File size: 9,655 Bytes
e043d8b |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 |
import streamlit as st
import torch
from transformers import AutoModelForCausalLM, TextIteratorStreamer, AutoConfig
import gc
from threading import Thread
from Qwenov3Config import Qwenov3Config, Qwenov3
from PIL import Image
MODEL_MAPPING = {
'QwenoV3-Pretrain': '',
'QwenoV3-SFT': '',
}
def unload_model():
if 'model' in st.session_state:
del st.session_state.model
if 'tokenizer' in st.session_state:
del st.session_state.tokenizer
if 'processor' in st.session_state:
del st.session_state.processor
if 'streamer' in st.session_state:
del st.session_state.streamer
torch.cuda.empty_cache()
gc.collect()
def call_model(info_placeholder, messages, generated_text, message_placeholder, image=None):
info_placeholder.markdown(f'已选择{st.session_state.model_display}执行任务')
if image is not None:
image = Image.open(image).convert('RGB')
if '<image>' not in messages[1]['content']:
messages[1]['content'] = '<image>\n' + messages[1]['content']
query_text = st.session_state.tokenizer.apply_chat_template(
messages,
tokenize=False,
add_generation_prompt=True,
enable_thinking=False
)
if '<image>' in query_text:
query_text = query_text.replace('<image>', '<|vision_start|>' + '<|image_pad|>' *
st.session_state.model.config.image_pad_num + '<|vision_end|>')
text_inputs = st.session_state.tokenizer(query_text, return_tensors="pt")
input_ids = text_inputs['input_ids'].to(st.session_state.model.device)
attention_mask = text_inputs['attention_mask'].to(st.session_state.model.device)
text_embeds = st.session_state.model.llm_model.get_input_embeddings()(input_ids)
if image is not None:
pixel_values = st.session_state.processor(images=image, return_tensors="pt")['pixel_values'].to(
st.session_state.model.device)
image_embeds = st.session_state.model.vision_model(pixel_values).last_hidden_state
patch_embeds = image_embeds[:, 5:, :]
b, num_patches, hidden_dim = patch_embeds.shape
patch_embeds = patch_embeds.view(b, num_patches // 4, hidden_dim * 4)
image_features = st.session_state.model.adapter(patch_embeds)
text_embeds = text_embeds.to(image_features.dtype)
inputs_embeds = st.session_state.model.merge_input_ids_with_image_features(image_features, text_embeds, input_ids)
else:
inputs_embeds = text_embeds
generate_params = dict(
inputs_embeds=inputs_embeds,
attention_mask=attention_mask,
max_new_tokens=st.session_state.max_new_tokens,
min_new_tokens=st.session_state.min_new_tokens,
do_sample=True,
temperature=st.session_state.temperature,
top_k=st.session_state.top_k,
top_p=st.session_state.top_p,
min_p=0.0,
repetition_penalty=st.session_state.repetition_penalty,
streamer=st.session_state.streamer,
eos_token_id=st.session_state.tokenizer.eos_token_id
)
thread = Thread(target=st.session_state.model.llm_model.generate, kwargs=generate_params)
thread.start()
for new_text in st.session_state.streamer:
generated_text += new_text
message_placeholder.markdown(generated_text)
return generated_text
def ini_message():
if 'messages' not in st.session_state:
st.session_state.messages = [
{"role": "system", "content": "You are QwenoV3, a helpful assistant created by 天烨."},
]
if 'uploaded_image' not in st.session_state:
st.session_state.uploaded_image = None
def parameter_settings():
with st.sidebar:
previous_model = st.session_state.get('model_display', None)
st.session_state.model_display = st.selectbox("选择模型", list(MODEL_MAPPING.keys()),
index=len(MODEL_MAPPING.keys()) - 1, help="选择模型")
st.session_state.model_path = MODEL_MAPPING[st.session_state.model_display]
with st.expander("对话参数", expanded=False):
col1, col2 = st.columns(2)
with col1:
st.session_state.temperature = st.slider("Temperature", 0.0, 2.0, 0.7, 0.1,
help="控制模型回答的多样性,值越高表示回复多样性越高")
st.session_state.min_new_tokens = st.number_input("Min Tokens",
min_value=0,
max_value=512,
value=10,
help="生成文本的最小长度")
st.session_state.max_new_tokens = st.number_input("Max Tokens",
min_value=1,
max_value=4096,
value=512,
help="生成文本的最大长度")
with col2:
st.session_state.top_p = st.slider("Top P", 0.0, 1.0, 0.8, 0.1,
help="控制词汇选择的多样性,值越高表示潜在生成词汇越多样")
st.session_state.top_k = st.slider("Top K", 0, 80, 20, 1,
help="控制词汇选择的多样性,值越高表示潜在生成词汇越多样")
st.session_state.repetition_penalty = st.slider("Repetition Penalty", 0.0, 2.0, 1.05, 0.1,
help="控制回复主题的多样性性,值越高重复性越低")
with st.expander("图片上传", expanded=False):
st.session_state.uploaded_image = st.file_uploader(
"上传图片",
type=["jpg", "jpeg", "png"]
)
if st.session_state.uploaded_image:
image = Image.open(st.session_state.uploaded_image)
width, height = image.size
if width > 256 or height > 256:
scale = 256 / max(height, width)
new_h, new_w = int(height * scale), int(width * scale)
image = image.resize((new_w, new_h), Image.BILINEAR)
st.image(image, caption="图片预览")
if st.button("开启新对话", help="开启新对话将清空当前对话记录"):
st.session_state.uploaded_image = None
st.session_state.messages = [
{"role": "system", "content": "You are QwenoV3, a helpful assistant created by 天烨."},
]
st.success("已成功开启新的对话")
st.rerun()
if previous_model != st.session_state.model_display or 'tokenizer' not in st.session_state or 'model' not in st.session_state or 'processor' not in st.session_state:
unload_model()
try:
with st.spinner('加载模型中...'):
AutoConfig.register("Qwenov3", Qwenov3Config)
AutoModelForCausalLM.register(Qwenov3Config, Qwenov3)
st.session_state.model = AutoModelForCausalLM.from_pretrained(
st.session_state.model_path,
torch_dtype=torch.bfloat16,
device_map="auto",
low_cpu_mem_usage=True,
trust_remote_code=True
)
st.session_state.tokenizer = st.session_state.model.tokenizer
st.session_state.processor = st.session_state.model.processor
st.session_state.streamer = TextIteratorStreamer(st.session_state.tokenizer,
skip_prompt=True, skip_special_tokens=True)
except Exception as e:
st.error('模型加载出错:', e)
return
def main():
st.markdown("""
<h1 style='text-align: center;'>
QwenoV3 - Marrying DinoV3 With Qwen3 🫡
</h1>
<div style='text-align: center; margin-bottom: 20px;'>
</div>
""", unsafe_allow_html=True)
ini_message()
parameter_settings()
for message in st.session_state.messages:
if message["role"] == "system":
continue
with st.chat_message(message["role"]):
st.markdown(message["content"])
if user_input := st.chat_input("在这里输入您的问题:", key="chat_input"):
with st.chat_message("user"):
st.markdown(user_input)
st.session_state.messages.append({"role": "user", "content": user_input})
with st.chat_message("assistant"):
info_placeholder = st.empty()
message_placeholder = st.empty()
generated_text = ""
try:
with torch.inference_mode():
generated_text = call_model(info_placeholder, st.session_state.messages, generated_text,
message_placeholder, st.session_state.uploaded_image)
st.session_state.messages.append({"role": "assistant", "content": generated_text})
except Exception as e:
st.error(f"生成回答时出错: {str(e)}")
if __name__ == '__main__':
main()
|