from this checkpoint." - ) - archive_file = os.path.join(subfolder, pretrained_model_name_or_path + ".index") - is_local = True - elif is_remote_url(pretrained_model_name_or_path): - filename = pretrained_model_name_or_path - resolved_archive_file = download_url(pretrained_model_name_or_path) - else: - # set correct filename - if from_tf: - filename = TF2_WEIGHTS_NAME - elif from_flax: - filename = FLAX_WEIGHTS_NAME - elif use_safetensors is not False: - filename = _add_variant(SAFE_WEIGHTS_NAME, variant) - else: - filename = _add_variant(WEIGHTS_NAME, variant) - - try: - # Load from URL or cache if already cached - cached_file_kwargs = { - "cache_dir": cache_dir, - "force_download": force_download, - "proxies": proxies, - "resume_download": resume_download, - "local_files_only": local_files_only, - "token": token, - "user_agent": user_agent, - "revision": revision, - "subfolder": subfolder, - "_raise_exceptions_for_gated_repo": False, - "_raise_exceptions_for_missing_entries": False, - "_commit_hash": commit_hash, - } - resolved_archive_file = cached_file(pretrained_model_name_or_path, filename, **cached_file_kwargs) - - # Since we set _raise_exceptions_for_missing_entries=False, we don't get an exception but a None - # result when internet is up, the repo and revision exist, but the file does not. - if resolved_archive_file is None and filename == _add_variant(SAFE_WEIGHTS_NAME, variant): - # Maybe the checkpoint is sharded, we try to grab the index name in this case. - resolved_archive_file = cached_file( - pretrained_model_name_or_path, - _add_variant(SAFE_WEIGHTS_INDEX_NAME, variant), - **cached_file_kwargs, - ) - if resolved_archive_file is not None: - is_sharded = True - elif use_safetensors: - if revision == "main": - resolved_archive_file, revision, is_sharded = auto_conversion( - pretrained_model_name_or_path, **cached_file_kwargs - ) - cached_file_kwargs["revision"] = revision - if resolved_archive_file is None: - raise EnvironmentError( - f"{pretrained_model_name_or_path} does not appear to have a file named" - f" {_add_variant(SAFE_WEIGHTS_NAME, variant)} or {_add_variant(SAFE_WEIGHTS_INDEX_NAME, variant)} " - "and thus cannot be loaded with `safetensors`. Please make sure that the model has " - "been saved with `safe_serialization=True` or do not set `use_safetensors=True`." - ) - else: - # This repo has no safetensors file of any kind, we switch to PyTorch. - filename = _add_variant(WEIGHTS_NAME, variant) - resolved_archive_file = cached_file( - pretrained_model_name_or_path, filename, **cached_file_kwargs - ) - if resolved_archive_file is None and filename == _add_variant(WEIGHTS_NAME, variant): - # Maybe the checkpoint is sharded, we try to grab the index name in this case. - resolved_archive_file = cached_file( - pretrained_model_name_or_path, - _add_variant(WEIGHTS_INDEX_NAME, variant), - **cached_file_kwargs, - ) - if resolved_archive_file is not None: - is_sharded = True - if not local_files_only and not is_offline_mode(): - if resolved_archive_file is not None: - if filename in [WEIGHTS_NAME, WEIGHTS_INDEX_NAME]: - # If the PyTorch file was found, check if there is a safetensors file on the repository - # If there is no safetensors file on the repositories, start an auto conversion - safe_weights_name = SAFE_WEIGHTS_INDEX_NAME if is_sharded else SAFE_WEIGHTS_NAME - has_file_kwargs = { - "revision": revision, - "proxies": proxies, - "token": token, - "cache_dir": cache_dir, - "local_files_only": local_files_only, - } - cached_file_kwargs = { - "cache_dir": cache_dir, - "force_download": force_download, - "resume_download": resume_download, - "local_files_only": local_files_only, - "user_agent": user_agent, - "subfolder": subfolder, - "_raise_exceptions_for_gated_repo": False, - "_raise_exceptions_for_missing_entries": False, - "_commit_hash": commit_hash, - **has_file_kwargs, - } - if not has_file(pretrained_model_name_or_path, safe_weights_name, **has_file_kwargs): - Thread( - target=auto_conversion, - args=(pretrained_model_name_or_path,), - kwargs={"ignore_errors_during_conversion": True, **cached_file_kwargs}, - name="Thread-autoconversion", - ).start() - else: - # Otherwise, no PyTorch file was found, maybe there is a TF or Flax model file. - # We try those to give a helpful error message. - has_file_kwargs = { - "revision": revision, - "proxies": proxies, - "token": token, - "cache_dir": cache_dir, - "local_files_only": local_files_only, - } - if has_file(pretrained_model_name_or_path, TF2_WEIGHTS_NAME, **has_file_kwargs): - raise EnvironmentError( - f"{pretrained_model_name_or_path} does not appear to have a file named" - f" {_add_variant(WEIGHTS_NAME, variant)} but there is a file for TensorFlow weights." - " Use `from_tf=True` to load this model from those weights." - ) - elif has_file(pretrained_model_name_or_path, FLAX_WEIGHTS_NAME, **has_file_kwargs): - raise EnvironmentError( - f"{pretrained_model_name_or_path} does not appear to have a file named" - f" {_add_variant(WEIGHTS_NAME, variant)} but there is a file for Flax weights. Use" - " `from_flax=True` to load this model from those weights." - ) - elif variant is not None and has_file( - pretrained_model_name_or_path, WEIGHTS_NAME, **has_file_kwargs - ): - raise EnvironmentError( - f"{pretrained_model_name_or_path} does not appear to have a file named" - f" {_add_variant(WEIGHTS_NAME, variant)} but there is a file without the variant" - f" {variant}. Use `variant=None` to load this model from those weights." - ) - else: - raise EnvironmentError( - f"{pretrained_model_name_or_path} does not appear to have a file named" - f" {_add_variant(WEIGHTS_NAME, variant)}, {_add_variant(SAFE_WEIGHTS_NAME, variant)}," - f" {TF2_WEIGHTS_NAME}, {TF_WEIGHTS_NAME} or {FLAX_WEIGHTS_NAME}." - ) - - except EnvironmentError: - # Raise any environment error raise by `cached_file`. It will have a helpful error message adapted - # to the original exception. - raise - except Exception as e: - # For any other exception, we throw a generic error. - raise EnvironmentError( - f"Can't load the model for '{pretrained_model_name_or_path}'. If you were trying to load it" - " from 'https://huggingface.co/models', make sure you don't have a local directory with the" - f" same name. Otherwise, make sure '{pretrained_model_name_or_path}' is the correct path to a" - f" directory containing a file named {_add_variant(WEIGHTS_NAME, variant)}," - f" {TF2_WEIGHTS_NAME}, {TF_WEIGHTS_NAME} or {FLAX_WEIGHTS_NAME}." - ) from e - - if is_local: - logger.info(f"loading weights file {archive_file}") - resolved_archive_file = archive_file - else: - logger.info(f"loading weights file {filename} from cache at {resolved_archive_file}") - elif gguf_file: - from transformers.modeling_gguf_pytorch_utils import load_gguf_checkpoint - - # Case 1: the GGUF file is present locally - if os.path.isfile(gguf_file): - gguf_path = gguf_file - # Case 2: The GGUF path is a location on the Hub - # Load from URL or cache if already cached - else: - cached_file_kwargs = { - "cache_dir": cache_dir, - "force_download": force_download, - "proxies": proxies, - "resume_download": resume_download, - "local_files_only": local_files_only, - "token": token, - "user_agent": user_agent, - "revision": revision, - "subfolder": subfolder, - "_raise_exceptions_for_gated_repo": False, - "_raise_exceptions_for_missing_entries": False, - "_commit_hash": commit_hash, - } - - gguf_path = cached_file(pretrained_model_name_or_path, gguf_file, **cached_file_kwargs) - - state_dict = load_gguf_checkpoint(gguf_path, return_tensors=True)["tensors"] - - resolved_archive_file = None - is_sharded = False - else: - resolved_archive_file = None - - # We'll need to download and cache each checkpoint shard if the checkpoint is sharded. - if is_sharded: - # resolved_archive_file becomes a list of files that point to the different checkpoint shards in this case. - resolved_archive_file, sharded_metadata = get_checkpoint_shard_files( - pretrained_model_name_or_path, - resolved_archive_file, - cache_dir=cache_dir, - force_download=force_download, - proxies=proxies, - resume_download=resume_download, - local_files_only=local_files_only, - token=token, - user_agent=user_agent, - revision=revision, - subfolder=subfolder, - _commit_hash=commit_hash, - ) - - if ( - is_safetensors_available() - and isinstance(resolved_archive_file, str) - and resolved_archive_file.endswith(".safetensors") - ): - with safe_open(resolved_archive_file, framework="pt") as f: - metadata = f.metadata() - - if metadata.get("format") == "pt": - pass - elif metadata.get("format") == "tf": - from_tf = True - logger.info("A TensorFlow safetensors file is being loaded in a PyTorch model.") - elif metadata.get("format") == "flax": - from_flax = True - logger.info("A Flax safetensors file is being loaded in a PyTorch model.") - elif metadata.get("format") == "mlx": - # This is a mlx file, we assume weights are compatible with pt - pass - else: - raise ValueError( - f"Incompatible safetensors file. File metadata is not ['pt', 'tf', 'flax', 'mlx'] but {metadata.get('format')}" - ) - - from_pt = not (from_tf | from_flax) - - # load pt weights early so that we know which dtype to init the model under - - if from_pt: - if not is_sharded and state_dict is None: - # Time to load the checkpoint - state_dict = load_state_dict(resolved_archive_file, weights_only=weights_only) - - # set dtype to instantiate the model under: - # 1. If torch_dtype is not None, we use that dtype - # 2. If torch_dtype is "auto", we auto-detect dtype from the loaded state_dict, by checking its first - # weights entry that is of a floating type - we assume all floating dtype weights are of the same dtype - # we also may have config.torch_dtype available, but we won't rely on it till v5 - dtype_orig = None - - if torch_dtype is not None: - if isinstance(torch_dtype, str): - if torch_dtype == "auto": - if hasattr(config, "torch_dtype") and config.torch_dtype is not None: - torch_dtype = config.torch_dtype - logger.info(f"Will use torch_dtype={torch_dtype} as defined in model's config object") - else: - if is_sharded and "dtype" in sharded_metadata: - torch_dtype = sharded_metadata["dtype"] - elif not is_sharded: - torch_dtype = get_state_dict_dtype(state_dict) - else: - one_state_dict = load_state_dict(resolved_archive_file[0], weights_only=weights_only) - torch_dtype = get_state_dict_dtype(one_state_dict) - del one_state_dict # free CPU memory - logger.info( - "Since the `torch_dtype` attribute can't be found in model's config object, " - "will use torch_dtype={torch_dtype} as derived from model's weights" - ) - elif hasattr(torch, torch_dtype): - torch_dtype = getattr(torch, torch_dtype) - else: - raise ValueError( - f'`torch_dtype` can be one of: `torch.dtype`, `"auto"` or a string of a valid `torch.dtype`, but received {torch_dtype}' - ) - dtype_orig = cls._set_default_torch_dtype(torch_dtype) - - # Check if `_keep_in_fp32_modules` is not None - use_keep_in_fp32_modules = (cls._keep_in_fp32_modules is not None) and ( - (torch_dtype == torch.float16) or hasattr(hf_quantizer, "use_keep_in_fp32_modules") - ) - - if is_sharded: - loaded_state_dict_keys = sharded_metadata["all_checkpoint_keys"] - else: - loaded_state_dict_keys = list(state_dict.keys()) - - if gguf_path is None and (low_cpu_mem_usage or (use_keep_in_fp32_modules and is_accelerate_available())): - # In case some weights need to be kept in float32 and accelerate is not installed, - # we later on want to take the path where state_dict is not None, that is the one - # that do not require accelerate. - state_dict = None - - config.name_or_path = pretrained_model_name_or_path - - # Instantiate model. - init_contexts = [no_init_weights(_enable=_fast_init)] - - if is_deepspeed_zero3_enabled() and not is_quantized: - import deepspeed - - logger.info("Detected DeepSpeed ZeRO-3: activating zero.init() for this model") - init_contexts = [deepspeed.zero.Init(config_dict_or_path=deepspeed_config())] + init_contexts - elif low_cpu_mem_usage: - if not is_accelerate_available(): - raise ImportError( - f"Using `low_cpu_mem_usage=True` or a `device_map` requires Accelerate: `pip install 'accelerate>={ACCELERATE_MIN_VERSION}'`" - ) - init_contexts.append(init_empty_weights()) - - config = copy.deepcopy(config) # We do not want to modify the config inplace in from_pretrained. - if not getattr(config, "_attn_implementation_autoset", False): - config = cls._autoset_attn_implementation( - config, use_flash_attention_2=use_flash_attention_2, torch_dtype=torch_dtype, device_map=device_map - ) - - with ContextManagers(init_contexts): - # Let's make sure we don't run the init function of buffer modules - model = cls(config, *model_args, **model_kwargs) - - # make sure we use the model's config since the __init__ call might have copied it - config = model.config - - # Check first if we are `from_pt` - if use_keep_in_fp32_modules: - if is_accelerate_available() and not is_deepspeed_zero3_enabled(): - low_cpu_mem_usage = True - keep_in_fp32_modules = model._keep_in_fp32_modules - else: - keep_in_fp32_modules = [] - - if hf_quantizer is not None: - hf_quantizer.preprocess_model( - model=model, device_map=device_map, keep_in_fp32_modules=keep_in_fp32_modules - ) - - # We store the original dtype for quantized models as we cannot easily retrieve it - # once the weights have been quantized - # Note that once you have loaded a quantized model, you can't change its dtype so this will - # remain a single source of truth - config._pre_quantization_dtype = torch_dtype - - if isinstance(device_map, str): - special_dtypes = {} - - if hf_quantizer is not None: - special_dtypes.update(hf_quantizer.get_special_dtypes_update(model, torch_dtype)) - - special_dtypes.update( - { - name: torch.float32 - for name, _ in model.named_parameters() - if any(m in name for m in keep_in_fp32_modules) - } - ) - - target_dtype = torch_dtype - - if hf_quantizer is not None: - target_dtype = hf_quantizer.adjust_target_dtype(target_dtype) - - no_split_modules = model._get_no_split_modules(device_map) - if device_map not in ["auto", "balanced", "balanced_low_0", "sequential"]: - raise ValueError( - "If passing a string for `device_map`, please choose 'auto', 'balanced', 'balanced_low_0' or " - "'sequential'." - ) - - device_map_kwargs = {"no_split_module_classes": no_split_modules} - if "special_dtypes" in inspect.signature(infer_auto_device_map).parameters: - device_map_kwargs["special_dtypes"] = special_dtypes - elif len(special_dtypes) > 0: - logger.warning( - "This model has some weights that should be kept in higher precision, you need to upgrade " - "`accelerate` to properly deal with them (`pip install --upgrade accelerate`)." - ) - if device_map != "sequential": - max_memory = get_balanced_memory( - model, - dtype=target_dtype, - low_zero=(device_map == "balanced_low_0"), - max_memory=max_memory, - **device_map_kwargs, - ) - else: - max_memory = get_max_memory(max_memory) - if hf_quantizer is not None: - max_memory = hf_quantizer.adjust_max_memory(max_memory) - device_map_kwargs["max_memory"] = max_memory - - # Make sure tied weights are tied before creating the device map. - model.tie_weights() - device_map = infer_auto_device_map(model, dtype=target_dtype, **device_map_kwargs) - - if hf_quantizer is not None: - hf_quantizer.validate_environment(device_map=device_map) - - elif device_map is not None: - model.tie_weights() - tied_params = find_tied_parameters(model) - # check if we don't have tied param in different devices - check_tied_parameters_on_same_device(tied_params, device_map) - - if from_tf: - if resolved_archive_file.endswith(".index"): - # Load from a TensorFlow 1.X checkpoint - provided by original authors - model = cls.load_tf_weights(model, config, resolved_archive_file[:-6]) # Remove the '.index' - else: - # Load from our TensorFlow 2.0 checkpoints - try: - from transformers.modeling_tf_pytorch_utils import load_tf2_checkpoint_in_pytorch_model - - model, loading_info = load_tf2_checkpoint_in_pytorch_model( - model, resolved_archive_file, allow_missing_keys=True, output_loading_info=True - ) - except ImportError: - logger.error( - "Loading a TensorFlow model in PyTorch, requires both PyTorch and TensorFlow to be installed." - " Please see https://pytorch.org/ and https://www.tensorflow.org/install/ for installation" - " instructions." - ) - raise - elif from_flax: - try: - from transformers.modeling_flax_pytorch_utils import load_flax_checkpoint_in_pytorch_model - - model = load_flax_checkpoint_in_pytorch_model(model, resolved_archive_file) - except ImportError: - logger.error( - "Loading a Flax model in PyTorch, requires both PyTorch and Flax to be installed. Please see" - " https://pytorch.org/ and https://flax.readthedocs.io/en/latest/installation.html for" - " installation instructions." - ) - raise - elif from_pt: - # restore default dtype - if dtype_orig is not None: - torch.set_default_dtype(dtype_orig) - - ( - model, - missing_keys, - unexpected_keys, - mismatched_keys, - offload_index, - error_msgs, - ) = cls._load_pretrained_model( - model, - state_dict, - loaded_state_dict_keys, # XXX: rename? - resolved_archive_file, - pretrained_model_name_or_path, - ignore_mismatched_sizes=ignore_mismatched_sizes, - sharded_metadata=sharded_metadata, - _fast_init=_fast_init, - low_cpu_mem_usage=low_cpu_mem_usage, - device_map=device_map, - offload_folder=offload_folder, - offload_state_dict=offload_state_dict, - dtype=torch_dtype, - hf_quantizer=hf_quantizer, - keep_in_fp32_modules=keep_in_fp32_modules, - gguf_path=gguf_path, - weights_only=weights_only, - ) - - # make sure token embedding weights are still tied if needed - model.tie_weights() - - # Set model in evaluation mode to deactivate DropOut modules by default - model.eval() - - # If it is a model with generation capabilities, attempt to load the generation config - if model.can_generate() and generation_config is not None: - logger.info("The user-defined `generation_config` will be used to override the default generation config.") - model.generation_config = model.generation_config.from_dict(generation_config.to_dict()) - elif model.can_generate() and pretrained_model_name_or_path is not None: - try: - model.generation_config = GenerationConfig.from_pretrained( - pretrained_model_name_or_path, - cache_dir=cache_dir, - force_download=force_download, - resume_download=resume_download, - proxies=proxies, - local_files_only=local_files_only, - token=token, - revision=revision, - subfolder=subfolder, - _from_auto=from_auto_class, - _from_pipeline=from_pipeline, - **kwargs, - ) - except OSError: - logger.info( - "Generation config file not found, using a generation config created from the model config." - ) - pass - - # Dispatch model with hooks on all devices if necessary - if device_map is not None: - device_map_kwargs = { - "device_map": device_map, - "offload_dir": offload_folder, - "offload_index": offload_index, - "offload_buffers": offload_buffers, - } - if "skip_keys" in inspect.signature(dispatch_model).parameters: - device_map_kwargs["skip_keys"] = model._skip_keys_device_placement - # For HQQ method we force-set the hooks for single GPU envs - if ( - "force_hooks" in inspect.signature(dispatch_model).parameters - and hf_quantizer is not None - and hf_quantizer.quantization_config.quant_method == QuantizationMethod.HQQ - ): - device_map_kwargs["force_hooks"] = True - if ( - hf_quantizer is not None - and hf_quantizer.quantization_config.quant_method == QuantizationMethod.FBGEMM_FP8 - and isinstance(device_map, dict) - and ("cpu" in device_map.values() or "disk" in device_map.values()) - ): - device_map_kwargs["offload_buffers"] = True - - if not is_fsdp_enabled() and not is_deepspeed_zero3_enabled(): - dispatch_model(model, **device_map_kwargs) - - if hf_quantizer is not None: - hf_quantizer.postprocess_model(model) - model.hf_quantizer = hf_quantizer - - if _adapter_model_path is not None: - model.load_adapter( - _adapter_model_path, - adapter_name=adapter_name, - token=token, - adapter_kwargs=adapter_kwargs, - ) - - if output_loading_info: - if loading_info is None: - loading_info = { - "missing_keys": missing_keys, - "unexpected_keys": unexpected_keys, - "mismatched_keys": mismatched_keys, - "error_msgs": error_msgs, - } - return model, loading_info - - return model - - @classmethod - def _load_pretrained_model( - cls, - model, - state_dict, - loaded_keys, - resolved_archive_file, - pretrained_model_name_or_path, - ignore_mismatched_sizes=False, - sharded_metadata=None, - _fast_init=True, - low_cpu_mem_usage=False, - device_map=None, - offload_folder=None, - offload_state_dict=None, - dtype=None, - hf_quantizer=None, - keep_in_fp32_modules=None, - gguf_path=None, - weights_only=True, - ): - is_safetensors = False - is_quantized = hf_quantizer is not None - state_dict_folder = None - state_dict_index = None - - if device_map is not None and "disk" in device_map.values(): - archive_file = ( - resolved_archive_file[0] if isinstance(resolved_archive_file, (list, tuple)) else resolved_archive_file - ) - is_safetensors = archive_file.endswith(".safetensors") - if offload_folder is None and not is_safetensors: - raise ValueError( - "The current `device_map` had weights offloaded to the disk. Please provide an `offload_folder`" - " for them. Alternatively, make sure you have `safetensors` installed if the model you are using" - " offers the weights in this format." - ) - if offload_folder is not None: - os.makedirs(offload_folder, exist_ok=True) - if offload_state_dict is None: - offload_state_dict = True - - is_sharded_safetensors = is_safetensors and sharded_metadata is not None - - # tie the model weights before retrieving the state_dict - model.tie_weights() - - # Retrieve missing & unexpected_keys - model_state_dict = model.state_dict() - expected_keys = list(model_state_dict.keys()) - prefix = model.base_model_prefix - - if hf_quantizer is not None: - expected_keys = hf_quantizer.update_expected_keys(model, expected_keys, loaded_keys) - - def _fix_key(key): - if "beta" in key: - return key.replace("beta", "bias") - if "gamma" in key: - return key.replace("gamma", "weight") - - # to avoid logging parametrized weight norm renaming - if hasattr(nn.utils.parametrizations, "weight_norm"): - if "weight_g" in key: - return key.replace("weight_g", "parametrizations.weight.original0") - if "weight_v" in key: - return key.replace("weight_v", "parametrizations.weight.original1") - else: - if "parametrizations.weight.original0" in key: - return key.replace("parametrizations.weight.original0", "weight_g") - if "parametrizations.weight.original1" in key: - return key.replace("parametrizations.weight.original1", "weight_v") - return key - - original_loaded_keys = loaded_keys - loaded_keys = [_fix_key(key) for key in loaded_keys] - - if len(prefix) > 0: - has_prefix_module = any(s.startswith(prefix) for s in loaded_keys) - expects_prefix_module = any(s.startswith(prefix) for s in expected_keys) - else: - has_prefix_module = False - expects_prefix_module = False - - # key re-naming operations are never done on the keys - # that are loaded, but always on the keys of the newly initialized model - remove_prefix_from_model = not has_prefix_module and expects_prefix_module - add_prefix_to_model = has_prefix_module and not expects_prefix_module - - if remove_prefix_from_model: - _prefix = f"{prefix}." - expected_keys_not_prefixed = [s for s in expected_keys if not s.startswith(_prefix)] - expected_keys = [s[len(_prefix) :] if s.startswith(_prefix) else s for s in expected_keys] - elif add_prefix_to_model: - expected_keys = [".".join([prefix, s]) for s in expected_keys] - - missing_keys = sorted(set(expected_keys) - set(loaded_keys)) - unexpected_keys = set(loaded_keys) - set(expected_keys) - - # Remove nonpersistent buffers from unexpected keys: they are not in the state dict but will be in the model - # buffers - model_buffers = {n for n, _ in model.named_buffers()} - if remove_prefix_from_model: - model_buffers = {key[len(_prefix) :] if key.startswith(_prefix) else key for key in model_buffers} - elif add_prefix_to_model: - model_buffers = {".".join([prefix, key]) for key in model_buffers} - unexpected_keys = sorted(unexpected_keys - model_buffers) - - model.tie_weights() - if device_map is None and not is_fsdp_enabled() and not is_deepspeed_zero3_enabled(): - ptrs = collections.defaultdict(list) - for name, tensor in model.state_dict().items(): - id_tensor = id_tensor_storage(tensor) - ptrs[id_tensor].append(name) - - # These are all the pointers of shared tensors. - tied_params = [names for _, names in ptrs.items() if len(names) > 1] - else: - # id function doesn't work for meta tensor so we need this function - tied_params = find_tied_parameters(model) - - for group in tied_params: - if remove_prefix_from_model: - group = [key[len(_prefix) :] if key.startswith(_prefix) else key for key in group] - elif add_prefix_to_model: - group = [".".join([prefix, key]) for key in group] - missing_in_group = [k for k in missing_keys if k in group] - if len(missing_in_group) > 0 and len(missing_in_group) < len(group): - missing_keys = [k for k in missing_keys if k not in missing_in_group] - - # Some models may have keys that are not in the state by design, removing them before needlessly warning - # the user. - if cls._keys_to_ignore_on_load_missing is not None: - for pat in cls._keys_to_ignore_on_load_missing: - missing_keys = [k for k in missing_keys if re.search(pat, k) is None] - - if cls._keys_to_ignore_on_load_unexpected is not None: - for pat in cls._keys_to_ignore_on_load_unexpected: - unexpected_keys = [k for k in unexpected_keys if re.search(pat, k) is None] - if hf_quantizer is not None: - missing_keys = hf_quantizer.update_missing_keys(model, missing_keys, prefix) - - # retrieve weights on meta device and put them back on CPU. - # This is not ideal in terms of memory, but if we don't do that not, we can't initialize them in the next step - if low_cpu_mem_usage: - for key in missing_keys: - if key in list(model_state_dict.keys()): - key = key - elif f"{prefix}.{key}" in list(model_state_dict.keys()): - key = f"{prefix}.{key}" - elif key.startswith(prefix) and ".".join(key.split(".")[1:]) in list(model_state_dict.keys()): - key = ".".join(key.split(".")[1:]) - param = model_state_dict[key] - - # upcast in fp32 if any - target_dtype = dtype - if ( - keep_in_fp32_modules is not None - and dtype == torch.float16 - and any( - module_to_keep_in_fp32 in key.split(".") for module_to_keep_in_fp32 in keep_in_fp32_modules - ) - ): - target_dtype = torch.float32 - - if param.device == torch.device("meta"): - value = torch.empty(*param.size(), dtype=target_dtype) - if ( - not is_quantized - or (getattr(hf_quantizer, "requires_parameters_quantization", False)) - or not hf_quantizer.check_quantized_param( - model, param_value=value, param_name=key, state_dict={} - ) - ): - set_module_tensor_to_device(model, key, "cpu", value) - else: - hf_quantizer.create_quantized_param(model, value, key, "cpu", state_dict, unexpected_keys) - - # retrieve uninitialized modules and initialize before maybe overriding that with the pretrained weights. - if _fast_init: - if not ignore_mismatched_sizes: - if remove_prefix_from_model: - _loaded_keys = [f"{prefix}.{k}" for k in loaded_keys] - elif add_prefix_to_model: - _loaded_keys = [k[len(prefix) + 1 :] for k in loaded_keys] - else: - _loaded_keys = loaded_keys - not_initialized_submodules = set_initialized_submodules(model, _loaded_keys) - # If we're about to tie the output embeds to the input embeds we don't need to init them - if hasattr(model.config, "tie_word_embeddings") and model.config.tie_word_embeddings: - output_embeddings = model.get_output_embeddings() - if output_embeddings is not None: - # Still need to initialize if there is a bias term since biases are not tied. - if not hasattr(output_embeddings, "bias") or output_embeddings.bias is None: - output_embeddings._is_hf_initialized = True - else: - not_initialized_submodules = dict(model.named_modules()) - # This will only initialize submodules that are not marked as initialized by the line above. - if is_deepspeed_zero3_enabled() and not is_quantized: - import deepspeed - - not_initialized_parameters = list( - set( - itertools.chain.from_iterable( - submodule.parameters(recurse=False) for submodule in not_initialized_submodules.values() - ) - ) - ) - with deepspeed.zero.GatheredParameters(not_initialized_parameters, modifier_rank=0): - model.apply(model._initialize_weights) - else: - model.apply(model._initialize_weights) - - # Set some modules to fp32 if any - if keep_in_fp32_modules is not None: - for name, param in model.named_parameters(): - if any(module_to_keep_in_fp32 in name.split(".") for module_to_keep_in_fp32 in keep_in_fp32_modules): - # param = param.to(torch.float32) does not work here as only in the local scope. - param.data = param.data.to(torch.float32) - - # Make sure we are able to load base models as well as derived models (with heads) - start_prefix = "" - model_to_load = model - if len(cls.base_model_prefix) > 0 and not hasattr(model, cls.base_model_prefix) and has_prefix_module: - start_prefix = cls.base_model_prefix + "." - if len(cls.base_model_prefix) > 0 and hasattr(model, cls.base_model_prefix) and not has_prefix_module: - model_to_load = getattr(model, cls.base_model_prefix) - base_model_expected_keys = list(model_to_load.state_dict().keys()) - if any(key in expected_keys_not_prefixed and key not in base_model_expected_keys for key in loaded_keys): - raise ValueError( - "The state dictionary of the model you are trying to load is corrupted. Are you sure it was " - "properly saved?" - ) - if device_map is not None: - device_map = {k.replace(f"{cls.base_model_prefix}.", ""): v for k, v in device_map.items()} - - def _find_mismatched_keys( - state_dict, - model_state_dict, - loaded_keys, - add_prefix_to_model, - remove_prefix_from_model, - ignore_mismatched_sizes, - ): - mismatched_keys = [] - if ignore_mismatched_sizes: - for checkpoint_key in loaded_keys: - # If the checkpoint is sharded, we may not have the key here. - if checkpoint_key not in state_dict: - continue - model_key = checkpoint_key - if remove_prefix_from_model: - # The model key starts with `prefix` but `checkpoint_key` doesn't so we add it. - model_key = f"{prefix}.{checkpoint_key}" - elif add_prefix_to_model: - # The model key doesn't start with `prefix` but `checkpoint_key` does so we remove it. - model_key = ".".join(checkpoint_key.split(".")[1:]) - - if ( - model_key in model_state_dict - and state_dict[checkpoint_key].shape != model_state_dict[model_key].shape - ): - if ( - state_dict[checkpoint_key].shape[-1] == 1 - and state_dict[checkpoint_key].numel() * 2 == model_state_dict[model_key].numel() - ): - # This skips size mismatches for 4-bit weights. Two 4-bit values share an 8-bit container, causing size differences. - # Without matching with module type or paramter type it seems like a practical way to detect valid 4bit weights. - pass - else: - mismatched_keys.append( - (checkpoint_key, state_dict[checkpoint_key].shape, model_state_dict[model_key].shape) - ) - del state_dict[checkpoint_key] - return mismatched_keys - - if resolved_archive_file is not None: - folder = os.path.sep.join(resolved_archive_file[0].split(os.path.sep)[:-1]) - else: - folder = None - if device_map is not None and is_safetensors: - param_device_map = expand_device_map(device_map, original_loaded_keys, start_prefix) - str_dtype = str(dtype).replace("torch.", "") if dtype is not None else "float32" - if sharded_metadata is None: - archive_file = ( - resolved_archive_file[0] - if isinstance(resolved_archive_file, (list, tuple)) - else resolved_archive_file - ) - weight_map = {p: archive_file for p in original_loaded_keys} - else: - weight_map = {p: os.path.join(folder, f) for p, f in sharded_metadata["weight_map"].items()} - offload_index = { - p[len(start_prefix) :]: {"safetensors_file": f, "weight_name": p, "dtype": str_dtype} - for p, f in weight_map.items() - if p.startswith(start_prefix) and param_device_map[p[len(start_prefix) :]] == "disk" - } - else: - offload_index = None - - if state_dict is not None: - # Whole checkpoint - mismatched_keys = _find_mismatched_keys( - state_dict, - model_state_dict, - original_loaded_keys, - add_prefix_to_model, - remove_prefix_from_model, - ignore_mismatched_sizes, - ) - - # For GGUF models `state_dict` is never set to None as the state dict is always small - if gguf_path: - error_msgs, offload_index, state_dict_index = _load_state_dict_into_meta_model( - model_to_load, - state_dict, - start_prefix, - expected_keys, - device_map=device_map, - offload_folder=offload_folder, - offload_index=offload_index, - state_dict_folder=state_dict_folder, - state_dict_index=state_dict_index, - dtype=dtype, - hf_quantizer=hf_quantizer, - is_safetensors=is_safetensors, - keep_in_fp32_modules=keep_in_fp32_modules, - unexpected_keys=unexpected_keys, - ) - else: - # Sharded checkpoint or whole but low_cpu_mem_usage==True - assign_to_params_buffers = check_support_param_buffer_assignment( - model_to_load, state_dict, start_prefix - ) - error_msgs = _load_state_dict_into_model( - model_to_load, state_dict, start_prefix, assign_to_params_buffers - ) - - else: - # This should always be a list but, just to be sure. - if not isinstance(resolved_archive_file, list): - resolved_archive_file = [resolved_archive_file] - - error_msgs = [] - mismatched_keys = [] - if not is_safetensors: - offload_index = {} if device_map is not None and "disk" in device_map.values() else None - if offload_state_dict: - state_dict_folder = tempfile.mkdtemp() - state_dict_index = {} - else: - state_dict_folder = None - state_dict_index = None - - if is_sharded_safetensors: - disk_only_shard_files = get_disk_only_shard_files( - device_map, sharded_metadata=sharded_metadata, start_prefix=start_prefix - ) - disk_only_shard_files = [os.path.join(folder, f) for f in disk_only_shard_files] - else: - disk_only_shard_files = [] - - if len(resolved_archive_file) > 1: - resolved_archive_file = logging.tqdm(resolved_archive_file, desc="Loading checkpoint shards") - assign_to_params_buffers = None - for shard_file in resolved_archive_file: - # Skip the load for shards that only contain disk-offloaded weights when using safetensors for the offload. - if shard_file in disk_only_shard_files: - continue - map_location = None - if ( - device_map is not None - and hf_quantizer is not None - and hf_quantizer.quantization_config.quant_method == QuantizationMethod.TORCHAO - and hf_quantizer.quantization_config.quant_type == "int4_weight_only" - ): - map_location = torch.device([d for d in device_map.values() if d not in ["cpu", "disk"]][0]) - state_dict = load_state_dict( - shard_file, is_quantized=is_quantized, map_location=map_location, weights_only=weights_only - ) - - # Mistmatched keys contains tuples key/shape1/shape2 of weights in the checkpoint that have a shape not - # matching the weights in the model. - mismatched_keys += _find_mismatched_keys( - state_dict, - model_state_dict, - original_loaded_keys, - add_prefix_to_model, - remove_prefix_from_model, - ignore_mismatched_sizes, - ) - if low_cpu_mem_usage: - if is_fsdp_enabled() and not is_local_dist_rank_0() and not is_quantized: - for key, param in model_to_load.state_dict().items(): - if param.device == torch.device("meta"): - set_module_tensor_to_device( - model_to_load, key, "cpu", torch.empty(*param.size(), dtype=dtype) - ) - else: - new_error_msgs, offload_index, state_dict_index = _load_state_dict_into_meta_model( - model_to_load, - state_dict, - start_prefix, - expected_keys, - device_map=device_map, - offload_folder=offload_folder, - offload_index=offload_index, - state_dict_folder=state_dict_folder, - state_dict_index=state_dict_index, - dtype=dtype, - hf_quantizer=hf_quantizer, - is_safetensors=is_safetensors, - keep_in_fp32_modules=keep_in_fp32_modules, - unexpected_keys=unexpected_keys, - ) - error_msgs += new_error_msgs - else: - # Sharded checkpoint or whole but low_cpu_mem_usage==True - if assign_to_params_buffers is None: - assign_to_params_buffers = check_support_param_buffer_assignment( - model_to_load, state_dict, start_prefix - ) - error_msgs += _load_state_dict_into_model( - model_to_load, state_dict, start_prefix, assign_to_params_buffers - ) - - # force memory release - del state_dict - gc.collect() - - if offload_index is not None and len(offload_index) > 0: - if model != model_to_load: - # We need to add the prefix of the base model - prefix = cls.base_model_prefix - if not is_safetensors: - for weight_name in offload_index: - shutil.move( - os.path.join(offload_folder, f"{weight_name}.dat"), - os.path.join(offload_folder, f"{prefix}.{weight_name}.dat"), - ) - offload_index = {f"{prefix}.{key}": value for key, value in offload_index.items()} - if not is_safetensors: - save_offload_index(offload_index, offload_folder) - offload_index = None - - if offload_state_dict: - # Load back temporarily offloaded state dict - load_offloaded_weights(model_to_load, state_dict_index, state_dict_folder) - shutil.rmtree(state_dict_folder) - - if len(error_msgs) > 0: - error_msg = "\n\t".join(error_msgs) - if "size mismatch" in error_msg: - error_msg += ( - "\n\tYou may consider adding `ignore_mismatched_sizes=True` in the model `from_pretrained` method." - ) - raise RuntimeError(f"Error(s) in loading state_dict for {model.__class__.__name__}:\n\t{error_msg}") - - if len(unexpected_keys) > 0: - archs = [] if model.config.architectures is None else model.config.architectures - warner = logger.warning if model.__class__.__name__ in archs else logger.info - warner( - f"Some weights of the model checkpoint at {pretrained_model_name_or_path} were not used when" - f" initializing {model.__class__.__name__}: {unexpected_keys}\n- This IS expected if you are" - f" initializing {model.__class__.__name__} from the checkpoint of a model trained on another task or" - " with another architecture (e.g. initializing a BertForSequenceClassification model from a" - " BertForPreTraining model).\n- This IS NOT expected if you are initializing" - f" {model.__class__.__name__} from the checkpoint of a model that you expect to be exactly identical" - " (initializing a BertForSequenceClassification model from a BertForSequenceClassification model)." - ) - else: - logger.info(f"All model checkpoint weights were used when initializing {model.__class__.__name__}.\n") - if len(missing_keys) > 0: - logger.warning( - f"Some weights of {model.__class__.__name__} were not initialized from the model checkpoint at" - f" {pretrained_model_name_or_path} and are newly initialized: {missing_keys}\nYou should probably" - " TRAIN this model on a down-stream task to be able to use it for predictions and inference." - ) - elif len(mismatched_keys) == 0: - logger.info( - f"All the weights of {model.__class__.__name__} were initialized from the model checkpoint at" - f" {pretrained_model_name_or_path}.\nIf your task is similar to the task the model of the checkpoint" - f" was trained on, you can already use {model.__class__.__name__} for predictions without further" - " training." - ) - if len(mismatched_keys) > 0: - mismatched_warning = "\n".join( - [ - f"- {key}: found shape {shape1} in the checkpoint and {shape2} in the model instantiated" - for key, shape1, shape2 in mismatched_keys - ] - ) - logger.warning( - f"Some weights of {model.__class__.__name__} were not initialized from the model checkpoint at" - f" {pretrained_model_name_or_path} and are newly initialized because the shapes did not" - f" match:\n{mismatched_warning}\nYou should probably TRAIN this model on a down-stream task to be able" - " to use it for predictions and inference." - ) - - return model, missing_keys, unexpected_keys, mismatched_keys, offload_index, error_msgs - - def retrieve_modules_from_names(self, names, add_prefix=False, remove_prefix=False): - module_keys = {".".join(key.split(".")[:-1]) for key in names} - - # torch.nn.ParameterList is a special case where two parameter keywords - # are appended to the module name, *e.g.* bert.special_embeddings.0 - module_keys = module_keys.union( - {".".join(key.split(".")[:-2]) for key in names if len(key) > 0 and key[-1].isdigit()} - ) - - retrieved_modules = [] - # retrieve all modules that has at least one missing weight name - for name, module in self.named_modules(): - if remove_prefix: - _prefix = f"{self.base_model_prefix}." - name = name[len(_prefix) :] if name.startswith(_prefix) else name - elif add_prefix: - name = ".".join([self.base_model_prefix, name]) if len(name) > 0 else self.base_model_prefix - - if name in module_keys: - retrieved_modules.append(module) - - return retrieved_modules - - @staticmethod - def _load_pretrained_model_low_mem( - model, - loaded_state_dict_keys, - resolved_archive_file, - start_prefix="", - hf_quantizer=None, - pretrained_model_name_or_path=None, - weights_only=True, - ): - """ - This is an experimental function that loads the model using ~1.x model size CPU memory - - Before you call it do: - - 1. save which state_dict keys are available - 2. drop state_dict before model is created, since the latter takes 1x model size memory - - Here then we continue: - - 3. switch to the meta device all params/buffers that are going to be replaced from the loaded state_dict - 4. load state_dict 2nd time - 5. replace the params/buffers from the state_dict - - Currently, it doesn't handle missing_keys, unexpected_keys, mismatched_keys. It can't handle deepspeed. To - handle bitsandbytes, needs non-empty hf_quantizer argument. - """ - - _move_model_to_meta(model, loaded_state_dict_keys, start_prefix) - state_dict = load_state_dict(resolved_archive_file, weights_only=weights_only) - expected_keys = loaded_state_dict_keys # plug for missing expected_keys. TODO: replace with proper keys - error_msgs = _load_state_dict_into_meta_model( - model, - state_dict, - start_prefix, - expected_keys=expected_keys, - hf_quantizer=hf_quantizer, - ) - return error_msgs - - @classmethod - def register_for_auto_class(cls, auto_class="AutoModel"): - """ - Register this class with a given auto class. This should only be used for custom models as the ones in the - library are already mapped with an auto class. - - - - This API is experimental and may have some slight breaking changes in the next releases. - - - - Args: - auto_class (`str` or `type`, *optional*, defaults to `"AutoModel"`): - The auto class to register this new model with. - """ - if not isinstance(auto_class, str): - auto_class = auto_class.__name__ - - import transformers.models.auto as auto_module - - if not hasattr(auto_module, auto_class): - raise ValueError(f"{auto_class} is not a valid auto class.") - - cls._auto_class = auto_class - - def to_bettertransformer(self) -> "PreTrainedModel": - """ - Converts the model to use [PyTorch's native attention - implementation](https://pytorch.org/docs/stable/generated/torch.nn.MultiheadAttention.html), integrated to - Transformers through [Optimum library](https://huggingface.co/docs/optimum/bettertransformer/overview). Only a - subset of all Transformers models are supported. - - PyTorch's attention fastpath allows to speed up inference through kernel fusions and the use of [nested - tensors](https://pytorch.org/docs/stable/nested.html). Detailed benchmarks can be found in [this blog - post](https://medium.com/pytorch/bettertransformer-out-of-the-box-performance-for-huggingface-transformers-3fbe27d50ab2). - - Returns: - [`PreTrainedModel`]: The model converted to BetterTransformer. - """ - if not is_optimum_available(): - raise ImportError("The package `optimum` is required to use Better Transformer.") - - from optimum.version import __version__ as optimum_version - - if version.parse(optimum_version) < version.parse("1.7.0"): - raise ImportError( - f"Please install optimum>=1.7.0 to use Better Transformer. The version {optimum_version} was found." - ) - - from optimum.bettertransformer import BetterTransformer - - return BetterTransformer.transform(self) - - def reverse_bettertransformer(self): - """ - Reverts the transformation from [`~PreTrainedModel.to_bettertransformer`] so that the original modeling is - used, for example in order to save the model. - - Returns: - [`PreTrainedModel`]: The model converted back to the original modeling. - """ - if not is_optimum_available(): - raise ImportError("The package `optimum` is required to use Better Transformer.") - - from optimum.version import __version__ as optimum_version - - if version.parse(optimum_version) < version.parse("1.7.0"): - raise ImportError( - f"Please install optimum>=1.7.0 to use Better Transformer. The version {optimum_version} was found." - ) - - from optimum.bettertransformer import BetterTransformer - - return BetterTransformer.reverse(self) - - def warn_if_padding_and_no_attention_mask(self, input_ids, attention_mask): - """ - Shows a one-time warning if the input_ids appear to contain padding and no attention mask was given. - """ - - # Skip the check during tracing. - if is_torch_fx_proxy(input_ids) or torch.jit.is_tracing() or is_torchdynamo_compiling(): - return - - if (attention_mask is not None) or (self.config.pad_token_id is None): - return - - # Check only the first and last input IDs to reduce overhead. - if self.config.pad_token_id in input_ids[:, [-1, 0]]: - warn_string = ( - "We strongly recommend passing in an `attention_mask` since your input_ids may be padded. See " - "https://huggingface.co/docs/transformers/troubleshooting" - "#incorrect-output-when-padding-tokens-arent-masked." - ) - - # If the pad token is equal to either BOS, EOS, or SEP, we do not know whether the user should use an - # attention_mask or not. In this case, we should still show a warning because this is a rare case. - if ( - (self.config.bos_token_id is not None and self.config.bos_token_id == self.config.pad_token_id) - or (self.config.eos_token_id is not None and self.config.eos_token_id == self.config.pad_token_id) - or (self.config.sep_token_id is not None and self.config.sep_token_id == self.config.pad_token_id) - ): - warn_string += ( - f"\nYou may ignore this warning if your `pad_token_id` ({self.config.pad_token_id}) is identical " - f"to the `bos_token_id` ({self.config.bos_token_id}), `eos_token_id` ({self.config.eos_token_id}), " - f"or the `sep_token_id` ({self.config.sep_token_id}), and your input is not padded." - ) - - logger.warning_once(warn_string) - - @property - def _is_quantized_training_enabled(self): - warnings.warn( - "`_is_quantized_training_enabled` is going to be deprecated in transformers 4.39.0. Please use `model.hf_quantizer.is_trainable` instead", - FutureWarning, - ) - - if not hasattr(self, "hf_quantizer"): - return False - - return self.hf_quantizer.is_trainable - - @property - def loss_function(self): - if getattr(self.config, "loss_type", None) is not None: - loss_type = self.config.loss_type - else: - loss_type = self.__class__.__name__ - if loss_type not in LOSS_MAPPING: - loss_groups = f"({'|'.join(LOSS_MAPPING)})" - loss_type = re.findall(loss_groups, self.__class__.__name__) - if len(loss_type) > 0: - loss_type = loss_type[0] - else: - loss_type = None - if loss_type is None or loss_type not in LOSS_MAPPING and getattr(self.config, "loss_type", None) is not None: - logger.warning_once( - f"`loss_type={loss_type}` was set in the config but it is unrecognised." - f"Using the default loss: `ForCausalLMLoss`." - ) - loss_type = "ForCausalLM" - return LOSS_MAPPING[loss_type] - - -PreTrainedModel.push_to_hub = copy_func(PreTrainedModel.push_to_hub) -if PreTrainedModel.push_to_hub.__doc__ is not None: - PreTrainedModel.push_to_hub.__doc__ = PreTrainedModel.push_to_hub.__doc__.format( - object="model", object_class="AutoModel", object_files="model file" - ) - - -class PoolerStartLogits(nn.Module): - """ - Compute SQuAD start logits from sequence hidden states. - - Args: - config ([`PretrainedConfig`]): - The config used by the model, will be used to grab the `hidden_size` of the model. - """ - - def __init__(self, config: PretrainedConfig): - super().__init__() - self.dense = nn.Linear(config.hidden_size, 1) - - def forward( - self, hidden_states: torch.FloatTensor, p_mask: Optional[torch.FloatTensor] = None - ) -> torch.FloatTensor: - """ - Args: - hidden_states (`torch.FloatTensor` of shape `(batch_size, seq_len, hidden_size)`): - The final hidden states of the model. - p_mask (`torch.FloatTensor` of shape `(batch_size, seq_len)`, *optional*): - Mask for tokens at invalid position, such as query and special symbols (PAD, SEP, CLS). 1.0 means token - should be masked. - - Returns: - `torch.FloatTensor`: The start logits for SQuAD. - """ - x = self.dense(hidden_states).squeeze(-1) - - if p_mask is not None: - if get_parameter_dtype(self) == torch.float16: - x = x * (1 - p_mask) - 65500 * p_mask - else: - x = x * (1 - p_mask) - 1e30 * p_mask - - return x - - -class PoolerEndLogits(nn.Module): - """ - Compute SQuAD end logits from sequence hidden states. - - Args: - config ([`PretrainedConfig`]): - The config used by the model, will be used to grab the `hidden_size` of the model and the `layer_norm_eps` - to use. - """ - - def __init__(self, config: PretrainedConfig): - super().__init__() - self.dense_0 = nn.Linear(config.hidden_size * 2, config.hidden_size) - self.activation = nn.Tanh() - self.LayerNorm = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps) - self.dense_1 = nn.Linear(config.hidden_size, 1) - - def forward( - self, - hidden_states: torch.FloatTensor, - start_states: Optional[torch.FloatTensor] = None, - start_positions: Optional[torch.LongTensor] = None, - p_mask: Optional[torch.FloatTensor] = None, - ) -> torch.FloatTensor: - """ - Args: - hidden_states (`torch.FloatTensor` of shape `(batch_size, seq_len, hidden_size)`): - The final hidden states of the model. - start_states (`torch.FloatTensor` of shape `(batch_size, seq_len, hidden_size)`, *optional*): - The hidden states of the first tokens for the labeled span. - start_positions (`torch.LongTensor` of shape `(batch_size,)`, *optional*): - The position of the first token for the labeled span. - p_mask (`torch.FloatTensor` of shape `(batch_size, seq_len)`, *optional*): - Mask for tokens at invalid position, such as query and special symbols (PAD, SEP, CLS). 1.0 means token - should be masked. - - - - One of `start_states` or `start_positions` should be not `None`. If both are set, `start_positions` overrides - `start_states`. - - - - Returns: - `torch.FloatTensor`: The end logits for SQuAD. - """ - assert ( - start_states is not None or start_positions is not None - ), "One of start_states, start_positions should be not None" - if start_positions is not None: - slen, hsz = hidden_states.shape[-2:] - start_positions = start_positions[:, None, None].expand(-1, -1, hsz) # shape (bsz, 1, hsz) - start_states = hidden_states.gather(-2, start_positions) # shape (bsz, 1, hsz) - start_states = start_states.expand(-1, slen, -1) # shape (bsz, slen, hsz) - - x = self.dense_0(torch.cat([hidden_states, start_states], dim=-1)) - x = self.activation(x) - x = self.LayerNorm(x) - x = self.dense_1(x).squeeze(-1) - - if p_mask is not None: - if get_parameter_dtype(self) == torch.float16: - x = x * (1 - p_mask) - 65500 * p_mask - else: - x = x * (1 - p_mask) - 1e30 * p_mask - - return x - - -class PoolerAnswerClass(nn.Module): - """ - Compute SQuAD 2.0 answer class from classification and start tokens hidden states. - - Args: - config ([`PretrainedConfig`]): - The config used by the model, will be used to grab the `hidden_size` of the model. - """ - - def __init__(self, config): - super().__init__() - self.dense_0 = nn.Linear(config.hidden_size * 2, config.hidden_size) - self.activation = nn.Tanh() - self.dense_1 = nn.Linear(config.hidden_size, 1, bias=False) - - def forward( - self, - hidden_states: torch.FloatTensor, - start_states: Optional[torch.FloatTensor] = None, - start_positions: Optional[torch.LongTensor] = None, - cls_index: Optional[torch.LongTensor] = None, - ) -> torch.FloatTensor: - """ - Args: - hidden_states (`torch.FloatTensor` of shape `(batch_size, seq_len, hidden_size)`): - The final hidden states of the model. - start_states (`torch.FloatTensor` of shape `(batch_size, seq_len, hidden_size)`, *optional*): - The hidden states of the first tokens for the labeled span. - start_positions (`torch.LongTensor` of shape `(batch_size,)`, *optional*): - The position of the first token for the labeled span. - cls_index (`torch.LongTensor` of shape `(batch_size,)`, *optional*): - Position of the CLS token for each sentence in the batch. If `None`, takes the last token. - - - - One of `start_states` or `start_positions` should be not `None`. If both are set, `start_positions` overrides - `start_states`. - - - - Returns: - `torch.FloatTensor`: The SQuAD 2.0 answer class. - """ - # No dependency on end_feature so that we can obtain one single `cls_logits` for each sample. - hsz = hidden_states.shape[-1] - assert ( - start_states is not None or start_positions is not None - ), "One of start_states, start_positions should be not None" - if start_positions is not None: - start_positions = start_positions[:, None, None].expand(-1, -1, hsz) # shape (bsz, 1, hsz) - start_states = hidden_states.gather(-2, start_positions).squeeze(-2) # shape (bsz, hsz) - - if cls_index is not None: - cls_index = cls_index[:, None, None].expand(-1, -1, hsz) # shape (bsz, 1, hsz) - cls_token_state = hidden_states.gather(-2, cls_index).squeeze(-2) # shape (bsz, hsz) - else: - cls_token_state = hidden_states[:, -1, :] # shape (bsz, hsz) - - x = self.dense_0(torch.cat([start_states, cls_token_state], dim=-1)) - x = self.activation(x) - x = self.dense_1(x).squeeze(-1) - - return x - - -@dataclass -class SquadHeadOutput(ModelOutput): - """ - Base class for outputs of question answering models using a [`~modeling_utils.SQuADHead`]. - - Args: - loss (`torch.FloatTensor` of shape `(1,)`, *optional*, returned if both `start_positions` and `end_positions` are provided): - Classification loss as the sum of start token, end token (and is_impossible if provided) classification - losses. - start_top_log_probs (`torch.FloatTensor` of shape `(batch_size, config.start_n_top)`, *optional*, returned if `start_positions` or `end_positions` is not provided): - Log probabilities for the top config.start_n_top start token possibilities (beam-search). - start_top_index (`torch.LongTensor` of shape `(batch_size, config.start_n_top)`, *optional*, returned if `start_positions` or `end_positions` is not provided): - Indices for the top config.start_n_top start token possibilities (beam-search). - end_top_log_probs (`torch.FloatTensor` of shape `(batch_size, config.start_n_top * config.end_n_top)`, *optional*, returned if `start_positions` or `end_positions` is not provided): - Log probabilities for the top `config.start_n_top * config.end_n_top` end token possibilities - (beam-search). - end_top_index (`torch.LongTensor` of shape `(batch_size, config.start_n_top * config.end_n_top)`, *optional*, returned if `start_positions` or `end_positions` is not provided): - Indices for the top `config.start_n_top * config.end_n_top` end token possibilities (beam-search). - cls_logits (`torch.FloatTensor` of shape `(batch_size,)`, *optional*, returned if `start_positions` or `end_positions` is not provided): - Log probabilities for the `is_impossible` label of the answers. - - """ - - loss: Optional[torch.FloatTensor] = None - start_top_log_probs: Optional[torch.FloatTensor] = None - start_top_index: Optional[torch.LongTensor] = None - end_top_log_probs: Optional[torch.FloatTensor] = None - end_top_index: Optional[torch.LongTensor] = None - cls_logits: Optional[torch.FloatTensor] = None - - -class SQuADHead(nn.Module): - r""" - A SQuAD head inspired by XLNet. - - Args: - config ([`PretrainedConfig`]): - The config used by the model, will be used to grab the `hidden_size` of the model and the `layer_norm_eps` - to use. - """ - - def __init__(self, config): - super().__init__() - self.start_n_top = config.start_n_top - self.end_n_top = config.end_n_top - - self.start_logits = PoolerStartLogits(config) - self.end_logits = PoolerEndLogits(config) - self.answer_class = PoolerAnswerClass(config) - - @replace_return_docstrings(output_type=SquadHeadOutput, config_class=PretrainedConfig) - def forward( - self, - hidden_states: torch.FloatTensor, - start_positions: Optional[torch.LongTensor] = None, - end_positions: Optional[torch.LongTensor] = None, - cls_index: Optional[torch.LongTensor] = None, - is_impossible: Optional[torch.LongTensor] = None, - p_mask: Optional[torch.FloatTensor] = None, - return_dict: bool = False, - ) -> Union[SquadHeadOutput, Tuple[torch.FloatTensor]]: - """ - Args: - hidden_states (`torch.FloatTensor` of shape `(batch_size, seq_len, hidden_size)`): - Final hidden states of the model on the sequence tokens. - start_positions (`torch.LongTensor` of shape `(batch_size,)`, *optional*): - Positions of the first token for the labeled span. - end_positions (`torch.LongTensor` of shape `(batch_size,)`, *optional*): - Positions of the last token for the labeled span. - cls_index (`torch.LongTensor` of shape `(batch_size,)`, *optional*): - Position of the CLS token for each sentence in the batch. If `None`, takes the last token. - is_impossible (`torch.LongTensor` of shape `(batch_size,)`, *optional*): - Whether the question has a possible answer in the paragraph or not. - p_mask (`torch.FloatTensor` of shape `(batch_size, seq_len)`, *optional*): - Mask for tokens at invalid position, such as query and special symbols (PAD, SEP, CLS). 1.0 means token - should be masked. - return_dict (`bool`, *optional*, defaults to `False`): - Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple. - - Returns: - """ - start_logits = self.start_logits(hidden_states, p_mask=p_mask) - - if start_positions is not None and end_positions is not None: - # If we are on multi-GPU, let's remove the dimension added by batch splitting - for x in (start_positions, end_positions, cls_index, is_impossible): - if x is not None and x.dim() > 1: - x.squeeze_(-1) - - # during training, compute the end logits based on the ground truth of the start position - end_logits = self.end_logits(hidden_states, start_positions=start_positions, p_mask=p_mask) - - loss_fct = CrossEntropyLoss() - start_loss = loss_fct(start_logits, start_positions) - end_loss = loss_fct(end_logits, end_positions) - total_loss = (start_loss + end_loss) / 2 - - if cls_index is not None and is_impossible is not None: - # Predict answerability from the representation of CLS and START - cls_logits = self.answer_class(hidden_states, start_positions=start_positions, cls_index=cls_index) - loss_fct_cls = nn.BCEWithLogitsLoss() - cls_loss = loss_fct_cls(cls_logits, is_impossible) - - # note(zhiliny): by default multiply the loss by 0.5 so that the scale is comparable to start_loss and end_loss - total_loss += cls_loss * 0.5 - - return SquadHeadOutput(loss=total_loss) if return_dict else (total_loss,) - - else: - # during inference, compute the end logits based on beam search - bsz, slen, hsz = hidden_states.size() - start_log_probs = nn.functional.softmax(start_logits, dim=-1) # shape (bsz, slen) - - start_top_log_probs, start_top_index = torch.topk( - start_log_probs, self.start_n_top, dim=-1 - ) # shape (bsz, start_n_top) - start_top_index_exp = start_top_index.unsqueeze(-1).expand(-1, -1, hsz) # shape (bsz, start_n_top, hsz) - start_states = torch.gather(hidden_states, -2, start_top_index_exp) # shape (bsz, start_n_top, hsz) - start_states = start_states.unsqueeze(1).expand(-1, slen, -1, -1) # shape (bsz, slen, start_n_top, hsz) - - hidden_states_expanded = hidden_states.unsqueeze(2).expand_as( - start_states - ) # shape (bsz, slen, start_n_top, hsz) - p_mask = p_mask.unsqueeze(-1) if p_mask is not None else None - end_logits = self.end_logits(hidden_states_expanded, start_states=start_states, p_mask=p_mask) - end_log_probs = nn.functional.softmax(end_logits, dim=1) # shape (bsz, slen, start_n_top) - - end_top_log_probs, end_top_index = torch.topk( - end_log_probs, self.end_n_top, dim=1 - ) # shape (bsz, end_n_top, start_n_top) - end_top_log_probs = end_top_log_probs.view(-1, self.start_n_top * self.end_n_top) - end_top_index = end_top_index.view(-1, self.start_n_top * self.end_n_top) - - start_states = torch.einsum("blh,bl->bh", hidden_states, start_log_probs) - cls_logits = self.answer_class(hidden_states, start_states=start_states, cls_index=cls_index) - - if not return_dict: - return (start_top_log_probs, start_top_index, end_top_log_probs, end_top_index, cls_logits) - else: - return SquadHeadOutput( - start_top_log_probs=start_top_log_probs, - start_top_index=start_top_index, - end_top_log_probs=end_top_log_probs, - end_top_index=end_top_index, - cls_logits=cls_logits, - ) - - -class SequenceSummary(nn.Module): - r""" - Compute a single vector summary of a sequence hidden states. - - Args: - config ([`PretrainedConfig`]): - The config used by the model. Relevant arguments in the config class of the model are (refer to the actual - config class of your model for the default values it uses): - - - **summary_type** (`str`) -- The method to use to make this summary. Accepted values are: - - - `"last"` -- Take the last token hidden state (like XLNet) - - `"first"` -- Take the first token hidden state (like Bert) - - `"mean"` -- Take the mean of all tokens hidden states - - `"cls_index"` -- Supply a Tensor of classification token position (GPT/GPT-2) - - `"attn"` -- Not implemented now, use multi-head attention - - - **summary_use_proj** (`bool`) -- Add a projection after the vector extraction. - - **summary_proj_to_labels** (`bool`) -- If `True`, the projection outputs to `config.num_labels` classes - (otherwise to `config.hidden_size`). - - **summary_activation** (`Optional[str]`) -- Set to `"tanh"` to add a tanh activation to the output, - another string or `None` will add no activation. - - **summary_first_dropout** (`float`) -- Optional dropout probability before the projection and activation. - - **summary_last_dropout** (`float`)-- Optional dropout probability after the projection and activation. - """ - - def __init__(self, config: PretrainedConfig): - super().__init__() - - self.summary_type = getattr(config, "summary_type", "last") - if self.summary_type == "attn": - # We should use a standard multi-head attention module with absolute positional embedding for that. - # Cf. https://github.com/zihangdai/xlnet/blob/master/modeling.py#L253-L276 - # We can probably just use the multi-head attention module of PyTorch >=1.1.0 - raise NotImplementedError - - self.summary = Identity() - if hasattr(config, "summary_use_proj") and config.summary_use_proj: - if hasattr(config, "summary_proj_to_labels") and config.summary_proj_to_labels and config.num_labels > 0: - num_classes = config.num_labels - else: - num_classes = config.hidden_size - self.summary = nn.Linear(config.hidden_size, num_classes) - - activation_string = getattr(config, "summary_activation", None) - self.activation: Callable = get_activation(activation_string) if activation_string else Identity() - - self.first_dropout = Identity() - if hasattr(config, "summary_first_dropout") and config.summary_first_dropout > 0: - self.first_dropout = nn.Dropout(config.summary_first_dropout) - - self.last_dropout = Identity() - if hasattr(config, "summary_last_dropout") and config.summary_last_dropout > 0: - self.last_dropout = nn.Dropout(config.summary_last_dropout) - - def forward( - self, hidden_states: torch.FloatTensor, cls_index: Optional[torch.LongTensor] = None - ) -> torch.FloatTensor: - """ - Compute a single vector summary of a sequence hidden states. - - Args: - hidden_states (`torch.FloatTensor` of shape `[batch_size, seq_len, hidden_size]`): - The hidden states of the last layer. - cls_index (`torch.LongTensor` of shape `[batch_size]` or `[batch_size, ...]` where ... are optional leading dimensions of `hidden_states`, *optional*): - Used if `summary_type == "cls_index"` and takes the last token of the sequence as classification token. - - Returns: - `torch.FloatTensor`: The summary of the sequence hidden states. - """ - if self.summary_type == "last": - output = hidden_states[:, -1] - elif self.summary_type == "first": - output = hidden_states[:, 0] - elif self.summary_type == "mean": - output = hidden_states.mean(dim=1) - elif self.summary_type == "cls_index": - if cls_index is None: - cls_index = torch.full_like( - hidden_states[..., :1, :], - hidden_states.shape[-2] - 1, - dtype=torch.long, - ) - else: - cls_index = cls_index.unsqueeze(-1).unsqueeze(-1) - cls_index = cls_index.expand((-1,) * (cls_index.dim() - 1) + (hidden_states.size(-1),)) - # shape of cls_index: (bsz, XX, 1, hidden_size) where XX are optional leading dim of hidden_states - output = hidden_states.gather(-2, cls_index).squeeze(-2) # shape (bsz, XX, hidden_size) - elif self.summary_type == "attn": - raise NotImplementedError - - output = self.first_dropout(output) - output = self.summary(output) - output = self.activation(output) - output = self.last_dropout(output) - - return output - - -def unwrap_model(model: nn.Module, recursive: bool = False) -> nn.Module: - """ - Recursively unwraps a model from potential containers (as used in distributed training). - - Args: - model (`torch.nn.Module`): The model to unwrap. - recursive (`bool`, *optional*, defaults to `False`): - Whether to recursively extract all cases of `module.module` from `model` as well as unwrap child sublayers - recursively, not just the top-level distributed containers. - """ - # Use accelerate implementation if available (should always be the case when using torch) - # This is for pytorch, as we also have to handle things like dynamo - if is_accelerate_available(): - kwargs = {} - if recursive: - if not is_accelerate_available("0.29.0"): - raise RuntimeError( - "Setting `recursive=True` to `unwrap_model` requires `accelerate` v0.29.0. Please upgrade your version of accelerate" - ) - else: - kwargs["recursive"] = recursive - return extract_model_from_parallel(model, **kwargs) - else: - # since there could be multiple levels of wrapping, unwrap recursively - if hasattr(model, "module"): - return unwrap_model(model.module) - else: - return model - - -def expand_device_map(device_map, param_names, start_prefix): - """ - Expand a device map to return the correspondance parameter name to device. - """ - new_device_map = {} - param_names = [p[len(start_prefix) :] for p in param_names if p.startswith(start_prefix)] - for module, device in device_map.items(): - new_device_map.update( - {p: device for p in param_names if p == module or p.startswith(f"{module}.") or module == ""} - ) - return new_device_map - - -def get_disk_only_shard_files(device_map, sharded_metadata, start_prefix): - """ - Returns the list of shard files containing only weights offloaded to disk. - """ - - weight_map = { - p[len(start_prefix) :]: v for p, v in sharded_metadata["weight_map"].items() if p.startswith(start_prefix) - } - files_content = collections.defaultdict(list) - for weight_name, filename in weight_map.items(): - while len(weight_name) > 0 and weight_name not in device_map: - weight_name = ".".join(weight_name.split(".")[:-1]) - files_content[filename].append(device_map[weight_name]) - - return [fname for fname, devices in files_content.items() if set(devices) == {"disk"}]