| { | |
| "best_metric": null, | |
| "best_model_checkpoint": null, | |
| "epoch": 3.9964444444444442, | |
| "global_step": 2248, | |
| "is_hyper_param_search": false, | |
| "is_local_process_zero": true, | |
| "is_world_process_zero": true, | |
| "log_history": [ | |
| { | |
| "epoch": 0.0, | |
| "learning_rate": 0.0, | |
| "loss": 1.5195, | |
| "step": 1 | |
| }, | |
| { | |
| "epoch": 0.0, | |
| "learning_rate": 7.701961097713179e-06, | |
| "loss": 1.502, | |
| "step": 2 | |
| }, | |
| { | |
| "epoch": 0.01, | |
| "learning_rate": 1.2207319521888542e-05, | |
| "loss": 1.5273, | |
| "step": 3 | |
| }, | |
| { | |
| "epoch": 0.01, | |
| "learning_rate": 1.5403922195426358e-05, | |
| "loss": 1.4043, | |
| "step": 4 | |
| }, | |
| { | |
| "epoch": 0.01, | |
| "learning_rate": 1.788339985850974e-05, | |
| "loss": 1.5195, | |
| "step": 5 | |
| }, | |
| { | |
| "epoch": 0.01, | |
| "learning_rate": 1.990928061960172e-05, | |
| "loss": 1.2734, | |
| "step": 6 | |
| }, | |
| { | |
| "epoch": 0.01, | |
| "learning_rate": 2.162213839716128e-05, | |
| "loss": 1.248, | |
| "step": 7 | |
| }, | |
| { | |
| "epoch": 0.01, | |
| "learning_rate": 2.3105883293139535e-05, | |
| "loss": 1.5273, | |
| "step": 8 | |
| }, | |
| { | |
| "epoch": 0.02, | |
| "learning_rate": 2.4414639043777084e-05, | |
| "loss": 1.2754, | |
| "step": 9 | |
| }, | |
| { | |
| "epoch": 0.02, | |
| "learning_rate": 2.558536095622292e-05, | |
| "loss": 1.4668, | |
| "step": 10 | |
| }, | |
| { | |
| "epoch": 0.02, | |
| "learning_rate": 2.6644407746943402e-05, | |
| "loss": 1.4023, | |
| "step": 11 | |
| }, | |
| { | |
| "epoch": 0.02, | |
| "learning_rate": 2.76112417173149e-05, | |
| "loss": 1.375, | |
| "step": 12 | |
| }, | |
| { | |
| "epoch": 0.02, | |
| "learning_rate": 2.8500642753555412e-05, | |
| "loss": 1.4219, | |
| "step": 13 | |
| }, | |
| { | |
| "epoch": 0.02, | |
| "learning_rate": 2.9324099494874456e-05, | |
| "loss": 1.3672, | |
| "step": 14 | |
| }, | |
| { | |
| "epoch": 0.03, | |
| "learning_rate": 3.009071938039828e-05, | |
| "loss": 1.5488, | |
| "step": 15 | |
| }, | |
| { | |
| "epoch": 0.03, | |
| "learning_rate": 3.0807844390852715e-05, | |
| "loss": 1.3418, | |
| "step": 16 | |
| }, | |
| { | |
| "epoch": 0.03, | |
| "learning_rate": 3.14814797916583e-05, | |
| "loss": 1.3652, | |
| "step": 17 | |
| }, | |
| { | |
| "epoch": 0.03, | |
| "learning_rate": 3.211660014149026e-05, | |
| "loss": 1.4473, | |
| "step": 18 | |
| }, | |
| { | |
| "epoch": 0.03, | |
| "learning_rate": 3.271737245444797e-05, | |
| "loss": 1.3379, | |
| "step": 19 | |
| }, | |
| { | |
| "epoch": 0.04, | |
| "learning_rate": 3.32873220539361e-05, | |
| "loss": 1.2031, | |
| "step": 20 | |
| }, | |
| { | |
| "epoch": 0.04, | |
| "learning_rate": 3.3829457919049824e-05, | |
| "loss": 1.207, | |
| "step": 21 | |
| }, | |
| { | |
| "epoch": 0.04, | |
| "learning_rate": 3.434636884465658e-05, | |
| "loss": 1.3066, | |
| "step": 22 | |
| }, | |
| { | |
| "epoch": 0.04, | |
| "learning_rate": 3.484029820864644e-05, | |
| "loss": 1.3633, | |
| "step": 23 | |
| }, | |
| { | |
| "epoch": 0.04, | |
| "learning_rate": 3.5313202815028076e-05, | |
| "loss": 1.2363, | |
| "step": 24 | |
| }, | |
| { | |
| "epoch": 0.04, | |
| "learning_rate": 3.576679971701948e-05, | |
| "loss": 1.2246, | |
| "step": 25 | |
| }, | |
| { | |
| "epoch": 0.05, | |
| "learning_rate": 3.620260385126859e-05, | |
| "loss": 1.1367, | |
| "step": 26 | |
| }, | |
| { | |
| "epoch": 0.05, | |
| "learning_rate": 3.6621958565665625e-05, | |
| "loss": 1.166, | |
| "step": 27 | |
| }, | |
| { | |
| "epoch": 0.05, | |
| "learning_rate": 3.7026060592587636e-05, | |
| "loss": 1.0498, | |
| "step": 28 | |
| }, | |
| { | |
| "epoch": 0.05, | |
| "learning_rate": 3.741598063790252e-05, | |
| "loss": 0.9873, | |
| "step": 29 | |
| }, | |
| { | |
| "epoch": 0.05, | |
| "learning_rate": 3.779268047811146e-05, | |
| "loss": 1.0381, | |
| "step": 30 | |
| }, | |
| { | |
| "epoch": 0.06, | |
| "learning_rate": 3.8157027253033876e-05, | |
| "loss": 0.9355, | |
| "step": 31 | |
| }, | |
| { | |
| "epoch": 0.06, | |
| "learning_rate": 3.850980548856589e-05, | |
| "loss": 1.0645, | |
| "step": 32 | |
| }, | |
| { | |
| "epoch": 0.06, | |
| "learning_rate": 3.885172726883194e-05, | |
| "loss": 0.8994, | |
| "step": 33 | |
| }, | |
| { | |
| "epoch": 0.06, | |
| "learning_rate": 3.9183440889371473e-05, | |
| "loss": 0.8838, | |
| "step": 34 | |
| }, | |
| { | |
| "epoch": 0.06, | |
| "learning_rate": 3.950553825567102e-05, | |
| "loss": 0.7305, | |
| "step": 35 | |
| }, | |
| { | |
| "epoch": 0.06, | |
| "learning_rate": 3.981856123920344e-05, | |
| "loss": 0.9619, | |
| "step": 36 | |
| }, | |
| { | |
| "epoch": 0.07, | |
| "learning_rate": 4.0123007162425155e-05, | |
| "loss": 1.002, | |
| "step": 37 | |
| }, | |
| { | |
| "epoch": 0.07, | |
| "learning_rate": 4.0419333552161145e-05, | |
| "loss": 0.9434, | |
| "step": 38 | |
| }, | |
| { | |
| "epoch": 0.07, | |
| "learning_rate": 4.070796227544395e-05, | |
| "loss": 0.7383, | |
| "step": 39 | |
| }, | |
| { | |
| "epoch": 0.07, | |
| "learning_rate": 4.098928315164928e-05, | |
| "loss": 0.8408, | |
| "step": 40 | |
| }, | |
| { | |
| "epoch": 0.07, | |
| "learning_rate": 4.126365711854374e-05, | |
| "loss": 0.7803, | |
| "step": 41 | |
| }, | |
| { | |
| "epoch": 0.07, | |
| "learning_rate": 4.1531419016763004e-05, | |
| "loss": 0.7197, | |
| "step": 42 | |
| }, | |
| { | |
| "epoch": 0.08, | |
| "learning_rate": 4.17928800466077e-05, | |
| "loss": 0.8086, | |
| "step": 43 | |
| }, | |
| { | |
| "epoch": 0.08, | |
| "learning_rate": 4.204832994236975e-05, | |
| "loss": 0.7451, | |
| "step": 44 | |
| }, | |
| { | |
| "epoch": 0.08, | |
| "learning_rate": 4.2298038902286815e-05, | |
| "loss": 0.7715, | |
| "step": 45 | |
| }, | |
| { | |
| "epoch": 0.08, | |
| "learning_rate": 4.254225930635963e-05, | |
| "loss": 0.8271, | |
| "step": 46 | |
| }, | |
| { | |
| "epoch": 0.08, | |
| "learning_rate": 4.278122724941248e-05, | |
| "loss": 0.6108, | |
| "step": 47 | |
| }, | |
| { | |
| "epoch": 0.09, | |
| "learning_rate": 4.301516391274126e-05, | |
| "loss": 0.5938, | |
| "step": 48 | |
| }, | |
| { | |
| "epoch": 0.09, | |
| "learning_rate": 4.324427679432256e-05, | |
| "loss": 0.7217, | |
| "step": 49 | |
| }, | |
| { | |
| "epoch": 0.09, | |
| "learning_rate": 4.346876081473266e-05, | |
| "loss": 0.6826, | |
| "step": 50 | |
| }, | |
| { | |
| "epoch": 0.09, | |
| "learning_rate": 4.3688799313546835e-05, | |
| "loss": 0.5654, | |
| "step": 51 | |
| }, | |
| { | |
| "epoch": 0.09, | |
| "learning_rate": 4.390456494898177e-05, | |
| "loss": 0.6006, | |
| "step": 52 | |
| }, | |
| { | |
| "epoch": 0.09, | |
| "learning_rate": 4.411622051184135e-05, | |
| "loss": 0.6699, | |
| "step": 53 | |
| }, | |
| { | |
| "epoch": 0.1, | |
| "learning_rate": 4.4323919663378806e-05, | |
| "loss": 0.5049, | |
| "step": 54 | |
| }, | |
| { | |
| "epoch": 0.1, | |
| "learning_rate": 4.4527807605453143e-05, | |
| "loss": 0.6201, | |
| "step": 55 | |
| }, | |
| { | |
| "epoch": 0.1, | |
| "learning_rate": 4.472802169030082e-05, | |
| "loss": 0.563, | |
| "step": 56 | |
| }, | |
| { | |
| "epoch": 0.1, | |
| "learning_rate": 4.4924691976336514e-05, | |
| "loss": 0.4858, | |
| "step": 57 | |
| }, | |
| { | |
| "epoch": 0.1, | |
| "learning_rate": 4.511794173561569e-05, | |
| "loss": 0.6768, | |
| "step": 58 | |
| }, | |
| { | |
| "epoch": 0.1, | |
| "learning_rate": 4.530788791791773e-05, | |
| "loss": 0.5908, | |
| "step": 59 | |
| }, | |
| { | |
| "epoch": 0.11, | |
| "learning_rate": 4.5494641575824634e-05, | |
| "loss": 0.4951, | |
| "step": 60 | |
| }, | |
| { | |
| "epoch": 0.11, | |
| "learning_rate": 4.567830825466439e-05, | |
| "loss": 0.5967, | |
| "step": 61 | |
| }, | |
| { | |
| "epoch": 0.11, | |
| "learning_rate": 4.5858988350747056e-05, | |
| "loss": 0.5864, | |
| "step": 62 | |
| }, | |
| { | |
| "epoch": 0.11, | |
| "learning_rate": 4.603677744093836e-05, | |
| "loss": 0.6055, | |
| "step": 63 | |
| }, | |
| { | |
| "epoch": 0.11, | |
| "learning_rate": 4.621176658627907e-05, | |
| "loss": 0.6143, | |
| "step": 64 | |
| }, | |
| { | |
| "epoch": 0.12, | |
| "learning_rate": 4.638404261206515e-05, | |
| "loss": 0.3906, | |
| "step": 65 | |
| }, | |
| { | |
| "epoch": 0.12, | |
| "learning_rate": 4.6553688366545114e-05, | |
| "loss": 0.542, | |
| "step": 66 | |
| }, | |
| { | |
| "epoch": 0.12, | |
| "learning_rate": 4.672078296016419e-05, | |
| "loss": 0.4946, | |
| "step": 67 | |
| }, | |
| { | |
| "epoch": 0.12, | |
| "learning_rate": 4.6885401987084654e-05, | |
| "loss": 0.4854, | |
| "step": 68 | |
| }, | |
| { | |
| "epoch": 0.12, | |
| "learning_rate": 4.704761773053499e-05, | |
| "loss": 0.4053, | |
| "step": 69 | |
| }, | |
| { | |
| "epoch": 0.12, | |
| "learning_rate": 4.720749935338421e-05, | |
| "loss": 0.498, | |
| "step": 70 | |
| }, | |
| { | |
| "epoch": 0.13, | |
| "learning_rate": 4.736511307519874e-05, | |
| "loss": 0.4761, | |
| "step": 71 | |
| }, | |
| { | |
| "epoch": 0.13, | |
| "learning_rate": 4.752052233691662e-05, | |
| "loss": 0.3892, | |
| "step": 72 | |
| }, | |
| { | |
| "epoch": 0.13, | |
| "learning_rate": 4.767378795416353e-05, | |
| "loss": 0.3999, | |
| "step": 73 | |
| }, | |
| { | |
| "epoch": 0.13, | |
| "learning_rate": 4.782496826013834e-05, | |
| "loss": 0.4722, | |
| "step": 74 | |
| }, | |
| { | |
| "epoch": 0.13, | |
| "learning_rate": 4.797411923890802e-05, | |
| "loss": 0.4014, | |
| "step": 75 | |
| }, | |
| { | |
| "epoch": 0.14, | |
| "learning_rate": 4.812129464987433e-05, | |
| "loss": 0.5249, | |
| "step": 76 | |
| }, | |
| { | |
| "epoch": 0.14, | |
| "learning_rate": 4.826654614410468e-05, | |
| "loss": 0.3853, | |
| "step": 77 | |
| }, | |
| { | |
| "epoch": 0.14, | |
| "learning_rate": 4.8409923373157134e-05, | |
| "loss": 0.3936, | |
| "step": 78 | |
| }, | |
| { | |
| "epoch": 0.14, | |
| "learning_rate": 4.8551474090973324e-05, | |
| "loss": 0.4209, | |
| "step": 79 | |
| }, | |
| { | |
| "epoch": 0.14, | |
| "learning_rate": 4.869124424936245e-05, | |
| "loss": 0.436, | |
| "step": 80 | |
| }, | |
| { | |
| "epoch": 0.14, | |
| "learning_rate": 4.882927808755417e-05, | |
| "loss": 0.3669, | |
| "step": 81 | |
| }, | |
| { | |
| "epoch": 0.15, | |
| "learning_rate": 4.896561821625692e-05, | |
| "loss": 0.3828, | |
| "step": 82 | |
| }, | |
| { | |
| "epoch": 0.15, | |
| "learning_rate": 4.910030569662156e-05, | |
| "loss": 0.3237, | |
| "step": 83 | |
| }, | |
| { | |
| "epoch": 0.15, | |
| "learning_rate": 4.923338011447617e-05, | |
| "loss": 0.4204, | |
| "step": 84 | |
| }, | |
| { | |
| "epoch": 0.15, | |
| "learning_rate": 4.936487965016803e-05, | |
| "loss": 0.4482, | |
| "step": 85 | |
| }, | |
| { | |
| "epoch": 0.15, | |
| "learning_rate": 4.949484114432088e-05, | |
| "loss": 0.4429, | |
| "step": 86 | |
| }, | |
| { | |
| "epoch": 0.15, | |
| "learning_rate": 4.962330015979106e-05, | |
| "loss": 0.3867, | |
| "step": 87 | |
| }, | |
| { | |
| "epoch": 0.16, | |
| "learning_rate": 4.975029104008293e-05, | |
| "loss": 0.4443, | |
| "step": 88 | |
| }, | |
| { | |
| "epoch": 0.16, | |
| "learning_rate": 4.987584696446389e-05, | |
| "loss": 0.4077, | |
| "step": 89 | |
| }, | |
| { | |
| "epoch": 0.16, | |
| "learning_rate": 5e-05, | |
| "loss": 0.5771, | |
| "step": 90 | |
| }, | |
| { | |
| "epoch": 0.16, | |
| "learning_rate": 5e-05, | |
| "loss": 0.325, | |
| "step": 91 | |
| }, | |
| { | |
| "epoch": 0.16, | |
| "learning_rate": 5e-05, | |
| "loss": 0.5229, | |
| "step": 92 | |
| }, | |
| { | |
| "epoch": 0.17, | |
| "learning_rate": 5e-05, | |
| "loss": 0.5234, | |
| "step": 93 | |
| }, | |
| { | |
| "epoch": 0.17, | |
| "learning_rate": 5e-05, | |
| "loss": 0.4365, | |
| "step": 94 | |
| }, | |
| { | |
| "epoch": 0.17, | |
| "learning_rate": 5e-05, | |
| "loss": 0.3828, | |
| "step": 95 | |
| }, | |
| { | |
| "epoch": 0.17, | |
| "learning_rate": 5e-05, | |
| "loss": 0.3745, | |
| "step": 96 | |
| }, | |
| { | |
| "epoch": 0.17, | |
| "learning_rate": 5e-05, | |
| "loss": 0.3064, | |
| "step": 97 | |
| }, | |
| { | |
| "epoch": 0.17, | |
| "learning_rate": 5e-05, | |
| "loss": 0.3901, | |
| "step": 98 | |
| }, | |
| { | |
| "epoch": 0.18, | |
| "learning_rate": 5e-05, | |
| "loss": 0.3442, | |
| "step": 99 | |
| }, | |
| { | |
| "epoch": 0.18, | |
| "learning_rate": 5e-05, | |
| "loss": 0.3555, | |
| "step": 100 | |
| }, | |
| { | |
| "epoch": 0.18, | |
| "learning_rate": 5e-05, | |
| "loss": 0.4023, | |
| "step": 101 | |
| }, | |
| { | |
| "epoch": 0.18, | |
| "learning_rate": 5e-05, | |
| "loss": 0.3381, | |
| "step": 102 | |
| }, | |
| { | |
| "epoch": 0.18, | |
| "learning_rate": 5e-05, | |
| "loss": 0.3882, | |
| "step": 103 | |
| }, | |
| { | |
| "epoch": 0.18, | |
| "learning_rate": 5e-05, | |
| "loss": 0.4014, | |
| "step": 104 | |
| }, | |
| { | |
| "epoch": 0.19, | |
| "learning_rate": 5e-05, | |
| "loss": 0.4297, | |
| "step": 105 | |
| }, | |
| { | |
| "epoch": 0.19, | |
| "learning_rate": 5e-05, | |
| "loss": 0.364, | |
| "step": 106 | |
| }, | |
| { | |
| "epoch": 0.19, | |
| "learning_rate": 5e-05, | |
| "loss": 0.4448, | |
| "step": 107 | |
| }, | |
| { | |
| "epoch": 0.19, | |
| "learning_rate": 5e-05, | |
| "loss": 0.3142, | |
| "step": 108 | |
| }, | |
| { | |
| "epoch": 0.19, | |
| "learning_rate": 5e-05, | |
| "loss": 0.3579, | |
| "step": 109 | |
| }, | |
| { | |
| "epoch": 0.2, | |
| "learning_rate": 5e-05, | |
| "loss": 0.3108, | |
| "step": 110 | |
| }, | |
| { | |
| "epoch": 0.2, | |
| "learning_rate": 5e-05, | |
| "loss": 0.3408, | |
| "step": 111 | |
| }, | |
| { | |
| "epoch": 0.2, | |
| "learning_rate": 5e-05, | |
| "loss": 0.3599, | |
| "step": 112 | |
| }, | |
| { | |
| "epoch": 0.2, | |
| "learning_rate": 5e-05, | |
| "loss": 0.3154, | |
| "step": 113 | |
| }, | |
| { | |
| "epoch": 0.2, | |
| "learning_rate": 5e-05, | |
| "loss": 0.4016, | |
| "step": 114 | |
| }, | |
| { | |
| "epoch": 0.2, | |
| "learning_rate": 5e-05, | |
| "loss": 0.417, | |
| "step": 115 | |
| }, | |
| { | |
| "epoch": 0.21, | |
| "learning_rate": 5e-05, | |
| "loss": 0.396, | |
| "step": 116 | |
| }, | |
| { | |
| "epoch": 0.21, | |
| "learning_rate": 5e-05, | |
| "loss": 0.3428, | |
| "step": 117 | |
| }, | |
| { | |
| "epoch": 0.21, | |
| "learning_rate": 5e-05, | |
| "loss": 0.3833, | |
| "step": 118 | |
| }, | |
| { | |
| "epoch": 0.21, | |
| "learning_rate": 5e-05, | |
| "loss": 0.3999, | |
| "step": 119 | |
| }, | |
| { | |
| "epoch": 0.21, | |
| "learning_rate": 5e-05, | |
| "loss": 0.3472, | |
| "step": 120 | |
| }, | |
| { | |
| "epoch": 0.22, | |
| "learning_rate": 5e-05, | |
| "loss": 0.4067, | |
| "step": 121 | |
| }, | |
| { | |
| "epoch": 0.22, | |
| "learning_rate": 5e-05, | |
| "loss": 0.3135, | |
| "step": 122 | |
| }, | |
| { | |
| "epoch": 0.22, | |
| "learning_rate": 5e-05, | |
| "loss": 0.3809, | |
| "step": 123 | |
| }, | |
| { | |
| "epoch": 0.22, | |
| "learning_rate": 5e-05, | |
| "loss": 0.342, | |
| "step": 124 | |
| }, | |
| { | |
| "epoch": 0.22, | |
| "learning_rate": 5e-05, | |
| "loss": 0.2346, | |
| "step": 125 | |
| }, | |
| { | |
| "epoch": 0.22, | |
| "learning_rate": 5e-05, | |
| "loss": 0.4409, | |
| "step": 126 | |
| }, | |
| { | |
| "epoch": 0.23, | |
| "learning_rate": 5e-05, | |
| "loss": 0.3081, | |
| "step": 127 | |
| }, | |
| { | |
| "epoch": 0.23, | |
| "learning_rate": 5e-05, | |
| "loss": 0.3303, | |
| "step": 128 | |
| }, | |
| { | |
| "epoch": 0.23, | |
| "learning_rate": 5e-05, | |
| "loss": 0.312, | |
| "step": 129 | |
| }, | |
| { | |
| "epoch": 0.23, | |
| "learning_rate": 5e-05, | |
| "loss": 0.3452, | |
| "step": 130 | |
| }, | |
| { | |
| "epoch": 0.23, | |
| "learning_rate": 5e-05, | |
| "loss": 0.3801, | |
| "step": 131 | |
| }, | |
| { | |
| "epoch": 0.23, | |
| "learning_rate": 5e-05, | |
| "loss": 0.4082, | |
| "step": 132 | |
| }, | |
| { | |
| "epoch": 0.24, | |
| "learning_rate": 5e-05, | |
| "loss": 0.3208, | |
| "step": 133 | |
| }, | |
| { | |
| "epoch": 0.24, | |
| "learning_rate": 5e-05, | |
| "loss": 0.3867, | |
| "step": 134 | |
| }, | |
| { | |
| "epoch": 0.24, | |
| "learning_rate": 5e-05, | |
| "loss": 0.3696, | |
| "step": 135 | |
| }, | |
| { | |
| "epoch": 0.24, | |
| "learning_rate": 5e-05, | |
| "loss": 0.3391, | |
| "step": 136 | |
| }, | |
| { | |
| "epoch": 0.24, | |
| "learning_rate": 5e-05, | |
| "loss": 0.3354, | |
| "step": 137 | |
| }, | |
| { | |
| "epoch": 0.25, | |
| "learning_rate": 5e-05, | |
| "loss": 0.2949, | |
| "step": 138 | |
| }, | |
| { | |
| "epoch": 0.25, | |
| "learning_rate": 5e-05, | |
| "loss": 0.2646, | |
| "step": 139 | |
| }, | |
| { | |
| "epoch": 0.25, | |
| "learning_rate": 5e-05, | |
| "loss": 0.3843, | |
| "step": 140 | |
| }, | |
| { | |
| "epoch": 0.25, | |
| "learning_rate": 5e-05, | |
| "loss": 0.2932, | |
| "step": 141 | |
| }, | |
| { | |
| "epoch": 0.25, | |
| "learning_rate": 5e-05, | |
| "loss": 0.2725, | |
| "step": 142 | |
| }, | |
| { | |
| "epoch": 0.25, | |
| "learning_rate": 5e-05, | |
| "loss": 0.3149, | |
| "step": 143 | |
| }, | |
| { | |
| "epoch": 0.26, | |
| "learning_rate": 5e-05, | |
| "loss": 0.3003, | |
| "step": 144 | |
| }, | |
| { | |
| "epoch": 0.26, | |
| "learning_rate": 5e-05, | |
| "loss": 0.3496, | |
| "step": 145 | |
| }, | |
| { | |
| "epoch": 0.26, | |
| "learning_rate": 5e-05, | |
| "loss": 0.3403, | |
| "step": 146 | |
| }, | |
| { | |
| "epoch": 0.26, | |
| "learning_rate": 5e-05, | |
| "loss": 0.3091, | |
| "step": 147 | |
| }, | |
| { | |
| "epoch": 0.26, | |
| "learning_rate": 5e-05, | |
| "loss": 0.387, | |
| "step": 148 | |
| }, | |
| { | |
| "epoch": 0.26, | |
| "learning_rate": 5e-05, | |
| "loss": 0.2751, | |
| "step": 149 | |
| }, | |
| { | |
| "epoch": 0.27, | |
| "learning_rate": 5e-05, | |
| "loss": 0.3945, | |
| "step": 150 | |
| }, | |
| { | |
| "epoch": 0.27, | |
| "learning_rate": 5e-05, | |
| "loss": 0.3252, | |
| "step": 151 | |
| }, | |
| { | |
| "epoch": 0.27, | |
| "learning_rate": 5e-05, | |
| "loss": 0.3074, | |
| "step": 152 | |
| }, | |
| { | |
| "epoch": 0.27, | |
| "learning_rate": 5e-05, | |
| "loss": 0.397, | |
| "step": 153 | |
| }, | |
| { | |
| "epoch": 0.27, | |
| "learning_rate": 5e-05, | |
| "loss": 0.3457, | |
| "step": 154 | |
| }, | |
| { | |
| "epoch": 0.28, | |
| "learning_rate": 5e-05, | |
| "loss": 0.3293, | |
| "step": 155 | |
| }, | |
| { | |
| "epoch": 0.28, | |
| "learning_rate": 5e-05, | |
| "loss": 0.304, | |
| "step": 156 | |
| }, | |
| { | |
| "epoch": 0.28, | |
| "learning_rate": 5e-05, | |
| "loss": 0.2878, | |
| "step": 157 | |
| }, | |
| { | |
| "epoch": 0.28, | |
| "learning_rate": 5e-05, | |
| "loss": 0.3916, | |
| "step": 158 | |
| }, | |
| { | |
| "epoch": 0.28, | |
| "learning_rate": 5e-05, | |
| "loss": 0.2749, | |
| "step": 159 | |
| }, | |
| { | |
| "epoch": 0.28, | |
| "learning_rate": 5e-05, | |
| "loss": 0.2869, | |
| "step": 160 | |
| }, | |
| { | |
| "epoch": 0.29, | |
| "learning_rate": 5e-05, | |
| "loss": 0.3491, | |
| "step": 161 | |
| }, | |
| { | |
| "epoch": 0.29, | |
| "learning_rate": 5e-05, | |
| "loss": 0.3176, | |
| "step": 162 | |
| }, | |
| { | |
| "epoch": 0.29, | |
| "learning_rate": 5e-05, | |
| "loss": 0.3, | |
| "step": 163 | |
| }, | |
| { | |
| "epoch": 0.29, | |
| "learning_rate": 5e-05, | |
| "loss": 0.4165, | |
| "step": 164 | |
| }, | |
| { | |
| "epoch": 0.29, | |
| "learning_rate": 5e-05, | |
| "loss": 0.3486, | |
| "step": 165 | |
| }, | |
| { | |
| "epoch": 0.3, | |
| "learning_rate": 5e-05, | |
| "loss": 0.2925, | |
| "step": 166 | |
| }, | |
| { | |
| "epoch": 0.3, | |
| "learning_rate": 5e-05, | |
| "loss": 0.3184, | |
| "step": 167 | |
| }, | |
| { | |
| "epoch": 0.3, | |
| "learning_rate": 5e-05, | |
| "loss": 0.3279, | |
| "step": 168 | |
| }, | |
| { | |
| "epoch": 0.3, | |
| "learning_rate": 5e-05, | |
| "loss": 0.2905, | |
| "step": 169 | |
| }, | |
| { | |
| "epoch": 0.3, | |
| "learning_rate": 5e-05, | |
| "loss": 0.3477, | |
| "step": 170 | |
| }, | |
| { | |
| "epoch": 0.3, | |
| "learning_rate": 5e-05, | |
| "loss": 0.2546, | |
| "step": 171 | |
| }, | |
| { | |
| "epoch": 0.31, | |
| "learning_rate": 5e-05, | |
| "loss": 0.3025, | |
| "step": 172 | |
| }, | |
| { | |
| "epoch": 0.31, | |
| "learning_rate": 5e-05, | |
| "loss": 0.2842, | |
| "step": 173 | |
| }, | |
| { | |
| "epoch": 0.31, | |
| "learning_rate": 5e-05, | |
| "loss": 0.2761, | |
| "step": 174 | |
| }, | |
| { | |
| "epoch": 0.31, | |
| "learning_rate": 5e-05, | |
| "loss": 0.3, | |
| "step": 175 | |
| }, | |
| { | |
| "epoch": 0.31, | |
| "learning_rate": 5e-05, | |
| "loss": 0.3391, | |
| "step": 176 | |
| }, | |
| { | |
| "epoch": 0.31, | |
| "learning_rate": 5e-05, | |
| "loss": 0.2793, | |
| "step": 177 | |
| }, | |
| { | |
| "epoch": 0.32, | |
| "learning_rate": 5e-05, | |
| "loss": 0.3684, | |
| "step": 178 | |
| }, | |
| { | |
| "epoch": 0.32, | |
| "learning_rate": 5e-05, | |
| "loss": 0.2462, | |
| "step": 179 | |
| }, | |
| { | |
| "epoch": 0.32, | |
| "learning_rate": 5e-05, | |
| "loss": 0.2881, | |
| "step": 180 | |
| }, | |
| { | |
| "epoch": 0.32, | |
| "learning_rate": 5e-05, | |
| "loss": 0.2947, | |
| "step": 181 | |
| }, | |
| { | |
| "epoch": 0.32, | |
| "learning_rate": 5e-05, | |
| "loss": 0.3442, | |
| "step": 182 | |
| }, | |
| { | |
| "epoch": 0.33, | |
| "learning_rate": 5e-05, | |
| "loss": 0.2499, | |
| "step": 183 | |
| }, | |
| { | |
| "epoch": 0.33, | |
| "learning_rate": 5e-05, | |
| "loss": 0.3582, | |
| "step": 184 | |
| }, | |
| { | |
| "epoch": 0.33, | |
| "learning_rate": 5e-05, | |
| "loss": 0.2688, | |
| "step": 185 | |
| }, | |
| { | |
| "epoch": 0.33, | |
| "learning_rate": 5e-05, | |
| "loss": 0.3193, | |
| "step": 186 | |
| }, | |
| { | |
| "epoch": 0.33, | |
| "learning_rate": 5e-05, | |
| "loss": 0.3379, | |
| "step": 187 | |
| }, | |
| { | |
| "epoch": 0.33, | |
| "learning_rate": 5e-05, | |
| "loss": 0.3413, | |
| "step": 188 | |
| }, | |
| { | |
| "epoch": 0.34, | |
| "learning_rate": 5e-05, | |
| "loss": 0.3105, | |
| "step": 189 | |
| }, | |
| { | |
| "epoch": 0.34, | |
| "learning_rate": 5e-05, | |
| "loss": 0.3014, | |
| "step": 190 | |
| }, | |
| { | |
| "epoch": 0.34, | |
| "learning_rate": 5e-05, | |
| "loss": 0.3027, | |
| "step": 191 | |
| }, | |
| { | |
| "epoch": 0.34, | |
| "learning_rate": 5e-05, | |
| "loss": 0.1904, | |
| "step": 192 | |
| }, | |
| { | |
| "epoch": 0.34, | |
| "learning_rate": 5e-05, | |
| "loss": 0.3711, | |
| "step": 193 | |
| }, | |
| { | |
| "epoch": 0.34, | |
| "learning_rate": 5e-05, | |
| "loss": 0.3167, | |
| "step": 194 | |
| }, | |
| { | |
| "epoch": 0.35, | |
| "learning_rate": 5e-05, | |
| "loss": 0.208, | |
| "step": 195 | |
| }, | |
| { | |
| "epoch": 0.35, | |
| "learning_rate": 5e-05, | |
| "loss": 0.2896, | |
| "step": 196 | |
| }, | |
| { | |
| "epoch": 0.35, | |
| "learning_rate": 5e-05, | |
| "loss": 0.3091, | |
| "step": 197 | |
| }, | |
| { | |
| "epoch": 0.35, | |
| "learning_rate": 5e-05, | |
| "loss": 0.3496, | |
| "step": 198 | |
| }, | |
| { | |
| "epoch": 0.35, | |
| "learning_rate": 5e-05, | |
| "loss": 0.2656, | |
| "step": 199 | |
| }, | |
| { | |
| "epoch": 0.36, | |
| "learning_rate": 5e-05, | |
| "loss": 0.2463, | |
| "step": 200 | |
| }, | |
| { | |
| "epoch": 0.36, | |
| "learning_rate": 5e-05, | |
| "loss": 0.311, | |
| "step": 201 | |
| }, | |
| { | |
| "epoch": 0.36, | |
| "learning_rate": 5e-05, | |
| "loss": 0.3857, | |
| "step": 202 | |
| }, | |
| { | |
| "epoch": 0.36, | |
| "learning_rate": 5e-05, | |
| "loss": 0.3091, | |
| "step": 203 | |
| }, | |
| { | |
| "epoch": 0.36, | |
| "learning_rate": 5e-05, | |
| "loss": 0.2571, | |
| "step": 204 | |
| }, | |
| { | |
| "epoch": 0.36, | |
| "learning_rate": 5e-05, | |
| "loss": 0.374, | |
| "step": 205 | |
| }, | |
| { | |
| "epoch": 0.37, | |
| "learning_rate": 5e-05, | |
| "loss": 0.2903, | |
| "step": 206 | |
| }, | |
| { | |
| "epoch": 0.37, | |
| "learning_rate": 5e-05, | |
| "loss": 0.457, | |
| "step": 207 | |
| }, | |
| { | |
| "epoch": 0.37, | |
| "learning_rate": 5e-05, | |
| "loss": 0.2822, | |
| "step": 208 | |
| }, | |
| { | |
| "epoch": 0.37, | |
| "learning_rate": 5e-05, | |
| "loss": 0.2981, | |
| "step": 209 | |
| }, | |
| { | |
| "epoch": 0.37, | |
| "learning_rate": 5e-05, | |
| "loss": 0.2429, | |
| "step": 210 | |
| }, | |
| { | |
| "epoch": 0.38, | |
| "learning_rate": 5e-05, | |
| "loss": 0.2549, | |
| "step": 211 | |
| }, | |
| { | |
| "epoch": 0.38, | |
| "learning_rate": 5e-05, | |
| "loss": 0.3428, | |
| "step": 212 | |
| }, | |
| { | |
| "epoch": 0.38, | |
| "learning_rate": 5e-05, | |
| "loss": 0.2129, | |
| "step": 213 | |
| }, | |
| { | |
| "epoch": 0.38, | |
| "learning_rate": 5e-05, | |
| "loss": 0.2756, | |
| "step": 214 | |
| }, | |
| { | |
| "epoch": 0.38, | |
| "learning_rate": 5e-05, | |
| "loss": 0.4487, | |
| "step": 215 | |
| }, | |
| { | |
| "epoch": 0.38, | |
| "learning_rate": 5e-05, | |
| "loss": 0.2869, | |
| "step": 216 | |
| }, | |
| { | |
| "epoch": 0.39, | |
| "learning_rate": 5e-05, | |
| "loss": 0.3398, | |
| "step": 217 | |
| }, | |
| { | |
| "epoch": 0.39, | |
| "learning_rate": 5e-05, | |
| "loss": 0.2717, | |
| "step": 218 | |
| }, | |
| { | |
| "epoch": 0.39, | |
| "learning_rate": 5e-05, | |
| "loss": 0.282, | |
| "step": 219 | |
| }, | |
| { | |
| "epoch": 0.39, | |
| "learning_rate": 5e-05, | |
| "loss": 0.2878, | |
| "step": 220 | |
| }, | |
| { | |
| "epoch": 0.39, | |
| "learning_rate": 5e-05, | |
| "loss": 0.3132, | |
| "step": 221 | |
| }, | |
| { | |
| "epoch": 0.39, | |
| "learning_rate": 5e-05, | |
| "loss": 0.3247, | |
| "step": 222 | |
| }, | |
| { | |
| "epoch": 0.4, | |
| "learning_rate": 5e-05, | |
| "loss": 0.3601, | |
| "step": 223 | |
| }, | |
| { | |
| "epoch": 0.4, | |
| "learning_rate": 5e-05, | |
| "loss": 0.3164, | |
| "step": 224 | |
| }, | |
| { | |
| "epoch": 0.4, | |
| "learning_rate": 5e-05, | |
| "loss": 0.3389, | |
| "step": 225 | |
| }, | |
| { | |
| "epoch": 0.4, | |
| "learning_rate": 5e-05, | |
| "loss": 0.3003, | |
| "step": 226 | |
| }, | |
| { | |
| "epoch": 0.4, | |
| "learning_rate": 5e-05, | |
| "loss": 0.3525, | |
| "step": 227 | |
| }, | |
| { | |
| "epoch": 0.41, | |
| "learning_rate": 5e-05, | |
| "loss": 0.3115, | |
| "step": 228 | |
| }, | |
| { | |
| "epoch": 0.41, | |
| "learning_rate": 5e-05, | |
| "loss": 0.3149, | |
| "step": 229 | |
| }, | |
| { | |
| "epoch": 0.41, | |
| "learning_rate": 5e-05, | |
| "loss": 0.2671, | |
| "step": 230 | |
| }, | |
| { | |
| "epoch": 0.41, | |
| "learning_rate": 5e-05, | |
| "loss": 0.2777, | |
| "step": 231 | |
| }, | |
| { | |
| "epoch": 0.41, | |
| "learning_rate": 5e-05, | |
| "loss": 0.2283, | |
| "step": 232 | |
| }, | |
| { | |
| "epoch": 0.41, | |
| "learning_rate": 5e-05, | |
| "loss": 0.2981, | |
| "step": 233 | |
| }, | |
| { | |
| "epoch": 0.42, | |
| "learning_rate": 5e-05, | |
| "loss": 0.3242, | |
| "step": 234 | |
| }, | |
| { | |
| "epoch": 0.42, | |
| "learning_rate": 5e-05, | |
| "loss": 0.3425, | |
| "step": 235 | |
| }, | |
| { | |
| "epoch": 0.42, | |
| "learning_rate": 5e-05, | |
| "loss": 0.3411, | |
| "step": 236 | |
| }, | |
| { | |
| "epoch": 0.42, | |
| "learning_rate": 5e-05, | |
| "loss": 0.3115, | |
| "step": 237 | |
| }, | |
| { | |
| "epoch": 0.42, | |
| "learning_rate": 5e-05, | |
| "loss": 0.26, | |
| "step": 238 | |
| }, | |
| { | |
| "epoch": 0.42, | |
| "learning_rate": 5e-05, | |
| "loss": 0.2959, | |
| "step": 239 | |
| }, | |
| { | |
| "epoch": 0.43, | |
| "learning_rate": 5e-05, | |
| "loss": 0.3398, | |
| "step": 240 | |
| }, | |
| { | |
| "epoch": 0.43, | |
| "learning_rate": 5e-05, | |
| "loss": 0.2734, | |
| "step": 241 | |
| }, | |
| { | |
| "epoch": 0.43, | |
| "learning_rate": 5e-05, | |
| "loss": 0.2476, | |
| "step": 242 | |
| }, | |
| { | |
| "epoch": 0.43, | |
| "learning_rate": 5e-05, | |
| "loss": 0.2651, | |
| "step": 243 | |
| }, | |
| { | |
| "epoch": 0.43, | |
| "learning_rate": 5e-05, | |
| "loss": 0.3562, | |
| "step": 244 | |
| }, | |
| { | |
| "epoch": 0.44, | |
| "learning_rate": 5e-05, | |
| "loss": 0.3682, | |
| "step": 245 | |
| }, | |
| { | |
| "epoch": 0.44, | |
| "learning_rate": 5e-05, | |
| "loss": 0.3081, | |
| "step": 246 | |
| }, | |
| { | |
| "epoch": 0.44, | |
| "learning_rate": 5e-05, | |
| "loss": 0.3379, | |
| "step": 247 | |
| }, | |
| { | |
| "epoch": 0.44, | |
| "learning_rate": 5e-05, | |
| "loss": 0.2805, | |
| "step": 248 | |
| }, | |
| { | |
| "epoch": 0.44, | |
| "learning_rate": 5e-05, | |
| "loss": 0.3101, | |
| "step": 249 | |
| }, | |
| { | |
| "epoch": 0.44, | |
| "learning_rate": 5e-05, | |
| "loss": 0.2241, | |
| "step": 250 | |
| }, | |
| { | |
| "epoch": 0.45, | |
| "learning_rate": 5e-05, | |
| "loss": 0.2996, | |
| "step": 251 | |
| }, | |
| { | |
| "epoch": 0.45, | |
| "learning_rate": 5e-05, | |
| "loss": 0.3271, | |
| "step": 252 | |
| }, | |
| { | |
| "epoch": 0.45, | |
| "learning_rate": 5e-05, | |
| "loss": 0.3394, | |
| "step": 253 | |
| }, | |
| { | |
| "epoch": 0.45, | |
| "learning_rate": 5e-05, | |
| "loss": 0.2415, | |
| "step": 254 | |
| }, | |
| { | |
| "epoch": 0.45, | |
| "learning_rate": 5e-05, | |
| "loss": 0.3794, | |
| "step": 255 | |
| }, | |
| { | |
| "epoch": 0.46, | |
| "learning_rate": 5e-05, | |
| "loss": 0.2944, | |
| "step": 256 | |
| }, | |
| { | |
| "epoch": 0.46, | |
| "learning_rate": 5e-05, | |
| "loss": 0.2708, | |
| "step": 257 | |
| }, | |
| { | |
| "epoch": 0.46, | |
| "learning_rate": 5e-05, | |
| "loss": 0.2327, | |
| "step": 258 | |
| }, | |
| { | |
| "epoch": 0.46, | |
| "learning_rate": 5e-05, | |
| "loss": 0.2859, | |
| "step": 259 | |
| }, | |
| { | |
| "epoch": 0.46, | |
| "learning_rate": 5e-05, | |
| "loss": 0.3003, | |
| "step": 260 | |
| }, | |
| { | |
| "epoch": 0.46, | |
| "learning_rate": 5e-05, | |
| "loss": 0.2429, | |
| "step": 261 | |
| }, | |
| { | |
| "epoch": 0.47, | |
| "learning_rate": 5e-05, | |
| "loss": 0.3281, | |
| "step": 262 | |
| }, | |
| { | |
| "epoch": 0.47, | |
| "learning_rate": 5e-05, | |
| "loss": 0.2925, | |
| "step": 263 | |
| }, | |
| { | |
| "epoch": 0.47, | |
| "learning_rate": 5e-05, | |
| "loss": 0.3008, | |
| "step": 264 | |
| }, | |
| { | |
| "epoch": 0.47, | |
| "learning_rate": 5e-05, | |
| "loss": 0.2939, | |
| "step": 265 | |
| }, | |
| { | |
| "epoch": 0.47, | |
| "learning_rate": 5e-05, | |
| "loss": 0.3083, | |
| "step": 266 | |
| }, | |
| { | |
| "epoch": 0.47, | |
| "learning_rate": 5e-05, | |
| "loss": 0.2524, | |
| "step": 267 | |
| }, | |
| { | |
| "epoch": 0.48, | |
| "learning_rate": 5e-05, | |
| "loss": 0.3853, | |
| "step": 268 | |
| }, | |
| { | |
| "epoch": 0.48, | |
| "learning_rate": 5e-05, | |
| "loss": 0.2405, | |
| "step": 269 | |
| }, | |
| { | |
| "epoch": 0.48, | |
| "learning_rate": 5e-05, | |
| "loss": 0.3696, | |
| "step": 270 | |
| }, | |
| { | |
| "epoch": 0.48, | |
| "learning_rate": 5e-05, | |
| "loss": 0.3223, | |
| "step": 271 | |
| }, | |
| { | |
| "epoch": 0.48, | |
| "learning_rate": 5e-05, | |
| "loss": 0.2278, | |
| "step": 272 | |
| }, | |
| { | |
| "epoch": 0.49, | |
| "learning_rate": 5e-05, | |
| "loss": 0.2832, | |
| "step": 273 | |
| }, | |
| { | |
| "epoch": 0.49, | |
| "learning_rate": 5e-05, | |
| "loss": 0.304, | |
| "step": 274 | |
| }, | |
| { | |
| "epoch": 0.49, | |
| "learning_rate": 5e-05, | |
| "loss": 0.3313, | |
| "step": 275 | |
| }, | |
| { | |
| "epoch": 0.49, | |
| "learning_rate": 5e-05, | |
| "loss": 0.3154, | |
| "step": 276 | |
| }, | |
| { | |
| "epoch": 0.49, | |
| "learning_rate": 5e-05, | |
| "loss": 0.3328, | |
| "step": 277 | |
| }, | |
| { | |
| "epoch": 0.49, | |
| "learning_rate": 5e-05, | |
| "loss": 0.1874, | |
| "step": 278 | |
| }, | |
| { | |
| "epoch": 0.5, | |
| "learning_rate": 5e-05, | |
| "loss": 0.5305, | |
| "step": 279 | |
| }, | |
| { | |
| "epoch": 0.5, | |
| "learning_rate": 5e-05, | |
| "loss": 0.3442, | |
| "step": 280 | |
| }, | |
| { | |
| "epoch": 0.5, | |
| "learning_rate": 5e-05, | |
| "loss": 0.2893, | |
| "step": 281 | |
| }, | |
| { | |
| "epoch": 0.5, | |
| "learning_rate": 5e-05, | |
| "loss": 0.3176, | |
| "step": 282 | |
| }, | |
| { | |
| "epoch": 0.5, | |
| "learning_rate": 5e-05, | |
| "loss": 0.3167, | |
| "step": 283 | |
| }, | |
| { | |
| "epoch": 0.5, | |
| "learning_rate": 5e-05, | |
| "loss": 0.3354, | |
| "step": 284 | |
| }, | |
| { | |
| "epoch": 0.51, | |
| "learning_rate": 5e-05, | |
| "loss": 0.2253, | |
| "step": 285 | |
| }, | |
| { | |
| "epoch": 0.51, | |
| "learning_rate": 5e-05, | |
| "loss": 0.344, | |
| "step": 286 | |
| }, | |
| { | |
| "epoch": 0.51, | |
| "learning_rate": 5e-05, | |
| "loss": 0.2195, | |
| "step": 287 | |
| }, | |
| { | |
| "epoch": 0.51, | |
| "learning_rate": 5e-05, | |
| "loss": 0.2417, | |
| "step": 288 | |
| }, | |
| { | |
| "epoch": 0.51, | |
| "learning_rate": 5e-05, | |
| "loss": 0.3108, | |
| "step": 289 | |
| }, | |
| { | |
| "epoch": 0.52, | |
| "learning_rate": 5e-05, | |
| "loss": 0.2468, | |
| "step": 290 | |
| }, | |
| { | |
| "epoch": 0.52, | |
| "learning_rate": 5e-05, | |
| "loss": 0.2959, | |
| "step": 291 | |
| }, | |
| { | |
| "epoch": 0.52, | |
| "learning_rate": 5e-05, | |
| "loss": 0.2554, | |
| "step": 292 | |
| }, | |
| { | |
| "epoch": 0.52, | |
| "learning_rate": 5e-05, | |
| "loss": 0.3276, | |
| "step": 293 | |
| }, | |
| { | |
| "epoch": 0.52, | |
| "learning_rate": 5e-05, | |
| "loss": 0.2742, | |
| "step": 294 | |
| }, | |
| { | |
| "epoch": 0.52, | |
| "learning_rate": 5e-05, | |
| "loss": 0.2915, | |
| "step": 295 | |
| }, | |
| { | |
| "epoch": 0.53, | |
| "learning_rate": 5e-05, | |
| "loss": 0.4048, | |
| "step": 296 | |
| }, | |
| { | |
| "epoch": 0.53, | |
| "learning_rate": 5e-05, | |
| "loss": 0.3318, | |
| "step": 297 | |
| }, | |
| { | |
| "epoch": 0.53, | |
| "learning_rate": 5e-05, | |
| "loss": 0.3201, | |
| "step": 298 | |
| }, | |
| { | |
| "epoch": 0.53, | |
| "learning_rate": 5e-05, | |
| "loss": 0.291, | |
| "step": 299 | |
| }, | |
| { | |
| "epoch": 0.53, | |
| "learning_rate": 5e-05, | |
| "loss": 0.3521, | |
| "step": 300 | |
| }, | |
| { | |
| "epoch": 0.54, | |
| "learning_rate": 5e-05, | |
| "loss": 0.3735, | |
| "step": 301 | |
| }, | |
| { | |
| "epoch": 0.54, | |
| "learning_rate": 5e-05, | |
| "loss": 0.2754, | |
| "step": 302 | |
| }, | |
| { | |
| "epoch": 0.54, | |
| "learning_rate": 5e-05, | |
| "loss": 0.3044, | |
| "step": 303 | |
| }, | |
| { | |
| "epoch": 0.54, | |
| "learning_rate": 5e-05, | |
| "loss": 0.2571, | |
| "step": 304 | |
| }, | |
| { | |
| "epoch": 0.54, | |
| "learning_rate": 5e-05, | |
| "loss": 0.2285, | |
| "step": 305 | |
| }, | |
| { | |
| "epoch": 0.54, | |
| "learning_rate": 5e-05, | |
| "loss": 0.3037, | |
| "step": 306 | |
| }, | |
| { | |
| "epoch": 0.55, | |
| "learning_rate": 5e-05, | |
| "loss": 0.2817, | |
| "step": 307 | |
| }, | |
| { | |
| "epoch": 0.55, | |
| "learning_rate": 5e-05, | |
| "loss": 0.3921, | |
| "step": 308 | |
| }, | |
| { | |
| "epoch": 0.55, | |
| "learning_rate": 5e-05, | |
| "loss": 0.3376, | |
| "step": 309 | |
| }, | |
| { | |
| "epoch": 0.55, | |
| "learning_rate": 5e-05, | |
| "loss": 0.2488, | |
| "step": 310 | |
| }, | |
| { | |
| "epoch": 0.55, | |
| "learning_rate": 5e-05, | |
| "loss": 0.377, | |
| "step": 311 | |
| }, | |
| { | |
| "epoch": 0.55, | |
| "learning_rate": 5e-05, | |
| "loss": 0.303, | |
| "step": 312 | |
| }, | |
| { | |
| "epoch": 0.56, | |
| "learning_rate": 5e-05, | |
| "loss": 0.3618, | |
| "step": 313 | |
| }, | |
| { | |
| "epoch": 0.56, | |
| "learning_rate": 5e-05, | |
| "loss": 0.2891, | |
| "step": 314 | |
| }, | |
| { | |
| "epoch": 0.56, | |
| "learning_rate": 5e-05, | |
| "loss": 0.2224, | |
| "step": 315 | |
| }, | |
| { | |
| "epoch": 0.56, | |
| "learning_rate": 5e-05, | |
| "loss": 0.2393, | |
| "step": 316 | |
| }, | |
| { | |
| "epoch": 0.56, | |
| "learning_rate": 5e-05, | |
| "loss": 0.2827, | |
| "step": 317 | |
| }, | |
| { | |
| "epoch": 0.57, | |
| "learning_rate": 5e-05, | |
| "loss": 0.2126, | |
| "step": 318 | |
| }, | |
| { | |
| "epoch": 0.57, | |
| "learning_rate": 5e-05, | |
| "loss": 0.2271, | |
| "step": 319 | |
| }, | |
| { | |
| "epoch": 0.57, | |
| "learning_rate": 5e-05, | |
| "loss": 0.2766, | |
| "step": 320 | |
| }, | |
| { | |
| "epoch": 0.57, | |
| "learning_rate": 5e-05, | |
| "loss": 0.2394, | |
| "step": 321 | |
| }, | |
| { | |
| "epoch": 0.57, | |
| "learning_rate": 5e-05, | |
| "loss": 0.2229, | |
| "step": 322 | |
| }, | |
| { | |
| "epoch": 0.57, | |
| "learning_rate": 5e-05, | |
| "loss": 0.3623, | |
| "step": 323 | |
| }, | |
| { | |
| "epoch": 0.58, | |
| "learning_rate": 5e-05, | |
| "loss": 0.2905, | |
| "step": 324 | |
| }, | |
| { | |
| "epoch": 0.58, | |
| "learning_rate": 5e-05, | |
| "loss": 0.3286, | |
| "step": 325 | |
| }, | |
| { | |
| "epoch": 0.58, | |
| "learning_rate": 5e-05, | |
| "loss": 0.5757, | |
| "step": 326 | |
| }, | |
| { | |
| "epoch": 0.58, | |
| "learning_rate": 5e-05, | |
| "loss": 0.2117, | |
| "step": 327 | |
| }, | |
| { | |
| "epoch": 0.58, | |
| "learning_rate": 5e-05, | |
| "loss": 0.3179, | |
| "step": 328 | |
| }, | |
| { | |
| "epoch": 0.58, | |
| "learning_rate": 5e-05, | |
| "loss": 0.3667, | |
| "step": 329 | |
| }, | |
| { | |
| "epoch": 0.59, | |
| "learning_rate": 5e-05, | |
| "loss": 0.2468, | |
| "step": 330 | |
| }, | |
| { | |
| "epoch": 0.59, | |
| "learning_rate": 5e-05, | |
| "loss": 0.2932, | |
| "step": 331 | |
| }, | |
| { | |
| "epoch": 0.59, | |
| "learning_rate": 5e-05, | |
| "loss": 0.3369, | |
| "step": 332 | |
| }, | |
| { | |
| "epoch": 0.59, | |
| "learning_rate": 5e-05, | |
| "loss": 0.3025, | |
| "step": 333 | |
| }, | |
| { | |
| "epoch": 0.59, | |
| "learning_rate": 5e-05, | |
| "loss": 0.2263, | |
| "step": 334 | |
| }, | |
| { | |
| "epoch": 0.6, | |
| "learning_rate": 5e-05, | |
| "loss": 0.2488, | |
| "step": 335 | |
| }, | |
| { | |
| "epoch": 0.6, | |
| "learning_rate": 5e-05, | |
| "loss": 0.2935, | |
| "step": 336 | |
| }, | |
| { | |
| "epoch": 0.6, | |
| "learning_rate": 5e-05, | |
| "loss": 0.2559, | |
| "step": 337 | |
| }, | |
| { | |
| "epoch": 0.6, | |
| "learning_rate": 5e-05, | |
| "loss": 0.2358, | |
| "step": 338 | |
| }, | |
| { | |
| "epoch": 0.6, | |
| "learning_rate": 5e-05, | |
| "loss": 0.2869, | |
| "step": 339 | |
| }, | |
| { | |
| "epoch": 0.6, | |
| "learning_rate": 5e-05, | |
| "loss": 0.3567, | |
| "step": 340 | |
| }, | |
| { | |
| "epoch": 0.61, | |
| "learning_rate": 5e-05, | |
| "loss": 0.2905, | |
| "step": 341 | |
| }, | |
| { | |
| "epoch": 0.61, | |
| "learning_rate": 5e-05, | |
| "loss": 0.2756, | |
| "step": 342 | |
| }, | |
| { | |
| "epoch": 0.61, | |
| "learning_rate": 5e-05, | |
| "loss": 0.2539, | |
| "step": 343 | |
| }, | |
| { | |
| "epoch": 0.61, | |
| "learning_rate": 5e-05, | |
| "loss": 0.2013, | |
| "step": 344 | |
| }, | |
| { | |
| "epoch": 0.61, | |
| "learning_rate": 5e-05, | |
| "loss": 0.3057, | |
| "step": 345 | |
| }, | |
| { | |
| "epoch": 0.62, | |
| "learning_rate": 5e-05, | |
| "loss": 0.2461, | |
| "step": 346 | |
| }, | |
| { | |
| "epoch": 0.62, | |
| "learning_rate": 5e-05, | |
| "loss": 0.2261, | |
| "step": 347 | |
| }, | |
| { | |
| "epoch": 0.62, | |
| "learning_rate": 5e-05, | |
| "loss": 0.3125, | |
| "step": 348 | |
| }, | |
| { | |
| "epoch": 0.62, | |
| "learning_rate": 5e-05, | |
| "loss": 0.293, | |
| "step": 349 | |
| }, | |
| { | |
| "epoch": 0.62, | |
| "learning_rate": 5e-05, | |
| "loss": 0.3044, | |
| "step": 350 | |
| }, | |
| { | |
| "epoch": 0.62, | |
| "learning_rate": 5e-05, | |
| "loss": 0.2385, | |
| "step": 351 | |
| }, | |
| { | |
| "epoch": 0.63, | |
| "learning_rate": 5e-05, | |
| "loss": 0.2705, | |
| "step": 352 | |
| }, | |
| { | |
| "epoch": 0.63, | |
| "learning_rate": 5e-05, | |
| "loss": 0.2217, | |
| "step": 353 | |
| }, | |
| { | |
| "epoch": 0.63, | |
| "learning_rate": 5e-05, | |
| "loss": 0.2971, | |
| "step": 354 | |
| }, | |
| { | |
| "epoch": 0.63, | |
| "learning_rate": 5e-05, | |
| "loss": 0.2616, | |
| "step": 355 | |
| }, | |
| { | |
| "epoch": 0.63, | |
| "learning_rate": 5e-05, | |
| "loss": 0.2343, | |
| "step": 356 | |
| }, | |
| { | |
| "epoch": 0.63, | |
| "learning_rate": 5e-05, | |
| "loss": 0.2461, | |
| "step": 357 | |
| }, | |
| { | |
| "epoch": 0.64, | |
| "learning_rate": 5e-05, | |
| "loss": 0.2319, | |
| "step": 358 | |
| }, | |
| { | |
| "epoch": 0.64, | |
| "learning_rate": 5e-05, | |
| "loss": 0.2427, | |
| "step": 359 | |
| }, | |
| { | |
| "epoch": 0.64, | |
| "learning_rate": 5e-05, | |
| "loss": 0.1735, | |
| "step": 360 | |
| }, | |
| { | |
| "epoch": 0.64, | |
| "learning_rate": 5e-05, | |
| "loss": 0.321, | |
| "step": 361 | |
| }, | |
| { | |
| "epoch": 0.64, | |
| "learning_rate": 5e-05, | |
| "loss": 0.2817, | |
| "step": 362 | |
| }, | |
| { | |
| "epoch": 0.65, | |
| "learning_rate": 5e-05, | |
| "loss": 0.2502, | |
| "step": 363 | |
| }, | |
| { | |
| "epoch": 0.65, | |
| "learning_rate": 5e-05, | |
| "loss": 0.2646, | |
| "step": 364 | |
| }, | |
| { | |
| "epoch": 0.65, | |
| "learning_rate": 5e-05, | |
| "loss": 0.2231, | |
| "step": 365 | |
| }, | |
| { | |
| "epoch": 0.65, | |
| "learning_rate": 5e-05, | |
| "loss": 0.3367, | |
| "step": 366 | |
| }, | |
| { | |
| "epoch": 0.65, | |
| "learning_rate": 5e-05, | |
| "loss": 0.365, | |
| "step": 367 | |
| }, | |
| { | |
| "epoch": 0.65, | |
| "learning_rate": 5e-05, | |
| "loss": 0.314, | |
| "step": 368 | |
| }, | |
| { | |
| "epoch": 0.66, | |
| "learning_rate": 5e-05, | |
| "loss": 0.2644, | |
| "step": 369 | |
| }, | |
| { | |
| "epoch": 0.66, | |
| "learning_rate": 5e-05, | |
| "loss": 0.2529, | |
| "step": 370 | |
| }, | |
| { | |
| "epoch": 0.66, | |
| "learning_rate": 5e-05, | |
| "loss": 0.2313, | |
| "step": 371 | |
| }, | |
| { | |
| "epoch": 0.66, | |
| "learning_rate": 5e-05, | |
| "loss": 0.324, | |
| "step": 372 | |
| }, | |
| { | |
| "epoch": 0.66, | |
| "learning_rate": 5e-05, | |
| "loss": 0.3394, | |
| "step": 373 | |
| }, | |
| { | |
| "epoch": 0.66, | |
| "learning_rate": 5e-05, | |
| "loss": 0.2722, | |
| "step": 374 | |
| }, | |
| { | |
| "epoch": 0.67, | |
| "learning_rate": 5e-05, | |
| "loss": 0.2446, | |
| "step": 375 | |
| }, | |
| { | |
| "epoch": 0.67, | |
| "learning_rate": 5e-05, | |
| "loss": 0.2537, | |
| "step": 376 | |
| }, | |
| { | |
| "epoch": 0.67, | |
| "learning_rate": 5e-05, | |
| "loss": 0.2375, | |
| "step": 377 | |
| }, | |
| { | |
| "epoch": 0.67, | |
| "learning_rate": 5e-05, | |
| "loss": 0.2986, | |
| "step": 378 | |
| }, | |
| { | |
| "epoch": 0.67, | |
| "learning_rate": 5e-05, | |
| "loss": 0.2808, | |
| "step": 379 | |
| }, | |
| { | |
| "epoch": 0.68, | |
| "learning_rate": 5e-05, | |
| "loss": 0.2825, | |
| "step": 380 | |
| }, | |
| { | |
| "epoch": 0.68, | |
| "learning_rate": 5e-05, | |
| "loss": 0.2583, | |
| "step": 381 | |
| }, | |
| { | |
| "epoch": 0.68, | |
| "learning_rate": 5e-05, | |
| "loss": 0.3726, | |
| "step": 382 | |
| }, | |
| { | |
| "epoch": 0.68, | |
| "learning_rate": 5e-05, | |
| "loss": 0.2913, | |
| "step": 383 | |
| }, | |
| { | |
| "epoch": 0.68, | |
| "learning_rate": 5e-05, | |
| "loss": 0.1598, | |
| "step": 384 | |
| }, | |
| { | |
| "epoch": 0.68, | |
| "learning_rate": 5e-05, | |
| "loss": 0.3726, | |
| "step": 385 | |
| }, | |
| { | |
| "epoch": 0.69, | |
| "learning_rate": 5e-05, | |
| "loss": 0.2786, | |
| "step": 386 | |
| }, | |
| { | |
| "epoch": 0.69, | |
| "learning_rate": 5e-05, | |
| "loss": 0.3188, | |
| "step": 387 | |
| }, | |
| { | |
| "epoch": 0.69, | |
| "learning_rate": 5e-05, | |
| "loss": 0.2422, | |
| "step": 388 | |
| }, | |
| { | |
| "epoch": 0.69, | |
| "learning_rate": 5e-05, | |
| "loss": 0.2737, | |
| "step": 389 | |
| }, | |
| { | |
| "epoch": 0.69, | |
| "learning_rate": 5e-05, | |
| "loss": 0.2396, | |
| "step": 390 | |
| }, | |
| { | |
| "epoch": 0.7, | |
| "learning_rate": 5e-05, | |
| "loss": 0.2551, | |
| "step": 391 | |
| }, | |
| { | |
| "epoch": 0.7, | |
| "learning_rate": 5e-05, | |
| "loss": 0.2893, | |
| "step": 392 | |
| }, | |
| { | |
| "epoch": 0.7, | |
| "learning_rate": 5e-05, | |
| "loss": 0.2603, | |
| "step": 393 | |
| }, | |
| { | |
| "epoch": 0.7, | |
| "learning_rate": 5e-05, | |
| "loss": 0.6025, | |
| "step": 394 | |
| }, | |
| { | |
| "epoch": 0.7, | |
| "learning_rate": 5e-05, | |
| "loss": 0.2722, | |
| "step": 395 | |
| }, | |
| { | |
| "epoch": 0.7, | |
| "learning_rate": 5e-05, | |
| "loss": 0.2069, | |
| "step": 396 | |
| }, | |
| { | |
| "epoch": 0.71, | |
| "learning_rate": 5e-05, | |
| "loss": 0.2405, | |
| "step": 397 | |
| }, | |
| { | |
| "epoch": 0.71, | |
| "learning_rate": 5e-05, | |
| "loss": 0.2246, | |
| "step": 398 | |
| }, | |
| { | |
| "epoch": 0.71, | |
| "learning_rate": 5e-05, | |
| "loss": 0.2346, | |
| "step": 399 | |
| }, | |
| { | |
| "epoch": 0.71, | |
| "learning_rate": 5e-05, | |
| "loss": 0.321, | |
| "step": 400 | |
| }, | |
| { | |
| "epoch": 0.71, | |
| "learning_rate": 5e-05, | |
| "loss": 0.2439, | |
| "step": 401 | |
| }, | |
| { | |
| "epoch": 0.71, | |
| "learning_rate": 5e-05, | |
| "loss": 0.2087, | |
| "step": 402 | |
| }, | |
| { | |
| "epoch": 0.72, | |
| "learning_rate": 5e-05, | |
| "loss": 0.3594, | |
| "step": 403 | |
| }, | |
| { | |
| "epoch": 0.72, | |
| "learning_rate": 5e-05, | |
| "loss": 0.4214, | |
| "step": 404 | |
| }, | |
| { | |
| "epoch": 0.72, | |
| "learning_rate": 5e-05, | |
| "loss": 0.2803, | |
| "step": 405 | |
| }, | |
| { | |
| "epoch": 0.72, | |
| "learning_rate": 5e-05, | |
| "loss": 0.2615, | |
| "step": 406 | |
| }, | |
| { | |
| "epoch": 0.72, | |
| "learning_rate": 5e-05, | |
| "loss": 0.2371, | |
| "step": 407 | |
| }, | |
| { | |
| "epoch": 0.73, | |
| "learning_rate": 5e-05, | |
| "loss": 0.3376, | |
| "step": 408 | |
| }, | |
| { | |
| "epoch": 0.73, | |
| "learning_rate": 5e-05, | |
| "loss": 0.2866, | |
| "step": 409 | |
| }, | |
| { | |
| "epoch": 0.73, | |
| "learning_rate": 5e-05, | |
| "loss": 0.2783, | |
| "step": 410 | |
| }, | |
| { | |
| "epoch": 0.73, | |
| "learning_rate": 5e-05, | |
| "loss": 0.2644, | |
| "step": 411 | |
| }, | |
| { | |
| "epoch": 0.73, | |
| "learning_rate": 5e-05, | |
| "loss": 0.2986, | |
| "step": 412 | |
| }, | |
| { | |
| "epoch": 0.73, | |
| "learning_rate": 5e-05, | |
| "loss": 0.2788, | |
| "step": 413 | |
| }, | |
| { | |
| "epoch": 0.74, | |
| "learning_rate": 5e-05, | |
| "loss": 0.2975, | |
| "step": 414 | |
| }, | |
| { | |
| "epoch": 0.74, | |
| "learning_rate": 5e-05, | |
| "loss": 0.267, | |
| "step": 415 | |
| }, | |
| { | |
| "epoch": 0.74, | |
| "learning_rate": 5e-05, | |
| "loss": 0.2026, | |
| "step": 416 | |
| }, | |
| { | |
| "epoch": 0.74, | |
| "learning_rate": 5e-05, | |
| "loss": 0.2786, | |
| "step": 417 | |
| }, | |
| { | |
| "epoch": 0.74, | |
| "learning_rate": 5e-05, | |
| "loss": 0.2695, | |
| "step": 418 | |
| }, | |
| { | |
| "epoch": 0.74, | |
| "learning_rate": 5e-05, | |
| "loss": 0.3201, | |
| "step": 419 | |
| }, | |
| { | |
| "epoch": 0.75, | |
| "learning_rate": 5e-05, | |
| "loss": 0.2192, | |
| "step": 420 | |
| }, | |
| { | |
| "epoch": 0.75, | |
| "learning_rate": 5e-05, | |
| "loss": 0.2456, | |
| "step": 421 | |
| }, | |
| { | |
| "epoch": 0.75, | |
| "learning_rate": 5e-05, | |
| "loss": 0.3184, | |
| "step": 422 | |
| }, | |
| { | |
| "epoch": 0.75, | |
| "learning_rate": 5e-05, | |
| "loss": 0.3279, | |
| "step": 423 | |
| }, | |
| { | |
| "epoch": 0.75, | |
| "learning_rate": 5e-05, | |
| "loss": 0.183, | |
| "step": 424 | |
| }, | |
| { | |
| "epoch": 0.76, | |
| "learning_rate": 5e-05, | |
| "loss": 0.2971, | |
| "step": 425 | |
| }, | |
| { | |
| "epoch": 0.76, | |
| "learning_rate": 5e-05, | |
| "loss": 0.2378, | |
| "step": 426 | |
| }, | |
| { | |
| "epoch": 0.76, | |
| "learning_rate": 5e-05, | |
| "loss": 0.2505, | |
| "step": 427 | |
| }, | |
| { | |
| "epoch": 0.76, | |
| "learning_rate": 5e-05, | |
| "loss": 0.3057, | |
| "step": 428 | |
| }, | |
| { | |
| "epoch": 0.76, | |
| "learning_rate": 5e-05, | |
| "loss": 0.2253, | |
| "step": 429 | |
| }, | |
| { | |
| "epoch": 0.76, | |
| "learning_rate": 5e-05, | |
| "loss": 0.4541, | |
| "step": 430 | |
| }, | |
| { | |
| "epoch": 0.77, | |
| "learning_rate": 5e-05, | |
| "loss": 0.2058, | |
| "step": 431 | |
| }, | |
| { | |
| "epoch": 0.77, | |
| "learning_rate": 5e-05, | |
| "loss": 0.3694, | |
| "step": 432 | |
| }, | |
| { | |
| "epoch": 0.77, | |
| "learning_rate": 5e-05, | |
| "loss": 0.2131, | |
| "step": 433 | |
| }, | |
| { | |
| "epoch": 0.77, | |
| "learning_rate": 5e-05, | |
| "loss": 0.28, | |
| "step": 434 | |
| }, | |
| { | |
| "epoch": 0.77, | |
| "learning_rate": 5e-05, | |
| "loss": 0.3867, | |
| "step": 435 | |
| }, | |
| { | |
| "epoch": 0.78, | |
| "learning_rate": 5e-05, | |
| "loss": 0.2058, | |
| "step": 436 | |
| }, | |
| { | |
| "epoch": 0.78, | |
| "learning_rate": 5e-05, | |
| "loss": 0.2812, | |
| "step": 437 | |
| }, | |
| { | |
| "epoch": 0.78, | |
| "learning_rate": 5e-05, | |
| "loss": 0.2317, | |
| "step": 438 | |
| }, | |
| { | |
| "epoch": 0.78, | |
| "learning_rate": 5e-05, | |
| "loss": 0.2427, | |
| "step": 439 | |
| }, | |
| { | |
| "epoch": 0.78, | |
| "learning_rate": 5e-05, | |
| "loss": 0.2358, | |
| "step": 440 | |
| }, | |
| { | |
| "epoch": 0.78, | |
| "learning_rate": 5e-05, | |
| "loss": 0.2471, | |
| "step": 441 | |
| }, | |
| { | |
| "epoch": 0.79, | |
| "learning_rate": 5e-05, | |
| "loss": 0.2534, | |
| "step": 442 | |
| }, | |
| { | |
| "epoch": 0.79, | |
| "learning_rate": 5e-05, | |
| "loss": 0.395, | |
| "step": 443 | |
| }, | |
| { | |
| "epoch": 0.79, | |
| "learning_rate": 5e-05, | |
| "loss": 0.2522, | |
| "step": 444 | |
| }, | |
| { | |
| "epoch": 0.79, | |
| "learning_rate": 5e-05, | |
| "loss": 0.1809, | |
| "step": 445 | |
| }, | |
| { | |
| "epoch": 0.79, | |
| "learning_rate": 5e-05, | |
| "loss": 0.2834, | |
| "step": 446 | |
| }, | |
| { | |
| "epoch": 0.79, | |
| "learning_rate": 5e-05, | |
| "loss": 0.2461, | |
| "step": 447 | |
| }, | |
| { | |
| "epoch": 0.8, | |
| "learning_rate": 5e-05, | |
| "loss": 0.3264, | |
| "step": 448 | |
| }, | |
| { | |
| "epoch": 0.8, | |
| "learning_rate": 5e-05, | |
| "loss": 0.1843, | |
| "step": 449 | |
| }, | |
| { | |
| "epoch": 0.8, | |
| "learning_rate": 5e-05, | |
| "loss": 0.3237, | |
| "step": 450 | |
| }, | |
| { | |
| "epoch": 0.8, | |
| "learning_rate": 5e-05, | |
| "loss": 0.3799, | |
| "step": 451 | |
| }, | |
| { | |
| "epoch": 0.8, | |
| "learning_rate": 5e-05, | |
| "loss": 0.2661, | |
| "step": 452 | |
| }, | |
| { | |
| "epoch": 0.81, | |
| "learning_rate": 5e-05, | |
| "loss": 0.2417, | |
| "step": 453 | |
| }, | |
| { | |
| "epoch": 0.81, | |
| "learning_rate": 5e-05, | |
| "loss": 0.2366, | |
| "step": 454 | |
| }, | |
| { | |
| "epoch": 0.81, | |
| "learning_rate": 5e-05, | |
| "loss": 0.2729, | |
| "step": 455 | |
| }, | |
| { | |
| "epoch": 0.81, | |
| "learning_rate": 5e-05, | |
| "loss": 0.3276, | |
| "step": 456 | |
| }, | |
| { | |
| "epoch": 0.81, | |
| "learning_rate": 5e-05, | |
| "loss": 0.2593, | |
| "step": 457 | |
| }, | |
| { | |
| "epoch": 0.81, | |
| "learning_rate": 5e-05, | |
| "loss": 0.3035, | |
| "step": 458 | |
| }, | |
| { | |
| "epoch": 0.82, | |
| "learning_rate": 5e-05, | |
| "loss": 0.2554, | |
| "step": 459 | |
| }, | |
| { | |
| "epoch": 0.82, | |
| "learning_rate": 5e-05, | |
| "loss": 0.2991, | |
| "step": 460 | |
| }, | |
| { | |
| "epoch": 0.82, | |
| "learning_rate": 5e-05, | |
| "loss": 0.4092, | |
| "step": 461 | |
| }, | |
| { | |
| "epoch": 0.82, | |
| "learning_rate": 5e-05, | |
| "loss": 0.2971, | |
| "step": 462 | |
| }, | |
| { | |
| "epoch": 0.82, | |
| "learning_rate": 5e-05, | |
| "loss": 0.2922, | |
| "step": 463 | |
| }, | |
| { | |
| "epoch": 0.82, | |
| "learning_rate": 5e-05, | |
| "loss": 0.2795, | |
| "step": 464 | |
| }, | |
| { | |
| "epoch": 0.83, | |
| "learning_rate": 5e-05, | |
| "loss": 0.3157, | |
| "step": 465 | |
| }, | |
| { | |
| "epoch": 0.83, | |
| "learning_rate": 5e-05, | |
| "loss": 0.2744, | |
| "step": 466 | |
| }, | |
| { | |
| "epoch": 0.83, | |
| "learning_rate": 5e-05, | |
| "loss": 0.2266, | |
| "step": 467 | |
| }, | |
| { | |
| "epoch": 0.83, | |
| "learning_rate": 5e-05, | |
| "loss": 0.2969, | |
| "step": 468 | |
| }, | |
| { | |
| "epoch": 0.83, | |
| "learning_rate": 5e-05, | |
| "loss": 0.2498, | |
| "step": 469 | |
| }, | |
| { | |
| "epoch": 0.84, | |
| "learning_rate": 5e-05, | |
| "loss": 0.2974, | |
| "step": 470 | |
| }, | |
| { | |
| "epoch": 0.84, | |
| "learning_rate": 5e-05, | |
| "loss": 0.1393, | |
| "step": 471 | |
| }, | |
| { | |
| "epoch": 0.84, | |
| "learning_rate": 5e-05, | |
| "loss": 0.2424, | |
| "step": 472 | |
| }, | |
| { | |
| "epoch": 0.84, | |
| "learning_rate": 5e-05, | |
| "loss": 0.2659, | |
| "step": 473 | |
| }, | |
| { | |
| "epoch": 0.84, | |
| "learning_rate": 5e-05, | |
| "loss": 0.2405, | |
| "step": 474 | |
| }, | |
| { | |
| "epoch": 0.84, | |
| "learning_rate": 5e-05, | |
| "loss": 0.3286, | |
| "step": 475 | |
| }, | |
| { | |
| "epoch": 0.85, | |
| "learning_rate": 5e-05, | |
| "loss": 0.3237, | |
| "step": 476 | |
| }, | |
| { | |
| "epoch": 0.85, | |
| "learning_rate": 5e-05, | |
| "loss": 0.4231, | |
| "step": 477 | |
| }, | |
| { | |
| "epoch": 0.85, | |
| "learning_rate": 5e-05, | |
| "loss": 0.3303, | |
| "step": 478 | |
| }, | |
| { | |
| "epoch": 0.85, | |
| "learning_rate": 5e-05, | |
| "loss": 0.2385, | |
| "step": 479 | |
| }, | |
| { | |
| "epoch": 0.85, | |
| "learning_rate": 5e-05, | |
| "loss": 0.2522, | |
| "step": 480 | |
| }, | |
| { | |
| "epoch": 0.86, | |
| "learning_rate": 5e-05, | |
| "loss": 0.2441, | |
| "step": 481 | |
| }, | |
| { | |
| "epoch": 0.86, | |
| "learning_rate": 5e-05, | |
| "loss": 0.2983, | |
| "step": 482 | |
| }, | |
| { | |
| "epoch": 0.86, | |
| "learning_rate": 5e-05, | |
| "loss": 0.2509, | |
| "step": 483 | |
| }, | |
| { | |
| "epoch": 0.86, | |
| "learning_rate": 5e-05, | |
| "loss": 0.2422, | |
| "step": 484 | |
| }, | |
| { | |
| "epoch": 0.86, | |
| "learning_rate": 5e-05, | |
| "loss": 0.2603, | |
| "step": 485 | |
| }, | |
| { | |
| "epoch": 0.86, | |
| "learning_rate": 5e-05, | |
| "loss": 0.3398, | |
| "step": 486 | |
| }, | |
| { | |
| "epoch": 0.87, | |
| "learning_rate": 5e-05, | |
| "loss": 0.2466, | |
| "step": 487 | |
| }, | |
| { | |
| "epoch": 0.87, | |
| "learning_rate": 5e-05, | |
| "loss": 0.2937, | |
| "step": 488 | |
| }, | |
| { | |
| "epoch": 0.87, | |
| "learning_rate": 5e-05, | |
| "loss": 0.3311, | |
| "step": 489 | |
| }, | |
| { | |
| "epoch": 0.87, | |
| "learning_rate": 5e-05, | |
| "loss": 0.2673, | |
| "step": 490 | |
| }, | |
| { | |
| "epoch": 0.87, | |
| "learning_rate": 5e-05, | |
| "loss": 0.2637, | |
| "step": 491 | |
| }, | |
| { | |
| "epoch": 0.87, | |
| "learning_rate": 5e-05, | |
| "loss": 0.1716, | |
| "step": 492 | |
| }, | |
| { | |
| "epoch": 0.88, | |
| "learning_rate": 5e-05, | |
| "loss": 0.2305, | |
| "step": 493 | |
| }, | |
| { | |
| "epoch": 0.88, | |
| "learning_rate": 5e-05, | |
| "loss": 0.2168, | |
| "step": 494 | |
| }, | |
| { | |
| "epoch": 0.88, | |
| "learning_rate": 5e-05, | |
| "loss": 0.3108, | |
| "step": 495 | |
| }, | |
| { | |
| "epoch": 0.88, | |
| "learning_rate": 5e-05, | |
| "loss": 0.3105, | |
| "step": 496 | |
| }, | |
| { | |
| "epoch": 0.88, | |
| "learning_rate": 5e-05, | |
| "loss": 0.1785, | |
| "step": 497 | |
| }, | |
| { | |
| "epoch": 0.89, | |
| "learning_rate": 5e-05, | |
| "loss": 0.3538, | |
| "step": 498 | |
| }, | |
| { | |
| "epoch": 0.89, | |
| "learning_rate": 5e-05, | |
| "loss": 0.2576, | |
| "step": 499 | |
| }, | |
| { | |
| "epoch": 0.89, | |
| "learning_rate": 5e-05, | |
| "loss": 0.2568, | |
| "step": 500 | |
| }, | |
| { | |
| "epoch": 0.89, | |
| "learning_rate": 5e-05, | |
| "loss": 0.2703, | |
| "step": 501 | |
| }, | |
| { | |
| "epoch": 0.89, | |
| "learning_rate": 5e-05, | |
| "loss": 0.416, | |
| "step": 502 | |
| }, | |
| { | |
| "epoch": 0.89, | |
| "learning_rate": 5e-05, | |
| "loss": 0.2786, | |
| "step": 503 | |
| }, | |
| { | |
| "epoch": 0.9, | |
| "learning_rate": 5e-05, | |
| "loss": 0.1975, | |
| "step": 504 | |
| }, | |
| { | |
| "epoch": 0.9, | |
| "learning_rate": 5e-05, | |
| "loss": 0.2393, | |
| "step": 505 | |
| }, | |
| { | |
| "epoch": 0.9, | |
| "learning_rate": 5e-05, | |
| "loss": 0.2341, | |
| "step": 506 | |
| }, | |
| { | |
| "epoch": 0.9, | |
| "learning_rate": 5e-05, | |
| "loss": 0.23, | |
| "step": 507 | |
| }, | |
| { | |
| "epoch": 0.9, | |
| "learning_rate": 5e-05, | |
| "loss": 0.2649, | |
| "step": 508 | |
| }, | |
| { | |
| "epoch": 0.9, | |
| "learning_rate": 5e-05, | |
| "loss": 0.2295, | |
| "step": 509 | |
| }, | |
| { | |
| "epoch": 0.91, | |
| "learning_rate": 5e-05, | |
| "loss": 0.3152, | |
| "step": 510 | |
| }, | |
| { | |
| "epoch": 0.91, | |
| "learning_rate": 5e-05, | |
| "loss": 0.1573, | |
| "step": 511 | |
| }, | |
| { | |
| "epoch": 0.91, | |
| "learning_rate": 5e-05, | |
| "loss": 0.2231, | |
| "step": 512 | |
| }, | |
| { | |
| "epoch": 0.91, | |
| "learning_rate": 5e-05, | |
| "loss": 0.2332, | |
| "step": 513 | |
| }, | |
| { | |
| "epoch": 0.91, | |
| "learning_rate": 5e-05, | |
| "loss": 0.2383, | |
| "step": 514 | |
| }, | |
| { | |
| "epoch": 0.92, | |
| "learning_rate": 5e-05, | |
| "loss": 0.3276, | |
| "step": 515 | |
| }, | |
| { | |
| "epoch": 0.92, | |
| "learning_rate": 5e-05, | |
| "loss": 0.3074, | |
| "step": 516 | |
| }, | |
| { | |
| "epoch": 0.92, | |
| "learning_rate": 5e-05, | |
| "loss": 0.2319, | |
| "step": 517 | |
| }, | |
| { | |
| "epoch": 0.92, | |
| "learning_rate": 5e-05, | |
| "loss": 0.3049, | |
| "step": 518 | |
| }, | |
| { | |
| "epoch": 0.92, | |
| "learning_rate": 5e-05, | |
| "loss": 0.2881, | |
| "step": 519 | |
| }, | |
| { | |
| "epoch": 0.92, | |
| "learning_rate": 5e-05, | |
| "loss": 0.2583, | |
| "step": 520 | |
| }, | |
| { | |
| "epoch": 0.93, | |
| "learning_rate": 5e-05, | |
| "loss": 0.3501, | |
| "step": 521 | |
| }, | |
| { | |
| "epoch": 0.93, | |
| "learning_rate": 5e-05, | |
| "loss": 0.3223, | |
| "step": 522 | |
| }, | |
| { | |
| "epoch": 0.93, | |
| "learning_rate": 5e-05, | |
| "loss": 0.1954, | |
| "step": 523 | |
| }, | |
| { | |
| "epoch": 0.93, | |
| "learning_rate": 5e-05, | |
| "loss": 0.2305, | |
| "step": 524 | |
| }, | |
| { | |
| "epoch": 0.93, | |
| "learning_rate": 5e-05, | |
| "loss": 0.2434, | |
| "step": 525 | |
| }, | |
| { | |
| "epoch": 0.94, | |
| "learning_rate": 5e-05, | |
| "loss": 0.2756, | |
| "step": 526 | |
| }, | |
| { | |
| "epoch": 0.94, | |
| "learning_rate": 5e-05, | |
| "loss": 0.283, | |
| "step": 527 | |
| }, | |
| { | |
| "epoch": 0.94, | |
| "learning_rate": 5e-05, | |
| "loss": 0.2426, | |
| "step": 528 | |
| }, | |
| { | |
| "epoch": 0.94, | |
| "learning_rate": 5e-05, | |
| "loss": 0.2808, | |
| "step": 529 | |
| }, | |
| { | |
| "epoch": 0.94, | |
| "learning_rate": 5e-05, | |
| "loss": 0.2618, | |
| "step": 530 | |
| }, | |
| { | |
| "epoch": 0.94, | |
| "learning_rate": 5e-05, | |
| "loss": 0.2844, | |
| "step": 531 | |
| }, | |
| { | |
| "epoch": 0.95, | |
| "learning_rate": 5e-05, | |
| "loss": 0.2585, | |
| "step": 532 | |
| }, | |
| { | |
| "epoch": 0.95, | |
| "learning_rate": 5e-05, | |
| "loss": 0.2603, | |
| "step": 533 | |
| }, | |
| { | |
| "epoch": 0.95, | |
| "learning_rate": 5e-05, | |
| "loss": 0.2705, | |
| "step": 534 | |
| }, | |
| { | |
| "epoch": 0.95, | |
| "learning_rate": 5e-05, | |
| "loss": 0.2913, | |
| "step": 535 | |
| }, | |
| { | |
| "epoch": 0.95, | |
| "learning_rate": 5e-05, | |
| "loss": 0.3491, | |
| "step": 536 | |
| }, | |
| { | |
| "epoch": 0.95, | |
| "learning_rate": 5e-05, | |
| "loss": 0.2267, | |
| "step": 537 | |
| }, | |
| { | |
| "epoch": 0.96, | |
| "learning_rate": 5e-05, | |
| "loss": 0.2012, | |
| "step": 538 | |
| }, | |
| { | |
| "epoch": 0.96, | |
| "learning_rate": 5e-05, | |
| "loss": 0.2617, | |
| "step": 539 | |
| }, | |
| { | |
| "epoch": 0.96, | |
| "learning_rate": 5e-05, | |
| "loss": 0.2534, | |
| "step": 540 | |
| }, | |
| { | |
| "epoch": 0.96, | |
| "learning_rate": 5e-05, | |
| "loss": 0.1899, | |
| "step": 541 | |
| }, | |
| { | |
| "epoch": 0.96, | |
| "learning_rate": 5e-05, | |
| "loss": 0.2751, | |
| "step": 542 | |
| }, | |
| { | |
| "epoch": 0.97, | |
| "learning_rate": 5e-05, | |
| "loss": 0.23, | |
| "step": 543 | |
| }, | |
| { | |
| "epoch": 0.97, | |
| "learning_rate": 5e-05, | |
| "loss": 0.3792, | |
| "step": 544 | |
| }, | |
| { | |
| "epoch": 0.97, | |
| "learning_rate": 5e-05, | |
| "loss": 0.2715, | |
| "step": 545 | |
| }, | |
| { | |
| "epoch": 0.97, | |
| "learning_rate": 5e-05, | |
| "loss": 0.2104, | |
| "step": 546 | |
| }, | |
| { | |
| "epoch": 0.97, | |
| "learning_rate": 5e-05, | |
| "loss": 0.174, | |
| "step": 547 | |
| }, | |
| { | |
| "epoch": 0.97, | |
| "learning_rate": 5e-05, | |
| "loss": 0.2878, | |
| "step": 548 | |
| }, | |
| { | |
| "epoch": 0.98, | |
| "learning_rate": 5e-05, | |
| "loss": 0.332, | |
| "step": 549 | |
| }, | |
| { | |
| "epoch": 0.98, | |
| "learning_rate": 5e-05, | |
| "loss": 0.1823, | |
| "step": 550 | |
| }, | |
| { | |
| "epoch": 0.98, | |
| "learning_rate": 5e-05, | |
| "loss": 0.2782, | |
| "step": 551 | |
| }, | |
| { | |
| "epoch": 0.98, | |
| "learning_rate": 5e-05, | |
| "loss": 0.3242, | |
| "step": 552 | |
| }, | |
| { | |
| "epoch": 0.98, | |
| "learning_rate": 5e-05, | |
| "loss": 0.2517, | |
| "step": 553 | |
| }, | |
| { | |
| "epoch": 0.98, | |
| "learning_rate": 5e-05, | |
| "loss": 0.3254, | |
| "step": 554 | |
| }, | |
| { | |
| "epoch": 0.99, | |
| "learning_rate": 5e-05, | |
| "loss": 0.2124, | |
| "step": 555 | |
| }, | |
| { | |
| "epoch": 0.99, | |
| "learning_rate": 5e-05, | |
| "loss": 0.2562, | |
| "step": 556 | |
| }, | |
| { | |
| "epoch": 0.99, | |
| "learning_rate": 5e-05, | |
| "loss": 0.2321, | |
| "step": 557 | |
| }, | |
| { | |
| "epoch": 0.99, | |
| "learning_rate": 5e-05, | |
| "loss": 0.2761, | |
| "step": 558 | |
| }, | |
| { | |
| "epoch": 0.99, | |
| "learning_rate": 5e-05, | |
| "loss": 0.3198, | |
| "step": 559 | |
| }, | |
| { | |
| "epoch": 1.0, | |
| "learning_rate": 5e-05, | |
| "loss": 0.2412, | |
| "step": 560 | |
| }, | |
| { | |
| "epoch": 1.0, | |
| "learning_rate": 5e-05, | |
| "loss": 0.2361, | |
| "step": 561 | |
| }, | |
| { | |
| "epoch": 1.0, | |
| "learning_rate": 5e-05, | |
| "loss": 0.2629, | |
| "step": 562 | |
| }, | |
| { | |
| "epoch": 1.0, | |
| "eval_loss": 0.252667635679245, | |
| "eval_runtime": 118.7073, | |
| "eval_samples_per_second": 2.527, | |
| "eval_steps_per_second": 0.632, | |
| "step": 562 | |
| }, | |
| { | |
| "epoch": 1.0, | |
| "learning_rate": 5e-05, | |
| "loss": 0.2251, | |
| "step": 563 | |
| }, | |
| { | |
| "epoch": 1.0, | |
| "learning_rate": 5e-05, | |
| "loss": 0.3428, | |
| "step": 564 | |
| }, | |
| { | |
| "epoch": 1.0, | |
| "learning_rate": 5e-05, | |
| "loss": 0.3271, | |
| "step": 565 | |
| }, | |
| { | |
| "epoch": 1.01, | |
| "learning_rate": 5e-05, | |
| "loss": 0.1775, | |
| "step": 566 | |
| }, | |
| { | |
| "epoch": 1.01, | |
| "learning_rate": 5e-05, | |
| "loss": 0.1478, | |
| "step": 567 | |
| }, | |
| { | |
| "epoch": 1.01, | |
| "learning_rate": 5e-05, | |
| "loss": 0.3059, | |
| "step": 568 | |
| }, | |
| { | |
| "epoch": 1.01, | |
| "learning_rate": 5e-05, | |
| "loss": 0.2644, | |
| "step": 569 | |
| }, | |
| { | |
| "epoch": 1.01, | |
| "learning_rate": 5e-05, | |
| "loss": 0.1985, | |
| "step": 570 | |
| }, | |
| { | |
| "epoch": 1.02, | |
| "learning_rate": 5e-05, | |
| "loss": 0.2598, | |
| "step": 571 | |
| }, | |
| { | |
| "epoch": 1.02, | |
| "learning_rate": 5e-05, | |
| "loss": 0.2168, | |
| "step": 572 | |
| }, | |
| { | |
| "epoch": 1.02, | |
| "learning_rate": 5e-05, | |
| "loss": 0.1897, | |
| "step": 573 | |
| }, | |
| { | |
| "epoch": 1.02, | |
| "learning_rate": 5e-05, | |
| "loss": 0.22, | |
| "step": 574 | |
| }, | |
| { | |
| "epoch": 1.02, | |
| "learning_rate": 5e-05, | |
| "loss": 0.2847, | |
| "step": 575 | |
| }, | |
| { | |
| "epoch": 1.02, | |
| "learning_rate": 5e-05, | |
| "loss": 0.2323, | |
| "step": 576 | |
| }, | |
| { | |
| "epoch": 1.03, | |
| "learning_rate": 5e-05, | |
| "loss": 0.3604, | |
| "step": 577 | |
| }, | |
| { | |
| "epoch": 1.03, | |
| "learning_rate": 5e-05, | |
| "loss": 0.2505, | |
| "step": 578 | |
| }, | |
| { | |
| "epoch": 1.03, | |
| "learning_rate": 5e-05, | |
| "loss": 0.2605, | |
| "step": 579 | |
| }, | |
| { | |
| "epoch": 1.03, | |
| "learning_rate": 5e-05, | |
| "loss": 0.2537, | |
| "step": 580 | |
| }, | |
| { | |
| "epoch": 1.03, | |
| "learning_rate": 5e-05, | |
| "loss": 0.2673, | |
| "step": 581 | |
| }, | |
| { | |
| "epoch": 1.03, | |
| "learning_rate": 5e-05, | |
| "loss": 0.2148, | |
| "step": 582 | |
| }, | |
| { | |
| "epoch": 1.04, | |
| "learning_rate": 5e-05, | |
| "loss": 0.2368, | |
| "step": 583 | |
| }, | |
| { | |
| "epoch": 1.04, | |
| "learning_rate": 5e-05, | |
| "loss": 0.2312, | |
| "step": 584 | |
| }, | |
| { | |
| "epoch": 1.04, | |
| "learning_rate": 5e-05, | |
| "loss": 0.2603, | |
| "step": 585 | |
| }, | |
| { | |
| "epoch": 1.04, | |
| "learning_rate": 5e-05, | |
| "loss": 0.2112, | |
| "step": 586 | |
| }, | |
| { | |
| "epoch": 1.04, | |
| "learning_rate": 5e-05, | |
| "loss": 0.2041, | |
| "step": 587 | |
| }, | |
| { | |
| "epoch": 1.05, | |
| "learning_rate": 5e-05, | |
| "loss": 0.2808, | |
| "step": 588 | |
| }, | |
| { | |
| "epoch": 1.05, | |
| "learning_rate": 5e-05, | |
| "loss": 0.2622, | |
| "step": 589 | |
| }, | |
| { | |
| "epoch": 1.05, | |
| "learning_rate": 5e-05, | |
| "loss": 0.2649, | |
| "step": 590 | |
| }, | |
| { | |
| "epoch": 1.05, | |
| "learning_rate": 5e-05, | |
| "loss": 0.2859, | |
| "step": 591 | |
| }, | |
| { | |
| "epoch": 1.05, | |
| "learning_rate": 5e-05, | |
| "loss": 0.2219, | |
| "step": 592 | |
| }, | |
| { | |
| "epoch": 1.05, | |
| "learning_rate": 5e-05, | |
| "loss": 0.2751, | |
| "step": 593 | |
| }, | |
| { | |
| "epoch": 1.06, | |
| "learning_rate": 5e-05, | |
| "loss": 0.3069, | |
| "step": 594 | |
| }, | |
| { | |
| "epoch": 1.06, | |
| "learning_rate": 5e-05, | |
| "loss": 0.208, | |
| "step": 595 | |
| }, | |
| { | |
| "epoch": 1.06, | |
| "learning_rate": 5e-05, | |
| "loss": 0.2712, | |
| "step": 596 | |
| }, | |
| { | |
| "epoch": 1.06, | |
| "learning_rate": 5e-05, | |
| "loss": 0.2417, | |
| "step": 597 | |
| }, | |
| { | |
| "epoch": 1.06, | |
| "learning_rate": 5e-05, | |
| "loss": 0.2085, | |
| "step": 598 | |
| }, | |
| { | |
| "epoch": 1.06, | |
| "learning_rate": 5e-05, | |
| "loss": 0.265, | |
| "step": 599 | |
| }, | |
| { | |
| "epoch": 1.07, | |
| "learning_rate": 5e-05, | |
| "loss": 0.2522, | |
| "step": 600 | |
| }, | |
| { | |
| "epoch": 1.07, | |
| "learning_rate": 5e-05, | |
| "loss": 0.217, | |
| "step": 601 | |
| }, | |
| { | |
| "epoch": 1.07, | |
| "learning_rate": 5e-05, | |
| "loss": 0.2488, | |
| "step": 602 | |
| }, | |
| { | |
| "epoch": 1.07, | |
| "learning_rate": 5e-05, | |
| "loss": 0.2441, | |
| "step": 603 | |
| }, | |
| { | |
| "epoch": 1.07, | |
| "learning_rate": 5e-05, | |
| "loss": 0.2773, | |
| "step": 604 | |
| }, | |
| { | |
| "epoch": 1.08, | |
| "learning_rate": 5e-05, | |
| "loss": 0.3657, | |
| "step": 605 | |
| }, | |
| { | |
| "epoch": 1.08, | |
| "learning_rate": 5e-05, | |
| "loss": 0.2677, | |
| "step": 606 | |
| }, | |
| { | |
| "epoch": 1.08, | |
| "learning_rate": 5e-05, | |
| "loss": 0.2405, | |
| "step": 607 | |
| }, | |
| { | |
| "epoch": 1.08, | |
| "learning_rate": 5e-05, | |
| "loss": 0.2578, | |
| "step": 608 | |
| }, | |
| { | |
| "epoch": 1.08, | |
| "learning_rate": 5e-05, | |
| "loss": 0.3755, | |
| "step": 609 | |
| }, | |
| { | |
| "epoch": 1.08, | |
| "learning_rate": 5e-05, | |
| "loss": 0.2346, | |
| "step": 610 | |
| }, | |
| { | |
| "epoch": 1.09, | |
| "learning_rate": 5e-05, | |
| "loss": 0.2319, | |
| "step": 611 | |
| }, | |
| { | |
| "epoch": 1.09, | |
| "learning_rate": 5e-05, | |
| "loss": 0.304, | |
| "step": 612 | |
| }, | |
| { | |
| "epoch": 1.09, | |
| "learning_rate": 5e-05, | |
| "loss": 0.3589, | |
| "step": 613 | |
| }, | |
| { | |
| "epoch": 1.09, | |
| "learning_rate": 5e-05, | |
| "loss": 0.1447, | |
| "step": 614 | |
| }, | |
| { | |
| "epoch": 1.09, | |
| "learning_rate": 5e-05, | |
| "loss": 0.3394, | |
| "step": 615 | |
| }, | |
| { | |
| "epoch": 1.1, | |
| "learning_rate": 5e-05, | |
| "loss": 0.2563, | |
| "step": 616 | |
| }, | |
| { | |
| "epoch": 1.1, | |
| "learning_rate": 5e-05, | |
| "loss": 0.1664, | |
| "step": 617 | |
| }, | |
| { | |
| "epoch": 1.1, | |
| "learning_rate": 5e-05, | |
| "loss": 0.2742, | |
| "step": 618 | |
| }, | |
| { | |
| "epoch": 1.1, | |
| "learning_rate": 5e-05, | |
| "loss": 0.2474, | |
| "step": 619 | |
| }, | |
| { | |
| "epoch": 1.1, | |
| "learning_rate": 5e-05, | |
| "loss": 0.2517, | |
| "step": 620 | |
| }, | |
| { | |
| "epoch": 1.1, | |
| "learning_rate": 5e-05, | |
| "loss": 0.2202, | |
| "step": 621 | |
| }, | |
| { | |
| "epoch": 1.11, | |
| "learning_rate": 5e-05, | |
| "loss": 0.252, | |
| "step": 622 | |
| }, | |
| { | |
| "epoch": 1.11, | |
| "learning_rate": 5e-05, | |
| "loss": 0.1925, | |
| "step": 623 | |
| }, | |
| { | |
| "epoch": 1.11, | |
| "learning_rate": 5e-05, | |
| "loss": 0.2517, | |
| "step": 624 | |
| }, | |
| { | |
| "epoch": 1.11, | |
| "learning_rate": 5e-05, | |
| "loss": 0.3547, | |
| "step": 625 | |
| }, | |
| { | |
| "epoch": 1.11, | |
| "learning_rate": 5e-05, | |
| "loss": 0.1815, | |
| "step": 626 | |
| }, | |
| { | |
| "epoch": 1.11, | |
| "learning_rate": 5e-05, | |
| "loss": 0.2129, | |
| "step": 627 | |
| }, | |
| { | |
| "epoch": 1.12, | |
| "learning_rate": 5e-05, | |
| "loss": 0.1929, | |
| "step": 628 | |
| }, | |
| { | |
| "epoch": 1.12, | |
| "learning_rate": 5e-05, | |
| "loss": 0.2888, | |
| "step": 629 | |
| }, | |
| { | |
| "epoch": 1.12, | |
| "learning_rate": 5e-05, | |
| "loss": 0.2593, | |
| "step": 630 | |
| }, | |
| { | |
| "epoch": 1.12, | |
| "learning_rate": 5e-05, | |
| "loss": 0.2756, | |
| "step": 631 | |
| }, | |
| { | |
| "epoch": 1.12, | |
| "learning_rate": 5e-05, | |
| "loss": 0.3179, | |
| "step": 632 | |
| }, | |
| { | |
| "epoch": 1.13, | |
| "learning_rate": 5e-05, | |
| "loss": 0.2407, | |
| "step": 633 | |
| }, | |
| { | |
| "epoch": 1.13, | |
| "learning_rate": 5e-05, | |
| "loss": 0.2981, | |
| "step": 634 | |
| }, | |
| { | |
| "epoch": 1.13, | |
| "learning_rate": 5e-05, | |
| "loss": 0.2087, | |
| "step": 635 | |
| }, | |
| { | |
| "epoch": 1.13, | |
| "learning_rate": 5e-05, | |
| "loss": 0.239, | |
| "step": 636 | |
| }, | |
| { | |
| "epoch": 1.13, | |
| "learning_rate": 5e-05, | |
| "loss": 0.2695, | |
| "step": 637 | |
| }, | |
| { | |
| "epoch": 1.13, | |
| "learning_rate": 5e-05, | |
| "loss": 0.3452, | |
| "step": 638 | |
| }, | |
| { | |
| "epoch": 1.14, | |
| "learning_rate": 5e-05, | |
| "loss": 0.3323, | |
| "step": 639 | |
| }, | |
| { | |
| "epoch": 1.14, | |
| "learning_rate": 5e-05, | |
| "loss": 0.3218, | |
| "step": 640 | |
| }, | |
| { | |
| "epoch": 1.14, | |
| "learning_rate": 5e-05, | |
| "loss": 0.2683, | |
| "step": 641 | |
| }, | |
| { | |
| "epoch": 1.14, | |
| "learning_rate": 5e-05, | |
| "loss": 0.2158, | |
| "step": 642 | |
| }, | |
| { | |
| "epoch": 1.14, | |
| "learning_rate": 5e-05, | |
| "loss": 0.1976, | |
| "step": 643 | |
| }, | |
| { | |
| "epoch": 1.14, | |
| "learning_rate": 5e-05, | |
| "loss": 0.2288, | |
| "step": 644 | |
| }, | |
| { | |
| "epoch": 1.15, | |
| "learning_rate": 5e-05, | |
| "loss": 0.2637, | |
| "step": 645 | |
| }, | |
| { | |
| "epoch": 1.15, | |
| "learning_rate": 5e-05, | |
| "loss": 0.29, | |
| "step": 646 | |
| }, | |
| { | |
| "epoch": 1.15, | |
| "learning_rate": 5e-05, | |
| "loss": 0.2764, | |
| "step": 647 | |
| }, | |
| { | |
| "epoch": 1.15, | |
| "learning_rate": 5e-05, | |
| "loss": 0.2288, | |
| "step": 648 | |
| }, | |
| { | |
| "epoch": 1.15, | |
| "learning_rate": 5e-05, | |
| "loss": 0.3267, | |
| "step": 649 | |
| }, | |
| { | |
| "epoch": 1.16, | |
| "learning_rate": 5e-05, | |
| "loss": 0.241, | |
| "step": 650 | |
| }, | |
| { | |
| "epoch": 1.16, | |
| "learning_rate": 5e-05, | |
| "loss": 0.2559, | |
| "step": 651 | |
| }, | |
| { | |
| "epoch": 1.16, | |
| "learning_rate": 5e-05, | |
| "loss": 0.2683, | |
| "step": 652 | |
| }, | |
| { | |
| "epoch": 1.16, | |
| "learning_rate": 5e-05, | |
| "loss": 0.2244, | |
| "step": 653 | |
| }, | |
| { | |
| "epoch": 1.16, | |
| "learning_rate": 5e-05, | |
| "loss": 0.2771, | |
| "step": 654 | |
| }, | |
| { | |
| "epoch": 1.16, | |
| "learning_rate": 5e-05, | |
| "loss": 0.2693, | |
| "step": 655 | |
| }, | |
| { | |
| "epoch": 1.17, | |
| "learning_rate": 5e-05, | |
| "loss": 0.2366, | |
| "step": 656 | |
| }, | |
| { | |
| "epoch": 1.17, | |
| "learning_rate": 5e-05, | |
| "loss": 0.3186, | |
| "step": 657 | |
| }, | |
| { | |
| "epoch": 1.17, | |
| "learning_rate": 5e-05, | |
| "loss": 0.2789, | |
| "step": 658 | |
| }, | |
| { | |
| "epoch": 1.17, | |
| "learning_rate": 5e-05, | |
| "loss": 0.2346, | |
| "step": 659 | |
| }, | |
| { | |
| "epoch": 1.17, | |
| "learning_rate": 5e-05, | |
| "loss": 0.3081, | |
| "step": 660 | |
| }, | |
| { | |
| "epoch": 1.18, | |
| "learning_rate": 5e-05, | |
| "loss": 0.2053, | |
| "step": 661 | |
| }, | |
| { | |
| "epoch": 1.18, | |
| "learning_rate": 5e-05, | |
| "loss": 0.2751, | |
| "step": 662 | |
| }, | |
| { | |
| "epoch": 1.18, | |
| "learning_rate": 5e-05, | |
| "loss": 0.2314, | |
| "step": 663 | |
| }, | |
| { | |
| "epoch": 1.18, | |
| "learning_rate": 5e-05, | |
| "loss": 0.3174, | |
| "step": 664 | |
| }, | |
| { | |
| "epoch": 1.18, | |
| "learning_rate": 5e-05, | |
| "loss": 0.2659, | |
| "step": 665 | |
| }, | |
| { | |
| "epoch": 1.18, | |
| "learning_rate": 5e-05, | |
| "loss": 0.2443, | |
| "step": 666 | |
| }, | |
| { | |
| "epoch": 1.19, | |
| "learning_rate": 5e-05, | |
| "loss": 0.17, | |
| "step": 667 | |
| }, | |
| { | |
| "epoch": 1.19, | |
| "learning_rate": 5e-05, | |
| "loss": 0.2405, | |
| "step": 668 | |
| }, | |
| { | |
| "epoch": 1.19, | |
| "learning_rate": 5e-05, | |
| "loss": 0.1887, | |
| "step": 669 | |
| }, | |
| { | |
| "epoch": 1.19, | |
| "learning_rate": 5e-05, | |
| "loss": 0.2256, | |
| "step": 670 | |
| }, | |
| { | |
| "epoch": 1.19, | |
| "learning_rate": 5e-05, | |
| "loss": 0.2905, | |
| "step": 671 | |
| }, | |
| { | |
| "epoch": 1.19, | |
| "learning_rate": 5e-05, | |
| "loss": 0.2919, | |
| "step": 672 | |
| }, | |
| { | |
| "epoch": 1.2, | |
| "learning_rate": 5e-05, | |
| "loss": 0.3403, | |
| "step": 673 | |
| }, | |
| { | |
| "epoch": 1.2, | |
| "learning_rate": 5e-05, | |
| "loss": 0.3018, | |
| "step": 674 | |
| }, | |
| { | |
| "epoch": 1.2, | |
| "learning_rate": 5e-05, | |
| "loss": 0.1644, | |
| "step": 675 | |
| }, | |
| { | |
| "epoch": 1.2, | |
| "learning_rate": 5e-05, | |
| "loss": 0.1875, | |
| "step": 676 | |
| }, | |
| { | |
| "epoch": 1.2, | |
| "learning_rate": 5e-05, | |
| "loss": 0.2817, | |
| "step": 677 | |
| }, | |
| { | |
| "epoch": 1.21, | |
| "learning_rate": 5e-05, | |
| "loss": 0.2349, | |
| "step": 678 | |
| }, | |
| { | |
| "epoch": 1.21, | |
| "learning_rate": 5e-05, | |
| "loss": 0.2778, | |
| "step": 679 | |
| }, | |
| { | |
| "epoch": 1.21, | |
| "learning_rate": 5e-05, | |
| "loss": 0.1979, | |
| "step": 680 | |
| }, | |
| { | |
| "epoch": 1.21, | |
| "learning_rate": 5e-05, | |
| "loss": 0.2546, | |
| "step": 681 | |
| }, | |
| { | |
| "epoch": 1.21, | |
| "learning_rate": 5e-05, | |
| "loss": 0.238, | |
| "step": 682 | |
| }, | |
| { | |
| "epoch": 1.21, | |
| "learning_rate": 5e-05, | |
| "loss": 0.2163, | |
| "step": 683 | |
| }, | |
| { | |
| "epoch": 1.22, | |
| "learning_rate": 5e-05, | |
| "loss": 0.2927, | |
| "step": 684 | |
| }, | |
| { | |
| "epoch": 1.22, | |
| "learning_rate": 5e-05, | |
| "loss": 0.2844, | |
| "step": 685 | |
| }, | |
| { | |
| "epoch": 1.22, | |
| "learning_rate": 5e-05, | |
| "loss": 0.2346, | |
| "step": 686 | |
| }, | |
| { | |
| "epoch": 1.22, | |
| "learning_rate": 5e-05, | |
| "loss": 0.2329, | |
| "step": 687 | |
| }, | |
| { | |
| "epoch": 1.22, | |
| "learning_rate": 5e-05, | |
| "loss": 0.2854, | |
| "step": 688 | |
| }, | |
| { | |
| "epoch": 1.22, | |
| "learning_rate": 5e-05, | |
| "loss": 0.2664, | |
| "step": 689 | |
| }, | |
| { | |
| "epoch": 1.23, | |
| "learning_rate": 5e-05, | |
| "loss": 0.207, | |
| "step": 690 | |
| }, | |
| { | |
| "epoch": 1.23, | |
| "learning_rate": 5e-05, | |
| "loss": 0.238, | |
| "step": 691 | |
| }, | |
| { | |
| "epoch": 1.23, | |
| "learning_rate": 5e-05, | |
| "loss": 0.3291, | |
| "step": 692 | |
| }, | |
| { | |
| "epoch": 1.23, | |
| "learning_rate": 5e-05, | |
| "loss": 0.2395, | |
| "step": 693 | |
| }, | |
| { | |
| "epoch": 1.23, | |
| "learning_rate": 5e-05, | |
| "loss": 0.2649, | |
| "step": 694 | |
| }, | |
| { | |
| "epoch": 1.24, | |
| "learning_rate": 5e-05, | |
| "loss": 0.3059, | |
| "step": 695 | |
| }, | |
| { | |
| "epoch": 1.24, | |
| "learning_rate": 5e-05, | |
| "loss": 0.2266, | |
| "step": 696 | |
| }, | |
| { | |
| "epoch": 1.24, | |
| "learning_rate": 5e-05, | |
| "loss": 0.2177, | |
| "step": 697 | |
| }, | |
| { | |
| "epoch": 1.24, | |
| "learning_rate": 5e-05, | |
| "loss": 0.29, | |
| "step": 698 | |
| }, | |
| { | |
| "epoch": 1.24, | |
| "learning_rate": 5e-05, | |
| "loss": 0.2351, | |
| "step": 699 | |
| }, | |
| { | |
| "epoch": 1.24, | |
| "learning_rate": 5e-05, | |
| "loss": 0.3337, | |
| "step": 700 | |
| }, | |
| { | |
| "epoch": 1.25, | |
| "learning_rate": 5e-05, | |
| "loss": 0.2314, | |
| "step": 701 | |
| }, | |
| { | |
| "epoch": 1.25, | |
| "learning_rate": 5e-05, | |
| "loss": 0.2651, | |
| "step": 702 | |
| }, | |
| { | |
| "epoch": 1.25, | |
| "learning_rate": 5e-05, | |
| "loss": 0.321, | |
| "step": 703 | |
| }, | |
| { | |
| "epoch": 1.25, | |
| "learning_rate": 5e-05, | |
| "loss": 0.2241, | |
| "step": 704 | |
| }, | |
| { | |
| "epoch": 1.25, | |
| "learning_rate": 5e-05, | |
| "loss": 0.2482, | |
| "step": 705 | |
| }, | |
| { | |
| "epoch": 1.26, | |
| "learning_rate": 5e-05, | |
| "loss": 0.2288, | |
| "step": 706 | |
| }, | |
| { | |
| "epoch": 1.26, | |
| "learning_rate": 5e-05, | |
| "loss": 0.2471, | |
| "step": 707 | |
| }, | |
| { | |
| "epoch": 1.26, | |
| "learning_rate": 5e-05, | |
| "loss": 0.3274, | |
| "step": 708 | |
| }, | |
| { | |
| "epoch": 1.26, | |
| "learning_rate": 5e-05, | |
| "loss": 0.2505, | |
| "step": 709 | |
| }, | |
| { | |
| "epoch": 1.26, | |
| "learning_rate": 5e-05, | |
| "loss": 0.271, | |
| "step": 710 | |
| }, | |
| { | |
| "epoch": 1.26, | |
| "learning_rate": 5e-05, | |
| "loss": 0.2202, | |
| "step": 711 | |
| }, | |
| { | |
| "epoch": 1.27, | |
| "learning_rate": 5e-05, | |
| "loss": 0.2186, | |
| "step": 712 | |
| }, | |
| { | |
| "epoch": 1.27, | |
| "learning_rate": 5e-05, | |
| "loss": 0.334, | |
| "step": 713 | |
| }, | |
| { | |
| "epoch": 1.27, | |
| "learning_rate": 5e-05, | |
| "loss": 0.2351, | |
| "step": 714 | |
| }, | |
| { | |
| "epoch": 1.27, | |
| "learning_rate": 5e-05, | |
| "loss": 0.2527, | |
| "step": 715 | |
| }, | |
| { | |
| "epoch": 1.27, | |
| "learning_rate": 5e-05, | |
| "loss": 0.2307, | |
| "step": 716 | |
| }, | |
| { | |
| "epoch": 1.27, | |
| "learning_rate": 5e-05, | |
| "loss": 0.3252, | |
| "step": 717 | |
| }, | |
| { | |
| "epoch": 1.28, | |
| "learning_rate": 5e-05, | |
| "loss": 0.28, | |
| "step": 718 | |
| }, | |
| { | |
| "epoch": 1.28, | |
| "learning_rate": 5e-05, | |
| "loss": 0.281, | |
| "step": 719 | |
| }, | |
| { | |
| "epoch": 1.28, | |
| "learning_rate": 5e-05, | |
| "loss": 0.2346, | |
| "step": 720 | |
| }, | |
| { | |
| "epoch": 1.28, | |
| "learning_rate": 5e-05, | |
| "loss": 0.2642, | |
| "step": 721 | |
| }, | |
| { | |
| "epoch": 1.28, | |
| "learning_rate": 5e-05, | |
| "loss": 0.2114, | |
| "step": 722 | |
| }, | |
| { | |
| "epoch": 1.29, | |
| "learning_rate": 5e-05, | |
| "loss": 0.2365, | |
| "step": 723 | |
| }, | |
| { | |
| "epoch": 1.29, | |
| "learning_rate": 5e-05, | |
| "loss": 0.3428, | |
| "step": 724 | |
| }, | |
| { | |
| "epoch": 1.29, | |
| "learning_rate": 5e-05, | |
| "loss": 0.3337, | |
| "step": 725 | |
| }, | |
| { | |
| "epoch": 1.29, | |
| "learning_rate": 5e-05, | |
| "loss": 0.2742, | |
| "step": 726 | |
| }, | |
| { | |
| "epoch": 1.29, | |
| "learning_rate": 5e-05, | |
| "loss": 0.2197, | |
| "step": 727 | |
| }, | |
| { | |
| "epoch": 1.29, | |
| "learning_rate": 5e-05, | |
| "loss": 0.2722, | |
| "step": 728 | |
| }, | |
| { | |
| "epoch": 1.3, | |
| "learning_rate": 5e-05, | |
| "loss": 0.1876, | |
| "step": 729 | |
| }, | |
| { | |
| "epoch": 1.3, | |
| "learning_rate": 5e-05, | |
| "loss": 0.2906, | |
| "step": 730 | |
| }, | |
| { | |
| "epoch": 1.3, | |
| "learning_rate": 5e-05, | |
| "loss": 0.207, | |
| "step": 731 | |
| }, | |
| { | |
| "epoch": 1.3, | |
| "learning_rate": 5e-05, | |
| "loss": 0.2355, | |
| "step": 732 | |
| }, | |
| { | |
| "epoch": 1.3, | |
| "learning_rate": 5e-05, | |
| "loss": 0.2496, | |
| "step": 733 | |
| }, | |
| { | |
| "epoch": 1.3, | |
| "learning_rate": 5e-05, | |
| "loss": 0.3579, | |
| "step": 734 | |
| }, | |
| { | |
| "epoch": 1.31, | |
| "learning_rate": 5e-05, | |
| "loss": 0.2181, | |
| "step": 735 | |
| }, | |
| { | |
| "epoch": 1.31, | |
| "learning_rate": 5e-05, | |
| "loss": 0.301, | |
| "step": 736 | |
| }, | |
| { | |
| "epoch": 1.31, | |
| "learning_rate": 5e-05, | |
| "loss": 0.1458, | |
| "step": 737 | |
| }, | |
| { | |
| "epoch": 1.31, | |
| "learning_rate": 5e-05, | |
| "loss": 0.1726, | |
| "step": 738 | |
| }, | |
| { | |
| "epoch": 1.31, | |
| "learning_rate": 5e-05, | |
| "loss": 0.2053, | |
| "step": 739 | |
| }, | |
| { | |
| "epoch": 1.32, | |
| "learning_rate": 5e-05, | |
| "loss": 0.2908, | |
| "step": 740 | |
| }, | |
| { | |
| "epoch": 1.32, | |
| "learning_rate": 5e-05, | |
| "loss": 0.2844, | |
| "step": 741 | |
| }, | |
| { | |
| "epoch": 1.32, | |
| "learning_rate": 5e-05, | |
| "loss": 0.3445, | |
| "step": 742 | |
| }, | |
| { | |
| "epoch": 1.32, | |
| "learning_rate": 5e-05, | |
| "loss": 0.1598, | |
| "step": 743 | |
| }, | |
| { | |
| "epoch": 1.32, | |
| "learning_rate": 5e-05, | |
| "loss": 0.3391, | |
| "step": 744 | |
| }, | |
| { | |
| "epoch": 1.32, | |
| "learning_rate": 5e-05, | |
| "loss": 0.2283, | |
| "step": 745 | |
| }, | |
| { | |
| "epoch": 1.33, | |
| "learning_rate": 5e-05, | |
| "loss": 0.2419, | |
| "step": 746 | |
| }, | |
| { | |
| "epoch": 1.33, | |
| "learning_rate": 5e-05, | |
| "loss": 0.2888, | |
| "step": 747 | |
| }, | |
| { | |
| "epoch": 1.33, | |
| "learning_rate": 5e-05, | |
| "loss": 0.1726, | |
| "step": 748 | |
| }, | |
| { | |
| "epoch": 1.33, | |
| "learning_rate": 5e-05, | |
| "loss": 0.1996, | |
| "step": 749 | |
| }, | |
| { | |
| "epoch": 1.33, | |
| "learning_rate": 5e-05, | |
| "loss": 0.197, | |
| "step": 750 | |
| }, | |
| { | |
| "epoch": 1.34, | |
| "learning_rate": 5e-05, | |
| "loss": 0.2402, | |
| "step": 751 | |
| }, | |
| { | |
| "epoch": 1.34, | |
| "learning_rate": 5e-05, | |
| "loss": 0.2611, | |
| "step": 752 | |
| }, | |
| { | |
| "epoch": 1.34, | |
| "learning_rate": 5e-05, | |
| "loss": 0.3293, | |
| "step": 753 | |
| }, | |
| { | |
| "epoch": 1.34, | |
| "learning_rate": 5e-05, | |
| "loss": 0.2844, | |
| "step": 754 | |
| }, | |
| { | |
| "epoch": 1.34, | |
| "learning_rate": 5e-05, | |
| "loss": 0.3562, | |
| "step": 755 | |
| }, | |
| { | |
| "epoch": 1.34, | |
| "learning_rate": 5e-05, | |
| "loss": 0.3521, | |
| "step": 756 | |
| }, | |
| { | |
| "epoch": 1.35, | |
| "learning_rate": 5e-05, | |
| "loss": 0.1232, | |
| "step": 757 | |
| }, | |
| { | |
| "epoch": 1.35, | |
| "learning_rate": 5e-05, | |
| "loss": 0.26, | |
| "step": 758 | |
| }, | |
| { | |
| "epoch": 1.35, | |
| "learning_rate": 5e-05, | |
| "loss": 0.2673, | |
| "step": 759 | |
| }, | |
| { | |
| "epoch": 1.35, | |
| "learning_rate": 5e-05, | |
| "loss": 0.3384, | |
| "step": 760 | |
| }, | |
| { | |
| "epoch": 1.35, | |
| "learning_rate": 5e-05, | |
| "loss": 0.2058, | |
| "step": 761 | |
| }, | |
| { | |
| "epoch": 1.35, | |
| "learning_rate": 5e-05, | |
| "loss": 0.239, | |
| "step": 762 | |
| }, | |
| { | |
| "epoch": 1.36, | |
| "learning_rate": 5e-05, | |
| "loss": 0.2744, | |
| "step": 763 | |
| }, | |
| { | |
| "epoch": 1.36, | |
| "learning_rate": 5e-05, | |
| "loss": 0.2866, | |
| "step": 764 | |
| }, | |
| { | |
| "epoch": 1.36, | |
| "learning_rate": 5e-05, | |
| "loss": 0.2305, | |
| "step": 765 | |
| }, | |
| { | |
| "epoch": 1.36, | |
| "learning_rate": 5e-05, | |
| "loss": 0.2578, | |
| "step": 766 | |
| }, | |
| { | |
| "epoch": 1.36, | |
| "learning_rate": 5e-05, | |
| "loss": 0.2256, | |
| "step": 767 | |
| }, | |
| { | |
| "epoch": 1.37, | |
| "learning_rate": 5e-05, | |
| "loss": 0.2419, | |
| "step": 768 | |
| }, | |
| { | |
| "epoch": 1.37, | |
| "learning_rate": 5e-05, | |
| "loss": 0.2539, | |
| "step": 769 | |
| }, | |
| { | |
| "epoch": 1.37, | |
| "learning_rate": 5e-05, | |
| "loss": 0.3115, | |
| "step": 770 | |
| }, | |
| { | |
| "epoch": 1.37, | |
| "learning_rate": 5e-05, | |
| "loss": 0.248, | |
| "step": 771 | |
| }, | |
| { | |
| "epoch": 1.37, | |
| "learning_rate": 5e-05, | |
| "loss": 0.2004, | |
| "step": 772 | |
| }, | |
| { | |
| "epoch": 1.37, | |
| "learning_rate": 5e-05, | |
| "loss": 0.292, | |
| "step": 773 | |
| }, | |
| { | |
| "epoch": 1.38, | |
| "learning_rate": 5e-05, | |
| "loss": 0.2422, | |
| "step": 774 | |
| }, | |
| { | |
| "epoch": 1.38, | |
| "learning_rate": 5e-05, | |
| "loss": 0.3032, | |
| "step": 775 | |
| }, | |
| { | |
| "epoch": 1.38, | |
| "learning_rate": 5e-05, | |
| "loss": 0.1383, | |
| "step": 776 | |
| }, | |
| { | |
| "epoch": 1.38, | |
| "learning_rate": 5e-05, | |
| "loss": 0.2864, | |
| "step": 777 | |
| }, | |
| { | |
| "epoch": 1.38, | |
| "learning_rate": 5e-05, | |
| "loss": 0.2998, | |
| "step": 778 | |
| }, | |
| { | |
| "epoch": 1.38, | |
| "learning_rate": 5e-05, | |
| "loss": 0.2903, | |
| "step": 779 | |
| }, | |
| { | |
| "epoch": 1.39, | |
| "learning_rate": 5e-05, | |
| "loss": 0.1334, | |
| "step": 780 | |
| }, | |
| { | |
| "epoch": 1.39, | |
| "learning_rate": 5e-05, | |
| "loss": 0.3093, | |
| "step": 781 | |
| }, | |
| { | |
| "epoch": 1.39, | |
| "learning_rate": 5e-05, | |
| "loss": 0.3149, | |
| "step": 782 | |
| }, | |
| { | |
| "epoch": 1.39, | |
| "learning_rate": 5e-05, | |
| "loss": 0.2334, | |
| "step": 783 | |
| }, | |
| { | |
| "epoch": 1.39, | |
| "learning_rate": 5e-05, | |
| "loss": 0.2705, | |
| "step": 784 | |
| }, | |
| { | |
| "epoch": 1.4, | |
| "learning_rate": 5e-05, | |
| "loss": 0.2061, | |
| "step": 785 | |
| }, | |
| { | |
| "epoch": 1.4, | |
| "learning_rate": 5e-05, | |
| "loss": 0.2332, | |
| "step": 786 | |
| }, | |
| { | |
| "epoch": 1.4, | |
| "learning_rate": 5e-05, | |
| "loss": 0.3235, | |
| "step": 787 | |
| }, | |
| { | |
| "epoch": 1.4, | |
| "learning_rate": 5e-05, | |
| "loss": 0.2852, | |
| "step": 788 | |
| }, | |
| { | |
| "epoch": 1.4, | |
| "learning_rate": 5e-05, | |
| "loss": 0.2859, | |
| "step": 789 | |
| }, | |
| { | |
| "epoch": 1.4, | |
| "learning_rate": 5e-05, | |
| "loss": 0.2808, | |
| "step": 790 | |
| }, | |
| { | |
| "epoch": 1.41, | |
| "learning_rate": 5e-05, | |
| "loss": 0.2532, | |
| "step": 791 | |
| }, | |
| { | |
| "epoch": 1.41, | |
| "learning_rate": 5e-05, | |
| "loss": 0.2461, | |
| "step": 792 | |
| }, | |
| { | |
| "epoch": 1.41, | |
| "learning_rate": 5e-05, | |
| "loss": 0.2583, | |
| "step": 793 | |
| }, | |
| { | |
| "epoch": 1.41, | |
| "learning_rate": 5e-05, | |
| "loss": 0.2236, | |
| "step": 794 | |
| }, | |
| { | |
| "epoch": 1.41, | |
| "learning_rate": 5e-05, | |
| "loss": 0.2415, | |
| "step": 795 | |
| }, | |
| { | |
| "epoch": 1.42, | |
| "learning_rate": 5e-05, | |
| "loss": 0.2224, | |
| "step": 796 | |
| }, | |
| { | |
| "epoch": 1.42, | |
| "learning_rate": 5e-05, | |
| "loss": 0.3125, | |
| "step": 797 | |
| }, | |
| { | |
| "epoch": 1.42, | |
| "learning_rate": 5e-05, | |
| "loss": 0.2505, | |
| "step": 798 | |
| }, | |
| { | |
| "epoch": 1.42, | |
| "learning_rate": 5e-05, | |
| "loss": 0.2385, | |
| "step": 799 | |
| }, | |
| { | |
| "epoch": 1.42, | |
| "learning_rate": 5e-05, | |
| "loss": 0.2542, | |
| "step": 800 | |
| }, | |
| { | |
| "epoch": 1.42, | |
| "learning_rate": 5e-05, | |
| "loss": 0.2688, | |
| "step": 801 | |
| }, | |
| { | |
| "epoch": 1.43, | |
| "learning_rate": 5e-05, | |
| "loss": 0.1743, | |
| "step": 802 | |
| }, | |
| { | |
| "epoch": 1.43, | |
| "learning_rate": 5e-05, | |
| "loss": 0.2317, | |
| "step": 803 | |
| }, | |
| { | |
| "epoch": 1.43, | |
| "learning_rate": 5e-05, | |
| "loss": 0.2729, | |
| "step": 804 | |
| }, | |
| { | |
| "epoch": 1.43, | |
| "learning_rate": 5e-05, | |
| "loss": 0.2898, | |
| "step": 805 | |
| }, | |
| { | |
| "epoch": 1.43, | |
| "learning_rate": 5e-05, | |
| "loss": 0.2925, | |
| "step": 806 | |
| }, | |
| { | |
| "epoch": 1.43, | |
| "learning_rate": 5e-05, | |
| "loss": 0.2473, | |
| "step": 807 | |
| }, | |
| { | |
| "epoch": 1.44, | |
| "learning_rate": 5e-05, | |
| "loss": 0.2319, | |
| "step": 808 | |
| }, | |
| { | |
| "epoch": 1.44, | |
| "learning_rate": 5e-05, | |
| "loss": 0.2958, | |
| "step": 809 | |
| }, | |
| { | |
| "epoch": 1.44, | |
| "learning_rate": 5e-05, | |
| "loss": 0.2415, | |
| "step": 810 | |
| }, | |
| { | |
| "epoch": 1.44, | |
| "learning_rate": 5e-05, | |
| "loss": 0.2373, | |
| "step": 811 | |
| }, | |
| { | |
| "epoch": 1.44, | |
| "learning_rate": 5e-05, | |
| "loss": 0.2834, | |
| "step": 812 | |
| }, | |
| { | |
| "epoch": 1.45, | |
| "learning_rate": 5e-05, | |
| "loss": 0.2908, | |
| "step": 813 | |
| }, | |
| { | |
| "epoch": 1.45, | |
| "learning_rate": 5e-05, | |
| "loss": 0.239, | |
| "step": 814 | |
| }, | |
| { | |
| "epoch": 1.45, | |
| "learning_rate": 5e-05, | |
| "loss": 0.2136, | |
| "step": 815 | |
| }, | |
| { | |
| "epoch": 1.45, | |
| "learning_rate": 5e-05, | |
| "loss": 0.2247, | |
| "step": 816 | |
| }, | |
| { | |
| "epoch": 1.45, | |
| "learning_rate": 5e-05, | |
| "loss": 0.2666, | |
| "step": 817 | |
| }, | |
| { | |
| "epoch": 1.45, | |
| "learning_rate": 5e-05, | |
| "loss": 0.2405, | |
| "step": 818 | |
| }, | |
| { | |
| "epoch": 1.46, | |
| "learning_rate": 5e-05, | |
| "loss": 0.2349, | |
| "step": 819 | |
| }, | |
| { | |
| "epoch": 1.46, | |
| "learning_rate": 5e-05, | |
| "loss": 0.3616, | |
| "step": 820 | |
| }, | |
| { | |
| "epoch": 1.46, | |
| "learning_rate": 5e-05, | |
| "loss": 0.2981, | |
| "step": 821 | |
| }, | |
| { | |
| "epoch": 1.46, | |
| "learning_rate": 5e-05, | |
| "loss": 0.2571, | |
| "step": 822 | |
| }, | |
| { | |
| "epoch": 1.46, | |
| "learning_rate": 5e-05, | |
| "loss": 0.5605, | |
| "step": 823 | |
| }, | |
| { | |
| "epoch": 1.46, | |
| "learning_rate": 5e-05, | |
| "loss": 0.2502, | |
| "step": 824 | |
| }, | |
| { | |
| "epoch": 1.47, | |
| "learning_rate": 5e-05, | |
| "loss": 0.3228, | |
| "step": 825 | |
| }, | |
| { | |
| "epoch": 1.47, | |
| "learning_rate": 5e-05, | |
| "loss": 0.5198, | |
| "step": 826 | |
| }, | |
| { | |
| "epoch": 1.47, | |
| "learning_rate": 5e-05, | |
| "loss": 0.293, | |
| "step": 827 | |
| }, | |
| { | |
| "epoch": 1.47, | |
| "learning_rate": 5e-05, | |
| "loss": 0.2013, | |
| "step": 828 | |
| }, | |
| { | |
| "epoch": 1.47, | |
| "learning_rate": 5e-05, | |
| "loss": 0.2502, | |
| "step": 829 | |
| }, | |
| { | |
| "epoch": 1.48, | |
| "learning_rate": 5e-05, | |
| "loss": 0.1412, | |
| "step": 830 | |
| }, | |
| { | |
| "epoch": 1.48, | |
| "learning_rate": 5e-05, | |
| "loss": 0.2676, | |
| "step": 831 | |
| }, | |
| { | |
| "epoch": 1.48, | |
| "learning_rate": 5e-05, | |
| "loss": 0.2012, | |
| "step": 832 | |
| }, | |
| { | |
| "epoch": 1.48, | |
| "learning_rate": 5e-05, | |
| "loss": 0.3557, | |
| "step": 833 | |
| }, | |
| { | |
| "epoch": 1.48, | |
| "learning_rate": 5e-05, | |
| "loss": 0.2876, | |
| "step": 834 | |
| }, | |
| { | |
| "epoch": 1.48, | |
| "learning_rate": 5e-05, | |
| "loss": 0.2185, | |
| "step": 835 | |
| }, | |
| { | |
| "epoch": 1.49, | |
| "learning_rate": 5e-05, | |
| "loss": 0.2261, | |
| "step": 836 | |
| }, | |
| { | |
| "epoch": 1.49, | |
| "learning_rate": 5e-05, | |
| "loss": 0.3462, | |
| "step": 837 | |
| }, | |
| { | |
| "epoch": 1.49, | |
| "learning_rate": 5e-05, | |
| "loss": 0.2522, | |
| "step": 838 | |
| }, | |
| { | |
| "epoch": 1.49, | |
| "learning_rate": 5e-05, | |
| "loss": 0.2676, | |
| "step": 839 | |
| }, | |
| { | |
| "epoch": 1.49, | |
| "learning_rate": 5e-05, | |
| "loss": 0.2078, | |
| "step": 840 | |
| }, | |
| { | |
| "epoch": 1.5, | |
| "learning_rate": 5e-05, | |
| "loss": 0.3359, | |
| "step": 841 | |
| }, | |
| { | |
| "epoch": 1.5, | |
| "learning_rate": 5e-05, | |
| "loss": 0.2235, | |
| "step": 842 | |
| }, | |
| { | |
| "epoch": 1.5, | |
| "learning_rate": 5e-05, | |
| "loss": 0.1982, | |
| "step": 843 | |
| }, | |
| { | |
| "epoch": 1.5, | |
| "learning_rate": 5e-05, | |
| "loss": 0.2051, | |
| "step": 844 | |
| }, | |
| { | |
| "epoch": 1.5, | |
| "learning_rate": 5e-05, | |
| "loss": 0.2493, | |
| "step": 845 | |
| }, | |
| { | |
| "epoch": 1.5, | |
| "learning_rate": 5e-05, | |
| "loss": 0.2607, | |
| "step": 846 | |
| }, | |
| { | |
| "epoch": 1.51, | |
| "learning_rate": 5e-05, | |
| "loss": 0.1639, | |
| "step": 847 | |
| }, | |
| { | |
| "epoch": 1.51, | |
| "learning_rate": 5e-05, | |
| "loss": 0.24, | |
| "step": 848 | |
| }, | |
| { | |
| "epoch": 1.51, | |
| "learning_rate": 5e-05, | |
| "loss": 0.2837, | |
| "step": 849 | |
| }, | |
| { | |
| "epoch": 1.51, | |
| "learning_rate": 5e-05, | |
| "loss": 0.2568, | |
| "step": 850 | |
| }, | |
| { | |
| "epoch": 1.51, | |
| "learning_rate": 5e-05, | |
| "loss": 0.2168, | |
| "step": 851 | |
| }, | |
| { | |
| "epoch": 1.51, | |
| "learning_rate": 5e-05, | |
| "loss": 0.3147, | |
| "step": 852 | |
| }, | |
| { | |
| "epoch": 1.52, | |
| "learning_rate": 5e-05, | |
| "loss": 0.2869, | |
| "step": 853 | |
| }, | |
| { | |
| "epoch": 1.52, | |
| "learning_rate": 5e-05, | |
| "loss": 0.2592, | |
| "step": 854 | |
| }, | |
| { | |
| "epoch": 1.52, | |
| "learning_rate": 5e-05, | |
| "loss": 0.2859, | |
| "step": 855 | |
| }, | |
| { | |
| "epoch": 1.52, | |
| "learning_rate": 5e-05, | |
| "loss": 0.2661, | |
| "step": 856 | |
| }, | |
| { | |
| "epoch": 1.52, | |
| "learning_rate": 5e-05, | |
| "loss": 0.29, | |
| "step": 857 | |
| }, | |
| { | |
| "epoch": 1.53, | |
| "learning_rate": 5e-05, | |
| "loss": 0.2595, | |
| "step": 858 | |
| }, | |
| { | |
| "epoch": 1.53, | |
| "learning_rate": 5e-05, | |
| "loss": 0.3188, | |
| "step": 859 | |
| }, | |
| { | |
| "epoch": 1.53, | |
| "learning_rate": 5e-05, | |
| "loss": 0.3855, | |
| "step": 860 | |
| }, | |
| { | |
| "epoch": 1.53, | |
| "learning_rate": 5e-05, | |
| "loss": 0.2156, | |
| "step": 861 | |
| }, | |
| { | |
| "epoch": 1.53, | |
| "learning_rate": 5e-05, | |
| "loss": 0.2834, | |
| "step": 862 | |
| }, | |
| { | |
| "epoch": 1.53, | |
| "learning_rate": 5e-05, | |
| "loss": 0.2771, | |
| "step": 863 | |
| }, | |
| { | |
| "epoch": 1.54, | |
| "learning_rate": 5e-05, | |
| "loss": 0.3206, | |
| "step": 864 | |
| }, | |
| { | |
| "epoch": 1.54, | |
| "learning_rate": 5e-05, | |
| "loss": 0.2817, | |
| "step": 865 | |
| }, | |
| { | |
| "epoch": 1.54, | |
| "learning_rate": 5e-05, | |
| "loss": 0.2113, | |
| "step": 866 | |
| }, | |
| { | |
| "epoch": 1.54, | |
| "learning_rate": 5e-05, | |
| "loss": 0.2043, | |
| "step": 867 | |
| }, | |
| { | |
| "epoch": 1.54, | |
| "learning_rate": 5e-05, | |
| "loss": 0.2375, | |
| "step": 868 | |
| }, | |
| { | |
| "epoch": 1.54, | |
| "learning_rate": 5e-05, | |
| "loss": 0.2734, | |
| "step": 869 | |
| }, | |
| { | |
| "epoch": 1.55, | |
| "learning_rate": 5e-05, | |
| "loss": 0.3062, | |
| "step": 870 | |
| }, | |
| { | |
| "epoch": 1.55, | |
| "learning_rate": 5e-05, | |
| "loss": 0.1943, | |
| "step": 871 | |
| }, | |
| { | |
| "epoch": 1.55, | |
| "learning_rate": 5e-05, | |
| "loss": 0.3521, | |
| "step": 872 | |
| }, | |
| { | |
| "epoch": 1.55, | |
| "learning_rate": 5e-05, | |
| "loss": 0.2212, | |
| "step": 873 | |
| }, | |
| { | |
| "epoch": 1.55, | |
| "learning_rate": 5e-05, | |
| "loss": 0.2603, | |
| "step": 874 | |
| }, | |
| { | |
| "epoch": 1.56, | |
| "learning_rate": 5e-05, | |
| "loss": 0.2871, | |
| "step": 875 | |
| }, | |
| { | |
| "epoch": 1.56, | |
| "learning_rate": 5e-05, | |
| "loss": 0.2307, | |
| "step": 876 | |
| }, | |
| { | |
| "epoch": 1.56, | |
| "learning_rate": 5e-05, | |
| "loss": 0.2175, | |
| "step": 877 | |
| }, | |
| { | |
| "epoch": 1.56, | |
| "learning_rate": 5e-05, | |
| "loss": 0.2654, | |
| "step": 878 | |
| }, | |
| { | |
| "epoch": 1.56, | |
| "learning_rate": 5e-05, | |
| "loss": 0.1907, | |
| "step": 879 | |
| }, | |
| { | |
| "epoch": 1.56, | |
| "learning_rate": 5e-05, | |
| "loss": 0.354, | |
| "step": 880 | |
| }, | |
| { | |
| "epoch": 1.57, | |
| "learning_rate": 5e-05, | |
| "loss": 0.1775, | |
| "step": 881 | |
| }, | |
| { | |
| "epoch": 1.57, | |
| "learning_rate": 5e-05, | |
| "loss": 0.29, | |
| "step": 882 | |
| }, | |
| { | |
| "epoch": 1.57, | |
| "learning_rate": 5e-05, | |
| "loss": 0.2231, | |
| "step": 883 | |
| }, | |
| { | |
| "epoch": 1.57, | |
| "learning_rate": 5e-05, | |
| "loss": 0.2202, | |
| "step": 884 | |
| }, | |
| { | |
| "epoch": 1.57, | |
| "learning_rate": 5e-05, | |
| "loss": 0.23, | |
| "step": 885 | |
| }, | |
| { | |
| "epoch": 1.58, | |
| "learning_rate": 5e-05, | |
| "loss": 0.2668, | |
| "step": 886 | |
| }, | |
| { | |
| "epoch": 1.58, | |
| "learning_rate": 5e-05, | |
| "loss": 0.1831, | |
| "step": 887 | |
| }, | |
| { | |
| "epoch": 1.58, | |
| "learning_rate": 5e-05, | |
| "loss": 0.2472, | |
| "step": 888 | |
| }, | |
| { | |
| "epoch": 1.58, | |
| "learning_rate": 5e-05, | |
| "loss": 0.274, | |
| "step": 889 | |
| }, | |
| { | |
| "epoch": 1.58, | |
| "learning_rate": 5e-05, | |
| "loss": 0.2554, | |
| "step": 890 | |
| }, | |
| { | |
| "epoch": 1.58, | |
| "learning_rate": 5e-05, | |
| "loss": 0.2974, | |
| "step": 891 | |
| }, | |
| { | |
| "epoch": 1.59, | |
| "learning_rate": 5e-05, | |
| "loss": 0.2466, | |
| "step": 892 | |
| }, | |
| { | |
| "epoch": 1.59, | |
| "learning_rate": 5e-05, | |
| "loss": 0.2177, | |
| "step": 893 | |
| }, | |
| { | |
| "epoch": 1.59, | |
| "learning_rate": 5e-05, | |
| "loss": 0.2119, | |
| "step": 894 | |
| }, | |
| { | |
| "epoch": 1.59, | |
| "learning_rate": 5e-05, | |
| "loss": 0.2666, | |
| "step": 895 | |
| }, | |
| { | |
| "epoch": 1.59, | |
| "learning_rate": 5e-05, | |
| "loss": 0.2368, | |
| "step": 896 | |
| }, | |
| { | |
| "epoch": 1.59, | |
| "learning_rate": 5e-05, | |
| "loss": 0.2529, | |
| "step": 897 | |
| }, | |
| { | |
| "epoch": 1.6, | |
| "learning_rate": 5e-05, | |
| "loss": 0.2598, | |
| "step": 898 | |
| }, | |
| { | |
| "epoch": 1.6, | |
| "learning_rate": 5e-05, | |
| "loss": 0.2855, | |
| "step": 899 | |
| }, | |
| { | |
| "epoch": 1.6, | |
| "learning_rate": 5e-05, | |
| "loss": 0.2825, | |
| "step": 900 | |
| }, | |
| { | |
| "epoch": 1.6, | |
| "learning_rate": 5e-05, | |
| "loss": 0.2898, | |
| "step": 901 | |
| }, | |
| { | |
| "epoch": 1.6, | |
| "learning_rate": 5e-05, | |
| "loss": 0.2556, | |
| "step": 902 | |
| }, | |
| { | |
| "epoch": 1.61, | |
| "learning_rate": 5e-05, | |
| "loss": 0.2356, | |
| "step": 903 | |
| }, | |
| { | |
| "epoch": 1.61, | |
| "learning_rate": 5e-05, | |
| "loss": 0.2505, | |
| "step": 904 | |
| }, | |
| { | |
| "epoch": 1.61, | |
| "learning_rate": 5e-05, | |
| "loss": 0.3186, | |
| "step": 905 | |
| }, | |
| { | |
| "epoch": 1.61, | |
| "learning_rate": 5e-05, | |
| "loss": 0.1616, | |
| "step": 906 | |
| }, | |
| { | |
| "epoch": 1.61, | |
| "learning_rate": 5e-05, | |
| "loss": 0.1885, | |
| "step": 907 | |
| }, | |
| { | |
| "epoch": 1.61, | |
| "learning_rate": 5e-05, | |
| "loss": 0.2517, | |
| "step": 908 | |
| }, | |
| { | |
| "epoch": 1.62, | |
| "learning_rate": 5e-05, | |
| "loss": 0.2391, | |
| "step": 909 | |
| }, | |
| { | |
| "epoch": 1.62, | |
| "learning_rate": 5e-05, | |
| "loss": 0.2292, | |
| "step": 910 | |
| }, | |
| { | |
| "epoch": 1.62, | |
| "learning_rate": 5e-05, | |
| "loss": 0.2659, | |
| "step": 911 | |
| }, | |
| { | |
| "epoch": 1.62, | |
| "learning_rate": 5e-05, | |
| "loss": 0.311, | |
| "step": 912 | |
| }, | |
| { | |
| "epoch": 1.62, | |
| "learning_rate": 5e-05, | |
| "loss": 0.2112, | |
| "step": 913 | |
| }, | |
| { | |
| "epoch": 1.62, | |
| "learning_rate": 5e-05, | |
| "loss": 0.2122, | |
| "step": 914 | |
| }, | |
| { | |
| "epoch": 1.63, | |
| "learning_rate": 5e-05, | |
| "loss": 0.2683, | |
| "step": 915 | |
| }, | |
| { | |
| "epoch": 1.63, | |
| "learning_rate": 5e-05, | |
| "loss": 0.2566, | |
| "step": 916 | |
| }, | |
| { | |
| "epoch": 1.63, | |
| "learning_rate": 5e-05, | |
| "loss": 0.1743, | |
| "step": 917 | |
| }, | |
| { | |
| "epoch": 1.63, | |
| "learning_rate": 5e-05, | |
| "loss": 0.2571, | |
| "step": 918 | |
| }, | |
| { | |
| "epoch": 1.63, | |
| "learning_rate": 5e-05, | |
| "loss": 0.2205, | |
| "step": 919 | |
| }, | |
| { | |
| "epoch": 1.64, | |
| "learning_rate": 5e-05, | |
| "loss": 0.293, | |
| "step": 920 | |
| }, | |
| { | |
| "epoch": 1.64, | |
| "learning_rate": 5e-05, | |
| "loss": 0.2373, | |
| "step": 921 | |
| }, | |
| { | |
| "epoch": 1.64, | |
| "learning_rate": 5e-05, | |
| "loss": 0.2478, | |
| "step": 922 | |
| }, | |
| { | |
| "epoch": 1.64, | |
| "learning_rate": 5e-05, | |
| "loss": 0.3425, | |
| "step": 923 | |
| }, | |
| { | |
| "epoch": 1.64, | |
| "learning_rate": 5e-05, | |
| "loss": 0.2256, | |
| "step": 924 | |
| }, | |
| { | |
| "epoch": 1.64, | |
| "learning_rate": 5e-05, | |
| "loss": 0.2461, | |
| "step": 925 | |
| }, | |
| { | |
| "epoch": 1.65, | |
| "learning_rate": 5e-05, | |
| "loss": 0.2231, | |
| "step": 926 | |
| }, | |
| { | |
| "epoch": 1.65, | |
| "learning_rate": 5e-05, | |
| "loss": 0.2042, | |
| "step": 927 | |
| }, | |
| { | |
| "epoch": 1.65, | |
| "learning_rate": 5e-05, | |
| "loss": 0.2292, | |
| "step": 928 | |
| }, | |
| { | |
| "epoch": 1.65, | |
| "learning_rate": 5e-05, | |
| "loss": 0.2625, | |
| "step": 929 | |
| }, | |
| { | |
| "epoch": 1.65, | |
| "learning_rate": 5e-05, | |
| "loss": 0.241, | |
| "step": 930 | |
| }, | |
| { | |
| "epoch": 1.66, | |
| "learning_rate": 5e-05, | |
| "loss": 0.2212, | |
| "step": 931 | |
| }, | |
| { | |
| "epoch": 1.66, | |
| "learning_rate": 5e-05, | |
| "loss": 0.3372, | |
| "step": 932 | |
| }, | |
| { | |
| "epoch": 1.66, | |
| "learning_rate": 5e-05, | |
| "loss": 0.3584, | |
| "step": 933 | |
| }, | |
| { | |
| "epoch": 1.66, | |
| "learning_rate": 5e-05, | |
| "loss": 0.3555, | |
| "step": 934 | |
| }, | |
| { | |
| "epoch": 1.66, | |
| "learning_rate": 5e-05, | |
| "loss": 0.2239, | |
| "step": 935 | |
| }, | |
| { | |
| "epoch": 1.66, | |
| "learning_rate": 5e-05, | |
| "loss": 0.2751, | |
| "step": 936 | |
| }, | |
| { | |
| "epoch": 1.67, | |
| "learning_rate": 5e-05, | |
| "loss": 0.2139, | |
| "step": 937 | |
| }, | |
| { | |
| "epoch": 1.67, | |
| "learning_rate": 5e-05, | |
| "loss": 0.2513, | |
| "step": 938 | |
| }, | |
| { | |
| "epoch": 1.67, | |
| "learning_rate": 5e-05, | |
| "loss": 0.2139, | |
| "step": 939 | |
| }, | |
| { | |
| "epoch": 1.67, | |
| "learning_rate": 5e-05, | |
| "loss": 0.3093, | |
| "step": 940 | |
| }, | |
| { | |
| "epoch": 1.67, | |
| "learning_rate": 5e-05, | |
| "loss": 0.3103, | |
| "step": 941 | |
| }, | |
| { | |
| "epoch": 1.67, | |
| "learning_rate": 5e-05, | |
| "loss": 0.2585, | |
| "step": 942 | |
| }, | |
| { | |
| "epoch": 1.68, | |
| "learning_rate": 5e-05, | |
| "loss": 0.2324, | |
| "step": 943 | |
| }, | |
| { | |
| "epoch": 1.68, | |
| "learning_rate": 5e-05, | |
| "loss": 0.3438, | |
| "step": 944 | |
| }, | |
| { | |
| "epoch": 1.68, | |
| "learning_rate": 5e-05, | |
| "loss": 0.2161, | |
| "step": 945 | |
| }, | |
| { | |
| "epoch": 1.68, | |
| "learning_rate": 5e-05, | |
| "loss": 0.281, | |
| "step": 946 | |
| }, | |
| { | |
| "epoch": 1.68, | |
| "learning_rate": 5e-05, | |
| "loss": 0.2839, | |
| "step": 947 | |
| }, | |
| { | |
| "epoch": 1.69, | |
| "learning_rate": 5e-05, | |
| "loss": 0.2761, | |
| "step": 948 | |
| }, | |
| { | |
| "epoch": 1.69, | |
| "learning_rate": 5e-05, | |
| "loss": 0.271, | |
| "step": 949 | |
| }, | |
| { | |
| "epoch": 1.69, | |
| "learning_rate": 5e-05, | |
| "loss": 0.2375, | |
| "step": 950 | |
| }, | |
| { | |
| "epoch": 1.69, | |
| "learning_rate": 5e-05, | |
| "loss": 0.2281, | |
| "step": 951 | |
| }, | |
| { | |
| "epoch": 1.69, | |
| "learning_rate": 5e-05, | |
| "loss": 0.2542, | |
| "step": 952 | |
| }, | |
| { | |
| "epoch": 1.69, | |
| "learning_rate": 5e-05, | |
| "loss": 0.2595, | |
| "step": 953 | |
| }, | |
| { | |
| "epoch": 1.7, | |
| "learning_rate": 5e-05, | |
| "loss": 0.3069, | |
| "step": 954 | |
| }, | |
| { | |
| "epoch": 1.7, | |
| "learning_rate": 5e-05, | |
| "loss": 0.2729, | |
| "step": 955 | |
| }, | |
| { | |
| "epoch": 1.7, | |
| "learning_rate": 5e-05, | |
| "loss": 0.2313, | |
| "step": 956 | |
| }, | |
| { | |
| "epoch": 1.7, | |
| "learning_rate": 5e-05, | |
| "loss": 0.2544, | |
| "step": 957 | |
| }, | |
| { | |
| "epoch": 1.7, | |
| "learning_rate": 5e-05, | |
| "loss": 0.2078, | |
| "step": 958 | |
| }, | |
| { | |
| "epoch": 1.7, | |
| "learning_rate": 5e-05, | |
| "loss": 0.2317, | |
| "step": 959 | |
| }, | |
| { | |
| "epoch": 1.71, | |
| "learning_rate": 5e-05, | |
| "loss": 0.2083, | |
| "step": 960 | |
| }, | |
| { | |
| "epoch": 1.71, | |
| "learning_rate": 5e-05, | |
| "loss": 0.2042, | |
| "step": 961 | |
| }, | |
| { | |
| "epoch": 1.71, | |
| "learning_rate": 5e-05, | |
| "loss": 0.2202, | |
| "step": 962 | |
| }, | |
| { | |
| "epoch": 1.71, | |
| "learning_rate": 5e-05, | |
| "loss": 0.1926, | |
| "step": 963 | |
| }, | |
| { | |
| "epoch": 1.71, | |
| "learning_rate": 5e-05, | |
| "loss": 0.229, | |
| "step": 964 | |
| }, | |
| { | |
| "epoch": 1.72, | |
| "learning_rate": 5e-05, | |
| "loss": 0.313, | |
| "step": 965 | |
| }, | |
| { | |
| "epoch": 1.72, | |
| "learning_rate": 5e-05, | |
| "loss": 0.2089, | |
| "step": 966 | |
| }, | |
| { | |
| "epoch": 1.72, | |
| "learning_rate": 5e-05, | |
| "loss": 0.2734, | |
| "step": 967 | |
| }, | |
| { | |
| "epoch": 1.72, | |
| "learning_rate": 5e-05, | |
| "loss": 0.2246, | |
| "step": 968 | |
| }, | |
| { | |
| "epoch": 1.72, | |
| "learning_rate": 5e-05, | |
| "loss": 0.2144, | |
| "step": 969 | |
| }, | |
| { | |
| "epoch": 1.72, | |
| "learning_rate": 5e-05, | |
| "loss": 0.2256, | |
| "step": 970 | |
| }, | |
| { | |
| "epoch": 1.73, | |
| "learning_rate": 5e-05, | |
| "loss": 0.1729, | |
| "step": 971 | |
| }, | |
| { | |
| "epoch": 1.73, | |
| "learning_rate": 5e-05, | |
| "loss": 0.2241, | |
| "step": 972 | |
| }, | |
| { | |
| "epoch": 1.73, | |
| "learning_rate": 5e-05, | |
| "loss": 0.2123, | |
| "step": 973 | |
| }, | |
| { | |
| "epoch": 1.73, | |
| "learning_rate": 5e-05, | |
| "loss": 0.2693, | |
| "step": 974 | |
| }, | |
| { | |
| "epoch": 1.73, | |
| "learning_rate": 5e-05, | |
| "loss": 0.2322, | |
| "step": 975 | |
| }, | |
| { | |
| "epoch": 1.74, | |
| "learning_rate": 5e-05, | |
| "loss": 0.187, | |
| "step": 976 | |
| }, | |
| { | |
| "epoch": 1.74, | |
| "learning_rate": 5e-05, | |
| "loss": 0.2073, | |
| "step": 977 | |
| }, | |
| { | |
| "epoch": 1.74, | |
| "learning_rate": 5e-05, | |
| "loss": 0.3552, | |
| "step": 978 | |
| }, | |
| { | |
| "epoch": 1.74, | |
| "learning_rate": 5e-05, | |
| "loss": 0.2458, | |
| "step": 979 | |
| }, | |
| { | |
| "epoch": 1.74, | |
| "learning_rate": 5e-05, | |
| "loss": 0.2288, | |
| "step": 980 | |
| }, | |
| { | |
| "epoch": 1.74, | |
| "learning_rate": 5e-05, | |
| "loss": 0.24, | |
| "step": 981 | |
| }, | |
| { | |
| "epoch": 1.75, | |
| "learning_rate": 5e-05, | |
| "loss": 0.2336, | |
| "step": 982 | |
| }, | |
| { | |
| "epoch": 1.75, | |
| "learning_rate": 5e-05, | |
| "loss": 0.2236, | |
| "step": 983 | |
| }, | |
| { | |
| "epoch": 1.75, | |
| "learning_rate": 5e-05, | |
| "loss": 0.2137, | |
| "step": 984 | |
| }, | |
| { | |
| "epoch": 1.75, | |
| "learning_rate": 5e-05, | |
| "loss": 0.2581, | |
| "step": 985 | |
| }, | |
| { | |
| "epoch": 1.75, | |
| "learning_rate": 5e-05, | |
| "loss": 0.2776, | |
| "step": 986 | |
| }, | |
| { | |
| "epoch": 1.75, | |
| "learning_rate": 5e-05, | |
| "loss": 0.3352, | |
| "step": 987 | |
| }, | |
| { | |
| "epoch": 1.76, | |
| "learning_rate": 5e-05, | |
| "loss": 0.2625, | |
| "step": 988 | |
| }, | |
| { | |
| "epoch": 1.76, | |
| "learning_rate": 5e-05, | |
| "loss": 0.2166, | |
| "step": 989 | |
| }, | |
| { | |
| "epoch": 1.76, | |
| "learning_rate": 5e-05, | |
| "loss": 0.2676, | |
| "step": 990 | |
| }, | |
| { | |
| "epoch": 1.76, | |
| "learning_rate": 5e-05, | |
| "loss": 0.2988, | |
| "step": 991 | |
| }, | |
| { | |
| "epoch": 1.76, | |
| "learning_rate": 5e-05, | |
| "loss": 0.2056, | |
| "step": 992 | |
| }, | |
| { | |
| "epoch": 1.77, | |
| "learning_rate": 5e-05, | |
| "loss": 0.2859, | |
| "step": 993 | |
| }, | |
| { | |
| "epoch": 1.77, | |
| "learning_rate": 5e-05, | |
| "loss": 0.3035, | |
| "step": 994 | |
| }, | |
| { | |
| "epoch": 1.77, | |
| "learning_rate": 5e-05, | |
| "loss": 0.2964, | |
| "step": 995 | |
| }, | |
| { | |
| "epoch": 1.77, | |
| "learning_rate": 5e-05, | |
| "loss": 0.249, | |
| "step": 996 | |
| }, | |
| { | |
| "epoch": 1.77, | |
| "learning_rate": 5e-05, | |
| "loss": 0.2417, | |
| "step": 997 | |
| }, | |
| { | |
| "epoch": 1.77, | |
| "learning_rate": 5e-05, | |
| "loss": 0.2686, | |
| "step": 998 | |
| }, | |
| { | |
| "epoch": 1.78, | |
| "learning_rate": 5e-05, | |
| "loss": 0.2852, | |
| "step": 999 | |
| }, | |
| { | |
| "epoch": 1.78, | |
| "learning_rate": 5e-05, | |
| "loss": 0.1995, | |
| "step": 1000 | |
| }, | |
| { | |
| "epoch": 1.78, | |
| "learning_rate": 5e-05, | |
| "loss": 0.2571, | |
| "step": 1001 | |
| }, | |
| { | |
| "epoch": 1.78, | |
| "learning_rate": 5e-05, | |
| "loss": 0.2341, | |
| "step": 1002 | |
| }, | |
| { | |
| "epoch": 1.78, | |
| "learning_rate": 5e-05, | |
| "loss": 0.2952, | |
| "step": 1003 | |
| }, | |
| { | |
| "epoch": 1.78, | |
| "learning_rate": 5e-05, | |
| "loss": 0.3223, | |
| "step": 1004 | |
| }, | |
| { | |
| "epoch": 1.79, | |
| "learning_rate": 5e-05, | |
| "loss": 0.1619, | |
| "step": 1005 | |
| }, | |
| { | |
| "epoch": 1.79, | |
| "learning_rate": 5e-05, | |
| "loss": 0.2419, | |
| "step": 1006 | |
| }, | |
| { | |
| "epoch": 1.79, | |
| "learning_rate": 5e-05, | |
| "loss": 0.1934, | |
| "step": 1007 | |
| }, | |
| { | |
| "epoch": 1.79, | |
| "learning_rate": 5e-05, | |
| "loss": 0.2788, | |
| "step": 1008 | |
| }, | |
| { | |
| "epoch": 1.79, | |
| "learning_rate": 5e-05, | |
| "loss": 0.2148, | |
| "step": 1009 | |
| }, | |
| { | |
| "epoch": 1.8, | |
| "learning_rate": 5e-05, | |
| "loss": 0.2361, | |
| "step": 1010 | |
| }, | |
| { | |
| "epoch": 1.8, | |
| "learning_rate": 5e-05, | |
| "loss": 0.2439, | |
| "step": 1011 | |
| }, | |
| { | |
| "epoch": 1.8, | |
| "learning_rate": 5e-05, | |
| "loss": 0.2241, | |
| "step": 1012 | |
| }, | |
| { | |
| "epoch": 1.8, | |
| "learning_rate": 5e-05, | |
| "loss": 0.2212, | |
| "step": 1013 | |
| }, | |
| { | |
| "epoch": 1.8, | |
| "learning_rate": 5e-05, | |
| "loss": 0.22, | |
| "step": 1014 | |
| }, | |
| { | |
| "epoch": 1.8, | |
| "learning_rate": 5e-05, | |
| "loss": 0.2827, | |
| "step": 1015 | |
| }, | |
| { | |
| "epoch": 1.81, | |
| "learning_rate": 5e-05, | |
| "loss": 0.2261, | |
| "step": 1016 | |
| }, | |
| { | |
| "epoch": 1.81, | |
| "learning_rate": 5e-05, | |
| "loss": 0.2598, | |
| "step": 1017 | |
| }, | |
| { | |
| "epoch": 1.81, | |
| "learning_rate": 5e-05, | |
| "loss": 0.2732, | |
| "step": 1018 | |
| }, | |
| { | |
| "epoch": 1.81, | |
| "learning_rate": 5e-05, | |
| "loss": 0.2439, | |
| "step": 1019 | |
| }, | |
| { | |
| "epoch": 1.81, | |
| "learning_rate": 5e-05, | |
| "loss": 0.1848, | |
| "step": 1020 | |
| }, | |
| { | |
| "epoch": 1.82, | |
| "learning_rate": 5e-05, | |
| "loss": 0.1942, | |
| "step": 1021 | |
| }, | |
| { | |
| "epoch": 1.82, | |
| "learning_rate": 5e-05, | |
| "loss": 0.2727, | |
| "step": 1022 | |
| }, | |
| { | |
| "epoch": 1.82, | |
| "learning_rate": 5e-05, | |
| "loss": 0.3223, | |
| "step": 1023 | |
| }, | |
| { | |
| "epoch": 1.82, | |
| "learning_rate": 5e-05, | |
| "loss": 0.163, | |
| "step": 1024 | |
| }, | |
| { | |
| "epoch": 1.82, | |
| "learning_rate": 5e-05, | |
| "loss": 0.2322, | |
| "step": 1025 | |
| }, | |
| { | |
| "epoch": 1.82, | |
| "learning_rate": 5e-05, | |
| "loss": 0.2832, | |
| "step": 1026 | |
| }, | |
| { | |
| "epoch": 1.83, | |
| "learning_rate": 5e-05, | |
| "loss": 0.2678, | |
| "step": 1027 | |
| }, | |
| { | |
| "epoch": 1.83, | |
| "learning_rate": 5e-05, | |
| "loss": 0.2168, | |
| "step": 1028 | |
| }, | |
| { | |
| "epoch": 1.83, | |
| "learning_rate": 5e-05, | |
| "loss": 0.2285, | |
| "step": 1029 | |
| }, | |
| { | |
| "epoch": 1.83, | |
| "learning_rate": 5e-05, | |
| "loss": 0.2065, | |
| "step": 1030 | |
| }, | |
| { | |
| "epoch": 1.83, | |
| "learning_rate": 5e-05, | |
| "loss": 0.2605, | |
| "step": 1031 | |
| }, | |
| { | |
| "epoch": 1.83, | |
| "learning_rate": 5e-05, | |
| "loss": 0.2139, | |
| "step": 1032 | |
| }, | |
| { | |
| "epoch": 1.84, | |
| "learning_rate": 5e-05, | |
| "loss": 0.2922, | |
| "step": 1033 | |
| }, | |
| { | |
| "epoch": 1.84, | |
| "learning_rate": 5e-05, | |
| "loss": 0.3105, | |
| "step": 1034 | |
| }, | |
| { | |
| "epoch": 1.84, | |
| "learning_rate": 5e-05, | |
| "loss": 0.2598, | |
| "step": 1035 | |
| }, | |
| { | |
| "epoch": 1.84, | |
| "learning_rate": 5e-05, | |
| "loss": 0.2954, | |
| "step": 1036 | |
| }, | |
| { | |
| "epoch": 1.84, | |
| "learning_rate": 5e-05, | |
| "loss": 0.2847, | |
| "step": 1037 | |
| }, | |
| { | |
| "epoch": 1.85, | |
| "learning_rate": 5e-05, | |
| "loss": 0.2488, | |
| "step": 1038 | |
| }, | |
| { | |
| "epoch": 1.85, | |
| "learning_rate": 5e-05, | |
| "loss": 0.2163, | |
| "step": 1039 | |
| }, | |
| { | |
| "epoch": 1.85, | |
| "learning_rate": 5e-05, | |
| "loss": 0.3206, | |
| "step": 1040 | |
| }, | |
| { | |
| "epoch": 1.85, | |
| "learning_rate": 5e-05, | |
| "loss": 0.2505, | |
| "step": 1041 | |
| }, | |
| { | |
| "epoch": 1.85, | |
| "learning_rate": 5e-05, | |
| "loss": 0.3101, | |
| "step": 1042 | |
| }, | |
| { | |
| "epoch": 1.85, | |
| "learning_rate": 5e-05, | |
| "loss": 0.3098, | |
| "step": 1043 | |
| }, | |
| { | |
| "epoch": 1.86, | |
| "learning_rate": 5e-05, | |
| "loss": 0.2517, | |
| "step": 1044 | |
| }, | |
| { | |
| "epoch": 1.86, | |
| "learning_rate": 5e-05, | |
| "loss": 0.2554, | |
| "step": 1045 | |
| }, | |
| { | |
| "epoch": 1.86, | |
| "learning_rate": 5e-05, | |
| "loss": 0.2314, | |
| "step": 1046 | |
| }, | |
| { | |
| "epoch": 1.86, | |
| "learning_rate": 5e-05, | |
| "loss": 0.2441, | |
| "step": 1047 | |
| }, | |
| { | |
| "epoch": 1.86, | |
| "learning_rate": 5e-05, | |
| "loss": 0.3342, | |
| "step": 1048 | |
| }, | |
| { | |
| "epoch": 1.86, | |
| "learning_rate": 5e-05, | |
| "loss": 0.2163, | |
| "step": 1049 | |
| }, | |
| { | |
| "epoch": 1.87, | |
| "learning_rate": 5e-05, | |
| "loss": 0.2705, | |
| "step": 1050 | |
| }, | |
| { | |
| "epoch": 1.87, | |
| "learning_rate": 5e-05, | |
| "loss": 0.2864, | |
| "step": 1051 | |
| }, | |
| { | |
| "epoch": 1.87, | |
| "learning_rate": 5e-05, | |
| "loss": 0.2495, | |
| "step": 1052 | |
| }, | |
| { | |
| "epoch": 1.87, | |
| "learning_rate": 5e-05, | |
| "loss": 0.2009, | |
| "step": 1053 | |
| }, | |
| { | |
| "epoch": 1.87, | |
| "learning_rate": 5e-05, | |
| "loss": 0.293, | |
| "step": 1054 | |
| }, | |
| { | |
| "epoch": 1.88, | |
| "learning_rate": 5e-05, | |
| "loss": 0.2314, | |
| "step": 1055 | |
| }, | |
| { | |
| "epoch": 1.88, | |
| "learning_rate": 5e-05, | |
| "loss": 0.2141, | |
| "step": 1056 | |
| }, | |
| { | |
| "epoch": 1.88, | |
| "learning_rate": 5e-05, | |
| "loss": 0.2144, | |
| "step": 1057 | |
| }, | |
| { | |
| "epoch": 1.88, | |
| "learning_rate": 5e-05, | |
| "loss": 0.2231, | |
| "step": 1058 | |
| }, | |
| { | |
| "epoch": 1.88, | |
| "learning_rate": 5e-05, | |
| "loss": 0.25, | |
| "step": 1059 | |
| }, | |
| { | |
| "epoch": 1.88, | |
| "learning_rate": 5e-05, | |
| "loss": 0.2847, | |
| "step": 1060 | |
| }, | |
| { | |
| "epoch": 1.89, | |
| "learning_rate": 5e-05, | |
| "loss": 0.2725, | |
| "step": 1061 | |
| }, | |
| { | |
| "epoch": 1.89, | |
| "learning_rate": 5e-05, | |
| "loss": 0.2695, | |
| "step": 1062 | |
| }, | |
| { | |
| "epoch": 1.89, | |
| "learning_rate": 5e-05, | |
| "loss": 0.2949, | |
| "step": 1063 | |
| }, | |
| { | |
| "epoch": 1.89, | |
| "learning_rate": 5e-05, | |
| "loss": 0.2693, | |
| "step": 1064 | |
| }, | |
| { | |
| "epoch": 1.89, | |
| "learning_rate": 5e-05, | |
| "loss": 0.1851, | |
| "step": 1065 | |
| }, | |
| { | |
| "epoch": 1.9, | |
| "learning_rate": 5e-05, | |
| "loss": 0.241, | |
| "step": 1066 | |
| }, | |
| { | |
| "epoch": 1.9, | |
| "learning_rate": 5e-05, | |
| "loss": 0.2302, | |
| "step": 1067 | |
| }, | |
| { | |
| "epoch": 1.9, | |
| "learning_rate": 5e-05, | |
| "loss": 0.3584, | |
| "step": 1068 | |
| }, | |
| { | |
| "epoch": 1.9, | |
| "learning_rate": 5e-05, | |
| "loss": 0.3057, | |
| "step": 1069 | |
| }, | |
| { | |
| "epoch": 1.9, | |
| "learning_rate": 5e-05, | |
| "loss": 0.3167, | |
| "step": 1070 | |
| }, | |
| { | |
| "epoch": 1.9, | |
| "learning_rate": 5e-05, | |
| "loss": 0.2935, | |
| "step": 1071 | |
| }, | |
| { | |
| "epoch": 1.91, | |
| "learning_rate": 5e-05, | |
| "loss": 0.2458, | |
| "step": 1072 | |
| }, | |
| { | |
| "epoch": 1.91, | |
| "learning_rate": 5e-05, | |
| "loss": 0.233, | |
| "step": 1073 | |
| }, | |
| { | |
| "epoch": 1.91, | |
| "learning_rate": 5e-05, | |
| "loss": 0.2834, | |
| "step": 1074 | |
| }, | |
| { | |
| "epoch": 1.91, | |
| "learning_rate": 5e-05, | |
| "loss": 0.2854, | |
| "step": 1075 | |
| }, | |
| { | |
| "epoch": 1.91, | |
| "learning_rate": 5e-05, | |
| "loss": 0.2375, | |
| "step": 1076 | |
| }, | |
| { | |
| "epoch": 1.91, | |
| "learning_rate": 5e-05, | |
| "loss": 0.1857, | |
| "step": 1077 | |
| }, | |
| { | |
| "epoch": 1.92, | |
| "learning_rate": 5e-05, | |
| "loss": 0.2356, | |
| "step": 1078 | |
| }, | |
| { | |
| "epoch": 1.92, | |
| "learning_rate": 5e-05, | |
| "loss": 0.1979, | |
| "step": 1079 | |
| }, | |
| { | |
| "epoch": 1.92, | |
| "learning_rate": 5e-05, | |
| "loss": 0.229, | |
| "step": 1080 | |
| }, | |
| { | |
| "epoch": 1.92, | |
| "learning_rate": 5e-05, | |
| "loss": 0.5784, | |
| "step": 1081 | |
| }, | |
| { | |
| "epoch": 1.92, | |
| "learning_rate": 5e-05, | |
| "loss": 0.2988, | |
| "step": 1082 | |
| }, | |
| { | |
| "epoch": 1.93, | |
| "learning_rate": 5e-05, | |
| "loss": 0.2188, | |
| "step": 1083 | |
| }, | |
| { | |
| "epoch": 1.93, | |
| "learning_rate": 5e-05, | |
| "loss": 0.2106, | |
| "step": 1084 | |
| }, | |
| { | |
| "epoch": 1.93, | |
| "learning_rate": 5e-05, | |
| "loss": 0.1919, | |
| "step": 1085 | |
| }, | |
| { | |
| "epoch": 1.93, | |
| "learning_rate": 5e-05, | |
| "loss": 0.2097, | |
| "step": 1086 | |
| }, | |
| { | |
| "epoch": 1.93, | |
| "learning_rate": 5e-05, | |
| "loss": 0.2764, | |
| "step": 1087 | |
| }, | |
| { | |
| "epoch": 1.93, | |
| "learning_rate": 5e-05, | |
| "loss": 0.2679, | |
| "step": 1088 | |
| }, | |
| { | |
| "epoch": 1.94, | |
| "learning_rate": 5e-05, | |
| "loss": 0.4344, | |
| "step": 1089 | |
| }, | |
| { | |
| "epoch": 1.94, | |
| "learning_rate": 5e-05, | |
| "loss": 0.2561, | |
| "step": 1090 | |
| }, | |
| { | |
| "epoch": 1.94, | |
| "learning_rate": 5e-05, | |
| "loss": 0.2908, | |
| "step": 1091 | |
| }, | |
| { | |
| "epoch": 1.94, | |
| "learning_rate": 5e-05, | |
| "loss": 0.2886, | |
| "step": 1092 | |
| }, | |
| { | |
| "epoch": 1.94, | |
| "learning_rate": 5e-05, | |
| "loss": 0.2639, | |
| "step": 1093 | |
| }, | |
| { | |
| "epoch": 1.94, | |
| "learning_rate": 5e-05, | |
| "loss": 0.2101, | |
| "step": 1094 | |
| }, | |
| { | |
| "epoch": 1.95, | |
| "learning_rate": 5e-05, | |
| "loss": 0.2529, | |
| "step": 1095 | |
| }, | |
| { | |
| "epoch": 1.95, | |
| "learning_rate": 5e-05, | |
| "loss": 0.2314, | |
| "step": 1096 | |
| }, | |
| { | |
| "epoch": 1.95, | |
| "learning_rate": 5e-05, | |
| "loss": 0.2065, | |
| "step": 1097 | |
| }, | |
| { | |
| "epoch": 1.95, | |
| "learning_rate": 5e-05, | |
| "loss": 0.2383, | |
| "step": 1098 | |
| }, | |
| { | |
| "epoch": 1.95, | |
| "learning_rate": 5e-05, | |
| "loss": 0.2209, | |
| "step": 1099 | |
| }, | |
| { | |
| "epoch": 1.96, | |
| "learning_rate": 5e-05, | |
| "loss": 0.168, | |
| "step": 1100 | |
| }, | |
| { | |
| "epoch": 1.96, | |
| "learning_rate": 5e-05, | |
| "loss": 0.2383, | |
| "step": 1101 | |
| }, | |
| { | |
| "epoch": 1.96, | |
| "learning_rate": 5e-05, | |
| "loss": 0.2756, | |
| "step": 1102 | |
| }, | |
| { | |
| "epoch": 1.96, | |
| "learning_rate": 5e-05, | |
| "loss": 0.2355, | |
| "step": 1103 | |
| }, | |
| { | |
| "epoch": 1.96, | |
| "learning_rate": 5e-05, | |
| "loss": 0.2319, | |
| "step": 1104 | |
| }, | |
| { | |
| "epoch": 1.96, | |
| "learning_rate": 5e-05, | |
| "loss": 0.285, | |
| "step": 1105 | |
| }, | |
| { | |
| "epoch": 1.97, | |
| "learning_rate": 5e-05, | |
| "loss": 0.3091, | |
| "step": 1106 | |
| }, | |
| { | |
| "epoch": 1.97, | |
| "learning_rate": 5e-05, | |
| "loss": 0.2324, | |
| "step": 1107 | |
| }, | |
| { | |
| "epoch": 1.97, | |
| "learning_rate": 5e-05, | |
| "loss": 0.209, | |
| "step": 1108 | |
| }, | |
| { | |
| "epoch": 1.97, | |
| "learning_rate": 5e-05, | |
| "loss": 0.2629, | |
| "step": 1109 | |
| }, | |
| { | |
| "epoch": 1.97, | |
| "learning_rate": 5e-05, | |
| "loss": 0.2019, | |
| "step": 1110 | |
| }, | |
| { | |
| "epoch": 1.98, | |
| "learning_rate": 5e-05, | |
| "loss": 0.2178, | |
| "step": 1111 | |
| }, | |
| { | |
| "epoch": 1.98, | |
| "learning_rate": 5e-05, | |
| "loss": 0.2805, | |
| "step": 1112 | |
| }, | |
| { | |
| "epoch": 1.98, | |
| "learning_rate": 5e-05, | |
| "loss": 0.2764, | |
| "step": 1113 | |
| }, | |
| { | |
| "epoch": 1.98, | |
| "learning_rate": 5e-05, | |
| "loss": 0.3508, | |
| "step": 1114 | |
| }, | |
| { | |
| "epoch": 1.98, | |
| "learning_rate": 5e-05, | |
| "loss": 0.302, | |
| "step": 1115 | |
| }, | |
| { | |
| "epoch": 1.98, | |
| "learning_rate": 5e-05, | |
| "loss": 0.2246, | |
| "step": 1116 | |
| }, | |
| { | |
| "epoch": 1.99, | |
| "learning_rate": 5e-05, | |
| "loss": 0.2211, | |
| "step": 1117 | |
| }, | |
| { | |
| "epoch": 1.99, | |
| "learning_rate": 5e-05, | |
| "loss": 0.2013, | |
| "step": 1118 | |
| }, | |
| { | |
| "epoch": 1.99, | |
| "learning_rate": 5e-05, | |
| "loss": 0.23, | |
| "step": 1119 | |
| }, | |
| { | |
| "epoch": 1.99, | |
| "learning_rate": 5e-05, | |
| "loss": 0.1913, | |
| "step": 1120 | |
| }, | |
| { | |
| "epoch": 1.99, | |
| "learning_rate": 5e-05, | |
| "loss": 0.1936, | |
| "step": 1121 | |
| }, | |
| { | |
| "epoch": 1.99, | |
| "learning_rate": 5e-05, | |
| "loss": 0.1804, | |
| "step": 1122 | |
| }, | |
| { | |
| "epoch": 2.0, | |
| "learning_rate": 5e-05, | |
| "loss": 0.186, | |
| "step": 1123 | |
| }, | |
| { | |
| "epoch": 2.0, | |
| "learning_rate": 5e-05, | |
| "loss": 0.3025, | |
| "step": 1124 | |
| }, | |
| { | |
| "epoch": 2.0, | |
| "learning_rate": 5e-05, | |
| "loss": 0.3154, | |
| "step": 1125 | |
| }, | |
| { | |
| "epoch": 2.0, | |
| "eval_loss": 0.23581379652023315, | |
| "eval_runtime": 118.6461, | |
| "eval_samples_per_second": 2.529, | |
| "eval_steps_per_second": 0.632, | |
| "step": 1125 | |
| }, | |
| { | |
| "epoch": 2.0, | |
| "learning_rate": 5e-05, | |
| "loss": 0.2822, | |
| "step": 1126 | |
| }, | |
| { | |
| "epoch": 2.0, | |
| "learning_rate": 5e-05, | |
| "loss": 0.277, | |
| "step": 1127 | |
| }, | |
| { | |
| "epoch": 2.01, | |
| "learning_rate": 5e-05, | |
| "loss": 0.1865, | |
| "step": 1128 | |
| }, | |
| { | |
| "epoch": 2.01, | |
| "learning_rate": 5e-05, | |
| "loss": 0.1844, | |
| "step": 1129 | |
| }, | |
| { | |
| "epoch": 2.01, | |
| "learning_rate": 5e-05, | |
| "loss": 0.2039, | |
| "step": 1130 | |
| }, | |
| { | |
| "epoch": 2.01, | |
| "learning_rate": 5e-05, | |
| "loss": 0.2429, | |
| "step": 1131 | |
| }, | |
| { | |
| "epoch": 2.01, | |
| "learning_rate": 5e-05, | |
| "loss": 0.1929, | |
| "step": 1132 | |
| }, | |
| { | |
| "epoch": 2.01, | |
| "learning_rate": 5e-05, | |
| "loss": 0.269, | |
| "step": 1133 | |
| }, | |
| { | |
| "epoch": 2.02, | |
| "learning_rate": 5e-05, | |
| "loss": 0.2842, | |
| "step": 1134 | |
| }, | |
| { | |
| "epoch": 2.02, | |
| "learning_rate": 5e-05, | |
| "loss": 0.2139, | |
| "step": 1135 | |
| }, | |
| { | |
| "epoch": 2.02, | |
| "learning_rate": 5e-05, | |
| "loss": 0.1885, | |
| "step": 1136 | |
| }, | |
| { | |
| "epoch": 2.02, | |
| "learning_rate": 5e-05, | |
| "loss": 0.2375, | |
| "step": 1137 | |
| }, | |
| { | |
| "epoch": 2.02, | |
| "learning_rate": 5e-05, | |
| "loss": 0.2405, | |
| "step": 1138 | |
| }, | |
| { | |
| "epoch": 2.02, | |
| "learning_rate": 5e-05, | |
| "loss": 0.2959, | |
| "step": 1139 | |
| }, | |
| { | |
| "epoch": 2.03, | |
| "learning_rate": 5e-05, | |
| "loss": 0.2449, | |
| "step": 1140 | |
| }, | |
| { | |
| "epoch": 2.03, | |
| "learning_rate": 5e-05, | |
| "loss": 0.2913, | |
| "step": 1141 | |
| }, | |
| { | |
| "epoch": 2.03, | |
| "learning_rate": 5e-05, | |
| "loss": 0.23, | |
| "step": 1142 | |
| }, | |
| { | |
| "epoch": 2.03, | |
| "learning_rate": 5e-05, | |
| "loss": 0.2971, | |
| "step": 1143 | |
| }, | |
| { | |
| "epoch": 2.03, | |
| "learning_rate": 5e-05, | |
| "loss": 0.2568, | |
| "step": 1144 | |
| }, | |
| { | |
| "epoch": 2.04, | |
| "learning_rate": 5e-05, | |
| "loss": 0.2871, | |
| "step": 1145 | |
| }, | |
| { | |
| "epoch": 2.04, | |
| "learning_rate": 5e-05, | |
| "loss": 0.2424, | |
| "step": 1146 | |
| }, | |
| { | |
| "epoch": 2.04, | |
| "learning_rate": 5e-05, | |
| "loss": 0.3442, | |
| "step": 1147 | |
| }, | |
| { | |
| "epoch": 2.04, | |
| "learning_rate": 5e-05, | |
| "loss": 0.3494, | |
| "step": 1148 | |
| }, | |
| { | |
| "epoch": 2.04, | |
| "learning_rate": 5e-05, | |
| "loss": 0.2274, | |
| "step": 1149 | |
| }, | |
| { | |
| "epoch": 2.04, | |
| "learning_rate": 5e-05, | |
| "loss": 0.2473, | |
| "step": 1150 | |
| }, | |
| { | |
| "epoch": 2.05, | |
| "learning_rate": 5e-05, | |
| "loss": 0.1959, | |
| "step": 1151 | |
| }, | |
| { | |
| "epoch": 2.05, | |
| "learning_rate": 5e-05, | |
| "loss": 0.2699, | |
| "step": 1152 | |
| }, | |
| { | |
| "epoch": 2.05, | |
| "learning_rate": 5e-05, | |
| "loss": 0.2465, | |
| "step": 1153 | |
| }, | |
| { | |
| "epoch": 2.05, | |
| "learning_rate": 5e-05, | |
| "loss": 0.2185, | |
| "step": 1154 | |
| }, | |
| { | |
| "epoch": 2.05, | |
| "learning_rate": 5e-05, | |
| "loss": 0.1722, | |
| "step": 1155 | |
| }, | |
| { | |
| "epoch": 2.06, | |
| "learning_rate": 5e-05, | |
| "loss": 0.3369, | |
| "step": 1156 | |
| }, | |
| { | |
| "epoch": 2.06, | |
| "learning_rate": 5e-05, | |
| "loss": 0.1997, | |
| "step": 1157 | |
| }, | |
| { | |
| "epoch": 2.06, | |
| "learning_rate": 5e-05, | |
| "loss": 0.2209, | |
| "step": 1158 | |
| }, | |
| { | |
| "epoch": 2.06, | |
| "learning_rate": 5e-05, | |
| "loss": 0.1896, | |
| "step": 1159 | |
| }, | |
| { | |
| "epoch": 2.06, | |
| "learning_rate": 5e-05, | |
| "loss": 0.2385, | |
| "step": 1160 | |
| }, | |
| { | |
| "epoch": 2.06, | |
| "learning_rate": 5e-05, | |
| "loss": 0.1995, | |
| "step": 1161 | |
| }, | |
| { | |
| "epoch": 2.07, | |
| "learning_rate": 5e-05, | |
| "loss": 0.29, | |
| "step": 1162 | |
| }, | |
| { | |
| "epoch": 2.07, | |
| "learning_rate": 5e-05, | |
| "loss": 0.353, | |
| "step": 1163 | |
| }, | |
| { | |
| "epoch": 2.07, | |
| "learning_rate": 5e-05, | |
| "loss": 0.2576, | |
| "step": 1164 | |
| }, | |
| { | |
| "epoch": 2.07, | |
| "learning_rate": 5e-05, | |
| "loss": 0.2144, | |
| "step": 1165 | |
| }, | |
| { | |
| "epoch": 2.07, | |
| "learning_rate": 5e-05, | |
| "loss": 0.2305, | |
| "step": 1166 | |
| }, | |
| { | |
| "epoch": 2.07, | |
| "learning_rate": 5e-05, | |
| "loss": 0.2056, | |
| "step": 1167 | |
| }, | |
| { | |
| "epoch": 2.08, | |
| "learning_rate": 5e-05, | |
| "loss": 0.2234, | |
| "step": 1168 | |
| }, | |
| { | |
| "epoch": 2.08, | |
| "learning_rate": 5e-05, | |
| "loss": 0.2893, | |
| "step": 1169 | |
| }, | |
| { | |
| "epoch": 2.08, | |
| "learning_rate": 5e-05, | |
| "loss": 0.1848, | |
| "step": 1170 | |
| }, | |
| { | |
| "epoch": 2.08, | |
| "learning_rate": 5e-05, | |
| "loss": 0.2356, | |
| "step": 1171 | |
| }, | |
| { | |
| "epoch": 2.08, | |
| "learning_rate": 5e-05, | |
| "loss": 0.2554, | |
| "step": 1172 | |
| }, | |
| { | |
| "epoch": 2.09, | |
| "learning_rate": 5e-05, | |
| "loss": 0.2124, | |
| "step": 1173 | |
| }, | |
| { | |
| "epoch": 2.09, | |
| "learning_rate": 5e-05, | |
| "loss": 0.228, | |
| "step": 1174 | |
| }, | |
| { | |
| "epoch": 2.09, | |
| "learning_rate": 5e-05, | |
| "loss": 0.2339, | |
| "step": 1175 | |
| }, | |
| { | |
| "epoch": 2.09, | |
| "learning_rate": 5e-05, | |
| "loss": 0.3523, | |
| "step": 1176 | |
| }, | |
| { | |
| "epoch": 2.09, | |
| "learning_rate": 5e-05, | |
| "loss": 0.2516, | |
| "step": 1177 | |
| }, | |
| { | |
| "epoch": 2.09, | |
| "learning_rate": 5e-05, | |
| "loss": 0.2192, | |
| "step": 1178 | |
| }, | |
| { | |
| "epoch": 2.1, | |
| "learning_rate": 5e-05, | |
| "loss": 0.2004, | |
| "step": 1179 | |
| }, | |
| { | |
| "epoch": 2.1, | |
| "learning_rate": 5e-05, | |
| "loss": 0.2, | |
| "step": 1180 | |
| }, | |
| { | |
| "epoch": 2.1, | |
| "learning_rate": 5e-05, | |
| "loss": 0.2434, | |
| "step": 1181 | |
| }, | |
| { | |
| "epoch": 2.1, | |
| "learning_rate": 5e-05, | |
| "loss": 0.1611, | |
| "step": 1182 | |
| }, | |
| { | |
| "epoch": 2.1, | |
| "learning_rate": 5e-05, | |
| "loss": 0.2432, | |
| "step": 1183 | |
| }, | |
| { | |
| "epoch": 2.1, | |
| "learning_rate": 5e-05, | |
| "loss": 0.2786, | |
| "step": 1184 | |
| }, | |
| { | |
| "epoch": 2.11, | |
| "learning_rate": 5e-05, | |
| "loss": 0.2231, | |
| "step": 1185 | |
| }, | |
| { | |
| "epoch": 2.11, | |
| "learning_rate": 5e-05, | |
| "loss": 0.2727, | |
| "step": 1186 | |
| }, | |
| { | |
| "epoch": 2.11, | |
| "learning_rate": 5e-05, | |
| "loss": 0.1921, | |
| "step": 1187 | |
| }, | |
| { | |
| "epoch": 2.11, | |
| "learning_rate": 5e-05, | |
| "loss": 0.2773, | |
| "step": 1188 | |
| }, | |
| { | |
| "epoch": 2.11, | |
| "learning_rate": 5e-05, | |
| "loss": 0.2527, | |
| "step": 1189 | |
| }, | |
| { | |
| "epoch": 2.12, | |
| "learning_rate": 5e-05, | |
| "loss": 0.2261, | |
| "step": 1190 | |
| }, | |
| { | |
| "epoch": 2.12, | |
| "learning_rate": 5e-05, | |
| "loss": 0.2693, | |
| "step": 1191 | |
| }, | |
| { | |
| "epoch": 2.12, | |
| "learning_rate": 5e-05, | |
| "loss": 0.3198, | |
| "step": 1192 | |
| }, | |
| { | |
| "epoch": 2.12, | |
| "learning_rate": 5e-05, | |
| "loss": 0.1754, | |
| "step": 1193 | |
| }, | |
| { | |
| "epoch": 2.12, | |
| "learning_rate": 5e-05, | |
| "loss": 0.3186, | |
| "step": 1194 | |
| }, | |
| { | |
| "epoch": 2.12, | |
| "learning_rate": 5e-05, | |
| "loss": 0.2144, | |
| "step": 1195 | |
| }, | |
| { | |
| "epoch": 2.13, | |
| "learning_rate": 5e-05, | |
| "loss": 0.2341, | |
| "step": 1196 | |
| }, | |
| { | |
| "epoch": 2.13, | |
| "learning_rate": 5e-05, | |
| "loss": 0.2874, | |
| "step": 1197 | |
| }, | |
| { | |
| "epoch": 2.13, | |
| "learning_rate": 5e-05, | |
| "loss": 0.301, | |
| "step": 1198 | |
| }, | |
| { | |
| "epoch": 2.13, | |
| "learning_rate": 5e-05, | |
| "loss": 0.2622, | |
| "step": 1199 | |
| }, | |
| { | |
| "epoch": 2.13, | |
| "learning_rate": 5e-05, | |
| "loss": 0.2083, | |
| "step": 1200 | |
| }, | |
| { | |
| "epoch": 2.14, | |
| "learning_rate": 5e-05, | |
| "loss": 0.2827, | |
| "step": 1201 | |
| }, | |
| { | |
| "epoch": 2.14, | |
| "learning_rate": 5e-05, | |
| "loss": 0.2483, | |
| "step": 1202 | |
| }, | |
| { | |
| "epoch": 2.14, | |
| "learning_rate": 5e-05, | |
| "loss": 0.2302, | |
| "step": 1203 | |
| }, | |
| { | |
| "epoch": 2.14, | |
| "learning_rate": 5e-05, | |
| "loss": 0.2274, | |
| "step": 1204 | |
| }, | |
| { | |
| "epoch": 2.14, | |
| "learning_rate": 5e-05, | |
| "loss": 0.254, | |
| "step": 1205 | |
| }, | |
| { | |
| "epoch": 2.14, | |
| "learning_rate": 5e-05, | |
| "loss": 0.1959, | |
| "step": 1206 | |
| }, | |
| { | |
| "epoch": 2.15, | |
| "learning_rate": 5e-05, | |
| "loss": 0.1366, | |
| "step": 1207 | |
| }, | |
| { | |
| "epoch": 2.15, | |
| "learning_rate": 5e-05, | |
| "loss": 0.2732, | |
| "step": 1208 | |
| }, | |
| { | |
| "epoch": 2.15, | |
| "learning_rate": 5e-05, | |
| "loss": 0.3005, | |
| "step": 1209 | |
| }, | |
| { | |
| "epoch": 2.15, | |
| "learning_rate": 5e-05, | |
| "loss": 0.2654, | |
| "step": 1210 | |
| }, | |
| { | |
| "epoch": 2.15, | |
| "learning_rate": 5e-05, | |
| "loss": 0.2366, | |
| "step": 1211 | |
| }, | |
| { | |
| "epoch": 2.15, | |
| "learning_rate": 5e-05, | |
| "loss": 0.2047, | |
| "step": 1212 | |
| }, | |
| { | |
| "epoch": 2.16, | |
| "learning_rate": 5e-05, | |
| "loss": 0.2416, | |
| "step": 1213 | |
| }, | |
| { | |
| "epoch": 2.16, | |
| "learning_rate": 5e-05, | |
| "loss": 0.2502, | |
| "step": 1214 | |
| }, | |
| { | |
| "epoch": 2.16, | |
| "learning_rate": 5e-05, | |
| "loss": 0.2158, | |
| "step": 1215 | |
| }, | |
| { | |
| "epoch": 2.16, | |
| "learning_rate": 5e-05, | |
| "loss": 0.2371, | |
| "step": 1216 | |
| }, | |
| { | |
| "epoch": 2.16, | |
| "learning_rate": 5e-05, | |
| "loss": 0.2917, | |
| "step": 1217 | |
| }, | |
| { | |
| "epoch": 2.17, | |
| "learning_rate": 5e-05, | |
| "loss": 0.2334, | |
| "step": 1218 | |
| }, | |
| { | |
| "epoch": 2.17, | |
| "learning_rate": 5e-05, | |
| "loss": 0.2556, | |
| "step": 1219 | |
| }, | |
| { | |
| "epoch": 2.17, | |
| "learning_rate": 5e-05, | |
| "loss": 0.2209, | |
| "step": 1220 | |
| }, | |
| { | |
| "epoch": 2.17, | |
| "learning_rate": 5e-05, | |
| "loss": 0.2976, | |
| "step": 1221 | |
| }, | |
| { | |
| "epoch": 2.17, | |
| "learning_rate": 5e-05, | |
| "loss": 0.2686, | |
| "step": 1222 | |
| }, | |
| { | |
| "epoch": 2.17, | |
| "learning_rate": 5e-05, | |
| "loss": 0.1953, | |
| "step": 1223 | |
| }, | |
| { | |
| "epoch": 2.18, | |
| "learning_rate": 5e-05, | |
| "loss": 0.2783, | |
| "step": 1224 | |
| }, | |
| { | |
| "epoch": 2.18, | |
| "learning_rate": 5e-05, | |
| "loss": 0.2423, | |
| "step": 1225 | |
| }, | |
| { | |
| "epoch": 2.18, | |
| "learning_rate": 5e-05, | |
| "loss": 0.324, | |
| "step": 1226 | |
| }, | |
| { | |
| "epoch": 2.18, | |
| "learning_rate": 5e-05, | |
| "loss": 0.1836, | |
| "step": 1227 | |
| }, | |
| { | |
| "epoch": 2.18, | |
| "learning_rate": 5e-05, | |
| "loss": 0.2856, | |
| "step": 1228 | |
| }, | |
| { | |
| "epoch": 2.18, | |
| "learning_rate": 5e-05, | |
| "loss": 0.2083, | |
| "step": 1229 | |
| }, | |
| { | |
| "epoch": 2.19, | |
| "learning_rate": 5e-05, | |
| "loss": 0.2234, | |
| "step": 1230 | |
| }, | |
| { | |
| "epoch": 2.19, | |
| "learning_rate": 5e-05, | |
| "loss": 0.3203, | |
| "step": 1231 | |
| }, | |
| { | |
| "epoch": 2.19, | |
| "learning_rate": 5e-05, | |
| "loss": 0.2043, | |
| "step": 1232 | |
| }, | |
| { | |
| "epoch": 2.19, | |
| "learning_rate": 5e-05, | |
| "loss": 0.1584, | |
| "step": 1233 | |
| }, | |
| { | |
| "epoch": 2.19, | |
| "learning_rate": 5e-05, | |
| "loss": 0.2634, | |
| "step": 1234 | |
| }, | |
| { | |
| "epoch": 2.2, | |
| "learning_rate": 5e-05, | |
| "loss": 0.3062, | |
| "step": 1235 | |
| }, | |
| { | |
| "epoch": 2.2, | |
| "learning_rate": 5e-05, | |
| "loss": 0.2971, | |
| "step": 1236 | |
| }, | |
| { | |
| "epoch": 2.2, | |
| "learning_rate": 5e-05, | |
| "loss": 0.186, | |
| "step": 1237 | |
| }, | |
| { | |
| "epoch": 2.2, | |
| "learning_rate": 5e-05, | |
| "loss": 0.1873, | |
| "step": 1238 | |
| }, | |
| { | |
| "epoch": 2.2, | |
| "learning_rate": 5e-05, | |
| "loss": 0.1968, | |
| "step": 1239 | |
| }, | |
| { | |
| "epoch": 2.2, | |
| "learning_rate": 5e-05, | |
| "loss": 0.2444, | |
| "step": 1240 | |
| }, | |
| { | |
| "epoch": 2.21, | |
| "learning_rate": 5e-05, | |
| "loss": 0.3411, | |
| "step": 1241 | |
| }, | |
| { | |
| "epoch": 2.21, | |
| "learning_rate": 5e-05, | |
| "loss": 0.3262, | |
| "step": 1242 | |
| }, | |
| { | |
| "epoch": 2.21, | |
| "learning_rate": 5e-05, | |
| "loss": 0.2202, | |
| "step": 1243 | |
| }, | |
| { | |
| "epoch": 2.21, | |
| "learning_rate": 5e-05, | |
| "loss": 0.2336, | |
| "step": 1244 | |
| }, | |
| { | |
| "epoch": 2.21, | |
| "learning_rate": 5e-05, | |
| "loss": 0.2626, | |
| "step": 1245 | |
| }, | |
| { | |
| "epoch": 2.22, | |
| "learning_rate": 5e-05, | |
| "loss": 0.1648, | |
| "step": 1246 | |
| }, | |
| { | |
| "epoch": 2.22, | |
| "learning_rate": 5e-05, | |
| "loss": 0.1711, | |
| "step": 1247 | |
| }, | |
| { | |
| "epoch": 2.22, | |
| "learning_rate": 5e-05, | |
| "loss": 0.271, | |
| "step": 1248 | |
| }, | |
| { | |
| "epoch": 2.22, | |
| "learning_rate": 5e-05, | |
| "loss": 0.2949, | |
| "step": 1249 | |
| }, | |
| { | |
| "epoch": 2.22, | |
| "learning_rate": 5e-05, | |
| "loss": 0.2979, | |
| "step": 1250 | |
| }, | |
| { | |
| "epoch": 2.22, | |
| "learning_rate": 5e-05, | |
| "loss": 0.2751, | |
| "step": 1251 | |
| }, | |
| { | |
| "epoch": 2.23, | |
| "learning_rate": 5e-05, | |
| "loss": 0.2886, | |
| "step": 1252 | |
| }, | |
| { | |
| "epoch": 2.23, | |
| "learning_rate": 5e-05, | |
| "loss": 0.261, | |
| "step": 1253 | |
| }, | |
| { | |
| "epoch": 2.23, | |
| "learning_rate": 5e-05, | |
| "loss": 0.2622, | |
| "step": 1254 | |
| }, | |
| { | |
| "epoch": 2.23, | |
| "learning_rate": 5e-05, | |
| "loss": 0.1836, | |
| "step": 1255 | |
| }, | |
| { | |
| "epoch": 2.23, | |
| "learning_rate": 5e-05, | |
| "loss": 0.2122, | |
| "step": 1256 | |
| }, | |
| { | |
| "epoch": 2.23, | |
| "learning_rate": 5e-05, | |
| "loss": 0.3105, | |
| "step": 1257 | |
| }, | |
| { | |
| "epoch": 2.24, | |
| "learning_rate": 5e-05, | |
| "loss": 0.1407, | |
| "step": 1258 | |
| }, | |
| { | |
| "epoch": 2.24, | |
| "learning_rate": 5e-05, | |
| "loss": 0.2787, | |
| "step": 1259 | |
| }, | |
| { | |
| "epoch": 2.24, | |
| "learning_rate": 5e-05, | |
| "loss": 0.2252, | |
| "step": 1260 | |
| }, | |
| { | |
| "epoch": 2.24, | |
| "learning_rate": 5e-05, | |
| "loss": 0.2001, | |
| "step": 1261 | |
| }, | |
| { | |
| "epoch": 2.24, | |
| "learning_rate": 5e-05, | |
| "loss": 0.2393, | |
| "step": 1262 | |
| }, | |
| { | |
| "epoch": 2.25, | |
| "learning_rate": 5e-05, | |
| "loss": 0.2988, | |
| "step": 1263 | |
| }, | |
| { | |
| "epoch": 2.25, | |
| "learning_rate": 5e-05, | |
| "loss": 0.2954, | |
| "step": 1264 | |
| }, | |
| { | |
| "epoch": 2.25, | |
| "learning_rate": 5e-05, | |
| "loss": 0.2367, | |
| "step": 1265 | |
| }, | |
| { | |
| "epoch": 2.25, | |
| "learning_rate": 5e-05, | |
| "loss": 0.2512, | |
| "step": 1266 | |
| }, | |
| { | |
| "epoch": 2.25, | |
| "learning_rate": 5e-05, | |
| "loss": 0.2256, | |
| "step": 1267 | |
| }, | |
| { | |
| "epoch": 2.25, | |
| "learning_rate": 5e-05, | |
| "loss": 0.2712, | |
| "step": 1268 | |
| }, | |
| { | |
| "epoch": 2.26, | |
| "learning_rate": 5e-05, | |
| "loss": 0.2939, | |
| "step": 1269 | |
| }, | |
| { | |
| "epoch": 2.26, | |
| "learning_rate": 5e-05, | |
| "loss": 0.2303, | |
| "step": 1270 | |
| }, | |
| { | |
| "epoch": 2.26, | |
| "learning_rate": 5e-05, | |
| "loss": 0.2273, | |
| "step": 1271 | |
| }, | |
| { | |
| "epoch": 2.26, | |
| "learning_rate": 5e-05, | |
| "loss": 0.2349, | |
| "step": 1272 | |
| }, | |
| { | |
| "epoch": 2.26, | |
| "learning_rate": 5e-05, | |
| "loss": 0.3071, | |
| "step": 1273 | |
| }, | |
| { | |
| "epoch": 2.26, | |
| "learning_rate": 5e-05, | |
| "loss": 0.1632, | |
| "step": 1274 | |
| }, | |
| { | |
| "epoch": 2.27, | |
| "learning_rate": 5e-05, | |
| "loss": 0.2573, | |
| "step": 1275 | |
| }, | |
| { | |
| "epoch": 2.27, | |
| "learning_rate": 5e-05, | |
| "loss": 0.1812, | |
| "step": 1276 | |
| }, | |
| { | |
| "epoch": 2.27, | |
| "learning_rate": 5e-05, | |
| "loss": 0.1543, | |
| "step": 1277 | |
| }, | |
| { | |
| "epoch": 2.27, | |
| "learning_rate": 5e-05, | |
| "loss": 0.1907, | |
| "step": 1278 | |
| }, | |
| { | |
| "epoch": 2.27, | |
| "learning_rate": 5e-05, | |
| "loss": 0.231, | |
| "step": 1279 | |
| }, | |
| { | |
| "epoch": 2.28, | |
| "learning_rate": 5e-05, | |
| "loss": 0.301, | |
| "step": 1280 | |
| }, | |
| { | |
| "epoch": 2.28, | |
| "learning_rate": 5e-05, | |
| "loss": 0.2163, | |
| "step": 1281 | |
| }, | |
| { | |
| "epoch": 2.28, | |
| "learning_rate": 5e-05, | |
| "loss": 0.302, | |
| "step": 1282 | |
| }, | |
| { | |
| "epoch": 2.28, | |
| "learning_rate": 5e-05, | |
| "loss": 0.2256, | |
| "step": 1283 | |
| }, | |
| { | |
| "epoch": 2.28, | |
| "learning_rate": 5e-05, | |
| "loss": 0.2424, | |
| "step": 1284 | |
| }, | |
| { | |
| "epoch": 2.28, | |
| "learning_rate": 5e-05, | |
| "loss": 0.2393, | |
| "step": 1285 | |
| }, | |
| { | |
| "epoch": 2.29, | |
| "learning_rate": 5e-05, | |
| "loss": 0.2336, | |
| "step": 1286 | |
| }, | |
| { | |
| "epoch": 2.29, | |
| "learning_rate": 5e-05, | |
| "loss": 0.2109, | |
| "step": 1287 | |
| }, | |
| { | |
| "epoch": 2.29, | |
| "learning_rate": 5e-05, | |
| "loss": 0.2173, | |
| "step": 1288 | |
| }, | |
| { | |
| "epoch": 2.29, | |
| "learning_rate": 5e-05, | |
| "loss": 0.1963, | |
| "step": 1289 | |
| }, | |
| { | |
| "epoch": 2.29, | |
| "learning_rate": 5e-05, | |
| "loss": 0.2134, | |
| "step": 1290 | |
| }, | |
| { | |
| "epoch": 2.3, | |
| "learning_rate": 5e-05, | |
| "loss": 0.1893, | |
| "step": 1291 | |
| }, | |
| { | |
| "epoch": 2.3, | |
| "learning_rate": 5e-05, | |
| "loss": 0.2251, | |
| "step": 1292 | |
| }, | |
| { | |
| "epoch": 2.3, | |
| "learning_rate": 5e-05, | |
| "loss": 0.2607, | |
| "step": 1293 | |
| }, | |
| { | |
| "epoch": 2.3, | |
| "learning_rate": 5e-05, | |
| "loss": 0.2053, | |
| "step": 1294 | |
| }, | |
| { | |
| "epoch": 2.3, | |
| "learning_rate": 5e-05, | |
| "loss": 0.2637, | |
| "step": 1295 | |
| }, | |
| { | |
| "epoch": 2.3, | |
| "learning_rate": 5e-05, | |
| "loss": 0.2573, | |
| "step": 1296 | |
| }, | |
| { | |
| "epoch": 2.31, | |
| "learning_rate": 5e-05, | |
| "loss": 0.2488, | |
| "step": 1297 | |
| }, | |
| { | |
| "epoch": 2.31, | |
| "learning_rate": 5e-05, | |
| "loss": 0.1818, | |
| "step": 1298 | |
| }, | |
| { | |
| "epoch": 2.31, | |
| "learning_rate": 5e-05, | |
| "loss": 0.2854, | |
| "step": 1299 | |
| }, | |
| { | |
| "epoch": 2.31, | |
| "learning_rate": 5e-05, | |
| "loss": 0.2488, | |
| "step": 1300 | |
| }, | |
| { | |
| "epoch": 2.31, | |
| "learning_rate": 5e-05, | |
| "loss": 0.1667, | |
| "step": 1301 | |
| }, | |
| { | |
| "epoch": 2.31, | |
| "learning_rate": 5e-05, | |
| "loss": 0.167, | |
| "step": 1302 | |
| }, | |
| { | |
| "epoch": 2.32, | |
| "learning_rate": 5e-05, | |
| "loss": 0.2495, | |
| "step": 1303 | |
| }, | |
| { | |
| "epoch": 2.32, | |
| "learning_rate": 5e-05, | |
| "loss": 0.2991, | |
| "step": 1304 | |
| }, | |
| { | |
| "epoch": 2.32, | |
| "learning_rate": 5e-05, | |
| "loss": 0.2263, | |
| "step": 1305 | |
| }, | |
| { | |
| "epoch": 2.32, | |
| "learning_rate": 5e-05, | |
| "loss": 0.2737, | |
| "step": 1306 | |
| }, | |
| { | |
| "epoch": 2.32, | |
| "learning_rate": 5e-05, | |
| "loss": 0.1915, | |
| "step": 1307 | |
| }, | |
| { | |
| "epoch": 2.33, | |
| "learning_rate": 5e-05, | |
| "loss": 0.2341, | |
| "step": 1308 | |
| }, | |
| { | |
| "epoch": 2.33, | |
| "learning_rate": 5e-05, | |
| "loss": 0.2354, | |
| "step": 1309 | |
| }, | |
| { | |
| "epoch": 2.33, | |
| "learning_rate": 5e-05, | |
| "loss": 0.2612, | |
| "step": 1310 | |
| }, | |
| { | |
| "epoch": 2.33, | |
| "learning_rate": 5e-05, | |
| "loss": 0.2766, | |
| "step": 1311 | |
| }, | |
| { | |
| "epoch": 2.33, | |
| "learning_rate": 5e-05, | |
| "loss": 0.1638, | |
| "step": 1312 | |
| }, | |
| { | |
| "epoch": 2.33, | |
| "learning_rate": 5e-05, | |
| "loss": 0.3032, | |
| "step": 1313 | |
| }, | |
| { | |
| "epoch": 2.34, | |
| "learning_rate": 5e-05, | |
| "loss": 0.2794, | |
| "step": 1314 | |
| }, | |
| { | |
| "epoch": 2.34, | |
| "learning_rate": 5e-05, | |
| "loss": 0.1854, | |
| "step": 1315 | |
| }, | |
| { | |
| "epoch": 2.34, | |
| "learning_rate": 5e-05, | |
| "loss": 0.2705, | |
| "step": 1316 | |
| }, | |
| { | |
| "epoch": 2.34, | |
| "learning_rate": 5e-05, | |
| "loss": 0.1953, | |
| "step": 1317 | |
| }, | |
| { | |
| "epoch": 2.34, | |
| "learning_rate": 5e-05, | |
| "loss": 0.24, | |
| "step": 1318 | |
| }, | |
| { | |
| "epoch": 2.34, | |
| "learning_rate": 5e-05, | |
| "loss": 0.2229, | |
| "step": 1319 | |
| }, | |
| { | |
| "epoch": 2.35, | |
| "learning_rate": 5e-05, | |
| "loss": 0.1958, | |
| "step": 1320 | |
| }, | |
| { | |
| "epoch": 2.35, | |
| "learning_rate": 5e-05, | |
| "loss": 0.2686, | |
| "step": 1321 | |
| }, | |
| { | |
| "epoch": 2.35, | |
| "learning_rate": 5e-05, | |
| "loss": 0.2415, | |
| "step": 1322 | |
| }, | |
| { | |
| "epoch": 2.35, | |
| "learning_rate": 5e-05, | |
| "loss": 0.2131, | |
| "step": 1323 | |
| }, | |
| { | |
| "epoch": 2.35, | |
| "learning_rate": 5e-05, | |
| "loss": 0.1895, | |
| "step": 1324 | |
| }, | |
| { | |
| "epoch": 2.36, | |
| "learning_rate": 5e-05, | |
| "loss": 0.3933, | |
| "step": 1325 | |
| }, | |
| { | |
| "epoch": 2.36, | |
| "learning_rate": 5e-05, | |
| "loss": 0.2073, | |
| "step": 1326 | |
| }, | |
| { | |
| "epoch": 2.36, | |
| "learning_rate": 5e-05, | |
| "loss": 0.2078, | |
| "step": 1327 | |
| }, | |
| { | |
| "epoch": 2.36, | |
| "learning_rate": 5e-05, | |
| "loss": 0.3374, | |
| "step": 1328 | |
| }, | |
| { | |
| "epoch": 2.36, | |
| "learning_rate": 5e-05, | |
| "loss": 0.2722, | |
| "step": 1329 | |
| }, | |
| { | |
| "epoch": 2.36, | |
| "learning_rate": 5e-05, | |
| "loss": 0.1884, | |
| "step": 1330 | |
| }, | |
| { | |
| "epoch": 2.37, | |
| "learning_rate": 5e-05, | |
| "loss": 0.2141, | |
| "step": 1331 | |
| }, | |
| { | |
| "epoch": 2.37, | |
| "learning_rate": 5e-05, | |
| "loss": 0.2571, | |
| "step": 1332 | |
| }, | |
| { | |
| "epoch": 2.37, | |
| "learning_rate": 5e-05, | |
| "loss": 0.2246, | |
| "step": 1333 | |
| }, | |
| { | |
| "epoch": 2.37, | |
| "learning_rate": 5e-05, | |
| "loss": 0.3091, | |
| "step": 1334 | |
| }, | |
| { | |
| "epoch": 2.37, | |
| "learning_rate": 5e-05, | |
| "loss": 0.2375, | |
| "step": 1335 | |
| }, | |
| { | |
| "epoch": 2.38, | |
| "learning_rate": 5e-05, | |
| "loss": 0.3208, | |
| "step": 1336 | |
| }, | |
| { | |
| "epoch": 2.38, | |
| "learning_rate": 5e-05, | |
| "loss": 0.2229, | |
| "step": 1337 | |
| }, | |
| { | |
| "epoch": 2.38, | |
| "learning_rate": 5e-05, | |
| "loss": 0.2262, | |
| "step": 1338 | |
| }, | |
| { | |
| "epoch": 2.38, | |
| "learning_rate": 5e-05, | |
| "loss": 0.2153, | |
| "step": 1339 | |
| }, | |
| { | |
| "epoch": 2.38, | |
| "learning_rate": 5e-05, | |
| "loss": 0.163, | |
| "step": 1340 | |
| }, | |
| { | |
| "epoch": 2.38, | |
| "learning_rate": 5e-05, | |
| "loss": 0.543, | |
| "step": 1341 | |
| }, | |
| { | |
| "epoch": 2.39, | |
| "learning_rate": 5e-05, | |
| "loss": 0.2397, | |
| "step": 1342 | |
| }, | |
| { | |
| "epoch": 2.39, | |
| "learning_rate": 5e-05, | |
| "loss": 0.239, | |
| "step": 1343 | |
| }, | |
| { | |
| "epoch": 2.39, | |
| "learning_rate": 5e-05, | |
| "loss": 0.2749, | |
| "step": 1344 | |
| }, | |
| { | |
| "epoch": 2.39, | |
| "learning_rate": 5e-05, | |
| "loss": 0.2043, | |
| "step": 1345 | |
| }, | |
| { | |
| "epoch": 2.39, | |
| "learning_rate": 5e-05, | |
| "loss": 0.2449, | |
| "step": 1346 | |
| }, | |
| { | |
| "epoch": 2.39, | |
| "learning_rate": 5e-05, | |
| "loss": 0.2561, | |
| "step": 1347 | |
| }, | |
| { | |
| "epoch": 2.4, | |
| "learning_rate": 5e-05, | |
| "loss": 0.2017, | |
| "step": 1348 | |
| }, | |
| { | |
| "epoch": 2.4, | |
| "learning_rate": 5e-05, | |
| "loss": 0.281, | |
| "step": 1349 | |
| }, | |
| { | |
| "epoch": 2.4, | |
| "learning_rate": 5e-05, | |
| "loss": 0.2817, | |
| "step": 1350 | |
| }, | |
| { | |
| "epoch": 2.4, | |
| "learning_rate": 5e-05, | |
| "loss": 0.2317, | |
| "step": 1351 | |
| }, | |
| { | |
| "epoch": 2.4, | |
| "learning_rate": 5e-05, | |
| "loss": 0.2922, | |
| "step": 1352 | |
| }, | |
| { | |
| "epoch": 2.41, | |
| "learning_rate": 5e-05, | |
| "loss": 0.1699, | |
| "step": 1353 | |
| }, | |
| { | |
| "epoch": 2.41, | |
| "learning_rate": 5e-05, | |
| "loss": 0.2554, | |
| "step": 1354 | |
| }, | |
| { | |
| "epoch": 2.41, | |
| "learning_rate": 5e-05, | |
| "loss": 0.2156, | |
| "step": 1355 | |
| }, | |
| { | |
| "epoch": 2.41, | |
| "learning_rate": 5e-05, | |
| "loss": 0.2302, | |
| "step": 1356 | |
| }, | |
| { | |
| "epoch": 2.41, | |
| "learning_rate": 5e-05, | |
| "loss": 0.2063, | |
| "step": 1357 | |
| }, | |
| { | |
| "epoch": 2.41, | |
| "learning_rate": 5e-05, | |
| "loss": 0.2244, | |
| "step": 1358 | |
| }, | |
| { | |
| "epoch": 2.42, | |
| "learning_rate": 5e-05, | |
| "loss": 0.2437, | |
| "step": 1359 | |
| }, | |
| { | |
| "epoch": 2.42, | |
| "learning_rate": 5e-05, | |
| "loss": 0.2107, | |
| "step": 1360 | |
| }, | |
| { | |
| "epoch": 2.42, | |
| "learning_rate": 5e-05, | |
| "loss": 0.1963, | |
| "step": 1361 | |
| }, | |
| { | |
| "epoch": 2.42, | |
| "learning_rate": 5e-05, | |
| "loss": 0.2256, | |
| "step": 1362 | |
| }, | |
| { | |
| "epoch": 2.42, | |
| "learning_rate": 5e-05, | |
| "loss": 0.2102, | |
| "step": 1363 | |
| }, | |
| { | |
| "epoch": 2.42, | |
| "learning_rate": 5e-05, | |
| "loss": 0.248, | |
| "step": 1364 | |
| }, | |
| { | |
| "epoch": 2.43, | |
| "learning_rate": 5e-05, | |
| "loss": 0.3167, | |
| "step": 1365 | |
| }, | |
| { | |
| "epoch": 2.43, | |
| "learning_rate": 5e-05, | |
| "loss": 0.2146, | |
| "step": 1366 | |
| }, | |
| { | |
| "epoch": 2.43, | |
| "learning_rate": 5e-05, | |
| "loss": 0.2454, | |
| "step": 1367 | |
| }, | |
| { | |
| "epoch": 2.43, | |
| "learning_rate": 5e-05, | |
| "loss": 0.1787, | |
| "step": 1368 | |
| }, | |
| { | |
| "epoch": 2.43, | |
| "learning_rate": 5e-05, | |
| "loss": 0.2672, | |
| "step": 1369 | |
| }, | |
| { | |
| "epoch": 2.44, | |
| "learning_rate": 5e-05, | |
| "loss": 0.2239, | |
| "step": 1370 | |
| }, | |
| { | |
| "epoch": 2.44, | |
| "learning_rate": 5e-05, | |
| "loss": 0.1742, | |
| "step": 1371 | |
| }, | |
| { | |
| "epoch": 2.44, | |
| "learning_rate": 5e-05, | |
| "loss": 0.2056, | |
| "step": 1372 | |
| }, | |
| { | |
| "epoch": 2.44, | |
| "learning_rate": 5e-05, | |
| "loss": 0.1946, | |
| "step": 1373 | |
| }, | |
| { | |
| "epoch": 2.44, | |
| "learning_rate": 5e-05, | |
| "loss": 0.2505, | |
| "step": 1374 | |
| }, | |
| { | |
| "epoch": 2.44, | |
| "learning_rate": 5e-05, | |
| "loss": 0.2242, | |
| "step": 1375 | |
| }, | |
| { | |
| "epoch": 2.45, | |
| "learning_rate": 5e-05, | |
| "loss": 0.2131, | |
| "step": 1376 | |
| }, | |
| { | |
| "epoch": 2.45, | |
| "learning_rate": 5e-05, | |
| "loss": 0.1797, | |
| "step": 1377 | |
| }, | |
| { | |
| "epoch": 2.45, | |
| "learning_rate": 5e-05, | |
| "loss": 0.1912, | |
| "step": 1378 | |
| }, | |
| { | |
| "epoch": 2.45, | |
| "learning_rate": 5e-05, | |
| "loss": 0.2788, | |
| "step": 1379 | |
| }, | |
| { | |
| "epoch": 2.45, | |
| "learning_rate": 5e-05, | |
| "loss": 0.2222, | |
| "step": 1380 | |
| }, | |
| { | |
| "epoch": 2.46, | |
| "learning_rate": 5e-05, | |
| "loss": 0.2893, | |
| "step": 1381 | |
| }, | |
| { | |
| "epoch": 2.46, | |
| "learning_rate": 5e-05, | |
| "loss": 0.2424, | |
| "step": 1382 | |
| }, | |
| { | |
| "epoch": 2.46, | |
| "learning_rate": 5e-05, | |
| "loss": 0.2073, | |
| "step": 1383 | |
| }, | |
| { | |
| "epoch": 2.46, | |
| "learning_rate": 5e-05, | |
| "loss": 0.2532, | |
| "step": 1384 | |
| }, | |
| { | |
| "epoch": 2.46, | |
| "learning_rate": 5e-05, | |
| "loss": 0.2025, | |
| "step": 1385 | |
| }, | |
| { | |
| "epoch": 2.46, | |
| "learning_rate": 5e-05, | |
| "loss": 0.1541, | |
| "step": 1386 | |
| }, | |
| { | |
| "epoch": 2.47, | |
| "learning_rate": 5e-05, | |
| "loss": 0.2307, | |
| "step": 1387 | |
| }, | |
| { | |
| "epoch": 2.47, | |
| "learning_rate": 5e-05, | |
| "loss": 0.251, | |
| "step": 1388 | |
| }, | |
| { | |
| "epoch": 2.47, | |
| "learning_rate": 5e-05, | |
| "loss": 0.2368, | |
| "step": 1389 | |
| }, | |
| { | |
| "epoch": 2.47, | |
| "learning_rate": 5e-05, | |
| "loss": 0.2188, | |
| "step": 1390 | |
| }, | |
| { | |
| "epoch": 2.47, | |
| "learning_rate": 5e-05, | |
| "loss": 0.1624, | |
| "step": 1391 | |
| }, | |
| { | |
| "epoch": 2.47, | |
| "learning_rate": 5e-05, | |
| "loss": 0.2229, | |
| "step": 1392 | |
| }, | |
| { | |
| "epoch": 2.48, | |
| "learning_rate": 5e-05, | |
| "loss": 0.2988, | |
| "step": 1393 | |
| }, | |
| { | |
| "epoch": 2.48, | |
| "learning_rate": 5e-05, | |
| "loss": 0.3169, | |
| "step": 1394 | |
| }, | |
| { | |
| "epoch": 2.48, | |
| "learning_rate": 5e-05, | |
| "loss": 0.2808, | |
| "step": 1395 | |
| }, | |
| { | |
| "epoch": 2.48, | |
| "learning_rate": 5e-05, | |
| "loss": 0.1835, | |
| "step": 1396 | |
| }, | |
| { | |
| "epoch": 2.48, | |
| "learning_rate": 5e-05, | |
| "loss": 0.2257, | |
| "step": 1397 | |
| }, | |
| { | |
| "epoch": 2.49, | |
| "learning_rate": 5e-05, | |
| "loss": 0.2266, | |
| "step": 1398 | |
| }, | |
| { | |
| "epoch": 2.49, | |
| "learning_rate": 5e-05, | |
| "loss": 0.2092, | |
| "step": 1399 | |
| }, | |
| { | |
| "epoch": 2.49, | |
| "learning_rate": 5e-05, | |
| "loss": 0.1908, | |
| "step": 1400 | |
| }, | |
| { | |
| "epoch": 2.49, | |
| "learning_rate": 5e-05, | |
| "loss": 0.2698, | |
| "step": 1401 | |
| }, | |
| { | |
| "epoch": 2.49, | |
| "learning_rate": 5e-05, | |
| "loss": 0.238, | |
| "step": 1402 | |
| }, | |
| { | |
| "epoch": 2.49, | |
| "learning_rate": 5e-05, | |
| "loss": 0.3022, | |
| "step": 1403 | |
| }, | |
| { | |
| "epoch": 2.5, | |
| "learning_rate": 5e-05, | |
| "loss": 0.1851, | |
| "step": 1404 | |
| }, | |
| { | |
| "epoch": 2.5, | |
| "learning_rate": 5e-05, | |
| "loss": 0.2263, | |
| "step": 1405 | |
| }, | |
| { | |
| "epoch": 2.5, | |
| "learning_rate": 5e-05, | |
| "loss": 0.3325, | |
| "step": 1406 | |
| }, | |
| { | |
| "epoch": 2.5, | |
| "learning_rate": 5e-05, | |
| "loss": 0.2332, | |
| "step": 1407 | |
| }, | |
| { | |
| "epoch": 2.5, | |
| "learning_rate": 5e-05, | |
| "loss": 0.2812, | |
| "step": 1408 | |
| }, | |
| { | |
| "epoch": 2.5, | |
| "learning_rate": 5e-05, | |
| "loss": 0.1727, | |
| "step": 1409 | |
| }, | |
| { | |
| "epoch": 2.51, | |
| "learning_rate": 5e-05, | |
| "loss": 0.2661, | |
| "step": 1410 | |
| }, | |
| { | |
| "epoch": 2.51, | |
| "learning_rate": 5e-05, | |
| "loss": 0.2542, | |
| "step": 1411 | |
| }, | |
| { | |
| "epoch": 2.51, | |
| "learning_rate": 5e-05, | |
| "loss": 0.2412, | |
| "step": 1412 | |
| }, | |
| { | |
| "epoch": 2.51, | |
| "learning_rate": 5e-05, | |
| "loss": 0.2562, | |
| "step": 1413 | |
| }, | |
| { | |
| "epoch": 2.51, | |
| "learning_rate": 5e-05, | |
| "loss": 0.1968, | |
| "step": 1414 | |
| }, | |
| { | |
| "epoch": 2.52, | |
| "learning_rate": 5e-05, | |
| "loss": 0.313, | |
| "step": 1415 | |
| }, | |
| { | |
| "epoch": 2.52, | |
| "learning_rate": 5e-05, | |
| "loss": 0.2864, | |
| "step": 1416 | |
| }, | |
| { | |
| "epoch": 2.52, | |
| "learning_rate": 5e-05, | |
| "loss": 0.2292, | |
| "step": 1417 | |
| }, | |
| { | |
| "epoch": 2.52, | |
| "learning_rate": 5e-05, | |
| "loss": 0.4523, | |
| "step": 1418 | |
| }, | |
| { | |
| "epoch": 2.52, | |
| "learning_rate": 5e-05, | |
| "loss": 0.2764, | |
| "step": 1419 | |
| }, | |
| { | |
| "epoch": 2.52, | |
| "learning_rate": 5e-05, | |
| "loss": 0.2803, | |
| "step": 1420 | |
| }, | |
| { | |
| "epoch": 2.53, | |
| "learning_rate": 5e-05, | |
| "loss": 0.2952, | |
| "step": 1421 | |
| }, | |
| { | |
| "epoch": 2.53, | |
| "learning_rate": 5e-05, | |
| "loss": 0.2959, | |
| "step": 1422 | |
| }, | |
| { | |
| "epoch": 2.53, | |
| "learning_rate": 5e-05, | |
| "loss": 0.2649, | |
| "step": 1423 | |
| }, | |
| { | |
| "epoch": 2.53, | |
| "learning_rate": 5e-05, | |
| "loss": 0.2598, | |
| "step": 1424 | |
| }, | |
| { | |
| "epoch": 2.53, | |
| "learning_rate": 5e-05, | |
| "loss": 0.2769, | |
| "step": 1425 | |
| }, | |
| { | |
| "epoch": 2.54, | |
| "learning_rate": 5e-05, | |
| "loss": 0.27, | |
| "step": 1426 | |
| }, | |
| { | |
| "epoch": 2.54, | |
| "learning_rate": 5e-05, | |
| "loss": 0.238, | |
| "step": 1427 | |
| }, | |
| { | |
| "epoch": 2.54, | |
| "learning_rate": 5e-05, | |
| "loss": 0.2435, | |
| "step": 1428 | |
| }, | |
| { | |
| "epoch": 2.54, | |
| "learning_rate": 5e-05, | |
| "loss": 0.1917, | |
| "step": 1429 | |
| }, | |
| { | |
| "epoch": 2.54, | |
| "learning_rate": 5e-05, | |
| "loss": 0.1946, | |
| "step": 1430 | |
| }, | |
| { | |
| "epoch": 2.54, | |
| "learning_rate": 5e-05, | |
| "loss": 0.1556, | |
| "step": 1431 | |
| }, | |
| { | |
| "epoch": 2.55, | |
| "learning_rate": 5e-05, | |
| "loss": 0.2463, | |
| "step": 1432 | |
| }, | |
| { | |
| "epoch": 2.55, | |
| "learning_rate": 5e-05, | |
| "loss": 0.2234, | |
| "step": 1433 | |
| }, | |
| { | |
| "epoch": 2.55, | |
| "learning_rate": 5e-05, | |
| "loss": 0.1826, | |
| "step": 1434 | |
| }, | |
| { | |
| "epoch": 2.55, | |
| "learning_rate": 5e-05, | |
| "loss": 0.2136, | |
| "step": 1435 | |
| }, | |
| { | |
| "epoch": 2.55, | |
| "learning_rate": 5e-05, | |
| "loss": 0.3103, | |
| "step": 1436 | |
| }, | |
| { | |
| "epoch": 2.55, | |
| "learning_rate": 5e-05, | |
| "loss": 0.2031, | |
| "step": 1437 | |
| }, | |
| { | |
| "epoch": 2.56, | |
| "learning_rate": 5e-05, | |
| "loss": 0.1917, | |
| "step": 1438 | |
| }, | |
| { | |
| "epoch": 2.56, | |
| "learning_rate": 5e-05, | |
| "loss": 0.2139, | |
| "step": 1439 | |
| }, | |
| { | |
| "epoch": 2.56, | |
| "learning_rate": 5e-05, | |
| "loss": 0.2722, | |
| "step": 1440 | |
| }, | |
| { | |
| "epoch": 2.56, | |
| "learning_rate": 5e-05, | |
| "loss": 0.2527, | |
| "step": 1441 | |
| }, | |
| { | |
| "epoch": 2.56, | |
| "learning_rate": 5e-05, | |
| "loss": 0.2466, | |
| "step": 1442 | |
| }, | |
| { | |
| "epoch": 2.57, | |
| "learning_rate": 5e-05, | |
| "loss": 0.2485, | |
| "step": 1443 | |
| }, | |
| { | |
| "epoch": 2.57, | |
| "learning_rate": 5e-05, | |
| "loss": 0.2231, | |
| "step": 1444 | |
| }, | |
| { | |
| "epoch": 2.57, | |
| "learning_rate": 5e-05, | |
| "loss": 0.2678, | |
| "step": 1445 | |
| }, | |
| { | |
| "epoch": 2.57, | |
| "learning_rate": 5e-05, | |
| "loss": 0.1929, | |
| "step": 1446 | |
| }, | |
| { | |
| "epoch": 2.57, | |
| "learning_rate": 5e-05, | |
| "loss": 0.28, | |
| "step": 1447 | |
| }, | |
| { | |
| "epoch": 2.57, | |
| "learning_rate": 5e-05, | |
| "loss": 0.2419, | |
| "step": 1448 | |
| }, | |
| { | |
| "epoch": 2.58, | |
| "learning_rate": 5e-05, | |
| "loss": 0.2463, | |
| "step": 1449 | |
| }, | |
| { | |
| "epoch": 2.58, | |
| "learning_rate": 5e-05, | |
| "loss": 0.2273, | |
| "step": 1450 | |
| }, | |
| { | |
| "epoch": 2.58, | |
| "learning_rate": 5e-05, | |
| "loss": 0.1821, | |
| "step": 1451 | |
| }, | |
| { | |
| "epoch": 2.58, | |
| "learning_rate": 5e-05, | |
| "loss": 0.3016, | |
| "step": 1452 | |
| }, | |
| { | |
| "epoch": 2.58, | |
| "learning_rate": 5e-05, | |
| "loss": 0.2458, | |
| "step": 1453 | |
| }, | |
| { | |
| "epoch": 2.58, | |
| "learning_rate": 5e-05, | |
| "loss": 0.2281, | |
| "step": 1454 | |
| }, | |
| { | |
| "epoch": 2.59, | |
| "learning_rate": 5e-05, | |
| "loss": 0.222, | |
| "step": 1455 | |
| }, | |
| { | |
| "epoch": 2.59, | |
| "learning_rate": 5e-05, | |
| "loss": 0.2341, | |
| "step": 1456 | |
| }, | |
| { | |
| "epoch": 2.59, | |
| "learning_rate": 5e-05, | |
| "loss": 0.2644, | |
| "step": 1457 | |
| }, | |
| { | |
| "epoch": 2.59, | |
| "learning_rate": 5e-05, | |
| "loss": 0.3013, | |
| "step": 1458 | |
| }, | |
| { | |
| "epoch": 2.59, | |
| "learning_rate": 5e-05, | |
| "loss": 0.2031, | |
| "step": 1459 | |
| }, | |
| { | |
| "epoch": 2.6, | |
| "learning_rate": 5e-05, | |
| "loss": 0.2314, | |
| "step": 1460 | |
| }, | |
| { | |
| "epoch": 2.6, | |
| "learning_rate": 5e-05, | |
| "loss": 0.1729, | |
| "step": 1461 | |
| }, | |
| { | |
| "epoch": 2.6, | |
| "learning_rate": 5e-05, | |
| "loss": 0.2275, | |
| "step": 1462 | |
| }, | |
| { | |
| "epoch": 2.6, | |
| "learning_rate": 5e-05, | |
| "loss": 0.2407, | |
| "step": 1463 | |
| }, | |
| { | |
| "epoch": 2.6, | |
| "learning_rate": 5e-05, | |
| "loss": 0.2288, | |
| "step": 1464 | |
| }, | |
| { | |
| "epoch": 2.6, | |
| "learning_rate": 5e-05, | |
| "loss": 0.1841, | |
| "step": 1465 | |
| }, | |
| { | |
| "epoch": 2.61, | |
| "learning_rate": 5e-05, | |
| "loss": 0.218, | |
| "step": 1466 | |
| }, | |
| { | |
| "epoch": 2.61, | |
| "learning_rate": 5e-05, | |
| "loss": 0.2395, | |
| "step": 1467 | |
| }, | |
| { | |
| "epoch": 2.61, | |
| "learning_rate": 5e-05, | |
| "loss": 0.2029, | |
| "step": 1468 | |
| }, | |
| { | |
| "epoch": 2.61, | |
| "learning_rate": 5e-05, | |
| "loss": 0.2881, | |
| "step": 1469 | |
| }, | |
| { | |
| "epoch": 2.61, | |
| "learning_rate": 5e-05, | |
| "loss": 0.2478, | |
| "step": 1470 | |
| }, | |
| { | |
| "epoch": 2.62, | |
| "learning_rate": 5e-05, | |
| "loss": 0.2463, | |
| "step": 1471 | |
| }, | |
| { | |
| "epoch": 2.62, | |
| "learning_rate": 5e-05, | |
| "loss": 0.2344, | |
| "step": 1472 | |
| }, | |
| { | |
| "epoch": 2.62, | |
| "learning_rate": 5e-05, | |
| "loss": 0.229, | |
| "step": 1473 | |
| }, | |
| { | |
| "epoch": 2.62, | |
| "learning_rate": 5e-05, | |
| "loss": 0.2341, | |
| "step": 1474 | |
| }, | |
| { | |
| "epoch": 2.62, | |
| "learning_rate": 5e-05, | |
| "loss": 0.1992, | |
| "step": 1475 | |
| }, | |
| { | |
| "epoch": 2.62, | |
| "learning_rate": 5e-05, | |
| "loss": 0.2271, | |
| "step": 1476 | |
| }, | |
| { | |
| "epoch": 2.63, | |
| "learning_rate": 5e-05, | |
| "loss": 0.2903, | |
| "step": 1477 | |
| }, | |
| { | |
| "epoch": 2.63, | |
| "learning_rate": 5e-05, | |
| "loss": 0.2739, | |
| "step": 1478 | |
| }, | |
| { | |
| "epoch": 2.63, | |
| "learning_rate": 5e-05, | |
| "loss": 0.2603, | |
| "step": 1479 | |
| }, | |
| { | |
| "epoch": 2.63, | |
| "learning_rate": 5e-05, | |
| "loss": 0.2247, | |
| "step": 1480 | |
| }, | |
| { | |
| "epoch": 2.63, | |
| "learning_rate": 5e-05, | |
| "loss": 0.1833, | |
| "step": 1481 | |
| }, | |
| { | |
| "epoch": 2.63, | |
| "learning_rate": 5e-05, | |
| "loss": 0.2468, | |
| "step": 1482 | |
| }, | |
| { | |
| "epoch": 2.64, | |
| "learning_rate": 5e-05, | |
| "loss": 0.2615, | |
| "step": 1483 | |
| }, | |
| { | |
| "epoch": 2.64, | |
| "learning_rate": 5e-05, | |
| "loss": 0.2737, | |
| "step": 1484 | |
| }, | |
| { | |
| "epoch": 2.64, | |
| "learning_rate": 5e-05, | |
| "loss": 0.2529, | |
| "step": 1485 | |
| }, | |
| { | |
| "epoch": 2.64, | |
| "learning_rate": 5e-05, | |
| "loss": 0.269, | |
| "step": 1486 | |
| }, | |
| { | |
| "epoch": 2.64, | |
| "learning_rate": 5e-05, | |
| "loss": 0.2507, | |
| "step": 1487 | |
| }, | |
| { | |
| "epoch": 2.65, | |
| "learning_rate": 5e-05, | |
| "loss": 0.1719, | |
| "step": 1488 | |
| }, | |
| { | |
| "epoch": 2.65, | |
| "learning_rate": 5e-05, | |
| "loss": 0.4253, | |
| "step": 1489 | |
| }, | |
| { | |
| "epoch": 2.65, | |
| "learning_rate": 5e-05, | |
| "loss": 0.1656, | |
| "step": 1490 | |
| }, | |
| { | |
| "epoch": 2.65, | |
| "learning_rate": 5e-05, | |
| "loss": 0.2341, | |
| "step": 1491 | |
| }, | |
| { | |
| "epoch": 2.65, | |
| "learning_rate": 5e-05, | |
| "loss": 0.2153, | |
| "step": 1492 | |
| }, | |
| { | |
| "epoch": 2.65, | |
| "learning_rate": 5e-05, | |
| "loss": 0.1577, | |
| "step": 1493 | |
| }, | |
| { | |
| "epoch": 2.66, | |
| "learning_rate": 5e-05, | |
| "loss": 0.2427, | |
| "step": 1494 | |
| }, | |
| { | |
| "epoch": 2.66, | |
| "learning_rate": 5e-05, | |
| "loss": 0.2693, | |
| "step": 1495 | |
| }, | |
| { | |
| "epoch": 2.66, | |
| "learning_rate": 5e-05, | |
| "loss": 0.2061, | |
| "step": 1496 | |
| }, | |
| { | |
| "epoch": 2.66, | |
| "learning_rate": 5e-05, | |
| "loss": 0.2322, | |
| "step": 1497 | |
| }, | |
| { | |
| "epoch": 2.66, | |
| "learning_rate": 5e-05, | |
| "loss": 0.217, | |
| "step": 1498 | |
| }, | |
| { | |
| "epoch": 2.66, | |
| "learning_rate": 5e-05, | |
| "loss": 0.2568, | |
| "step": 1499 | |
| }, | |
| { | |
| "epoch": 2.67, | |
| "learning_rate": 5e-05, | |
| "loss": 0.2983, | |
| "step": 1500 | |
| }, | |
| { | |
| "epoch": 2.67, | |
| "learning_rate": 5e-05, | |
| "loss": 0.2944, | |
| "step": 1501 | |
| }, | |
| { | |
| "epoch": 2.67, | |
| "learning_rate": 5e-05, | |
| "loss": 0.1931, | |
| "step": 1502 | |
| }, | |
| { | |
| "epoch": 2.67, | |
| "learning_rate": 5e-05, | |
| "loss": 0.2357, | |
| "step": 1503 | |
| }, | |
| { | |
| "epoch": 2.67, | |
| "learning_rate": 5e-05, | |
| "loss": 0.2568, | |
| "step": 1504 | |
| }, | |
| { | |
| "epoch": 2.68, | |
| "learning_rate": 5e-05, | |
| "loss": 0.1809, | |
| "step": 1505 | |
| }, | |
| { | |
| "epoch": 2.68, | |
| "learning_rate": 5e-05, | |
| "loss": 0.24, | |
| "step": 1506 | |
| }, | |
| { | |
| "epoch": 2.68, | |
| "learning_rate": 5e-05, | |
| "loss": 0.239, | |
| "step": 1507 | |
| }, | |
| { | |
| "epoch": 2.68, | |
| "learning_rate": 5e-05, | |
| "loss": 0.2622, | |
| "step": 1508 | |
| }, | |
| { | |
| "epoch": 2.68, | |
| "learning_rate": 5e-05, | |
| "loss": 0.2959, | |
| "step": 1509 | |
| }, | |
| { | |
| "epoch": 2.68, | |
| "learning_rate": 5e-05, | |
| "loss": 0.2136, | |
| "step": 1510 | |
| }, | |
| { | |
| "epoch": 2.69, | |
| "learning_rate": 5e-05, | |
| "loss": 0.2446, | |
| "step": 1511 | |
| }, | |
| { | |
| "epoch": 2.69, | |
| "learning_rate": 5e-05, | |
| "loss": 0.2563, | |
| "step": 1512 | |
| }, | |
| { | |
| "epoch": 2.69, | |
| "learning_rate": 5e-05, | |
| "loss": 0.2128, | |
| "step": 1513 | |
| }, | |
| { | |
| "epoch": 2.69, | |
| "learning_rate": 5e-05, | |
| "loss": 0.157, | |
| "step": 1514 | |
| }, | |
| { | |
| "epoch": 2.69, | |
| "learning_rate": 5e-05, | |
| "loss": 0.1681, | |
| "step": 1515 | |
| }, | |
| { | |
| "epoch": 2.7, | |
| "learning_rate": 5e-05, | |
| "loss": 0.2512, | |
| "step": 1516 | |
| }, | |
| { | |
| "epoch": 2.7, | |
| "learning_rate": 5e-05, | |
| "loss": 0.2473, | |
| "step": 1517 | |
| }, | |
| { | |
| "epoch": 2.7, | |
| "learning_rate": 5e-05, | |
| "loss": 0.2722, | |
| "step": 1518 | |
| }, | |
| { | |
| "epoch": 2.7, | |
| "learning_rate": 5e-05, | |
| "loss": 0.2549, | |
| "step": 1519 | |
| }, | |
| { | |
| "epoch": 2.7, | |
| "learning_rate": 5e-05, | |
| "loss": 0.1853, | |
| "step": 1520 | |
| }, | |
| { | |
| "epoch": 2.7, | |
| "learning_rate": 5e-05, | |
| "loss": 0.3586, | |
| "step": 1521 | |
| }, | |
| { | |
| "epoch": 2.71, | |
| "learning_rate": 5e-05, | |
| "loss": 0.1963, | |
| "step": 1522 | |
| }, | |
| { | |
| "epoch": 2.71, | |
| "learning_rate": 5e-05, | |
| "loss": 0.1868, | |
| "step": 1523 | |
| }, | |
| { | |
| "epoch": 2.71, | |
| "learning_rate": 5e-05, | |
| "loss": 0.3066, | |
| "step": 1524 | |
| }, | |
| { | |
| "epoch": 2.71, | |
| "learning_rate": 5e-05, | |
| "loss": 0.1772, | |
| "step": 1525 | |
| }, | |
| { | |
| "epoch": 2.71, | |
| "learning_rate": 5e-05, | |
| "loss": 0.2487, | |
| "step": 1526 | |
| }, | |
| { | |
| "epoch": 2.71, | |
| "learning_rate": 5e-05, | |
| "loss": 0.2112, | |
| "step": 1527 | |
| }, | |
| { | |
| "epoch": 2.72, | |
| "learning_rate": 5e-05, | |
| "loss": 0.3005, | |
| "step": 1528 | |
| }, | |
| { | |
| "epoch": 2.72, | |
| "learning_rate": 5e-05, | |
| "loss": 0.2592, | |
| "step": 1529 | |
| }, | |
| { | |
| "epoch": 2.72, | |
| "learning_rate": 5e-05, | |
| "loss": 0.1902, | |
| "step": 1530 | |
| }, | |
| { | |
| "epoch": 2.72, | |
| "learning_rate": 5e-05, | |
| "loss": 0.2495, | |
| "step": 1531 | |
| }, | |
| { | |
| "epoch": 2.72, | |
| "learning_rate": 5e-05, | |
| "loss": 0.2434, | |
| "step": 1532 | |
| }, | |
| { | |
| "epoch": 2.73, | |
| "learning_rate": 5e-05, | |
| "loss": 0.1985, | |
| "step": 1533 | |
| }, | |
| { | |
| "epoch": 2.73, | |
| "learning_rate": 5e-05, | |
| "loss": 0.2024, | |
| "step": 1534 | |
| }, | |
| { | |
| "epoch": 2.73, | |
| "learning_rate": 5e-05, | |
| "loss": 0.231, | |
| "step": 1535 | |
| }, | |
| { | |
| "epoch": 2.73, | |
| "learning_rate": 5e-05, | |
| "loss": 0.2303, | |
| "step": 1536 | |
| }, | |
| { | |
| "epoch": 2.73, | |
| "learning_rate": 5e-05, | |
| "loss": 0.2629, | |
| "step": 1537 | |
| }, | |
| { | |
| "epoch": 2.73, | |
| "learning_rate": 5e-05, | |
| "loss": 0.2434, | |
| "step": 1538 | |
| }, | |
| { | |
| "epoch": 2.74, | |
| "learning_rate": 5e-05, | |
| "loss": 0.2578, | |
| "step": 1539 | |
| }, | |
| { | |
| "epoch": 2.74, | |
| "learning_rate": 5e-05, | |
| "loss": 0.2048, | |
| "step": 1540 | |
| }, | |
| { | |
| "epoch": 2.74, | |
| "learning_rate": 5e-05, | |
| "loss": 0.2222, | |
| "step": 1541 | |
| }, | |
| { | |
| "epoch": 2.74, | |
| "learning_rate": 5e-05, | |
| "loss": 0.2456, | |
| "step": 1542 | |
| }, | |
| { | |
| "epoch": 2.74, | |
| "learning_rate": 5e-05, | |
| "loss": 0.1775, | |
| "step": 1543 | |
| }, | |
| { | |
| "epoch": 2.74, | |
| "learning_rate": 5e-05, | |
| "loss": 0.241, | |
| "step": 1544 | |
| }, | |
| { | |
| "epoch": 2.75, | |
| "learning_rate": 5e-05, | |
| "loss": 0.2349, | |
| "step": 1545 | |
| }, | |
| { | |
| "epoch": 2.75, | |
| "learning_rate": 5e-05, | |
| "loss": 0.3438, | |
| "step": 1546 | |
| }, | |
| { | |
| "epoch": 2.75, | |
| "learning_rate": 5e-05, | |
| "loss": 0.2634, | |
| "step": 1547 | |
| }, | |
| { | |
| "epoch": 2.75, | |
| "learning_rate": 5e-05, | |
| "loss": 0.2866, | |
| "step": 1548 | |
| }, | |
| { | |
| "epoch": 2.75, | |
| "learning_rate": 5e-05, | |
| "loss": 0.2229, | |
| "step": 1549 | |
| }, | |
| { | |
| "epoch": 2.76, | |
| "learning_rate": 5e-05, | |
| "loss": 0.2502, | |
| "step": 1550 | |
| }, | |
| { | |
| "epoch": 2.76, | |
| "learning_rate": 5e-05, | |
| "loss": 0.1836, | |
| "step": 1551 | |
| }, | |
| { | |
| "epoch": 2.76, | |
| "learning_rate": 5e-05, | |
| "loss": 0.2079, | |
| "step": 1552 | |
| }, | |
| { | |
| "epoch": 2.76, | |
| "learning_rate": 5e-05, | |
| "loss": 0.2363, | |
| "step": 1553 | |
| }, | |
| { | |
| "epoch": 2.76, | |
| "learning_rate": 5e-05, | |
| "loss": 0.2341, | |
| "step": 1554 | |
| }, | |
| { | |
| "epoch": 2.76, | |
| "learning_rate": 5e-05, | |
| "loss": 0.3193, | |
| "step": 1555 | |
| }, | |
| { | |
| "epoch": 2.77, | |
| "learning_rate": 5e-05, | |
| "loss": 0.1658, | |
| "step": 1556 | |
| }, | |
| { | |
| "epoch": 2.77, | |
| "learning_rate": 5e-05, | |
| "loss": 0.2202, | |
| "step": 1557 | |
| }, | |
| { | |
| "epoch": 2.77, | |
| "learning_rate": 5e-05, | |
| "loss": 0.3162, | |
| "step": 1558 | |
| }, | |
| { | |
| "epoch": 2.77, | |
| "learning_rate": 5e-05, | |
| "loss": 0.2229, | |
| "step": 1559 | |
| }, | |
| { | |
| "epoch": 2.77, | |
| "learning_rate": 5e-05, | |
| "loss": 0.2095, | |
| "step": 1560 | |
| }, | |
| { | |
| "epoch": 2.78, | |
| "learning_rate": 5e-05, | |
| "loss": 0.2188, | |
| "step": 1561 | |
| }, | |
| { | |
| "epoch": 2.78, | |
| "learning_rate": 5e-05, | |
| "loss": 0.2878, | |
| "step": 1562 | |
| }, | |
| { | |
| "epoch": 2.78, | |
| "learning_rate": 5e-05, | |
| "loss": 0.2178, | |
| "step": 1563 | |
| }, | |
| { | |
| "epoch": 2.78, | |
| "learning_rate": 5e-05, | |
| "loss": 0.2246, | |
| "step": 1564 | |
| }, | |
| { | |
| "epoch": 2.78, | |
| "learning_rate": 5e-05, | |
| "loss": 0.2457, | |
| "step": 1565 | |
| }, | |
| { | |
| "epoch": 2.78, | |
| "learning_rate": 5e-05, | |
| "loss": 0.2156, | |
| "step": 1566 | |
| }, | |
| { | |
| "epoch": 2.79, | |
| "learning_rate": 5e-05, | |
| "loss": 0.1982, | |
| "step": 1567 | |
| }, | |
| { | |
| "epoch": 2.79, | |
| "learning_rate": 5e-05, | |
| "loss": 0.3054, | |
| "step": 1568 | |
| }, | |
| { | |
| "epoch": 2.79, | |
| "learning_rate": 5e-05, | |
| "loss": 0.2345, | |
| "step": 1569 | |
| }, | |
| { | |
| "epoch": 2.79, | |
| "learning_rate": 5e-05, | |
| "loss": 0.1741, | |
| "step": 1570 | |
| }, | |
| { | |
| "epoch": 2.79, | |
| "learning_rate": 5e-05, | |
| "loss": 0.2351, | |
| "step": 1571 | |
| }, | |
| { | |
| "epoch": 2.79, | |
| "learning_rate": 5e-05, | |
| "loss": 0.2148, | |
| "step": 1572 | |
| }, | |
| { | |
| "epoch": 2.8, | |
| "learning_rate": 5e-05, | |
| "loss": 0.2922, | |
| "step": 1573 | |
| }, | |
| { | |
| "epoch": 2.8, | |
| "learning_rate": 5e-05, | |
| "loss": 0.2402, | |
| "step": 1574 | |
| }, | |
| { | |
| "epoch": 2.8, | |
| "learning_rate": 5e-05, | |
| "loss": 0.3232, | |
| "step": 1575 | |
| }, | |
| { | |
| "epoch": 2.8, | |
| "learning_rate": 5e-05, | |
| "loss": 0.2361, | |
| "step": 1576 | |
| }, | |
| { | |
| "epoch": 2.8, | |
| "learning_rate": 5e-05, | |
| "loss": 0.196, | |
| "step": 1577 | |
| }, | |
| { | |
| "epoch": 2.81, | |
| "learning_rate": 5e-05, | |
| "loss": 0.2422, | |
| "step": 1578 | |
| }, | |
| { | |
| "epoch": 2.81, | |
| "learning_rate": 5e-05, | |
| "loss": 0.238, | |
| "step": 1579 | |
| }, | |
| { | |
| "epoch": 2.81, | |
| "learning_rate": 5e-05, | |
| "loss": 0.2461, | |
| "step": 1580 | |
| }, | |
| { | |
| "epoch": 2.81, | |
| "learning_rate": 5e-05, | |
| "loss": 0.4678, | |
| "step": 1581 | |
| }, | |
| { | |
| "epoch": 2.81, | |
| "learning_rate": 5e-05, | |
| "loss": 0.2581, | |
| "step": 1582 | |
| }, | |
| { | |
| "epoch": 2.81, | |
| "learning_rate": 5e-05, | |
| "loss": 0.1812, | |
| "step": 1583 | |
| }, | |
| { | |
| "epoch": 2.82, | |
| "learning_rate": 5e-05, | |
| "loss": 0.2581, | |
| "step": 1584 | |
| }, | |
| { | |
| "epoch": 2.82, | |
| "learning_rate": 5e-05, | |
| "loss": 0.231, | |
| "step": 1585 | |
| }, | |
| { | |
| "epoch": 2.82, | |
| "learning_rate": 5e-05, | |
| "loss": 0.3105, | |
| "step": 1586 | |
| }, | |
| { | |
| "epoch": 2.82, | |
| "learning_rate": 5e-05, | |
| "loss": 0.2144, | |
| "step": 1587 | |
| }, | |
| { | |
| "epoch": 2.82, | |
| "learning_rate": 5e-05, | |
| "loss": 0.2839, | |
| "step": 1588 | |
| }, | |
| { | |
| "epoch": 2.82, | |
| "learning_rate": 5e-05, | |
| "loss": 0.3125, | |
| "step": 1589 | |
| }, | |
| { | |
| "epoch": 2.83, | |
| "learning_rate": 5e-05, | |
| "loss": 0.2125, | |
| "step": 1590 | |
| }, | |
| { | |
| "epoch": 2.83, | |
| "learning_rate": 5e-05, | |
| "loss": 0.1978, | |
| "step": 1591 | |
| }, | |
| { | |
| "epoch": 2.83, | |
| "learning_rate": 5e-05, | |
| "loss": 0.2935, | |
| "step": 1592 | |
| }, | |
| { | |
| "epoch": 2.83, | |
| "learning_rate": 5e-05, | |
| "loss": 0.2288, | |
| "step": 1593 | |
| }, | |
| { | |
| "epoch": 2.83, | |
| "learning_rate": 5e-05, | |
| "loss": 0.2354, | |
| "step": 1594 | |
| }, | |
| { | |
| "epoch": 2.84, | |
| "learning_rate": 5e-05, | |
| "loss": 0.218, | |
| "step": 1595 | |
| }, | |
| { | |
| "epoch": 2.84, | |
| "learning_rate": 5e-05, | |
| "loss": 0.2822, | |
| "step": 1596 | |
| }, | |
| { | |
| "epoch": 2.84, | |
| "learning_rate": 5e-05, | |
| "loss": 0.2534, | |
| "step": 1597 | |
| }, | |
| { | |
| "epoch": 2.84, | |
| "learning_rate": 5e-05, | |
| "loss": 0.1609, | |
| "step": 1598 | |
| }, | |
| { | |
| "epoch": 2.84, | |
| "learning_rate": 5e-05, | |
| "loss": 0.1973, | |
| "step": 1599 | |
| }, | |
| { | |
| "epoch": 2.84, | |
| "learning_rate": 5e-05, | |
| "loss": 0.1998, | |
| "step": 1600 | |
| }, | |
| { | |
| "epoch": 2.85, | |
| "learning_rate": 5e-05, | |
| "loss": 0.2307, | |
| "step": 1601 | |
| }, | |
| { | |
| "epoch": 2.85, | |
| "learning_rate": 5e-05, | |
| "loss": 0.2467, | |
| "step": 1602 | |
| }, | |
| { | |
| "epoch": 2.85, | |
| "learning_rate": 5e-05, | |
| "loss": 0.2805, | |
| "step": 1603 | |
| }, | |
| { | |
| "epoch": 2.85, | |
| "learning_rate": 5e-05, | |
| "loss": 0.2676, | |
| "step": 1604 | |
| }, | |
| { | |
| "epoch": 2.85, | |
| "learning_rate": 5e-05, | |
| "loss": 0.1936, | |
| "step": 1605 | |
| }, | |
| { | |
| "epoch": 2.86, | |
| "learning_rate": 5e-05, | |
| "loss": 0.2539, | |
| "step": 1606 | |
| }, | |
| { | |
| "epoch": 2.86, | |
| "learning_rate": 5e-05, | |
| "loss": 0.1743, | |
| "step": 1607 | |
| }, | |
| { | |
| "epoch": 2.86, | |
| "learning_rate": 5e-05, | |
| "loss": 0.2468, | |
| "step": 1608 | |
| }, | |
| { | |
| "epoch": 2.86, | |
| "learning_rate": 5e-05, | |
| "loss": 0.213, | |
| "step": 1609 | |
| }, | |
| { | |
| "epoch": 2.86, | |
| "learning_rate": 5e-05, | |
| "loss": 0.293, | |
| "step": 1610 | |
| }, | |
| { | |
| "epoch": 2.86, | |
| "learning_rate": 5e-05, | |
| "loss": 0.2153, | |
| "step": 1611 | |
| }, | |
| { | |
| "epoch": 2.87, | |
| "learning_rate": 5e-05, | |
| "loss": 0.5334, | |
| "step": 1612 | |
| }, | |
| { | |
| "epoch": 2.87, | |
| "learning_rate": 5e-05, | |
| "loss": 0.2527, | |
| "step": 1613 | |
| }, | |
| { | |
| "epoch": 2.87, | |
| "learning_rate": 5e-05, | |
| "loss": 0.2307, | |
| "step": 1614 | |
| }, | |
| { | |
| "epoch": 2.87, | |
| "learning_rate": 5e-05, | |
| "loss": 0.1698, | |
| "step": 1615 | |
| }, | |
| { | |
| "epoch": 2.87, | |
| "learning_rate": 5e-05, | |
| "loss": 0.2345, | |
| "step": 1616 | |
| }, | |
| { | |
| "epoch": 2.87, | |
| "learning_rate": 5e-05, | |
| "loss": 0.2014, | |
| "step": 1617 | |
| }, | |
| { | |
| "epoch": 2.88, | |
| "learning_rate": 5e-05, | |
| "loss": 0.2908, | |
| "step": 1618 | |
| }, | |
| { | |
| "epoch": 2.88, | |
| "learning_rate": 5e-05, | |
| "loss": 0.2322, | |
| "step": 1619 | |
| }, | |
| { | |
| "epoch": 2.88, | |
| "learning_rate": 5e-05, | |
| "loss": 0.3005, | |
| "step": 1620 | |
| }, | |
| { | |
| "epoch": 2.88, | |
| "learning_rate": 5e-05, | |
| "loss": 0.2979, | |
| "step": 1621 | |
| }, | |
| { | |
| "epoch": 2.88, | |
| "learning_rate": 5e-05, | |
| "loss": 0.2289, | |
| "step": 1622 | |
| }, | |
| { | |
| "epoch": 2.89, | |
| "learning_rate": 5e-05, | |
| "loss": 0.2639, | |
| "step": 1623 | |
| }, | |
| { | |
| "epoch": 2.89, | |
| "learning_rate": 5e-05, | |
| "loss": 0.1782, | |
| "step": 1624 | |
| }, | |
| { | |
| "epoch": 2.89, | |
| "learning_rate": 5e-05, | |
| "loss": 0.2271, | |
| "step": 1625 | |
| }, | |
| { | |
| "epoch": 2.89, | |
| "learning_rate": 5e-05, | |
| "loss": 0.1671, | |
| "step": 1626 | |
| }, | |
| { | |
| "epoch": 2.89, | |
| "learning_rate": 5e-05, | |
| "loss": 0.2131, | |
| "step": 1627 | |
| }, | |
| { | |
| "epoch": 2.89, | |
| "learning_rate": 5e-05, | |
| "loss": 0.1765, | |
| "step": 1628 | |
| }, | |
| { | |
| "epoch": 2.9, | |
| "learning_rate": 5e-05, | |
| "loss": 0.3276, | |
| "step": 1629 | |
| }, | |
| { | |
| "epoch": 2.9, | |
| "learning_rate": 5e-05, | |
| "loss": 0.2712, | |
| "step": 1630 | |
| }, | |
| { | |
| "epoch": 2.9, | |
| "learning_rate": 5e-05, | |
| "loss": 0.3064, | |
| "step": 1631 | |
| }, | |
| { | |
| "epoch": 2.9, | |
| "learning_rate": 5e-05, | |
| "loss": 0.2727, | |
| "step": 1632 | |
| }, | |
| { | |
| "epoch": 2.9, | |
| "learning_rate": 5e-05, | |
| "loss": 0.2869, | |
| "step": 1633 | |
| }, | |
| { | |
| "epoch": 2.9, | |
| "learning_rate": 5e-05, | |
| "loss": 0.1658, | |
| "step": 1634 | |
| }, | |
| { | |
| "epoch": 2.91, | |
| "learning_rate": 5e-05, | |
| "loss": 0.1802, | |
| "step": 1635 | |
| }, | |
| { | |
| "epoch": 2.91, | |
| "learning_rate": 5e-05, | |
| "loss": 0.1499, | |
| "step": 1636 | |
| }, | |
| { | |
| "epoch": 2.91, | |
| "learning_rate": 5e-05, | |
| "loss": 0.1692, | |
| "step": 1637 | |
| }, | |
| { | |
| "epoch": 2.91, | |
| "learning_rate": 5e-05, | |
| "loss": 0.2272, | |
| "step": 1638 | |
| }, | |
| { | |
| "epoch": 2.91, | |
| "learning_rate": 5e-05, | |
| "loss": 0.2417, | |
| "step": 1639 | |
| }, | |
| { | |
| "epoch": 2.92, | |
| "learning_rate": 5e-05, | |
| "loss": 0.2032, | |
| "step": 1640 | |
| }, | |
| { | |
| "epoch": 2.92, | |
| "learning_rate": 5e-05, | |
| "loss": 0.2649, | |
| "step": 1641 | |
| }, | |
| { | |
| "epoch": 2.92, | |
| "learning_rate": 5e-05, | |
| "loss": 0.2656, | |
| "step": 1642 | |
| }, | |
| { | |
| "epoch": 2.92, | |
| "learning_rate": 5e-05, | |
| "loss": 0.2104, | |
| "step": 1643 | |
| }, | |
| { | |
| "epoch": 2.92, | |
| "learning_rate": 5e-05, | |
| "loss": 0.3284, | |
| "step": 1644 | |
| }, | |
| { | |
| "epoch": 2.92, | |
| "learning_rate": 5e-05, | |
| "loss": 0.2351, | |
| "step": 1645 | |
| }, | |
| { | |
| "epoch": 2.93, | |
| "learning_rate": 5e-05, | |
| "loss": 0.2219, | |
| "step": 1646 | |
| }, | |
| { | |
| "epoch": 2.93, | |
| "learning_rate": 5e-05, | |
| "loss": 0.2048, | |
| "step": 1647 | |
| }, | |
| { | |
| "epoch": 2.93, | |
| "learning_rate": 5e-05, | |
| "loss": 0.2423, | |
| "step": 1648 | |
| }, | |
| { | |
| "epoch": 2.93, | |
| "learning_rate": 5e-05, | |
| "loss": 0.2371, | |
| "step": 1649 | |
| }, | |
| { | |
| "epoch": 2.93, | |
| "learning_rate": 5e-05, | |
| "loss": 0.3093, | |
| "step": 1650 | |
| }, | |
| { | |
| "epoch": 2.94, | |
| "learning_rate": 5e-05, | |
| "loss": 0.2585, | |
| "step": 1651 | |
| }, | |
| { | |
| "epoch": 2.94, | |
| "learning_rate": 5e-05, | |
| "loss": 0.2906, | |
| "step": 1652 | |
| }, | |
| { | |
| "epoch": 2.94, | |
| "learning_rate": 5e-05, | |
| "loss": 0.2749, | |
| "step": 1653 | |
| }, | |
| { | |
| "epoch": 2.94, | |
| "learning_rate": 5e-05, | |
| "loss": 0.2979, | |
| "step": 1654 | |
| }, | |
| { | |
| "epoch": 2.94, | |
| "learning_rate": 5e-05, | |
| "loss": 0.2891, | |
| "step": 1655 | |
| }, | |
| { | |
| "epoch": 2.94, | |
| "learning_rate": 5e-05, | |
| "loss": 0.2263, | |
| "step": 1656 | |
| }, | |
| { | |
| "epoch": 2.95, | |
| "learning_rate": 5e-05, | |
| "loss": 0.266, | |
| "step": 1657 | |
| }, | |
| { | |
| "epoch": 2.95, | |
| "learning_rate": 5e-05, | |
| "loss": 0.2346, | |
| "step": 1658 | |
| }, | |
| { | |
| "epoch": 2.95, | |
| "learning_rate": 5e-05, | |
| "loss": 0.2461, | |
| "step": 1659 | |
| }, | |
| { | |
| "epoch": 2.95, | |
| "learning_rate": 5e-05, | |
| "loss": 0.1484, | |
| "step": 1660 | |
| }, | |
| { | |
| "epoch": 2.95, | |
| "learning_rate": 5e-05, | |
| "loss": 0.1934, | |
| "step": 1661 | |
| }, | |
| { | |
| "epoch": 2.95, | |
| "learning_rate": 5e-05, | |
| "loss": 0.1975, | |
| "step": 1662 | |
| }, | |
| { | |
| "epoch": 2.96, | |
| "learning_rate": 5e-05, | |
| "loss": 0.2313, | |
| "step": 1663 | |
| }, | |
| { | |
| "epoch": 2.96, | |
| "learning_rate": 5e-05, | |
| "loss": 0.1802, | |
| "step": 1664 | |
| }, | |
| { | |
| "epoch": 2.96, | |
| "learning_rate": 5e-05, | |
| "loss": 0.1941, | |
| "step": 1665 | |
| }, | |
| { | |
| "epoch": 2.96, | |
| "learning_rate": 5e-05, | |
| "loss": 0.281, | |
| "step": 1666 | |
| }, | |
| { | |
| "epoch": 2.96, | |
| "learning_rate": 5e-05, | |
| "loss": 0.1815, | |
| "step": 1667 | |
| }, | |
| { | |
| "epoch": 2.97, | |
| "learning_rate": 5e-05, | |
| "loss": 0.1326, | |
| "step": 1668 | |
| }, | |
| { | |
| "epoch": 2.97, | |
| "learning_rate": 5e-05, | |
| "loss": 0.1619, | |
| "step": 1669 | |
| }, | |
| { | |
| "epoch": 2.97, | |
| "learning_rate": 5e-05, | |
| "loss": 0.2898, | |
| "step": 1670 | |
| }, | |
| { | |
| "epoch": 2.97, | |
| "learning_rate": 5e-05, | |
| "loss": 0.2554, | |
| "step": 1671 | |
| }, | |
| { | |
| "epoch": 2.97, | |
| "learning_rate": 5e-05, | |
| "loss": 0.2147, | |
| "step": 1672 | |
| }, | |
| { | |
| "epoch": 2.97, | |
| "learning_rate": 5e-05, | |
| "loss": 0.2424, | |
| "step": 1673 | |
| }, | |
| { | |
| "epoch": 2.98, | |
| "learning_rate": 5e-05, | |
| "loss": 0.2722, | |
| "step": 1674 | |
| }, | |
| { | |
| "epoch": 2.98, | |
| "learning_rate": 5e-05, | |
| "loss": 0.2437, | |
| "step": 1675 | |
| }, | |
| { | |
| "epoch": 2.98, | |
| "learning_rate": 5e-05, | |
| "loss": 0.2344, | |
| "step": 1676 | |
| }, | |
| { | |
| "epoch": 2.98, | |
| "learning_rate": 5e-05, | |
| "loss": 0.172, | |
| "step": 1677 | |
| }, | |
| { | |
| "epoch": 2.98, | |
| "learning_rate": 5e-05, | |
| "loss": 0.2163, | |
| "step": 1678 | |
| }, | |
| { | |
| "epoch": 2.98, | |
| "learning_rate": 5e-05, | |
| "loss": 0.2555, | |
| "step": 1679 | |
| }, | |
| { | |
| "epoch": 2.99, | |
| "learning_rate": 5e-05, | |
| "loss": 0.1765, | |
| "step": 1680 | |
| }, | |
| { | |
| "epoch": 2.99, | |
| "learning_rate": 5e-05, | |
| "loss": 0.2476, | |
| "step": 1681 | |
| }, | |
| { | |
| "epoch": 2.99, | |
| "learning_rate": 5e-05, | |
| "loss": 0.2815, | |
| "step": 1682 | |
| }, | |
| { | |
| "epoch": 2.99, | |
| "learning_rate": 5e-05, | |
| "loss": 0.2935, | |
| "step": 1683 | |
| }, | |
| { | |
| "epoch": 2.99, | |
| "learning_rate": 5e-05, | |
| "loss": 0.2576, | |
| "step": 1684 | |
| }, | |
| { | |
| "epoch": 3.0, | |
| "learning_rate": 5e-05, | |
| "loss": 0.1968, | |
| "step": 1685 | |
| }, | |
| { | |
| "epoch": 3.0, | |
| "learning_rate": 5e-05, | |
| "loss": 0.3438, | |
| "step": 1686 | |
| }, | |
| { | |
| "epoch": 3.0, | |
| "learning_rate": 5e-05, | |
| "loss": 0.2065, | |
| "step": 1687 | |
| }, | |
| { | |
| "epoch": 3.0, | |
| "eval_loss": 0.22996826469898224, | |
| "eval_runtime": 118.5591, | |
| "eval_samples_per_second": 2.53, | |
| "eval_steps_per_second": 0.633, | |
| "step": 1687 | |
| }, | |
| { | |
| "epoch": 3.0, | |
| "learning_rate": 5e-05, | |
| "loss": 0.2205, | |
| "step": 1688 | |
| }, | |
| { | |
| "epoch": 3.0, | |
| "learning_rate": 5e-05, | |
| "loss": 0.2266, | |
| "step": 1689 | |
| }, | |
| { | |
| "epoch": 3.0, | |
| "learning_rate": 5e-05, | |
| "loss": 0.2649, | |
| "step": 1690 | |
| }, | |
| { | |
| "epoch": 3.01, | |
| "learning_rate": 5e-05, | |
| "loss": 0.1531, | |
| "step": 1691 | |
| }, | |
| { | |
| "epoch": 3.01, | |
| "learning_rate": 5e-05, | |
| "loss": 0.146, | |
| "step": 1692 | |
| }, | |
| { | |
| "epoch": 3.01, | |
| "learning_rate": 5e-05, | |
| "loss": 0.2344, | |
| "step": 1693 | |
| }, | |
| { | |
| "epoch": 3.01, | |
| "learning_rate": 5e-05, | |
| "loss": 0.2935, | |
| "step": 1694 | |
| }, | |
| { | |
| "epoch": 3.01, | |
| "learning_rate": 5e-05, | |
| "loss": 0.2887, | |
| "step": 1695 | |
| }, | |
| { | |
| "epoch": 3.02, | |
| "learning_rate": 5e-05, | |
| "loss": 0.3352, | |
| "step": 1696 | |
| }, | |
| { | |
| "epoch": 3.02, | |
| "learning_rate": 5e-05, | |
| "loss": 0.1514, | |
| "step": 1697 | |
| }, | |
| { | |
| "epoch": 3.02, | |
| "learning_rate": 5e-05, | |
| "loss": 0.196, | |
| "step": 1698 | |
| }, | |
| { | |
| "epoch": 3.02, | |
| "learning_rate": 5e-05, | |
| "loss": 0.1816, | |
| "step": 1699 | |
| }, | |
| { | |
| "epoch": 3.02, | |
| "learning_rate": 5e-05, | |
| "loss": 0.2502, | |
| "step": 1700 | |
| }, | |
| { | |
| "epoch": 3.02, | |
| "learning_rate": 5e-05, | |
| "loss": 0.2825, | |
| "step": 1701 | |
| }, | |
| { | |
| "epoch": 3.03, | |
| "learning_rate": 5e-05, | |
| "loss": 0.2666, | |
| "step": 1702 | |
| }, | |
| { | |
| "epoch": 3.03, | |
| "learning_rate": 5e-05, | |
| "loss": 0.197, | |
| "step": 1703 | |
| }, | |
| { | |
| "epoch": 3.03, | |
| "learning_rate": 5e-05, | |
| "loss": 0.2356, | |
| "step": 1704 | |
| }, | |
| { | |
| "epoch": 3.03, | |
| "learning_rate": 5e-05, | |
| "loss": 0.3115, | |
| "step": 1705 | |
| }, | |
| { | |
| "epoch": 3.03, | |
| "learning_rate": 5e-05, | |
| "loss": 0.2615, | |
| "step": 1706 | |
| }, | |
| { | |
| "epoch": 3.03, | |
| "learning_rate": 5e-05, | |
| "loss": 0.2029, | |
| "step": 1707 | |
| }, | |
| { | |
| "epoch": 3.04, | |
| "learning_rate": 5e-05, | |
| "loss": 0.2717, | |
| "step": 1708 | |
| }, | |
| { | |
| "epoch": 3.04, | |
| "learning_rate": 5e-05, | |
| "loss": 0.2566, | |
| "step": 1709 | |
| }, | |
| { | |
| "epoch": 3.04, | |
| "learning_rate": 5e-05, | |
| "loss": 0.2029, | |
| "step": 1710 | |
| }, | |
| { | |
| "epoch": 3.04, | |
| "learning_rate": 5e-05, | |
| "loss": 0.2903, | |
| "step": 1711 | |
| }, | |
| { | |
| "epoch": 3.04, | |
| "learning_rate": 5e-05, | |
| "loss": 0.2803, | |
| "step": 1712 | |
| }, | |
| { | |
| "epoch": 3.05, | |
| "learning_rate": 5e-05, | |
| "loss": 0.2363, | |
| "step": 1713 | |
| }, | |
| { | |
| "epoch": 3.05, | |
| "learning_rate": 5e-05, | |
| "loss": 0.2366, | |
| "step": 1714 | |
| }, | |
| { | |
| "epoch": 3.05, | |
| "learning_rate": 5e-05, | |
| "loss": 0.2385, | |
| "step": 1715 | |
| }, | |
| { | |
| "epoch": 3.05, | |
| "learning_rate": 5e-05, | |
| "loss": 0.1902, | |
| "step": 1716 | |
| }, | |
| { | |
| "epoch": 3.05, | |
| "learning_rate": 5e-05, | |
| "loss": 0.2263, | |
| "step": 1717 | |
| }, | |
| { | |
| "epoch": 3.05, | |
| "learning_rate": 5e-05, | |
| "loss": 0.2305, | |
| "step": 1718 | |
| }, | |
| { | |
| "epoch": 3.06, | |
| "learning_rate": 5e-05, | |
| "loss": 0.2415, | |
| "step": 1719 | |
| }, | |
| { | |
| "epoch": 3.06, | |
| "learning_rate": 5e-05, | |
| "loss": 0.1956, | |
| "step": 1720 | |
| }, | |
| { | |
| "epoch": 3.06, | |
| "learning_rate": 5e-05, | |
| "loss": 0.2126, | |
| "step": 1721 | |
| }, | |
| { | |
| "epoch": 3.06, | |
| "learning_rate": 5e-05, | |
| "loss": 0.2299, | |
| "step": 1722 | |
| }, | |
| { | |
| "epoch": 3.06, | |
| "learning_rate": 5e-05, | |
| "loss": 0.2324, | |
| "step": 1723 | |
| }, | |
| { | |
| "epoch": 3.06, | |
| "learning_rate": 5e-05, | |
| "loss": 0.1958, | |
| "step": 1724 | |
| }, | |
| { | |
| "epoch": 3.07, | |
| "learning_rate": 5e-05, | |
| "loss": 0.2297, | |
| "step": 1725 | |
| }, | |
| { | |
| "epoch": 3.07, | |
| "learning_rate": 5e-05, | |
| "loss": 0.2034, | |
| "step": 1726 | |
| }, | |
| { | |
| "epoch": 3.07, | |
| "learning_rate": 5e-05, | |
| "loss": 0.2522, | |
| "step": 1727 | |
| }, | |
| { | |
| "epoch": 3.07, | |
| "learning_rate": 5e-05, | |
| "loss": 0.2969, | |
| "step": 1728 | |
| }, | |
| { | |
| "epoch": 3.07, | |
| "learning_rate": 5e-05, | |
| "loss": 0.2167, | |
| "step": 1729 | |
| }, | |
| { | |
| "epoch": 3.08, | |
| "learning_rate": 5e-05, | |
| "loss": 0.2537, | |
| "step": 1730 | |
| }, | |
| { | |
| "epoch": 3.08, | |
| "learning_rate": 5e-05, | |
| "loss": 0.22, | |
| "step": 1731 | |
| }, | |
| { | |
| "epoch": 3.08, | |
| "learning_rate": 5e-05, | |
| "loss": 0.1567, | |
| "step": 1732 | |
| }, | |
| { | |
| "epoch": 3.08, | |
| "learning_rate": 5e-05, | |
| "loss": 0.2407, | |
| "step": 1733 | |
| }, | |
| { | |
| "epoch": 3.08, | |
| "learning_rate": 5e-05, | |
| "loss": 0.1805, | |
| "step": 1734 | |
| }, | |
| { | |
| "epoch": 3.08, | |
| "learning_rate": 5e-05, | |
| "loss": 0.1775, | |
| "step": 1735 | |
| }, | |
| { | |
| "epoch": 3.09, | |
| "learning_rate": 5e-05, | |
| "loss": 0.2004, | |
| "step": 1736 | |
| }, | |
| { | |
| "epoch": 3.09, | |
| "learning_rate": 5e-05, | |
| "loss": 0.2229, | |
| "step": 1737 | |
| }, | |
| { | |
| "epoch": 3.09, | |
| "learning_rate": 5e-05, | |
| "loss": 0.2029, | |
| "step": 1738 | |
| }, | |
| { | |
| "epoch": 3.09, | |
| "learning_rate": 5e-05, | |
| "loss": 0.2712, | |
| "step": 1739 | |
| }, | |
| { | |
| "epoch": 3.09, | |
| "learning_rate": 5e-05, | |
| "loss": 0.2336, | |
| "step": 1740 | |
| }, | |
| { | |
| "epoch": 3.1, | |
| "learning_rate": 5e-05, | |
| "loss": 0.304, | |
| "step": 1741 | |
| }, | |
| { | |
| "epoch": 3.1, | |
| "learning_rate": 5e-05, | |
| "loss": 0.1453, | |
| "step": 1742 | |
| }, | |
| { | |
| "epoch": 3.1, | |
| "learning_rate": 5e-05, | |
| "loss": 0.2058, | |
| "step": 1743 | |
| }, | |
| { | |
| "epoch": 3.1, | |
| "learning_rate": 5e-05, | |
| "loss": 0.2065, | |
| "step": 1744 | |
| }, | |
| { | |
| "epoch": 3.1, | |
| "learning_rate": 5e-05, | |
| "loss": 0.2534, | |
| "step": 1745 | |
| }, | |
| { | |
| "epoch": 3.1, | |
| "learning_rate": 5e-05, | |
| "loss": 0.2031, | |
| "step": 1746 | |
| }, | |
| { | |
| "epoch": 3.11, | |
| "learning_rate": 5e-05, | |
| "loss": 0.199, | |
| "step": 1747 | |
| }, | |
| { | |
| "epoch": 3.11, | |
| "learning_rate": 5e-05, | |
| "loss": 0.2249, | |
| "step": 1748 | |
| }, | |
| { | |
| "epoch": 3.11, | |
| "learning_rate": 5e-05, | |
| "loss": 0.1797, | |
| "step": 1749 | |
| }, | |
| { | |
| "epoch": 3.11, | |
| "learning_rate": 5e-05, | |
| "loss": 0.2236, | |
| "step": 1750 | |
| }, | |
| { | |
| "epoch": 3.11, | |
| "learning_rate": 5e-05, | |
| "loss": 0.196, | |
| "step": 1751 | |
| }, | |
| { | |
| "epoch": 3.11, | |
| "learning_rate": 5e-05, | |
| "loss": 0.1738, | |
| "step": 1752 | |
| }, | |
| { | |
| "epoch": 3.12, | |
| "learning_rate": 5e-05, | |
| "loss": 0.1853, | |
| "step": 1753 | |
| }, | |
| { | |
| "epoch": 3.12, | |
| "learning_rate": 5e-05, | |
| "loss": 0.1926, | |
| "step": 1754 | |
| }, | |
| { | |
| "epoch": 3.12, | |
| "learning_rate": 5e-05, | |
| "loss": 0.2458, | |
| "step": 1755 | |
| }, | |
| { | |
| "epoch": 3.12, | |
| "learning_rate": 5e-05, | |
| "loss": 0.1412, | |
| "step": 1756 | |
| }, | |
| { | |
| "epoch": 3.12, | |
| "learning_rate": 5e-05, | |
| "loss": 0.2705, | |
| "step": 1757 | |
| }, | |
| { | |
| "epoch": 3.13, | |
| "learning_rate": 5e-05, | |
| "loss": 0.2288, | |
| "step": 1758 | |
| }, | |
| { | |
| "epoch": 3.13, | |
| "learning_rate": 5e-05, | |
| "loss": 0.2476, | |
| "step": 1759 | |
| }, | |
| { | |
| "epoch": 3.13, | |
| "learning_rate": 5e-05, | |
| "loss": 0.2239, | |
| "step": 1760 | |
| }, | |
| { | |
| "epoch": 3.13, | |
| "learning_rate": 5e-05, | |
| "loss": 0.1721, | |
| "step": 1761 | |
| }, | |
| { | |
| "epoch": 3.13, | |
| "learning_rate": 5e-05, | |
| "loss": 0.2527, | |
| "step": 1762 | |
| }, | |
| { | |
| "epoch": 3.13, | |
| "learning_rate": 5e-05, | |
| "loss": 0.2361, | |
| "step": 1763 | |
| }, | |
| { | |
| "epoch": 3.14, | |
| "learning_rate": 5e-05, | |
| "loss": 0.3032, | |
| "step": 1764 | |
| }, | |
| { | |
| "epoch": 3.14, | |
| "learning_rate": 5e-05, | |
| "loss": 0.2256, | |
| "step": 1765 | |
| }, | |
| { | |
| "epoch": 3.14, | |
| "learning_rate": 5e-05, | |
| "loss": 0.1885, | |
| "step": 1766 | |
| }, | |
| { | |
| "epoch": 3.14, | |
| "learning_rate": 5e-05, | |
| "loss": 0.271, | |
| "step": 1767 | |
| }, | |
| { | |
| "epoch": 3.14, | |
| "learning_rate": 5e-05, | |
| "loss": 0.2788, | |
| "step": 1768 | |
| }, | |
| { | |
| "epoch": 3.14, | |
| "learning_rate": 5e-05, | |
| "loss": 0.1837, | |
| "step": 1769 | |
| }, | |
| { | |
| "epoch": 3.15, | |
| "learning_rate": 5e-05, | |
| "loss": 0.2393, | |
| "step": 1770 | |
| }, | |
| { | |
| "epoch": 3.15, | |
| "learning_rate": 5e-05, | |
| "loss": 0.2195, | |
| "step": 1771 | |
| }, | |
| { | |
| "epoch": 3.15, | |
| "learning_rate": 5e-05, | |
| "loss": 0.2805, | |
| "step": 1772 | |
| }, | |
| { | |
| "epoch": 3.15, | |
| "learning_rate": 5e-05, | |
| "loss": 0.2771, | |
| "step": 1773 | |
| }, | |
| { | |
| "epoch": 3.15, | |
| "learning_rate": 5e-05, | |
| "loss": 0.2922, | |
| "step": 1774 | |
| }, | |
| { | |
| "epoch": 3.16, | |
| "learning_rate": 5e-05, | |
| "loss": 0.2261, | |
| "step": 1775 | |
| }, | |
| { | |
| "epoch": 3.16, | |
| "learning_rate": 5e-05, | |
| "loss": 0.1963, | |
| "step": 1776 | |
| }, | |
| { | |
| "epoch": 3.16, | |
| "learning_rate": 5e-05, | |
| "loss": 0.3347, | |
| "step": 1777 | |
| }, | |
| { | |
| "epoch": 3.16, | |
| "learning_rate": 5e-05, | |
| "loss": 0.1498, | |
| "step": 1778 | |
| }, | |
| { | |
| "epoch": 3.16, | |
| "learning_rate": 5e-05, | |
| "loss": 0.3308, | |
| "step": 1779 | |
| }, | |
| { | |
| "epoch": 3.16, | |
| "learning_rate": 5e-05, | |
| "loss": 0.2756, | |
| "step": 1780 | |
| }, | |
| { | |
| "epoch": 3.17, | |
| "learning_rate": 5e-05, | |
| "loss": 0.2405, | |
| "step": 1781 | |
| }, | |
| { | |
| "epoch": 3.17, | |
| "learning_rate": 5e-05, | |
| "loss": 0.1858, | |
| "step": 1782 | |
| }, | |
| { | |
| "epoch": 3.17, | |
| "learning_rate": 5e-05, | |
| "loss": 0.2083, | |
| "step": 1783 | |
| }, | |
| { | |
| "epoch": 3.17, | |
| "learning_rate": 5e-05, | |
| "loss": 0.2502, | |
| "step": 1784 | |
| }, | |
| { | |
| "epoch": 3.17, | |
| "learning_rate": 5e-05, | |
| "loss": 0.1987, | |
| "step": 1785 | |
| }, | |
| { | |
| "epoch": 3.18, | |
| "learning_rate": 5e-05, | |
| "loss": 0.2417, | |
| "step": 1786 | |
| }, | |
| { | |
| "epoch": 3.18, | |
| "learning_rate": 5e-05, | |
| "loss": 0.325, | |
| "step": 1787 | |
| }, | |
| { | |
| "epoch": 3.18, | |
| "learning_rate": 5e-05, | |
| "loss": 0.2646, | |
| "step": 1788 | |
| }, | |
| { | |
| "epoch": 3.18, | |
| "learning_rate": 5e-05, | |
| "loss": 0.2306, | |
| "step": 1789 | |
| }, | |
| { | |
| "epoch": 3.18, | |
| "learning_rate": 5e-05, | |
| "loss": 0.2148, | |
| "step": 1790 | |
| }, | |
| { | |
| "epoch": 3.18, | |
| "learning_rate": 5e-05, | |
| "loss": 0.2319, | |
| "step": 1791 | |
| }, | |
| { | |
| "epoch": 3.19, | |
| "learning_rate": 5e-05, | |
| "loss": 0.261, | |
| "step": 1792 | |
| }, | |
| { | |
| "epoch": 3.19, | |
| "learning_rate": 5e-05, | |
| "loss": 0.197, | |
| "step": 1793 | |
| }, | |
| { | |
| "epoch": 3.19, | |
| "learning_rate": 5e-05, | |
| "loss": 0.2029, | |
| "step": 1794 | |
| }, | |
| { | |
| "epoch": 3.19, | |
| "learning_rate": 5e-05, | |
| "loss": 0.2966, | |
| "step": 1795 | |
| }, | |
| { | |
| "epoch": 3.19, | |
| "learning_rate": 5e-05, | |
| "loss": 0.5317, | |
| "step": 1796 | |
| }, | |
| { | |
| "epoch": 3.19, | |
| "learning_rate": 5e-05, | |
| "loss": 0.1909, | |
| "step": 1797 | |
| }, | |
| { | |
| "epoch": 3.2, | |
| "learning_rate": 5e-05, | |
| "loss": 0.228, | |
| "step": 1798 | |
| }, | |
| { | |
| "epoch": 3.2, | |
| "learning_rate": 5e-05, | |
| "loss": 0.1952, | |
| "step": 1799 | |
| }, | |
| { | |
| "epoch": 3.2, | |
| "learning_rate": 5e-05, | |
| "loss": 0.2327, | |
| "step": 1800 | |
| }, | |
| { | |
| "epoch": 3.2, | |
| "learning_rate": 5e-05, | |
| "loss": 0.3196, | |
| "step": 1801 | |
| }, | |
| { | |
| "epoch": 3.2, | |
| "learning_rate": 5e-05, | |
| "loss": 0.6997, | |
| "step": 1802 | |
| }, | |
| { | |
| "epoch": 3.21, | |
| "learning_rate": 5e-05, | |
| "loss": 0.2319, | |
| "step": 1803 | |
| }, | |
| { | |
| "epoch": 3.21, | |
| "learning_rate": 5e-05, | |
| "loss": 0.2705, | |
| "step": 1804 | |
| }, | |
| { | |
| "epoch": 3.21, | |
| "learning_rate": 5e-05, | |
| "loss": 0.2048, | |
| "step": 1805 | |
| }, | |
| { | |
| "epoch": 3.21, | |
| "learning_rate": 5e-05, | |
| "loss": 0.2057, | |
| "step": 1806 | |
| }, | |
| { | |
| "epoch": 3.21, | |
| "learning_rate": 5e-05, | |
| "loss": 0.1721, | |
| "step": 1807 | |
| }, | |
| { | |
| "epoch": 3.21, | |
| "learning_rate": 5e-05, | |
| "loss": 0.2495, | |
| "step": 1808 | |
| }, | |
| { | |
| "epoch": 3.22, | |
| "learning_rate": 5e-05, | |
| "loss": 0.2178, | |
| "step": 1809 | |
| }, | |
| { | |
| "epoch": 3.22, | |
| "learning_rate": 5e-05, | |
| "loss": 0.26, | |
| "step": 1810 | |
| }, | |
| { | |
| "epoch": 3.22, | |
| "learning_rate": 5e-05, | |
| "loss": 0.2275, | |
| "step": 1811 | |
| }, | |
| { | |
| "epoch": 3.22, | |
| "learning_rate": 5e-05, | |
| "loss": 0.3105, | |
| "step": 1812 | |
| }, | |
| { | |
| "epoch": 3.22, | |
| "learning_rate": 5e-05, | |
| "loss": 0.2937, | |
| "step": 1813 | |
| }, | |
| { | |
| "epoch": 3.22, | |
| "learning_rate": 5e-05, | |
| "loss": 0.2729, | |
| "step": 1814 | |
| }, | |
| { | |
| "epoch": 3.23, | |
| "learning_rate": 5e-05, | |
| "loss": 0.2427, | |
| "step": 1815 | |
| }, | |
| { | |
| "epoch": 3.23, | |
| "learning_rate": 5e-05, | |
| "loss": 0.1873, | |
| "step": 1816 | |
| }, | |
| { | |
| "epoch": 3.23, | |
| "learning_rate": 5e-05, | |
| "loss": 0.1567, | |
| "step": 1817 | |
| }, | |
| { | |
| "epoch": 3.23, | |
| "learning_rate": 5e-05, | |
| "loss": 0.1774, | |
| "step": 1818 | |
| }, | |
| { | |
| "epoch": 3.23, | |
| "learning_rate": 5e-05, | |
| "loss": 0.2634, | |
| "step": 1819 | |
| }, | |
| { | |
| "epoch": 3.24, | |
| "learning_rate": 5e-05, | |
| "loss": 0.2228, | |
| "step": 1820 | |
| }, | |
| { | |
| "epoch": 3.24, | |
| "learning_rate": 5e-05, | |
| "loss": 0.1777, | |
| "step": 1821 | |
| }, | |
| { | |
| "epoch": 3.24, | |
| "learning_rate": 5e-05, | |
| "loss": 0.2185, | |
| "step": 1822 | |
| }, | |
| { | |
| "epoch": 3.24, | |
| "learning_rate": 5e-05, | |
| "loss": 0.1564, | |
| "step": 1823 | |
| }, | |
| { | |
| "epoch": 3.24, | |
| "learning_rate": 5e-05, | |
| "loss": 0.2217, | |
| "step": 1824 | |
| }, | |
| { | |
| "epoch": 3.24, | |
| "learning_rate": 5e-05, | |
| "loss": 0.2441, | |
| "step": 1825 | |
| }, | |
| { | |
| "epoch": 3.25, | |
| "learning_rate": 5e-05, | |
| "loss": 0.1925, | |
| "step": 1826 | |
| }, | |
| { | |
| "epoch": 3.25, | |
| "learning_rate": 5e-05, | |
| "loss": 0.2383, | |
| "step": 1827 | |
| }, | |
| { | |
| "epoch": 3.25, | |
| "learning_rate": 5e-05, | |
| "loss": 0.2031, | |
| "step": 1828 | |
| }, | |
| { | |
| "epoch": 3.25, | |
| "learning_rate": 5e-05, | |
| "loss": 0.2615, | |
| "step": 1829 | |
| }, | |
| { | |
| "epoch": 3.25, | |
| "learning_rate": 5e-05, | |
| "loss": 0.2686, | |
| "step": 1830 | |
| }, | |
| { | |
| "epoch": 3.26, | |
| "learning_rate": 5e-05, | |
| "loss": 0.1357, | |
| "step": 1831 | |
| }, | |
| { | |
| "epoch": 3.26, | |
| "learning_rate": 5e-05, | |
| "loss": 0.1887, | |
| "step": 1832 | |
| }, | |
| { | |
| "epoch": 3.26, | |
| "learning_rate": 5e-05, | |
| "loss": 0.2251, | |
| "step": 1833 | |
| }, | |
| { | |
| "epoch": 3.26, | |
| "learning_rate": 5e-05, | |
| "loss": 0.2488, | |
| "step": 1834 | |
| }, | |
| { | |
| "epoch": 3.26, | |
| "learning_rate": 5e-05, | |
| "loss": 0.1707, | |
| "step": 1835 | |
| }, | |
| { | |
| "epoch": 3.26, | |
| "learning_rate": 5e-05, | |
| "loss": 0.1957, | |
| "step": 1836 | |
| }, | |
| { | |
| "epoch": 3.27, | |
| "learning_rate": 5e-05, | |
| "loss": 0.2019, | |
| "step": 1837 | |
| }, | |
| { | |
| "epoch": 3.27, | |
| "learning_rate": 5e-05, | |
| "loss": 0.1809, | |
| "step": 1838 | |
| }, | |
| { | |
| "epoch": 3.27, | |
| "learning_rate": 5e-05, | |
| "loss": 0.2124, | |
| "step": 1839 | |
| }, | |
| { | |
| "epoch": 3.27, | |
| "learning_rate": 5e-05, | |
| "loss": 0.238, | |
| "step": 1840 | |
| }, | |
| { | |
| "epoch": 3.27, | |
| "learning_rate": 5e-05, | |
| "loss": 0.3088, | |
| "step": 1841 | |
| }, | |
| { | |
| "epoch": 3.27, | |
| "learning_rate": 5e-05, | |
| "loss": 0.2563, | |
| "step": 1842 | |
| }, | |
| { | |
| "epoch": 3.28, | |
| "learning_rate": 5e-05, | |
| "loss": 0.2937, | |
| "step": 1843 | |
| }, | |
| { | |
| "epoch": 3.28, | |
| "learning_rate": 5e-05, | |
| "loss": 0.229, | |
| "step": 1844 | |
| }, | |
| { | |
| "epoch": 3.28, | |
| "learning_rate": 5e-05, | |
| "loss": 0.2, | |
| "step": 1845 | |
| }, | |
| { | |
| "epoch": 3.28, | |
| "learning_rate": 5e-05, | |
| "loss": 0.1675, | |
| "step": 1846 | |
| }, | |
| { | |
| "epoch": 3.28, | |
| "learning_rate": 5e-05, | |
| "loss": 0.1759, | |
| "step": 1847 | |
| }, | |
| { | |
| "epoch": 3.29, | |
| "learning_rate": 5e-05, | |
| "loss": 0.1682, | |
| "step": 1848 | |
| }, | |
| { | |
| "epoch": 3.29, | |
| "learning_rate": 5e-05, | |
| "loss": 0.2273, | |
| "step": 1849 | |
| }, | |
| { | |
| "epoch": 3.29, | |
| "learning_rate": 5e-05, | |
| "loss": 0.1971, | |
| "step": 1850 | |
| }, | |
| { | |
| "epoch": 3.29, | |
| "learning_rate": 5e-05, | |
| "loss": 0.2363, | |
| "step": 1851 | |
| }, | |
| { | |
| "epoch": 3.29, | |
| "learning_rate": 5e-05, | |
| "loss": 0.2805, | |
| "step": 1852 | |
| }, | |
| { | |
| "epoch": 3.29, | |
| "learning_rate": 5e-05, | |
| "loss": 0.3372, | |
| "step": 1853 | |
| }, | |
| { | |
| "epoch": 3.3, | |
| "learning_rate": 5e-05, | |
| "loss": 0.166, | |
| "step": 1854 | |
| }, | |
| { | |
| "epoch": 3.3, | |
| "learning_rate": 5e-05, | |
| "loss": 0.2778, | |
| "step": 1855 | |
| }, | |
| { | |
| "epoch": 3.3, | |
| "learning_rate": 5e-05, | |
| "loss": 0.215, | |
| "step": 1856 | |
| }, | |
| { | |
| "epoch": 3.3, | |
| "learning_rate": 5e-05, | |
| "loss": 0.2495, | |
| "step": 1857 | |
| }, | |
| { | |
| "epoch": 3.3, | |
| "learning_rate": 5e-05, | |
| "loss": 0.2629, | |
| "step": 1858 | |
| }, | |
| { | |
| "epoch": 3.3, | |
| "learning_rate": 5e-05, | |
| "loss": 0.2681, | |
| "step": 1859 | |
| }, | |
| { | |
| "epoch": 3.31, | |
| "learning_rate": 5e-05, | |
| "loss": 0.1851, | |
| "step": 1860 | |
| }, | |
| { | |
| "epoch": 3.31, | |
| "learning_rate": 5e-05, | |
| "loss": 0.2086, | |
| "step": 1861 | |
| }, | |
| { | |
| "epoch": 3.31, | |
| "learning_rate": 5e-05, | |
| "loss": 0.2378, | |
| "step": 1862 | |
| }, | |
| { | |
| "epoch": 3.31, | |
| "learning_rate": 5e-05, | |
| "loss": 0.1849, | |
| "step": 1863 | |
| }, | |
| { | |
| "epoch": 3.31, | |
| "learning_rate": 5e-05, | |
| "loss": 0.2001, | |
| "step": 1864 | |
| }, | |
| { | |
| "epoch": 3.32, | |
| "learning_rate": 5e-05, | |
| "loss": 0.3037, | |
| "step": 1865 | |
| }, | |
| { | |
| "epoch": 3.32, | |
| "learning_rate": 5e-05, | |
| "loss": 0.1829, | |
| "step": 1866 | |
| }, | |
| { | |
| "epoch": 3.32, | |
| "learning_rate": 5e-05, | |
| "loss": 0.2296, | |
| "step": 1867 | |
| }, | |
| { | |
| "epoch": 3.32, | |
| "learning_rate": 5e-05, | |
| "loss": 0.2646, | |
| "step": 1868 | |
| }, | |
| { | |
| "epoch": 3.32, | |
| "learning_rate": 5e-05, | |
| "loss": 0.21, | |
| "step": 1869 | |
| }, | |
| { | |
| "epoch": 3.32, | |
| "learning_rate": 5e-05, | |
| "loss": 0.1831, | |
| "step": 1870 | |
| }, | |
| { | |
| "epoch": 3.33, | |
| "learning_rate": 5e-05, | |
| "loss": 0.3352, | |
| "step": 1871 | |
| }, | |
| { | |
| "epoch": 3.33, | |
| "learning_rate": 5e-05, | |
| "loss": 0.2993, | |
| "step": 1872 | |
| }, | |
| { | |
| "epoch": 3.33, | |
| "learning_rate": 5e-05, | |
| "loss": 0.1306, | |
| "step": 1873 | |
| }, | |
| { | |
| "epoch": 3.33, | |
| "learning_rate": 5e-05, | |
| "loss": 0.2358, | |
| "step": 1874 | |
| }, | |
| { | |
| "epoch": 3.33, | |
| "learning_rate": 5e-05, | |
| "loss": 0.2456, | |
| "step": 1875 | |
| }, | |
| { | |
| "epoch": 3.34, | |
| "learning_rate": 5e-05, | |
| "loss": 0.272, | |
| "step": 1876 | |
| }, | |
| { | |
| "epoch": 3.34, | |
| "learning_rate": 5e-05, | |
| "loss": 0.2136, | |
| "step": 1877 | |
| }, | |
| { | |
| "epoch": 3.34, | |
| "learning_rate": 5e-05, | |
| "loss": 0.2334, | |
| "step": 1878 | |
| }, | |
| { | |
| "epoch": 3.34, | |
| "learning_rate": 5e-05, | |
| "loss": 0.2319, | |
| "step": 1879 | |
| }, | |
| { | |
| "epoch": 3.34, | |
| "learning_rate": 5e-05, | |
| "loss": 0.1572, | |
| "step": 1880 | |
| }, | |
| { | |
| "epoch": 3.34, | |
| "learning_rate": 5e-05, | |
| "loss": 0.2726, | |
| "step": 1881 | |
| }, | |
| { | |
| "epoch": 3.35, | |
| "learning_rate": 5e-05, | |
| "loss": 0.2336, | |
| "step": 1882 | |
| }, | |
| { | |
| "epoch": 3.35, | |
| "learning_rate": 5e-05, | |
| "loss": 0.226, | |
| "step": 1883 | |
| }, | |
| { | |
| "epoch": 3.35, | |
| "learning_rate": 5e-05, | |
| "loss": 0.2368, | |
| "step": 1884 | |
| }, | |
| { | |
| "epoch": 3.35, | |
| "learning_rate": 5e-05, | |
| "loss": 0.2129, | |
| "step": 1885 | |
| }, | |
| { | |
| "epoch": 3.35, | |
| "learning_rate": 5e-05, | |
| "loss": 0.3213, | |
| "step": 1886 | |
| }, | |
| { | |
| "epoch": 3.35, | |
| "learning_rate": 5e-05, | |
| "loss": 0.179, | |
| "step": 1887 | |
| }, | |
| { | |
| "epoch": 3.36, | |
| "learning_rate": 5e-05, | |
| "loss": 0.1337, | |
| "step": 1888 | |
| }, | |
| { | |
| "epoch": 3.36, | |
| "learning_rate": 5e-05, | |
| "loss": 0.2375, | |
| "step": 1889 | |
| }, | |
| { | |
| "epoch": 3.36, | |
| "learning_rate": 5e-05, | |
| "loss": 0.1455, | |
| "step": 1890 | |
| }, | |
| { | |
| "epoch": 3.36, | |
| "learning_rate": 5e-05, | |
| "loss": 0.2849, | |
| "step": 1891 | |
| }, | |
| { | |
| "epoch": 3.36, | |
| "learning_rate": 5e-05, | |
| "loss": 0.2495, | |
| "step": 1892 | |
| }, | |
| { | |
| "epoch": 3.37, | |
| "learning_rate": 5e-05, | |
| "loss": 0.241, | |
| "step": 1893 | |
| }, | |
| { | |
| "epoch": 3.37, | |
| "learning_rate": 5e-05, | |
| "loss": 0.272, | |
| "step": 1894 | |
| }, | |
| { | |
| "epoch": 3.37, | |
| "learning_rate": 5e-05, | |
| "loss": 0.249, | |
| "step": 1895 | |
| }, | |
| { | |
| "epoch": 3.37, | |
| "learning_rate": 5e-05, | |
| "loss": 0.1494, | |
| "step": 1896 | |
| }, | |
| { | |
| "epoch": 3.37, | |
| "learning_rate": 5e-05, | |
| "loss": 0.191, | |
| "step": 1897 | |
| }, | |
| { | |
| "epoch": 3.37, | |
| "learning_rate": 5e-05, | |
| "loss": 0.2131, | |
| "step": 1898 | |
| }, | |
| { | |
| "epoch": 3.38, | |
| "learning_rate": 5e-05, | |
| "loss": 0.1887, | |
| "step": 1899 | |
| }, | |
| { | |
| "epoch": 3.38, | |
| "learning_rate": 5e-05, | |
| "loss": 0.2004, | |
| "step": 1900 | |
| }, | |
| { | |
| "epoch": 3.38, | |
| "learning_rate": 5e-05, | |
| "loss": 0.2239, | |
| "step": 1901 | |
| }, | |
| { | |
| "epoch": 3.38, | |
| "learning_rate": 5e-05, | |
| "loss": 0.343, | |
| "step": 1902 | |
| }, | |
| { | |
| "epoch": 3.38, | |
| "learning_rate": 5e-05, | |
| "loss": 0.2542, | |
| "step": 1903 | |
| }, | |
| { | |
| "epoch": 3.38, | |
| "learning_rate": 5e-05, | |
| "loss": 0.2512, | |
| "step": 1904 | |
| }, | |
| { | |
| "epoch": 3.39, | |
| "learning_rate": 5e-05, | |
| "loss": 0.1362, | |
| "step": 1905 | |
| }, | |
| { | |
| "epoch": 3.39, | |
| "learning_rate": 5e-05, | |
| "loss": 0.219, | |
| "step": 1906 | |
| }, | |
| { | |
| "epoch": 3.39, | |
| "learning_rate": 5e-05, | |
| "loss": 0.2664, | |
| "step": 1907 | |
| }, | |
| { | |
| "epoch": 3.39, | |
| "learning_rate": 5e-05, | |
| "loss": 0.2197, | |
| "step": 1908 | |
| }, | |
| { | |
| "epoch": 3.39, | |
| "learning_rate": 5e-05, | |
| "loss": 0.2727, | |
| "step": 1909 | |
| }, | |
| { | |
| "epoch": 3.4, | |
| "learning_rate": 5e-05, | |
| "loss": 0.3154, | |
| "step": 1910 | |
| }, | |
| { | |
| "epoch": 3.4, | |
| "learning_rate": 5e-05, | |
| "loss": 0.2644, | |
| "step": 1911 | |
| }, | |
| { | |
| "epoch": 3.4, | |
| "learning_rate": 5e-05, | |
| "loss": 0.1865, | |
| "step": 1912 | |
| }, | |
| { | |
| "epoch": 3.4, | |
| "learning_rate": 5e-05, | |
| "loss": 0.1949, | |
| "step": 1913 | |
| }, | |
| { | |
| "epoch": 3.4, | |
| "learning_rate": 5e-05, | |
| "loss": 0.2, | |
| "step": 1914 | |
| }, | |
| { | |
| "epoch": 3.4, | |
| "learning_rate": 5e-05, | |
| "loss": 0.2371, | |
| "step": 1915 | |
| }, | |
| { | |
| "epoch": 3.41, | |
| "learning_rate": 5e-05, | |
| "loss": 0.1798, | |
| "step": 1916 | |
| }, | |
| { | |
| "epoch": 3.41, | |
| "learning_rate": 5e-05, | |
| "loss": 0.2236, | |
| "step": 1917 | |
| }, | |
| { | |
| "epoch": 3.41, | |
| "learning_rate": 5e-05, | |
| "loss": 0.2113, | |
| "step": 1918 | |
| }, | |
| { | |
| "epoch": 3.41, | |
| "learning_rate": 5e-05, | |
| "loss": 0.197, | |
| "step": 1919 | |
| }, | |
| { | |
| "epoch": 3.41, | |
| "learning_rate": 5e-05, | |
| "loss": 0.1538, | |
| "step": 1920 | |
| }, | |
| { | |
| "epoch": 3.42, | |
| "learning_rate": 5e-05, | |
| "loss": 0.2095, | |
| "step": 1921 | |
| }, | |
| { | |
| "epoch": 3.42, | |
| "learning_rate": 5e-05, | |
| "loss": 0.2344, | |
| "step": 1922 | |
| }, | |
| { | |
| "epoch": 3.42, | |
| "learning_rate": 5e-05, | |
| "loss": 0.2485, | |
| "step": 1923 | |
| }, | |
| { | |
| "epoch": 3.42, | |
| "learning_rate": 5e-05, | |
| "loss": 0.1633, | |
| "step": 1924 | |
| }, | |
| { | |
| "epoch": 3.42, | |
| "learning_rate": 5e-05, | |
| "loss": 0.2698, | |
| "step": 1925 | |
| }, | |
| { | |
| "epoch": 3.42, | |
| "learning_rate": 5e-05, | |
| "loss": 0.2666, | |
| "step": 1926 | |
| }, | |
| { | |
| "epoch": 3.43, | |
| "learning_rate": 5e-05, | |
| "loss": 0.269, | |
| "step": 1927 | |
| }, | |
| { | |
| "epoch": 3.43, | |
| "learning_rate": 5e-05, | |
| "loss": 0.26, | |
| "step": 1928 | |
| }, | |
| { | |
| "epoch": 3.43, | |
| "learning_rate": 5e-05, | |
| "loss": 0.2415, | |
| "step": 1929 | |
| }, | |
| { | |
| "epoch": 3.43, | |
| "learning_rate": 5e-05, | |
| "loss": 0.1685, | |
| "step": 1930 | |
| }, | |
| { | |
| "epoch": 3.43, | |
| "learning_rate": 5e-05, | |
| "loss": 0.2288, | |
| "step": 1931 | |
| }, | |
| { | |
| "epoch": 3.43, | |
| "learning_rate": 5e-05, | |
| "loss": 0.2185, | |
| "step": 1932 | |
| }, | |
| { | |
| "epoch": 3.44, | |
| "learning_rate": 5e-05, | |
| "loss": 0.2439, | |
| "step": 1933 | |
| }, | |
| { | |
| "epoch": 3.44, | |
| "learning_rate": 5e-05, | |
| "loss": 0.2498, | |
| "step": 1934 | |
| }, | |
| { | |
| "epoch": 3.44, | |
| "learning_rate": 5e-05, | |
| "loss": 0.3018, | |
| "step": 1935 | |
| }, | |
| { | |
| "epoch": 3.44, | |
| "learning_rate": 5e-05, | |
| "loss": 0.2393, | |
| "step": 1936 | |
| }, | |
| { | |
| "epoch": 3.44, | |
| "learning_rate": 5e-05, | |
| "loss": 0.1892, | |
| "step": 1937 | |
| }, | |
| { | |
| "epoch": 3.45, | |
| "learning_rate": 5e-05, | |
| "loss": 0.2003, | |
| "step": 1938 | |
| }, | |
| { | |
| "epoch": 3.45, | |
| "learning_rate": 5e-05, | |
| "loss": 0.25, | |
| "step": 1939 | |
| }, | |
| { | |
| "epoch": 3.45, | |
| "learning_rate": 5e-05, | |
| "loss": 0.2688, | |
| "step": 1940 | |
| }, | |
| { | |
| "epoch": 3.45, | |
| "learning_rate": 5e-05, | |
| "loss": 0.1429, | |
| "step": 1941 | |
| }, | |
| { | |
| "epoch": 3.45, | |
| "learning_rate": 5e-05, | |
| "loss": 0.1934, | |
| "step": 1942 | |
| }, | |
| { | |
| "epoch": 3.45, | |
| "learning_rate": 5e-05, | |
| "loss": 0.2009, | |
| "step": 1943 | |
| }, | |
| { | |
| "epoch": 3.46, | |
| "learning_rate": 5e-05, | |
| "loss": 0.1649, | |
| "step": 1944 | |
| }, | |
| { | |
| "epoch": 3.46, | |
| "learning_rate": 5e-05, | |
| "loss": 0.365, | |
| "step": 1945 | |
| }, | |
| { | |
| "epoch": 3.46, | |
| "learning_rate": 5e-05, | |
| "loss": 0.1812, | |
| "step": 1946 | |
| }, | |
| { | |
| "epoch": 3.46, | |
| "learning_rate": 5e-05, | |
| "loss": 0.1819, | |
| "step": 1947 | |
| }, | |
| { | |
| "epoch": 3.46, | |
| "learning_rate": 5e-05, | |
| "loss": 0.2627, | |
| "step": 1948 | |
| }, | |
| { | |
| "epoch": 3.46, | |
| "learning_rate": 5e-05, | |
| "loss": 0.2561, | |
| "step": 1949 | |
| }, | |
| { | |
| "epoch": 3.47, | |
| "learning_rate": 5e-05, | |
| "loss": 0.2615, | |
| "step": 1950 | |
| }, | |
| { | |
| "epoch": 3.47, | |
| "learning_rate": 5e-05, | |
| "loss": 0.2659, | |
| "step": 1951 | |
| }, | |
| { | |
| "epoch": 3.47, | |
| "learning_rate": 5e-05, | |
| "loss": 0.2596, | |
| "step": 1952 | |
| }, | |
| { | |
| "epoch": 3.47, | |
| "learning_rate": 5e-05, | |
| "loss": 0.1823, | |
| "step": 1953 | |
| }, | |
| { | |
| "epoch": 3.47, | |
| "learning_rate": 5e-05, | |
| "loss": 0.2349, | |
| "step": 1954 | |
| }, | |
| { | |
| "epoch": 3.48, | |
| "learning_rate": 5e-05, | |
| "loss": 0.1897, | |
| "step": 1955 | |
| }, | |
| { | |
| "epoch": 3.48, | |
| "learning_rate": 5e-05, | |
| "loss": 0.2029, | |
| "step": 1956 | |
| }, | |
| { | |
| "epoch": 3.48, | |
| "learning_rate": 5e-05, | |
| "loss": 0.1729, | |
| "step": 1957 | |
| }, | |
| { | |
| "epoch": 3.48, | |
| "learning_rate": 5e-05, | |
| "loss": 0.3042, | |
| "step": 1958 | |
| }, | |
| { | |
| "epoch": 3.48, | |
| "learning_rate": 5e-05, | |
| "loss": 0.2114, | |
| "step": 1959 | |
| }, | |
| { | |
| "epoch": 3.48, | |
| "learning_rate": 5e-05, | |
| "loss": 0.2234, | |
| "step": 1960 | |
| }, | |
| { | |
| "epoch": 3.49, | |
| "learning_rate": 5e-05, | |
| "loss": 0.3062, | |
| "step": 1961 | |
| }, | |
| { | |
| "epoch": 3.49, | |
| "learning_rate": 5e-05, | |
| "loss": 0.2041, | |
| "step": 1962 | |
| }, | |
| { | |
| "epoch": 3.49, | |
| "learning_rate": 5e-05, | |
| "loss": 0.1473, | |
| "step": 1963 | |
| }, | |
| { | |
| "epoch": 3.49, | |
| "learning_rate": 5e-05, | |
| "loss": 0.241, | |
| "step": 1964 | |
| }, | |
| { | |
| "epoch": 3.49, | |
| "learning_rate": 5e-05, | |
| "loss": 0.2979, | |
| "step": 1965 | |
| }, | |
| { | |
| "epoch": 3.5, | |
| "learning_rate": 5e-05, | |
| "loss": 0.2321, | |
| "step": 1966 | |
| }, | |
| { | |
| "epoch": 3.5, | |
| "learning_rate": 5e-05, | |
| "loss": 0.2151, | |
| "step": 1967 | |
| }, | |
| { | |
| "epoch": 3.5, | |
| "learning_rate": 5e-05, | |
| "loss": 0.1527, | |
| "step": 1968 | |
| }, | |
| { | |
| "epoch": 3.5, | |
| "learning_rate": 5e-05, | |
| "loss": 0.2451, | |
| "step": 1969 | |
| }, | |
| { | |
| "epoch": 3.5, | |
| "learning_rate": 5e-05, | |
| "loss": 0.1779, | |
| "step": 1970 | |
| }, | |
| { | |
| "epoch": 3.5, | |
| "learning_rate": 5e-05, | |
| "loss": 0.2, | |
| "step": 1971 | |
| }, | |
| { | |
| "epoch": 3.51, | |
| "learning_rate": 5e-05, | |
| "loss": 0.2092, | |
| "step": 1972 | |
| }, | |
| { | |
| "epoch": 3.51, | |
| "learning_rate": 5e-05, | |
| "loss": 0.2825, | |
| "step": 1973 | |
| }, | |
| { | |
| "epoch": 3.51, | |
| "learning_rate": 5e-05, | |
| "loss": 0.2708, | |
| "step": 1974 | |
| }, | |
| { | |
| "epoch": 3.51, | |
| "learning_rate": 5e-05, | |
| "loss": 0.2271, | |
| "step": 1975 | |
| }, | |
| { | |
| "epoch": 3.51, | |
| "learning_rate": 5e-05, | |
| "loss": 0.2612, | |
| "step": 1976 | |
| }, | |
| { | |
| "epoch": 3.51, | |
| "learning_rate": 5e-05, | |
| "loss": 0.262, | |
| "step": 1977 | |
| }, | |
| { | |
| "epoch": 3.52, | |
| "learning_rate": 5e-05, | |
| "loss": 0.2766, | |
| "step": 1978 | |
| }, | |
| { | |
| "epoch": 3.52, | |
| "learning_rate": 5e-05, | |
| "loss": 0.3552, | |
| "step": 1979 | |
| }, | |
| { | |
| "epoch": 3.52, | |
| "learning_rate": 5e-05, | |
| "loss": 0.207, | |
| "step": 1980 | |
| }, | |
| { | |
| "epoch": 3.52, | |
| "learning_rate": 5e-05, | |
| "loss": 0.2114, | |
| "step": 1981 | |
| }, | |
| { | |
| "epoch": 3.52, | |
| "learning_rate": 5e-05, | |
| "loss": 0.2317, | |
| "step": 1982 | |
| }, | |
| { | |
| "epoch": 3.53, | |
| "learning_rate": 5e-05, | |
| "loss": 0.1934, | |
| "step": 1983 | |
| }, | |
| { | |
| "epoch": 3.53, | |
| "learning_rate": 5e-05, | |
| "loss": 0.1771, | |
| "step": 1984 | |
| }, | |
| { | |
| "epoch": 3.53, | |
| "learning_rate": 5e-05, | |
| "loss": 0.2075, | |
| "step": 1985 | |
| }, | |
| { | |
| "epoch": 3.53, | |
| "learning_rate": 5e-05, | |
| "loss": 0.3228, | |
| "step": 1986 | |
| }, | |
| { | |
| "epoch": 3.53, | |
| "learning_rate": 5e-05, | |
| "loss": 0.1948, | |
| "step": 1987 | |
| }, | |
| { | |
| "epoch": 3.53, | |
| "learning_rate": 5e-05, | |
| "loss": 0.1973, | |
| "step": 1988 | |
| }, | |
| { | |
| "epoch": 3.54, | |
| "learning_rate": 5e-05, | |
| "loss": 0.1858, | |
| "step": 1989 | |
| }, | |
| { | |
| "epoch": 3.54, | |
| "learning_rate": 5e-05, | |
| "loss": 0.2236, | |
| "step": 1990 | |
| }, | |
| { | |
| "epoch": 3.54, | |
| "learning_rate": 5e-05, | |
| "loss": 0.2087, | |
| "step": 1991 | |
| }, | |
| { | |
| "epoch": 3.54, | |
| "learning_rate": 5e-05, | |
| "loss": 0.1704, | |
| "step": 1992 | |
| }, | |
| { | |
| "epoch": 3.54, | |
| "learning_rate": 5e-05, | |
| "loss": 0.2866, | |
| "step": 1993 | |
| }, | |
| { | |
| "epoch": 3.54, | |
| "learning_rate": 5e-05, | |
| "loss": 0.209, | |
| "step": 1994 | |
| }, | |
| { | |
| "epoch": 3.55, | |
| "learning_rate": 5e-05, | |
| "loss": 0.2434, | |
| "step": 1995 | |
| }, | |
| { | |
| "epoch": 3.55, | |
| "learning_rate": 5e-05, | |
| "loss": 0.2351, | |
| "step": 1996 | |
| }, | |
| { | |
| "epoch": 3.55, | |
| "learning_rate": 5e-05, | |
| "loss": 0.2219, | |
| "step": 1997 | |
| }, | |
| { | |
| "epoch": 3.55, | |
| "learning_rate": 5e-05, | |
| "loss": 0.1953, | |
| "step": 1998 | |
| }, | |
| { | |
| "epoch": 3.55, | |
| "learning_rate": 5e-05, | |
| "loss": 0.1956, | |
| "step": 1999 | |
| }, | |
| { | |
| "epoch": 3.56, | |
| "learning_rate": 5e-05, | |
| "loss": 0.2981, | |
| "step": 2000 | |
| }, | |
| { | |
| "epoch": 3.56, | |
| "learning_rate": 5e-05, | |
| "loss": 0.24, | |
| "step": 2001 | |
| }, | |
| { | |
| "epoch": 3.56, | |
| "learning_rate": 5e-05, | |
| "loss": 0.252, | |
| "step": 2002 | |
| }, | |
| { | |
| "epoch": 3.56, | |
| "learning_rate": 5e-05, | |
| "loss": 0.2588, | |
| "step": 2003 | |
| }, | |
| { | |
| "epoch": 3.56, | |
| "learning_rate": 5e-05, | |
| "loss": 0.1719, | |
| "step": 2004 | |
| }, | |
| { | |
| "epoch": 3.56, | |
| "learning_rate": 5e-05, | |
| "loss": 0.2207, | |
| "step": 2005 | |
| }, | |
| { | |
| "epoch": 3.57, | |
| "learning_rate": 5e-05, | |
| "loss": 0.1918, | |
| "step": 2006 | |
| }, | |
| { | |
| "epoch": 3.57, | |
| "learning_rate": 5e-05, | |
| "loss": 0.2291, | |
| "step": 2007 | |
| }, | |
| { | |
| "epoch": 3.57, | |
| "learning_rate": 5e-05, | |
| "loss": 0.2576, | |
| "step": 2008 | |
| }, | |
| { | |
| "epoch": 3.57, | |
| "learning_rate": 5e-05, | |
| "loss": 0.2441, | |
| "step": 2009 | |
| }, | |
| { | |
| "epoch": 3.57, | |
| "learning_rate": 5e-05, | |
| "loss": 0.2158, | |
| "step": 2010 | |
| }, | |
| { | |
| "epoch": 3.58, | |
| "learning_rate": 5e-05, | |
| "loss": 0.2866, | |
| "step": 2011 | |
| }, | |
| { | |
| "epoch": 3.58, | |
| "learning_rate": 5e-05, | |
| "loss": 0.1753, | |
| "step": 2012 | |
| }, | |
| { | |
| "epoch": 3.58, | |
| "learning_rate": 5e-05, | |
| "loss": 0.2529, | |
| "step": 2013 | |
| }, | |
| { | |
| "epoch": 3.58, | |
| "learning_rate": 5e-05, | |
| "loss": 0.1714, | |
| "step": 2014 | |
| }, | |
| { | |
| "epoch": 3.58, | |
| "learning_rate": 5e-05, | |
| "loss": 0.2485, | |
| "step": 2015 | |
| }, | |
| { | |
| "epoch": 3.58, | |
| "learning_rate": 5e-05, | |
| "loss": 0.2275, | |
| "step": 2016 | |
| }, | |
| { | |
| "epoch": 3.59, | |
| "learning_rate": 5e-05, | |
| "loss": 0.189, | |
| "step": 2017 | |
| }, | |
| { | |
| "epoch": 3.59, | |
| "learning_rate": 5e-05, | |
| "loss": 0.1897, | |
| "step": 2018 | |
| }, | |
| { | |
| "epoch": 3.59, | |
| "learning_rate": 5e-05, | |
| "loss": 0.2092, | |
| "step": 2019 | |
| }, | |
| { | |
| "epoch": 3.59, | |
| "learning_rate": 5e-05, | |
| "loss": 0.2125, | |
| "step": 2020 | |
| }, | |
| { | |
| "epoch": 3.59, | |
| "learning_rate": 5e-05, | |
| "loss": 0.197, | |
| "step": 2021 | |
| }, | |
| { | |
| "epoch": 3.59, | |
| "learning_rate": 5e-05, | |
| "loss": 0.1799, | |
| "step": 2022 | |
| }, | |
| { | |
| "epoch": 3.6, | |
| "learning_rate": 5e-05, | |
| "loss": 0.2585, | |
| "step": 2023 | |
| }, | |
| { | |
| "epoch": 3.6, | |
| "learning_rate": 5e-05, | |
| "loss": 0.2856, | |
| "step": 2024 | |
| }, | |
| { | |
| "epoch": 3.6, | |
| "learning_rate": 5e-05, | |
| "loss": 0.2693, | |
| "step": 2025 | |
| }, | |
| { | |
| "epoch": 3.6, | |
| "learning_rate": 5e-05, | |
| "loss": 0.1794, | |
| "step": 2026 | |
| }, | |
| { | |
| "epoch": 3.6, | |
| "learning_rate": 5e-05, | |
| "loss": 0.2288, | |
| "step": 2027 | |
| }, | |
| { | |
| "epoch": 3.61, | |
| "learning_rate": 5e-05, | |
| "loss": 0.2676, | |
| "step": 2028 | |
| }, | |
| { | |
| "epoch": 3.61, | |
| "learning_rate": 5e-05, | |
| "loss": 0.1793, | |
| "step": 2029 | |
| }, | |
| { | |
| "epoch": 3.61, | |
| "learning_rate": 5e-05, | |
| "loss": 0.2256, | |
| "step": 2030 | |
| }, | |
| { | |
| "epoch": 3.61, | |
| "learning_rate": 5e-05, | |
| "loss": 0.1758, | |
| "step": 2031 | |
| }, | |
| { | |
| "epoch": 3.61, | |
| "learning_rate": 5e-05, | |
| "loss": 0.2156, | |
| "step": 2032 | |
| }, | |
| { | |
| "epoch": 3.61, | |
| "learning_rate": 5e-05, | |
| "loss": 0.2134, | |
| "step": 2033 | |
| }, | |
| { | |
| "epoch": 3.62, | |
| "learning_rate": 5e-05, | |
| "loss": 0.2251, | |
| "step": 2034 | |
| }, | |
| { | |
| "epoch": 3.62, | |
| "learning_rate": 5e-05, | |
| "loss": 0.2332, | |
| "step": 2035 | |
| }, | |
| { | |
| "epoch": 3.62, | |
| "learning_rate": 5e-05, | |
| "loss": 0.1841, | |
| "step": 2036 | |
| }, | |
| { | |
| "epoch": 3.62, | |
| "learning_rate": 5e-05, | |
| "loss": 0.1514, | |
| "step": 2037 | |
| }, | |
| { | |
| "epoch": 3.62, | |
| "learning_rate": 5e-05, | |
| "loss": 0.178, | |
| "step": 2038 | |
| }, | |
| { | |
| "epoch": 3.62, | |
| "learning_rate": 5e-05, | |
| "loss": 0.229, | |
| "step": 2039 | |
| }, | |
| { | |
| "epoch": 3.63, | |
| "learning_rate": 5e-05, | |
| "loss": 0.2854, | |
| "step": 2040 | |
| }, | |
| { | |
| "epoch": 3.63, | |
| "learning_rate": 5e-05, | |
| "loss": 0.2559, | |
| "step": 2041 | |
| }, | |
| { | |
| "epoch": 3.63, | |
| "learning_rate": 5e-05, | |
| "loss": 0.1663, | |
| "step": 2042 | |
| }, | |
| { | |
| "epoch": 3.63, | |
| "learning_rate": 5e-05, | |
| "loss": 0.1741, | |
| "step": 2043 | |
| }, | |
| { | |
| "epoch": 3.63, | |
| "learning_rate": 5e-05, | |
| "loss": 0.2378, | |
| "step": 2044 | |
| }, | |
| { | |
| "epoch": 3.64, | |
| "learning_rate": 5e-05, | |
| "loss": 0.1619, | |
| "step": 2045 | |
| }, | |
| { | |
| "epoch": 3.64, | |
| "learning_rate": 5e-05, | |
| "loss": 0.203, | |
| "step": 2046 | |
| }, | |
| { | |
| "epoch": 3.64, | |
| "learning_rate": 5e-05, | |
| "loss": 0.267, | |
| "step": 2047 | |
| }, | |
| { | |
| "epoch": 3.64, | |
| "learning_rate": 5e-05, | |
| "loss": 0.2759, | |
| "step": 2048 | |
| }, | |
| { | |
| "epoch": 3.64, | |
| "learning_rate": 5e-05, | |
| "loss": 0.208, | |
| "step": 2049 | |
| }, | |
| { | |
| "epoch": 3.64, | |
| "learning_rate": 5e-05, | |
| "loss": 0.1846, | |
| "step": 2050 | |
| }, | |
| { | |
| "epoch": 3.65, | |
| "learning_rate": 5e-05, | |
| "loss": 0.4829, | |
| "step": 2051 | |
| }, | |
| { | |
| "epoch": 3.65, | |
| "learning_rate": 5e-05, | |
| "loss": 0.199, | |
| "step": 2052 | |
| }, | |
| { | |
| "epoch": 3.65, | |
| "learning_rate": 5e-05, | |
| "loss": 0.2297, | |
| "step": 2053 | |
| }, | |
| { | |
| "epoch": 3.65, | |
| "learning_rate": 5e-05, | |
| "loss": 0.2512, | |
| "step": 2054 | |
| }, | |
| { | |
| "epoch": 3.65, | |
| "learning_rate": 5e-05, | |
| "loss": 0.2168, | |
| "step": 2055 | |
| }, | |
| { | |
| "epoch": 3.66, | |
| "learning_rate": 5e-05, | |
| "loss": 0.2693, | |
| "step": 2056 | |
| }, | |
| { | |
| "epoch": 3.66, | |
| "learning_rate": 5e-05, | |
| "loss": 0.2202, | |
| "step": 2057 | |
| }, | |
| { | |
| "epoch": 3.66, | |
| "learning_rate": 5e-05, | |
| "loss": 0.2739, | |
| "step": 2058 | |
| }, | |
| { | |
| "epoch": 3.66, | |
| "learning_rate": 5e-05, | |
| "loss": 0.2, | |
| "step": 2059 | |
| }, | |
| { | |
| "epoch": 3.66, | |
| "learning_rate": 5e-05, | |
| "loss": 0.3423, | |
| "step": 2060 | |
| }, | |
| { | |
| "epoch": 3.66, | |
| "learning_rate": 5e-05, | |
| "loss": 0.2156, | |
| "step": 2061 | |
| }, | |
| { | |
| "epoch": 3.67, | |
| "learning_rate": 5e-05, | |
| "loss": 0.2041, | |
| "step": 2062 | |
| }, | |
| { | |
| "epoch": 3.67, | |
| "learning_rate": 5e-05, | |
| "loss": 0.183, | |
| "step": 2063 | |
| }, | |
| { | |
| "epoch": 3.67, | |
| "learning_rate": 5e-05, | |
| "loss": 0.1858, | |
| "step": 2064 | |
| }, | |
| { | |
| "epoch": 3.67, | |
| "learning_rate": 5e-05, | |
| "loss": 0.2594, | |
| "step": 2065 | |
| }, | |
| { | |
| "epoch": 3.67, | |
| "learning_rate": 5e-05, | |
| "loss": 0.272, | |
| "step": 2066 | |
| }, | |
| { | |
| "epoch": 3.67, | |
| "learning_rate": 5e-05, | |
| "loss": 0.272, | |
| "step": 2067 | |
| }, | |
| { | |
| "epoch": 3.68, | |
| "learning_rate": 5e-05, | |
| "loss": 0.2504, | |
| "step": 2068 | |
| }, | |
| { | |
| "epoch": 3.68, | |
| "learning_rate": 5e-05, | |
| "loss": 0.2561, | |
| "step": 2069 | |
| }, | |
| { | |
| "epoch": 3.68, | |
| "learning_rate": 5e-05, | |
| "loss": 0.3066, | |
| "step": 2070 | |
| }, | |
| { | |
| "epoch": 3.68, | |
| "learning_rate": 5e-05, | |
| "loss": 0.1776, | |
| "step": 2071 | |
| }, | |
| { | |
| "epoch": 3.68, | |
| "learning_rate": 5e-05, | |
| "loss": 0.1868, | |
| "step": 2072 | |
| }, | |
| { | |
| "epoch": 3.69, | |
| "learning_rate": 5e-05, | |
| "loss": 0.1702, | |
| "step": 2073 | |
| }, | |
| { | |
| "epoch": 3.69, | |
| "learning_rate": 5e-05, | |
| "loss": 0.1611, | |
| "step": 2074 | |
| }, | |
| { | |
| "epoch": 3.69, | |
| "learning_rate": 5e-05, | |
| "loss": 0.2579, | |
| "step": 2075 | |
| }, | |
| { | |
| "epoch": 3.69, | |
| "learning_rate": 5e-05, | |
| "loss": 0.261, | |
| "step": 2076 | |
| }, | |
| { | |
| "epoch": 3.69, | |
| "learning_rate": 5e-05, | |
| "loss": 0.2183, | |
| "step": 2077 | |
| }, | |
| { | |
| "epoch": 3.69, | |
| "learning_rate": 5e-05, | |
| "loss": 0.209, | |
| "step": 2078 | |
| }, | |
| { | |
| "epoch": 3.7, | |
| "learning_rate": 5e-05, | |
| "loss": 0.2241, | |
| "step": 2079 | |
| }, | |
| { | |
| "epoch": 3.7, | |
| "learning_rate": 5e-05, | |
| "loss": 0.1837, | |
| "step": 2080 | |
| }, | |
| { | |
| "epoch": 3.7, | |
| "learning_rate": 5e-05, | |
| "loss": 0.2502, | |
| "step": 2081 | |
| }, | |
| { | |
| "epoch": 3.7, | |
| "learning_rate": 5e-05, | |
| "loss": 0.1758, | |
| "step": 2082 | |
| }, | |
| { | |
| "epoch": 3.7, | |
| "learning_rate": 5e-05, | |
| "loss": 0.1347, | |
| "step": 2083 | |
| }, | |
| { | |
| "epoch": 3.7, | |
| "learning_rate": 5e-05, | |
| "loss": 0.2212, | |
| "step": 2084 | |
| }, | |
| { | |
| "epoch": 3.71, | |
| "learning_rate": 5e-05, | |
| "loss": 0.1765, | |
| "step": 2085 | |
| }, | |
| { | |
| "epoch": 3.71, | |
| "learning_rate": 5e-05, | |
| "loss": 0.2222, | |
| "step": 2086 | |
| }, | |
| { | |
| "epoch": 3.71, | |
| "learning_rate": 5e-05, | |
| "loss": 0.2312, | |
| "step": 2087 | |
| }, | |
| { | |
| "epoch": 3.71, | |
| "learning_rate": 5e-05, | |
| "loss": 0.207, | |
| "step": 2088 | |
| }, | |
| { | |
| "epoch": 3.71, | |
| "learning_rate": 5e-05, | |
| "loss": 0.2471, | |
| "step": 2089 | |
| }, | |
| { | |
| "epoch": 3.72, | |
| "learning_rate": 5e-05, | |
| "loss": 0.1997, | |
| "step": 2090 | |
| }, | |
| { | |
| "epoch": 3.72, | |
| "learning_rate": 5e-05, | |
| "loss": 0.1838, | |
| "step": 2091 | |
| }, | |
| { | |
| "epoch": 3.72, | |
| "learning_rate": 5e-05, | |
| "loss": 0.2947, | |
| "step": 2092 | |
| }, | |
| { | |
| "epoch": 3.72, | |
| "learning_rate": 5e-05, | |
| "loss": 0.2034, | |
| "step": 2093 | |
| }, | |
| { | |
| "epoch": 3.72, | |
| "learning_rate": 5e-05, | |
| "loss": 0.1827, | |
| "step": 2094 | |
| }, | |
| { | |
| "epoch": 3.72, | |
| "learning_rate": 5e-05, | |
| "loss": 0.2151, | |
| "step": 2095 | |
| }, | |
| { | |
| "epoch": 3.73, | |
| "learning_rate": 5e-05, | |
| "loss": 0.1926, | |
| "step": 2096 | |
| }, | |
| { | |
| "epoch": 3.73, | |
| "learning_rate": 5e-05, | |
| "loss": 0.1948, | |
| "step": 2097 | |
| }, | |
| { | |
| "epoch": 3.73, | |
| "learning_rate": 5e-05, | |
| "loss": 0.5336, | |
| "step": 2098 | |
| }, | |
| { | |
| "epoch": 3.73, | |
| "learning_rate": 5e-05, | |
| "loss": 0.2296, | |
| "step": 2099 | |
| }, | |
| { | |
| "epoch": 3.73, | |
| "learning_rate": 5e-05, | |
| "loss": 0.2052, | |
| "step": 2100 | |
| }, | |
| { | |
| "epoch": 3.74, | |
| "learning_rate": 5e-05, | |
| "loss": 0.2416, | |
| "step": 2101 | |
| }, | |
| { | |
| "epoch": 3.74, | |
| "learning_rate": 5e-05, | |
| "loss": 0.3159, | |
| "step": 2102 | |
| }, | |
| { | |
| "epoch": 3.74, | |
| "learning_rate": 5e-05, | |
| "loss": 0.2163, | |
| "step": 2103 | |
| }, | |
| { | |
| "epoch": 3.74, | |
| "learning_rate": 5e-05, | |
| "loss": 0.1887, | |
| "step": 2104 | |
| }, | |
| { | |
| "epoch": 3.74, | |
| "learning_rate": 5e-05, | |
| "loss": 0.2708, | |
| "step": 2105 | |
| }, | |
| { | |
| "epoch": 3.74, | |
| "learning_rate": 5e-05, | |
| "loss": 0.2029, | |
| "step": 2106 | |
| }, | |
| { | |
| "epoch": 3.75, | |
| "learning_rate": 5e-05, | |
| "loss": 0.2419, | |
| "step": 2107 | |
| }, | |
| { | |
| "epoch": 3.75, | |
| "learning_rate": 5e-05, | |
| "loss": 0.2937, | |
| "step": 2108 | |
| }, | |
| { | |
| "epoch": 3.75, | |
| "learning_rate": 5e-05, | |
| "loss": 0.2927, | |
| "step": 2109 | |
| }, | |
| { | |
| "epoch": 3.75, | |
| "learning_rate": 5e-05, | |
| "loss": 0.2246, | |
| "step": 2110 | |
| }, | |
| { | |
| "epoch": 3.75, | |
| "learning_rate": 5e-05, | |
| "loss": 0.2175, | |
| "step": 2111 | |
| }, | |
| { | |
| "epoch": 3.75, | |
| "learning_rate": 5e-05, | |
| "loss": 0.1527, | |
| "step": 2112 | |
| }, | |
| { | |
| "epoch": 3.76, | |
| "learning_rate": 5e-05, | |
| "loss": 0.2554, | |
| "step": 2113 | |
| }, | |
| { | |
| "epoch": 3.76, | |
| "learning_rate": 5e-05, | |
| "loss": 0.226, | |
| "step": 2114 | |
| }, | |
| { | |
| "epoch": 3.76, | |
| "learning_rate": 5e-05, | |
| "loss": 0.2388, | |
| "step": 2115 | |
| }, | |
| { | |
| "epoch": 3.76, | |
| "learning_rate": 5e-05, | |
| "loss": 0.2607, | |
| "step": 2116 | |
| }, | |
| { | |
| "epoch": 3.76, | |
| "learning_rate": 5e-05, | |
| "loss": 0.2422, | |
| "step": 2117 | |
| }, | |
| { | |
| "epoch": 3.77, | |
| "learning_rate": 5e-05, | |
| "loss": 0.2739, | |
| "step": 2118 | |
| }, | |
| { | |
| "epoch": 3.77, | |
| "learning_rate": 5e-05, | |
| "loss": 0.2151, | |
| "step": 2119 | |
| }, | |
| { | |
| "epoch": 3.77, | |
| "learning_rate": 5e-05, | |
| "loss": 0.2266, | |
| "step": 2120 | |
| }, | |
| { | |
| "epoch": 3.77, | |
| "learning_rate": 5e-05, | |
| "loss": 0.4092, | |
| "step": 2121 | |
| }, | |
| { | |
| "epoch": 3.77, | |
| "learning_rate": 5e-05, | |
| "loss": 0.2465, | |
| "step": 2122 | |
| }, | |
| { | |
| "epoch": 3.77, | |
| "learning_rate": 5e-05, | |
| "loss": 0.3003, | |
| "step": 2123 | |
| }, | |
| { | |
| "epoch": 3.78, | |
| "learning_rate": 5e-05, | |
| "loss": 0.2046, | |
| "step": 2124 | |
| }, | |
| { | |
| "epoch": 3.78, | |
| "learning_rate": 5e-05, | |
| "loss": 0.1992, | |
| "step": 2125 | |
| }, | |
| { | |
| "epoch": 3.78, | |
| "learning_rate": 5e-05, | |
| "loss": 0.2336, | |
| "step": 2126 | |
| }, | |
| { | |
| "epoch": 3.78, | |
| "learning_rate": 5e-05, | |
| "loss": 0.1521, | |
| "step": 2127 | |
| }, | |
| { | |
| "epoch": 3.78, | |
| "learning_rate": 5e-05, | |
| "loss": 0.2166, | |
| "step": 2128 | |
| }, | |
| { | |
| "epoch": 3.78, | |
| "learning_rate": 5e-05, | |
| "loss": 0.1824, | |
| "step": 2129 | |
| }, | |
| { | |
| "epoch": 3.79, | |
| "learning_rate": 5e-05, | |
| "loss": 0.1678, | |
| "step": 2130 | |
| }, | |
| { | |
| "epoch": 3.79, | |
| "learning_rate": 5e-05, | |
| "loss": 0.2302, | |
| "step": 2131 | |
| }, | |
| { | |
| "epoch": 3.79, | |
| "learning_rate": 5e-05, | |
| "loss": 0.1843, | |
| "step": 2132 | |
| }, | |
| { | |
| "epoch": 3.79, | |
| "learning_rate": 5e-05, | |
| "loss": 0.2285, | |
| "step": 2133 | |
| }, | |
| { | |
| "epoch": 3.79, | |
| "learning_rate": 5e-05, | |
| "loss": 0.3281, | |
| "step": 2134 | |
| }, | |
| { | |
| "epoch": 3.8, | |
| "learning_rate": 5e-05, | |
| "loss": 0.2939, | |
| "step": 2135 | |
| }, | |
| { | |
| "epoch": 3.8, | |
| "learning_rate": 5e-05, | |
| "loss": 0.2095, | |
| "step": 2136 | |
| }, | |
| { | |
| "epoch": 3.8, | |
| "learning_rate": 5e-05, | |
| "loss": 0.1667, | |
| "step": 2137 | |
| }, | |
| { | |
| "epoch": 3.8, | |
| "learning_rate": 5e-05, | |
| "loss": 0.2104, | |
| "step": 2138 | |
| }, | |
| { | |
| "epoch": 3.8, | |
| "learning_rate": 5e-05, | |
| "loss": 0.1582, | |
| "step": 2139 | |
| }, | |
| { | |
| "epoch": 3.8, | |
| "learning_rate": 5e-05, | |
| "loss": 0.225, | |
| "step": 2140 | |
| }, | |
| { | |
| "epoch": 3.81, | |
| "learning_rate": 5e-05, | |
| "loss": 0.228, | |
| "step": 2141 | |
| }, | |
| { | |
| "epoch": 3.81, | |
| "learning_rate": 5e-05, | |
| "loss": 0.1869, | |
| "step": 2142 | |
| }, | |
| { | |
| "epoch": 3.81, | |
| "learning_rate": 5e-05, | |
| "loss": 0.2395, | |
| "step": 2143 | |
| }, | |
| { | |
| "epoch": 3.81, | |
| "learning_rate": 5e-05, | |
| "loss": 0.1793, | |
| "step": 2144 | |
| }, | |
| { | |
| "epoch": 3.81, | |
| "learning_rate": 5e-05, | |
| "loss": 0.1825, | |
| "step": 2145 | |
| }, | |
| { | |
| "epoch": 3.82, | |
| "learning_rate": 5e-05, | |
| "loss": 0.208, | |
| "step": 2146 | |
| }, | |
| { | |
| "epoch": 3.82, | |
| "learning_rate": 5e-05, | |
| "loss": 0.2322, | |
| "step": 2147 | |
| }, | |
| { | |
| "epoch": 3.82, | |
| "learning_rate": 5e-05, | |
| "loss": 0.2056, | |
| "step": 2148 | |
| }, | |
| { | |
| "epoch": 3.82, | |
| "learning_rate": 5e-05, | |
| "loss": 0.2388, | |
| "step": 2149 | |
| }, | |
| { | |
| "epoch": 3.82, | |
| "learning_rate": 5e-05, | |
| "loss": 0.175, | |
| "step": 2150 | |
| }, | |
| { | |
| "epoch": 3.82, | |
| "learning_rate": 5e-05, | |
| "loss": 0.2878, | |
| "step": 2151 | |
| }, | |
| { | |
| "epoch": 3.83, | |
| "learning_rate": 5e-05, | |
| "loss": 0.1675, | |
| "step": 2152 | |
| }, | |
| { | |
| "epoch": 3.83, | |
| "learning_rate": 5e-05, | |
| "loss": 0.1992, | |
| "step": 2153 | |
| }, | |
| { | |
| "epoch": 3.83, | |
| "learning_rate": 5e-05, | |
| "loss": 0.1635, | |
| "step": 2154 | |
| }, | |
| { | |
| "epoch": 3.83, | |
| "learning_rate": 5e-05, | |
| "loss": 0.2456, | |
| "step": 2155 | |
| }, | |
| { | |
| "epoch": 3.83, | |
| "learning_rate": 5e-05, | |
| "loss": 0.1495, | |
| "step": 2156 | |
| }, | |
| { | |
| "epoch": 3.83, | |
| "learning_rate": 5e-05, | |
| "loss": 0.2561, | |
| "step": 2157 | |
| }, | |
| { | |
| "epoch": 3.84, | |
| "learning_rate": 5e-05, | |
| "loss": 0.1604, | |
| "step": 2158 | |
| }, | |
| { | |
| "epoch": 3.84, | |
| "learning_rate": 5e-05, | |
| "loss": 0.1882, | |
| "step": 2159 | |
| }, | |
| { | |
| "epoch": 3.84, | |
| "learning_rate": 5e-05, | |
| "loss": 0.219, | |
| "step": 2160 | |
| }, | |
| { | |
| "epoch": 3.84, | |
| "learning_rate": 5e-05, | |
| "loss": 0.2607, | |
| "step": 2161 | |
| }, | |
| { | |
| "epoch": 3.84, | |
| "learning_rate": 5e-05, | |
| "loss": 0.2217, | |
| "step": 2162 | |
| }, | |
| { | |
| "epoch": 3.85, | |
| "learning_rate": 5e-05, | |
| "loss": 0.2708, | |
| "step": 2163 | |
| }, | |
| { | |
| "epoch": 3.85, | |
| "learning_rate": 5e-05, | |
| "loss": 0.2026, | |
| "step": 2164 | |
| }, | |
| { | |
| "epoch": 3.85, | |
| "learning_rate": 5e-05, | |
| "loss": 0.2388, | |
| "step": 2165 | |
| }, | |
| { | |
| "epoch": 3.85, | |
| "learning_rate": 5e-05, | |
| "loss": 0.2437, | |
| "step": 2166 | |
| }, | |
| { | |
| "epoch": 3.85, | |
| "learning_rate": 5e-05, | |
| "loss": 0.2053, | |
| "step": 2167 | |
| }, | |
| { | |
| "epoch": 3.85, | |
| "learning_rate": 5e-05, | |
| "loss": 0.2554, | |
| "step": 2168 | |
| }, | |
| { | |
| "epoch": 3.86, | |
| "learning_rate": 5e-05, | |
| "loss": 0.2209, | |
| "step": 2169 | |
| }, | |
| { | |
| "epoch": 3.86, | |
| "learning_rate": 5e-05, | |
| "loss": 0.2129, | |
| "step": 2170 | |
| }, | |
| { | |
| "epoch": 3.86, | |
| "learning_rate": 5e-05, | |
| "loss": 0.1985, | |
| "step": 2171 | |
| }, | |
| { | |
| "epoch": 3.86, | |
| "learning_rate": 5e-05, | |
| "loss": 0.25, | |
| "step": 2172 | |
| }, | |
| { | |
| "epoch": 3.86, | |
| "learning_rate": 5e-05, | |
| "loss": 0.251, | |
| "step": 2173 | |
| }, | |
| { | |
| "epoch": 3.86, | |
| "learning_rate": 5e-05, | |
| "loss": 0.2888, | |
| "step": 2174 | |
| }, | |
| { | |
| "epoch": 3.87, | |
| "learning_rate": 5e-05, | |
| "loss": 0.2285, | |
| "step": 2175 | |
| }, | |
| { | |
| "epoch": 3.87, | |
| "learning_rate": 5e-05, | |
| "loss": 0.2751, | |
| "step": 2176 | |
| }, | |
| { | |
| "epoch": 3.87, | |
| "learning_rate": 5e-05, | |
| "loss": 0.2271, | |
| "step": 2177 | |
| }, | |
| { | |
| "epoch": 3.87, | |
| "learning_rate": 5e-05, | |
| "loss": 0.27, | |
| "step": 2178 | |
| }, | |
| { | |
| "epoch": 3.87, | |
| "learning_rate": 5e-05, | |
| "loss": 0.3208, | |
| "step": 2179 | |
| }, | |
| { | |
| "epoch": 3.88, | |
| "learning_rate": 5e-05, | |
| "loss": 0.2166, | |
| "step": 2180 | |
| }, | |
| { | |
| "epoch": 3.88, | |
| "learning_rate": 5e-05, | |
| "loss": 0.3369, | |
| "step": 2181 | |
| }, | |
| { | |
| "epoch": 3.88, | |
| "learning_rate": 5e-05, | |
| "loss": 0.2773, | |
| "step": 2182 | |
| }, | |
| { | |
| "epoch": 3.88, | |
| "learning_rate": 5e-05, | |
| "loss": 0.229, | |
| "step": 2183 | |
| }, | |
| { | |
| "epoch": 3.88, | |
| "learning_rate": 5e-05, | |
| "loss": 0.2383, | |
| "step": 2184 | |
| }, | |
| { | |
| "epoch": 3.88, | |
| "learning_rate": 5e-05, | |
| "loss": 0.282, | |
| "step": 2185 | |
| }, | |
| { | |
| "epoch": 3.89, | |
| "learning_rate": 5e-05, | |
| "loss": 0.1813, | |
| "step": 2186 | |
| }, | |
| { | |
| "epoch": 3.89, | |
| "learning_rate": 5e-05, | |
| "loss": 0.2046, | |
| "step": 2187 | |
| }, | |
| { | |
| "epoch": 3.89, | |
| "learning_rate": 5e-05, | |
| "loss": 0.2935, | |
| "step": 2188 | |
| }, | |
| { | |
| "epoch": 3.89, | |
| "learning_rate": 5e-05, | |
| "loss": 0.3289, | |
| "step": 2189 | |
| }, | |
| { | |
| "epoch": 3.89, | |
| "learning_rate": 5e-05, | |
| "loss": 0.3652, | |
| "step": 2190 | |
| }, | |
| { | |
| "epoch": 3.9, | |
| "learning_rate": 5e-05, | |
| "loss": 0.1458, | |
| "step": 2191 | |
| }, | |
| { | |
| "epoch": 3.9, | |
| "learning_rate": 5e-05, | |
| "loss": 0.1775, | |
| "step": 2192 | |
| }, | |
| { | |
| "epoch": 3.9, | |
| "learning_rate": 5e-05, | |
| "loss": 0.2925, | |
| "step": 2193 | |
| }, | |
| { | |
| "epoch": 3.9, | |
| "learning_rate": 5e-05, | |
| "loss": 0.2747, | |
| "step": 2194 | |
| }, | |
| { | |
| "epoch": 3.9, | |
| "learning_rate": 5e-05, | |
| "loss": 0.302, | |
| "step": 2195 | |
| }, | |
| { | |
| "epoch": 3.9, | |
| "learning_rate": 5e-05, | |
| "loss": 0.1902, | |
| "step": 2196 | |
| }, | |
| { | |
| "epoch": 3.91, | |
| "learning_rate": 5e-05, | |
| "loss": 0.1963, | |
| "step": 2197 | |
| }, | |
| { | |
| "epoch": 3.91, | |
| "learning_rate": 5e-05, | |
| "loss": 0.2432, | |
| "step": 2198 | |
| }, | |
| { | |
| "epoch": 3.91, | |
| "learning_rate": 5e-05, | |
| "loss": 0.3765, | |
| "step": 2199 | |
| }, | |
| { | |
| "epoch": 3.91, | |
| "learning_rate": 5e-05, | |
| "loss": 0.2063, | |
| "step": 2200 | |
| }, | |
| { | |
| "epoch": 3.91, | |
| "learning_rate": 5e-05, | |
| "loss": 0.2327, | |
| "step": 2201 | |
| }, | |
| { | |
| "epoch": 3.91, | |
| "learning_rate": 5e-05, | |
| "loss": 0.2141, | |
| "step": 2202 | |
| }, | |
| { | |
| "epoch": 3.92, | |
| "learning_rate": 5e-05, | |
| "loss": 0.2451, | |
| "step": 2203 | |
| }, | |
| { | |
| "epoch": 3.92, | |
| "learning_rate": 5e-05, | |
| "loss": 0.1616, | |
| "step": 2204 | |
| }, | |
| { | |
| "epoch": 3.92, | |
| "learning_rate": 5e-05, | |
| "loss": 0.2026, | |
| "step": 2205 | |
| }, | |
| { | |
| "epoch": 3.92, | |
| "learning_rate": 5e-05, | |
| "loss": 0.2458, | |
| "step": 2206 | |
| }, | |
| { | |
| "epoch": 3.92, | |
| "learning_rate": 5e-05, | |
| "loss": 0.2039, | |
| "step": 2207 | |
| }, | |
| { | |
| "epoch": 3.93, | |
| "learning_rate": 5e-05, | |
| "loss": 0.1921, | |
| "step": 2208 | |
| }, | |
| { | |
| "epoch": 3.93, | |
| "learning_rate": 5e-05, | |
| "loss": 0.2512, | |
| "step": 2209 | |
| }, | |
| { | |
| "epoch": 3.93, | |
| "learning_rate": 5e-05, | |
| "loss": 0.1941, | |
| "step": 2210 | |
| }, | |
| { | |
| "epoch": 3.93, | |
| "learning_rate": 5e-05, | |
| "loss": 0.2539, | |
| "step": 2211 | |
| }, | |
| { | |
| "epoch": 3.93, | |
| "learning_rate": 5e-05, | |
| "loss": 0.3235, | |
| "step": 2212 | |
| }, | |
| { | |
| "epoch": 3.93, | |
| "learning_rate": 5e-05, | |
| "loss": 0.1664, | |
| "step": 2213 | |
| }, | |
| { | |
| "epoch": 3.94, | |
| "learning_rate": 5e-05, | |
| "loss": 0.217, | |
| "step": 2214 | |
| }, | |
| { | |
| "epoch": 3.94, | |
| "learning_rate": 5e-05, | |
| "loss": 0.3011, | |
| "step": 2215 | |
| }, | |
| { | |
| "epoch": 3.94, | |
| "learning_rate": 5e-05, | |
| "loss": 0.1875, | |
| "step": 2216 | |
| }, | |
| { | |
| "epoch": 3.94, | |
| "learning_rate": 5e-05, | |
| "loss": 0.2734, | |
| "step": 2217 | |
| }, | |
| { | |
| "epoch": 3.94, | |
| "learning_rate": 5e-05, | |
| "loss": 0.2668, | |
| "step": 2218 | |
| }, | |
| { | |
| "epoch": 3.94, | |
| "learning_rate": 5e-05, | |
| "loss": 0.2253, | |
| "step": 2219 | |
| }, | |
| { | |
| "epoch": 3.95, | |
| "learning_rate": 5e-05, | |
| "loss": 0.2283, | |
| "step": 2220 | |
| }, | |
| { | |
| "epoch": 3.95, | |
| "learning_rate": 5e-05, | |
| "loss": 0.2329, | |
| "step": 2221 | |
| }, | |
| { | |
| "epoch": 3.95, | |
| "learning_rate": 5e-05, | |
| "loss": 0.2957, | |
| "step": 2222 | |
| }, | |
| { | |
| "epoch": 3.95, | |
| "learning_rate": 5e-05, | |
| "loss": 0.2039, | |
| "step": 2223 | |
| }, | |
| { | |
| "epoch": 3.95, | |
| "learning_rate": 5e-05, | |
| "loss": 0.1799, | |
| "step": 2224 | |
| }, | |
| { | |
| "epoch": 3.96, | |
| "learning_rate": 5e-05, | |
| "loss": 0.3074, | |
| "step": 2225 | |
| }, | |
| { | |
| "epoch": 3.96, | |
| "learning_rate": 5e-05, | |
| "loss": 0.259, | |
| "step": 2226 | |
| }, | |
| { | |
| "epoch": 3.96, | |
| "learning_rate": 5e-05, | |
| "loss": 0.2717, | |
| "step": 2227 | |
| }, | |
| { | |
| "epoch": 3.96, | |
| "learning_rate": 5e-05, | |
| "loss": 0.2618, | |
| "step": 2228 | |
| }, | |
| { | |
| "epoch": 3.96, | |
| "learning_rate": 5e-05, | |
| "loss": 0.2693, | |
| "step": 2229 | |
| }, | |
| { | |
| "epoch": 3.96, | |
| "learning_rate": 5e-05, | |
| "loss": 0.2947, | |
| "step": 2230 | |
| }, | |
| { | |
| "epoch": 3.97, | |
| "learning_rate": 5e-05, | |
| "loss": 0.2405, | |
| "step": 2231 | |
| }, | |
| { | |
| "epoch": 3.97, | |
| "learning_rate": 5e-05, | |
| "loss": 0.1953, | |
| "step": 2232 | |
| }, | |
| { | |
| "epoch": 3.97, | |
| "learning_rate": 5e-05, | |
| "loss": 0.2544, | |
| "step": 2233 | |
| }, | |
| { | |
| "epoch": 3.97, | |
| "learning_rate": 5e-05, | |
| "loss": 0.1906, | |
| "step": 2234 | |
| }, | |
| { | |
| "epoch": 3.97, | |
| "learning_rate": 5e-05, | |
| "loss": 0.374, | |
| "step": 2235 | |
| }, | |
| { | |
| "epoch": 3.98, | |
| "learning_rate": 5e-05, | |
| "loss": 0.1978, | |
| "step": 2236 | |
| }, | |
| { | |
| "epoch": 3.98, | |
| "learning_rate": 5e-05, | |
| "loss": 0.1866, | |
| "step": 2237 | |
| }, | |
| { | |
| "epoch": 3.98, | |
| "learning_rate": 5e-05, | |
| "loss": 0.2744, | |
| "step": 2238 | |
| }, | |
| { | |
| "epoch": 3.98, | |
| "learning_rate": 5e-05, | |
| "loss": 0.2295, | |
| "step": 2239 | |
| }, | |
| { | |
| "epoch": 3.98, | |
| "learning_rate": 5e-05, | |
| "loss": 0.2104, | |
| "step": 2240 | |
| }, | |
| { | |
| "epoch": 3.98, | |
| "learning_rate": 5e-05, | |
| "loss": 0.2394, | |
| "step": 2241 | |
| }, | |
| { | |
| "epoch": 3.99, | |
| "learning_rate": 5e-05, | |
| "loss": 0.219, | |
| "step": 2242 | |
| }, | |
| { | |
| "epoch": 3.99, | |
| "learning_rate": 5e-05, | |
| "loss": 0.1956, | |
| "step": 2243 | |
| }, | |
| { | |
| "epoch": 3.99, | |
| "learning_rate": 5e-05, | |
| "loss": 0.2273, | |
| "step": 2244 | |
| }, | |
| { | |
| "epoch": 3.99, | |
| "learning_rate": 5e-05, | |
| "loss": 0.2122, | |
| "step": 2245 | |
| }, | |
| { | |
| "epoch": 3.99, | |
| "learning_rate": 5e-05, | |
| "loss": 0.2156, | |
| "step": 2246 | |
| }, | |
| { | |
| "epoch": 3.99, | |
| "learning_rate": 5e-05, | |
| "loss": 0.2461, | |
| "step": 2247 | |
| }, | |
| { | |
| "epoch": 4.0, | |
| "learning_rate": 5e-05, | |
| "loss": 0.2009, | |
| "step": 2248 | |
| }, | |
| { | |
| "epoch": 4.0, | |
| "eval_loss": 0.22490152716636658, | |
| "eval_runtime": 118.6312, | |
| "eval_samples_per_second": 2.529, | |
| "eval_steps_per_second": 0.632, | |
| "step": 2248 | |
| }, | |
| { | |
| "epoch": 4.0, | |
| "step": 2248, | |
| "total_flos": 3.506559652919771e+19, | |
| "train_loss": 0.2778411539423932, | |
| "train_runtime": 160981.3537, | |
| "train_samples_per_second": 0.671, | |
| "train_steps_per_second": 0.014 | |
| } | |
| ], | |
| "max_steps": 2248, | |
| "num_train_epochs": 4, | |
| "total_flos": 3.506559652919771e+19, | |
| "trial_name": null, | |
| "trial_params": null | |
| } | |