TianYeZ1214 commited on
Commit
4e3b08f
·
verified ·
1 Parent(s): 9a07688

添加flash attn和sdpa支持,添加processor

Browse files
Files changed (2) hide show
  1. Qwenov3Config.py +110 -57
  2. inference.py +33 -27
Qwenov3Config.py CHANGED
@@ -1,8 +1,14 @@
1
- from transformers import PreTrainedModel, PretrainedConfig, GenerationMixin
 
2
  from modelscope import AutoConfig, AutoProcessor, AutoModel, AutoTokenizer, AutoModelForCausalLM
3
  import torch
4
  import torch.nn as nn
 
5
  from transformers.modeling_outputs import CausalLMOutputWithPast
 
 
 
 
6
 
7
 
8
  class Qwenov3Config(PretrainedConfig):
@@ -34,8 +40,55 @@ class Qwenov3Config(PretrainedConfig):
34
  super().__init__(**kwargs)
35
 
36
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
37
  class Qwenov3(GenerationMixin, PreTrainedModel):
38
  config_class = Qwenov3Config
 
 
 
 
 
 
 
 
39
 
40
  def __init__(self, config):
41
  super().__init__(config)
@@ -90,48 +143,61 @@ class Qwenov3(GenerationMixin, PreTrainedModel):
90
  for param in self.llm_model.parameters():
91
  param.requires_grad = False
92
 
93
- def forward(self, input_ids=None, labels=None, pixel_values=None, attention_mask=None,
94
- inputs_embeds=None, past_key_values=None, use_cache=None, **kwargs):
95
-
96
- if inputs_embeds is None:
97
- text_embeds = self.llm_model.get_input_embeddings()(input_ids)
98
- if pixel_values is not None:
99
- image_embeds = self.vision_model(pixel_values).last_hidden_state
100
- patch_embeds = image_embeds[:, 5:, :] # [batch, 196, 1024]
101
- b, num_patches, hidden_dim = patch_embeds.shape
102
- patch_embeds = patch_embeds.view(b, num_patches // 4, hidden_dim * 4) # [batch, 49, 4096]
103
- image_features = self.adapter(patch_embeds)
104
- text_embeds = text_embeds.to(image_features.dtype)
105
- inputs_embeds = self.merge_input_ids_with_image_features(image_features, text_embeds, input_ids)
106
- else:
107
- inputs_embeds = text_embeds
 
 
 
 
 
 
 
 
 
108
 
109
  outputs = self.llm_model(
110
- inputs_embeds=inputs_embeds,
111
  attention_mask=attention_mask,
 
112
  past_key_values=past_key_values,
 
113
  use_cache=use_cache,
114
- return_dict=True
 
115
  )
116
-
117
- logits = outputs.logits
 
 
 
118
  loss = None
119
  if labels is not None:
120
- loss_fct = nn.CrossEntropyLoss(ignore_index=self.tokenizer.pad_token_id)
121
- loss = loss_fct(
122
- logits.view(-1, logits.size(-1)), labels.view(-1).to(logits.device)
123
- )
124
-
125
  return CausalLMOutputWithPast(
126
- loss=loss,
127
  logits=logits,
128
  past_key_values=outputs.past_key_values,
129
  hidden_states=outputs.hidden_states,
130
- attentions=outputs.attentions
131
  )
132
 
133
  @torch.inference_mode()
134
- def generate(self, input_ids=None, pixel_values=None, attention_mask=None,
135
  max_new_tokens=512, temperature=0.7, top_p=0.8, top_k=20,
136
  do_sample=True, num_beams=1, use_cache=True, **kwargs):
137
  if pixel_values is not None:
@@ -143,36 +209,23 @@ class Qwenov3(GenerationMixin, PreTrainedModel):
143
  image_features = self.adapter(patch_embeds)
144
  text_embeds = text_embeds.to(image_features.dtype)
145
  inputs_embeds = self.merge_input_ids_with_image_features(image_features, text_embeds, input_ids)
146
- return self.llm_model.generate(
147
- input_ids=input_ids,
148
- inputs_embeds=inputs_embeds,
149
- attention_mask=attention_mask,
150
- max_new_tokens=max_new_tokens,
151
- temperature=temperature,
152
- top_p=top_p,
153
- top_k=top_k,
154
- do_sample=do_sample,
155
- num_beams=num_beams,
156
- use_cache=use_cache,
157
- pad_token_id=self.tokenizer.pad_token_id,
158
- eos_token_id=self.tokenizer.eos_token_id,
159
- **kwargs
160
- )
161
  else:
162
- return self.llm_model.generate(
163
- input_ids=input_ids,
164
- attention_mask=attention_mask,
165
- max_new_tokens=max_new_tokens,
166
- temperature=temperature,
167
- top_p=top_p,
168
- top_k=top_k,
169
- do_sample=do_sample,
170
- num_beams=num_beams,
171
- use_cache=use_cache,
172
- pad_token_id=self.tokenizer.pad_token_id,
173
- eos_token_id=self.tokenizer.eos_token_id,
174
- **kwargs
175
- )
 
 
176
 
177
  def can_generate(self):
178
  return True
 
1
+ from typing import Optional, Union
2
+ from transformers import PreTrainedModel, PretrainedConfig, GenerationMixin, Cache, BatchFeature
3
  from modelscope import AutoConfig, AutoProcessor, AutoModel, AutoTokenizer, AutoModelForCausalLM
4
  import torch
5
  import torch.nn as nn
6
+ from transformers.image_utils import ImageInput
7
  from transformers.modeling_outputs import CausalLMOutputWithPast
8
+ from liger_kernel.transformers import LigerCrossEntropyLoss
9
+ from transformers.processing_utils import Unpack, ProcessorMixin
10
+ from transformers.tokenization_utils_base import TextInput, PreTokenizedInput
11
+ from transformers.utils import TransformersKwargs
12
 
13
 
14
  class Qwenov3Config(PretrainedConfig):
 
40
  super().__init__(**kwargs)
41
 
42
 
43
+ class Qwenov3Processor(ProcessorMixin):
44
+ attributes = ["image_processor", "tokenizer"]
45
+ image_processor_class = "AutoImageProcessor"
46
+ tokenizer_class = "AutoTokenizer"
47
+
48
+ def __init__(self, image_processor=None, tokenizer=None, chat_template=None, image_pad_num=49, **kwargs):
49
+ self.image_token = "<|image_pad|>"
50
+ self.image_pad_num = image_pad_num
51
+ if chat_template is None and tokenizer is not None:
52
+ chat_template = getattr(tokenizer, "chat_template", None)
53
+ super().__init__(image_processor, tokenizer, chat_template=chat_template)
54
+
55
+ def __call__(
56
+ self,
57
+ images: Optional[ImageInput] = None,
58
+ text: Union[TextInput, PreTokenizedInput, list[TextInput], list[PreTokenizedInput]] = None,
59
+ return_tensors: str = "pt",
60
+ **kwargs,
61
+ ) -> BatchFeature:
62
+ image_inputs = {}
63
+ if images is not None:
64
+ image_inputs = {'pixel_values': self.image_processor(images=images, return_tensors="pt")['pixel_values']}
65
+
66
+ if not isinstance(text, list):
67
+ text = [text]
68
+
69
+ processed_text = []
70
+ for t in text:
71
+ replacement = '<|vision_start|>' + '<|image_pad|>' * self.image_pad_num + '<|vision_end|>'
72
+ if '<image>' not in t:
73
+ t = t.replace('<|im_end|>', '<image><|im_end|>', 1)
74
+ processed_text.append(t.replace('<image>', replacement))
75
+
76
+ tokenizer_kwargs = {k: v for k, v in kwargs.items() if k not in ['images']}
77
+ text_inputs = self.tokenizer(processed_text, return_tensors=return_tensors, **tokenizer_kwargs)
78
+
79
+ return BatchFeature(data={**text_inputs, **image_inputs})
80
+
81
+
82
  class Qwenov3(GenerationMixin, PreTrainedModel):
83
  config_class = Qwenov3Config
84
+ base_model_prefix = "model"
85
+ supports_gradient_checkpointing = True
86
+ _no_split_modules = ["MoeDecoderLayer"]
87
+ _skip_keys_device_placement = ["past_key_values"]
88
+ _supports_sdpa = True
89
+ _supports_flash_attn = True
90
+ _can_compile_fullgraph = False
91
+ _supports_attention_backend = True
92
 
93
  def __init__(self, config):
94
  super().__init__(config)
 
143
  for param in self.llm_model.parameters():
144
  param.requires_grad = False
145
 
146
+ def forward(
147
+ self,
148
+ input_ids: Optional[torch.LongTensor] = None,
149
+ pixel_values: Optional[torch.LongTensor] = None,
150
+ attention_mask: Optional[torch.Tensor] = None,
151
+ position_ids: Optional[torch.LongTensor] = None,
152
+ past_key_values: Optional[Cache] = None,
153
+ labels: Optional[torch.LongTensor] = None,
154
+ use_cache: Optional[bool] = None,
155
+ cache_position: Optional[torch.LongTensor] = None,
156
+ logits_to_keep: Union[int, torch.Tensor] = 0,
157
+ **kwargs: Unpack[TransformersKwargs],
158
+ ):
159
+ text_embeds = self.llm_model.get_input_embeddings()(input_ids)
160
+ if pixel_values is not None:
161
+ image_embeds = self.vision_model(pixel_values).last_hidden_state
162
+ patch_embeds = image_embeds[:, 5:, :] # [batch, 196, 1024]
163
+ b, num_patches, hidden_dim = patch_embeds.shape
164
+ patch_embeds = patch_embeds.view(b, num_patches // 4, hidden_dim * 4) # [batch, 49, 4096]
165
+ image_features = self.adapter(patch_embeds)
166
+ text_embeds = text_embeds.to(image_features.dtype)
167
+ inputs_embeds = self.merge_input_ids_with_image_features(image_features, text_embeds, input_ids)
168
+ else:
169
+ inputs_embeds = text_embeds
170
 
171
  outputs = self.llm_model(
172
+ input_ids=input_ids,
173
  attention_mask=attention_mask,
174
+ position_ids=position_ids,
175
  past_key_values=past_key_values,
176
+ inputs_embeds=inputs_embeds,
177
  use_cache=use_cache,
178
+ cache_position=cache_position,
179
+ **kwargs,
180
  )
181
+
182
+ hidden_states = outputs.last_hidden_state
183
+ slice_indices = slice(-logits_to_keep, None) if isinstance(logits_to_keep, int) else logits_to_keep
184
+ logits = self.lm_head(hidden_states[:, slice_indices, :])
185
+
186
  loss = None
187
  if labels is not None:
188
+ loss_fct = LigerCrossEntropyLoss(ignore_index=self.tokenizer.pad_token_id)
189
+ loss = loss_fct(logits.view(-1, logits.size(-1)), labels.view(-1).to(logits.device))
190
+
 
 
191
  return CausalLMOutputWithPast(
192
+ loss=loss,
193
  logits=logits,
194
  past_key_values=outputs.past_key_values,
195
  hidden_states=outputs.hidden_states,
196
+ attentions=outputs.attentions,
197
  )
198
 
199
  @torch.inference_mode()
200
+ def generate(self, input_ids=None, pixel_values=None, attention_mask=None,
201
  max_new_tokens=512, temperature=0.7, top_p=0.8, top_k=20,
202
  do_sample=True, num_beams=1, use_cache=True, **kwargs):
203
  if pixel_values is not None:
 
209
  image_features = self.adapter(patch_embeds)
210
  text_embeds = text_embeds.to(image_features.dtype)
211
  inputs_embeds = self.merge_input_ids_with_image_features(image_features, text_embeds, input_ids)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
212
  else:
213
+ inputs_embeds = self.llm_model.get_input_embeddings()(input_ids)
214
+ return self.llm_model.generate(
215
+ input_ids=input_ids,
216
+ inputs_embeds=inputs_embeds,
217
+ attention_mask=attention_mask,
218
+ max_new_tokens=max_new_tokens,
219
+ temperature=temperature,
220
+ top_p=top_p,
221
+ top_k=top_k,
222
+ do_sample=do_sample,
223
+ num_beams=num_beams,
224
+ use_cache=use_cache,
225
+ pad_token_id=self.tokenizer.pad_token_id,
226
+ eos_token_id=self.tokenizer.eos_token_id,
227
+ **kwargs
228
+ )
229
 
230
  def can_generate(self):
231
  return True
inference.py CHANGED
@@ -1,50 +1,56 @@
1
  from transformers import AutoModelForCausalLM, AutoConfig
2
- from PIL import Image
3
- from Qwenov3Config import Qwenov3Config, Qwenov3
4
  import torch
5
 
6
  device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
7
- model_path = ''
8
  AutoConfig.register("Qwenov3", Qwenov3Config)
9
  AutoModelForCausalLM.register(Qwenov3Config, Qwenov3)
 
10
  model = AutoModelForCausalLM.from_pretrained(model_path, low_cpu_mem_usage=True, dtype=torch.bfloat16,
11
- trust_remote_code=True).to(device)
 
12
  model.eval()
13
- processor = model.processor
14
- tokenizer = model.tokenizer
15
  messages = [
16
  {"role": "system", "content": 'You are a helpful assistant.'},
17
- {"role": "user", "content": '<image>\n用中文描述图片内容。'},
18
  ]
19
- if '<image>' not in messages[1]['content']:
20
- messages[1]['content'] = '<image>\n' + messages[1]['content']
21
-
22
- print(messages)
23
 
24
- q_text = tokenizer.apply_chat_template(messages,
25
- tokenize=False,
26
- add_generation_prompt=True,
27
- enable_thinking=False).replace('<image>',
28
- '<|vision_start|>' + '<|image_pad|>' * model.config.image_pad_num + '<|vision_end|>')
29
- print(q_text)
30
 
31
- text_inputs = tokenizer(q_text, return_tensors='pt')
32
- input_ids = text_inputs['input_ids'].to(device)
33
- attention_mask = text_inputs['attention_mask'].to(device)
 
 
 
34
 
35
- image = Image.open('')
36
- pixel_values = processor(images=image, return_tensors="pt")['pixel_values'].to(device)
 
 
 
 
37
 
38
  output_ids = model.generate(
39
- input_ids=input_ids,
40
- attention_mask=attention_mask,
41
- pixel_values=pixel_values,
42
  max_new_tokens=512,
43
  temperature=0.7,
44
  top_k=20,
45
  top_p=0.8,
46
  do_sample=True,
47
- repetition_penalty=1.00,
48
  )
49
 
50
- print(tokenizer.decode(output_ids[0], skip_special_tokens=True))
 
 
 
 
 
 
 
 
 
1
  from transformers import AutoModelForCausalLM, AutoConfig
2
+ from transformers.image_utils import load_image
3
+ from Qwenov3Config import Qwenov3Config, Qwenov3, Qwenov3Processor
4
  import torch
5
 
6
  device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
7
+ model_path = 'TianYeZ1214/Qwenov3'
8
  AutoConfig.register("Qwenov3", Qwenov3Config)
9
  AutoModelForCausalLM.register(Qwenov3Config, Qwenov3)
10
+
11
  model = AutoModelForCausalLM.from_pretrained(model_path, low_cpu_mem_usage=True, dtype=torch.bfloat16,
12
+ trust_remote_code=True, attn_implementation="flash_attention_2").to(device)
13
+ processor = Qwenov3Processor(image_processor=model.processor, tokenizer=model.tokenizer)
14
  model.eval()
15
+
 
16
  messages = [
17
  {"role": "system", "content": 'You are a helpful assistant.'},
18
+ {"role": "user", "content": "描述图片内容"},
19
  ]
 
 
 
 
20
 
21
+ url = "http://images.cocodataset.org/val2017/000000039769.jpg"
22
+ image = load_image(url)
 
 
 
 
23
 
24
+ q_text = processor.apply_chat_template(
25
+ messages,
26
+ tokenize=False,
27
+ add_generation_prompt=True,
28
+ enable_thinking=False
29
+ )
30
 
31
+ inputs = processor(
32
+ text=[q_text],
33
+ images=image,
34
+ padding=True,
35
+ return_tensors="pt",
36
+ ).to(device)
37
 
38
  output_ids = model.generate(
39
+ **inputs,
 
 
40
  max_new_tokens=512,
41
  temperature=0.7,
42
  top_k=20,
43
  top_p=0.8,
44
  do_sample=True,
45
+ repetition_penalty=1.1,
46
  )
47
 
48
+ output_ids = output_ids[0].tolist()
49
+
50
+ try:
51
+ index = len(output_ids) - output_ids[::-1].index(151668)
52
+ except ValueError:
53
+ index = 0
54
+
55
+ content = processor.decode(output_ids[index:], skip_special_tokens=True)
56
+ print("content:", content)