--- library_name: transformers tags: - generated_from_trainer datasets: - generator metrics: - accuracy - f1 model-index: - name: EraClassifierBiLSTM results: [] --- # EraClassifierBiLSTM This model is a fine-tuned version of [](https://huggingface.co/) on the generator dataset. It achieves the following results on the evaluation set: - Loss: 1.1056 - Accuracy: 0.5736 - F1: 0.4174 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 4.761974698772928e-05 - train_batch_size: 64 - eval_batch_size: 64 - seed: 42 - optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: reduce_lr_on_plateau - num_epochs: 5 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 | |:-------------:|:------:|:-----:|:---------------:|:--------:|:------:| | 1.2797 | 0.1031 | 2000 | 1.3522 | 0.4608 | 0.2486 | | 1.1521 | 0.2063 | 4000 | 1.2422 | 0.4987 | 0.3139 | | 1.0887 | 0.3094 | 6000 | 1.2189 | 0.5056 | 0.3223 | | 1.0432 | 0.4126 | 8000 | 1.1715 | 0.5252 | 0.3479 | | 1.019 | 0.5157 | 10000 | 1.2021 | 0.5150 | 0.3304 | | 0.9963 | 0.6188 | 12000 | 1.1789 | 0.5252 | 0.3487 | | 0.976 | 0.7220 | 14000 | 1.1151 | 0.5759 | 0.3983 | | 0.9544 | 0.8251 | 16000 | 1.1800 | 0.5299 | 0.3529 | | 0.9455 | 0.9283 | 18000 | 1.1866 | 0.5415 | 0.3662 | | 0.9276 | 1.0314 | 20000 | 1.1744 | 0.5350 | 0.3792 | | 0.9167 | 1.1345 | 22000 | 1.1032 | 0.5774 | 0.4120 | | 0.9084 | 1.2377 | 24000 | 1.1312 | 0.5553 | 0.3818 | | 0.8758 | 1.3408 | 26000 | 1.1042 | 0.5667 | 0.4109 | | 0.859 | 1.4440 | 28000 | 1.1065 | 0.5733 | 0.4125 | | 0.8607 | 1.5471 | 30000 | 1.1104 | 0.5695 | 0.4115 | | 0.8526 | 1.6503 | 32000 | 1.1011 | 0.5830 | 0.4255 | | 0.8559 | 1.7534 | 34000 | 1.1083 | 0.5765 | 0.4136 | | 0.8501 | 1.8565 | 36000 | 1.1113 | 0.5752 | 0.4163 | | 0.8497 | 1.9597 | 38000 | 1.0935 | 0.5775 | 0.4220 | | 0.8473 | 2.0628 | 40000 | 1.1092 | 0.5745 | 0.4181 | | 0.8441 | 2.1660 | 42000 | 1.1095 | 0.5733 | 0.4164 | | 0.8396 | 2.2691 | 44000 | 1.0935 | 0.5852 | 0.4299 | | 0.8391 | 2.3722 | 46000 | 1.1054 | 0.5744 | 0.4160 | | 0.8401 | 2.4754 | 48000 | 1.1008 | 0.5755 | 0.4198 | | 0.8327 | 2.5785 | 50000 | 1.1097 | 0.5712 | 0.4132 | | 0.838 | 2.6817 | 52000 | 1.1055 | 0.5720 | 0.4143 | | 0.8329 | 2.7848 | 54000 | 1.1055 | 0.5728 | 0.4165 | | 0.8346 | 2.8879 | 56000 | 1.1038 | 0.5743 | 0.4172 | | 0.8353 | 2.9911 | 58000 | 1.1090 | 0.5728 | 0.4167 | | 0.8385 | 3.0942 | 60000 | 1.1013 | 0.5755 | 0.4201 | | 0.8337 | 3.1974 | 62000 | 1.1088 | 0.5733 | 0.4163 | | 0.8256 | 3.3005 | 64000 | 1.1076 | 0.5748 | 0.4177 | | 0.8367 | 3.4036 | 66000 | 1.1066 | 0.5730 | 0.4159 | | 0.831 | 3.5068 | 68000 | 1.1083 | 0.5732 | 0.4164 | | 0.8283 | 3.6099 | 70000 | 1.1067 | 0.5744 | 0.4173 | | 0.8349 | 3.7131 | 72000 | 1.1058 | 0.5747 | 0.4180 | | 0.8313 | 3.8162 | 74000 | 1.1058 | 0.5741 | 0.4171 | | 0.8313 | 3.9193 | 76000 | 1.1065 | 0.5735 | 0.4169 | | 0.8309 | 4.0225 | 78000 | 1.1067 | 0.5736 | 0.4171 | | 0.8331 | 4.1256 | 80000 | 1.1055 | 0.5744 | 0.4174 | | 0.8371 | 4.2288 | 82000 | 1.1058 | 0.5735 | 0.4167 | | 0.8344 | 4.3319 | 84000 | 1.1060 | 0.5734 | 0.4166 | | 0.8291 | 4.4350 | 86000 | 1.1049 | 0.5747 | 0.4185 | | 0.8343 | 4.5382 | 88000 | 1.1053 | 0.5735 | 0.4171 | | 0.8293 | 4.6413 | 90000 | 1.1056 | 0.5736 | 0.4174 | | 0.8294 | 4.7445 | 92000 | 1.1056 | 0.5736 | 0.4174 | | 0.8316 | 4.8476 | 94000 | 1.1055 | 0.5736 | 0.4174 | | 0.8264 | 4.9508 | 96000 | 1.1056 | 0.5736 | 0.4174 | ### Framework versions - Transformers 4.49.0 - Pytorch 2.6.0+cu126 - Datasets 3.3.2 - Tokenizers 0.21.0