File size: 18,846 Bytes
2db463d |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 |
import sys
import os
import numpy as np
import random
from collections import deque
import gymnasium as gym
import ale_py
import torch
import torch.nn as nn
import torch.optim as optim
import torch.nn.functional as F
from torch.distributions import Categorical
from PyQt5.QtWidgets import (QApplication, QMainWindow, QWidget, QVBoxLayout,
QHBoxLayout, QPushButton, QLabel, QComboBox,
QTextEdit, QProgressBar, QTabWidget, QFrame)
from PyQt5.QtCore import QTimer, Qt, pyqtSignal, QThread
from PyQt5.QtGui import QImage, QPixmap, QFont
# Register ALE environments
gym.register_envs(ale_py)
# Environment setup
def create_env(env_name='ALE/Breakout-v5'):
"""
Create ALE environment with Gymnasium API
Available environments:
- ALE/Breakout-v5, ALE/Pong-v5, ALE/SpaceInvaders-v5,
- ALE/Assault-v5, ALE/BeamRider-v5, ALE/Enduro-v5
"""
env = gym.make(env_name, render_mode='rgb_array')
return env
# Neural Network for Dueling DQN
class DuelingDQN(nn.Module):
def __init__(self, input_shape, n_actions):
super(DuelingDQN, self).__init__()
self.conv = nn.Sequential(
nn.Conv2d(input_shape[0], 32, kernel_size=8, stride=4),
nn.ReLU(),
nn.Conv2d(32, 64, kernel_size=4, stride=2),
nn.ReLU(),
nn.Conv2d(64, 64, kernel_size=3, stride=1),
nn.ReLU()
)
conv_out_size = self._get_conv_out(input_shape)
self.fc_advantage = nn.Sequential(
nn.Linear(conv_out_size, 512),
nn.ReLU(),
nn.Linear(512, n_actions)
)
self.fc_value = nn.Sequential(
nn.Linear(conv_out_size, 512),
nn.ReLU(),
nn.Linear(512, 1)
)
def _get_conv_out(self, shape):
o = self.conv(torch.zeros(1, *shape))
return int(np.prod(o.size()))
def forward(self, x):
conv_out = self.conv(x).view(x.size()[0], -1)
advantage = self.fc_advantage(conv_out)
value = self.fc_value(conv_out)
return value + advantage - advantage.mean()
# Neural Network for PPO
class PPONetwork(nn.Module):
def __init__(self, input_shape, n_actions):
super(PPONetwork, self).__init__()
self.conv = nn.Sequential(
nn.Conv2d(input_shape[0], 32, kernel_size=8, stride=4),
nn.ReLU(),
nn.Conv2d(32, 64, kernel_size=4, stride=2),
nn.ReLU(),
nn.Conv2d(64, 64, kernel_size=3, stride=1),
nn.ReLU()
)
conv_out_size = self._get_conv_out(input_shape)
self.actor = nn.Sequential(
nn.Linear(conv_out_size, 512),
nn.ReLU(),
nn.Linear(512, n_actions),
nn.Softmax(dim=-1)
)
self.critic = nn.Sequential(
nn.Linear(conv_out_size, 512),
nn.ReLU(),
nn.Linear(512, 1)
)
def _get_conv_out(self, shape):
o = self.conv(torch.zeros(1, *shape))
return int(np.prod(o.size()))
def forward(self, x):
conv_out = self.conv(x).view(x.size()[0], -1)
return self.actor(conv_out), self.critic(conv_out)
# Dueling DQN Agent
class DuelingDQNAgent:
def __init__(self, state_dim, action_dim, lr=1e-4, gamma=0.99, epsilon=1.0,
epsilon_min=0.01, epsilon_decay=0.995, memory_size=10000, batch_size=32):
self.state_dim = state_dim
self.action_dim = action_dim
self.lr = lr
self.gamma = gamma
self.epsilon = epsilon
self.epsilon_min = epsilon_min
self.epsilon_decay = epsilon_decay
self.batch_size = batch_size
self.memory = deque(maxlen=memory_size)
self.model = DuelingDQN(state_dim, action_dim)
self.optimizer = optim.Adam(self.model.parameters(), lr=lr)
self.criterion = nn.MSELoss()
def remember(self, state, action, reward, next_state, done):
self.memory.append((state, action, reward, next_state, done))
def act(self, state):
if np.random.random() <= self.epsilon:
return random.randrange(self.action_dim)
state = torch.FloatTensor(state).unsqueeze(0)
with torch.no_grad():
q_values = self.model(state)
return np.argmax(q_values.detach().numpy())
def replay(self):
if len(self.memory) < self.batch_size:
return
batch = random.sample(self.memory, self.batch_size)
states = torch.FloatTensor(np.array([e[0] for e in batch]))
actions = torch.LongTensor([e[1] for e in batch])
rewards = torch.FloatTensor([e[2] for e in batch])
next_states = torch.FloatTensor(np.array([e[3] for e in batch]))
dones = torch.BoolTensor([e[4] for e in batch])
current_q_values = self.model(states).gather(1, actions.unsqueeze(1))
with torch.no_grad():
next_q_values = self.model(next_states).max(1)[0]
target_q_values = rewards + (self.gamma * next_q_values * ~dones)
loss = self.criterion(current_q_values.squeeze(), target_q_values)
self.optimizer.zero_grad()
loss.backward()
self.optimizer.step()
if self.epsilon > self.epsilon_min:
self.epsilon *= self.epsilon_decay
# PPO Agent
class PPOAgent:
def __init__(self, state_dim, action_dim, lr=3e-4, gamma=0.99, epsilon=0.2,
entropy_coef=0.01, value_coef=0.5):
self.state_dim = state_dim
self.action_dim = action_dim
self.gamma = gamma
self.epsilon = epsilon
self.entropy_coef = entropy_coef
self.value_coef = value_coef
self.model = PPONetwork(state_dim, action_dim)
self.optimizer = optim.Adam(self.model.parameters(), lr=lr)
self.memory = []
def remember(self, state, action, reward, value, log_prob):
self.memory.append((state, action, reward, value, log_prob))
def act(self, state):
state = torch.FloatTensor(state).unsqueeze(0)
with torch.no_grad():
probs, value = self.model(state)
dist = Categorical(probs)
action = dist.sample()
return action.item(), dist.log_prob(action), value.squeeze()
def train(self):
if not self.memory:
return
states, actions, rewards, values, log_probs = zip(*self.memory)
# Calculate returns and advantages
returns = []
R = 0
for r in reversed(rewards):
R = r + self.gamma * R
returns.insert(0, R)
returns = torch.FloatTensor(returns)
values = torch.FloatTensor(values)
advantages = returns - values
# Normalize advantages
advantages = (advantages - advantages.mean()) / (advantages.std() + 1e-8)
# Convert to tensors
states = torch.FloatTensor(np.array(states))
actions = torch.LongTensor(actions)
old_log_probs = torch.FloatTensor(log_probs)
# Get new probabilities
new_probs, new_values = self.model(states)
dist = Categorical(new_probs)
new_log_probs = dist.log_prob(actions)
entropy = dist.entropy().mean()
# PPO loss
ratio = (new_log_probs - old_log_probs).exp()
surr1 = ratio * advantages
surr2 = torch.clamp(ratio, 1 - self.epsilon, 1 + self.epsilon) * advantages
actor_loss = -torch.min(surr1, surr2).mean()
critic_loss = F.mse_loss(new_values.squeeze(), returns)
total_loss = actor_loss + self.value_coef * critic_loss - self.entropy_coef * entropy
self.optimizer.zero_grad()
total_loss.backward()
self.optimizer.step()
self.memory = []
# Training Thread
class TrainingThread(QThread):
update_signal = pyqtSignal(dict)
frame_signal = pyqtSignal(np.ndarray)
def __init__(self, algorithm='dqn', env_name='ALE/Breakout-v5'):
super().__init__()
self.algorithm = algorithm
self.env_name = env_name
self.running = False
self.env = None
self.agent = None
def preprocess_state(self, state):
# Convert to CHW format and normalize
state = state.transpose((2, 0, 1))
state = state / 255.0
return state
def run(self):
self.running = True
try:
self.env = create_env(self.env_name)
state, info = self.env.reset()
state = self.preprocess_state(state)
n_actions = self.env.action_space.n
state_dim = state.shape
print(f"Environment: {self.env_name}")
print(f"State shape: {state_dim}, Actions: {n_actions}")
if self.algorithm == 'dqn':
self.agent = DuelingDQNAgent(state_dim, n_actions)
else:
self.agent = PPOAgent(state_dim, n_actions)
episode = 0
total_reward = 0
steps = 0
episode_rewards = []
while self.running:
try:
if self.algorithm == 'dqn':
action = self.agent.act(state)
next_state, reward, terminated, truncated, info = self.env.step(action)
done = terminated or truncated
next_state = self.preprocess_state(next_state)
self.agent.remember(state, action, reward, next_state, done)
self.agent.replay()
else:
action, log_prob, value = self.agent.act(state)
next_state, reward, terminated, truncated, info = self.env.step(action)
done = terminated or truncated
next_state = self.preprocess_state(next_state)
self.agent.remember(state, action, reward, value, log_prob)
if done:
self.agent.train()
state = next_state
total_reward += reward
steps += 1
# Emit frame for display
try:
frame = self.env.render()
if frame is not None:
self.frame_signal.emit(frame)
except Exception as e:
# Create a placeholder frame if rendering fails
frame = np.zeros((210, 160, 3), dtype=np.uint8)
self.frame_signal.emit(frame)
# Emit training progress
if steps % 10 == 0:
progress_data = {
'episode': episode,
'total_reward': total_reward,
'steps': steps,
'epsilon': self.agent.epsilon if self.algorithm == 'dqn' else 0.2,
'env_name': self.env_name,
'lives': info.get('lives', 0) if isinstance(info, dict) else 0
}
self.update_signal.emit(progress_data)
if terminated or truncated:
episode_rewards.append(total_reward)
avg_reward = np.mean(episode_rewards[-10:]) if episode_rewards else total_reward
print(f"Episode {episode}: Total Reward: {total_reward:.2f}, "
f"Steps: {steps}, Avg Reward (last 10): {avg_reward:.2f}")
episode += 1
state, info = self.env.reset()
state = self.preprocess_state(state)
total_reward = 0
steps = 0
except Exception as e:
print(f"Error in training loop: {e}")
import traceback
traceback.print_exc()
break
except Exception as e:
print(f"Error setting up environment: {e}")
import traceback
traceback.print_exc()
def stop(self):
self.running = False
if self.env:
self.env.close()
# Main Application Window
class ALE_RLApp(QMainWindow):
def __init__(self):
super().__init__()
self.training_thread = None
self.init_ui()
def init_ui(self):
self.setWindowTitle('🎮 ALE Arcade RL Training')
self.setGeometry(100, 100, 1200, 800)
central_widget = QWidget()
self.setCentralWidget(central_widget)
layout = QVBoxLayout(central_widget)
# Title
title = QLabel('🎮 Arcade Reinforcement Learning (ALE)')
title.setFont(QFont('Arial', 16, QFont.Bold))
title.setAlignment(Qt.AlignCenter)
layout.addWidget(title)
# Control Panel
control_layout = QHBoxLayout()
self.algorithm_combo = QComboBox()
self.algorithm_combo.addItems(['Dueling DQN', 'PPO'])
self.env_combo = QComboBox()
self.env_combo.addItems([
'ALE/Breakout-v5',
'ALE/Pong-v5',
'ALE/SpaceInvaders-v5',
'ALE/Assault-v5',
'ALE/BeamRider-v5',
'ALE/Enduro-v5',
'ALE/Seaquest-v5',
'ALE/Qbert-v5'
])
self.start_btn = QPushButton('Start Training')
self.start_btn.clicked.connect(self.start_training)
self.stop_btn = QPushButton('Stop Training')
self.stop_btn.clicked.connect(self.stop_training)
self.stop_btn.setEnabled(False)
control_layout.addWidget(QLabel('Algorithm:'))
control_layout.addWidget(self.algorithm_combo)
control_layout.addWidget(QLabel('Environment:'))
control_layout.addWidget(self.env_combo)
control_layout.addWidget(self.start_btn)
control_layout.addWidget(self.stop_btn)
control_layout.addStretch()
layout.addLayout(control_layout)
# Content Area
content_layout = QHBoxLayout()
# Left side - Game Display
left_frame = QFrame()
left_frame.setFrameStyle(QFrame.Box)
left_layout = QVBoxLayout(left_frame)
self.game_display = QLabel()
self.game_display.setMinimumSize(400, 300)
self.game_display.setAlignment(Qt.AlignCenter)
self.game_display.setText('Game display will appear here\nPress "Start Training" to begin')
self.game_display.setStyleSheet('border: 1px solid gray; background-color: black; color: white;')
left_layout.addWidget(QLabel('Game Display:'))
left_layout.addWidget(self.game_display)
# Right side - Training Info
right_frame = QFrame()
right_frame.setFrameStyle(QFrame.Box)
right_layout = QVBoxLayout(right_frame)
# Progress bars
self.env_label = QLabel('Environment: Not started')
self.episode_label = QLabel('Episode: 0')
self.reward_label = QLabel('Total Reward: 0')
self.steps_label = QLabel('Steps: 0')
self.epsilon_label = QLabel('Epsilon: 0')
self.lives_label = QLabel('Lives: 0')
right_layout.addWidget(self.env_label)
right_layout.addWidget(self.episode_label)
right_layout.addWidget(self.reward_label)
right_layout.addWidget(self.steps_label)
right_layout.addWidget(self.epsilon_label)
right_layout.addWidget(self.lives_label)
# Training log
right_layout.addWidget(QLabel('Training Log:'))
self.log_text = QTextEdit()
self.log_text.setMaximumHeight(200)
right_layout.addWidget(self.log_text)
content_layout.addWidget(left_frame)
content_layout.addWidget(right_frame)
layout.addLayout(content_layout)
def start_training(self):
algorithm = 'dqn' if self.algorithm_combo.currentText() == 'Dueling DQN' else 'ppo'
env_name = self.env_combo.currentText()
self.training_thread = TrainingThread(algorithm, env_name)
self.training_thread.update_signal.connect(self.update_training_info)
self.training_thread.frame_signal.connect(self.update_game_display)
self.training_thread.start()
self.start_btn.setEnabled(False)
self.stop_btn.setEnabled(True)
self.log_text.append(f'Started {self.algorithm_combo.currentText()} training on {env_name}...')
def stop_training(self):
if self.training_thread:
self.training_thread.stop()
self.training_thread.wait()
self.start_btn.setEnabled(True)
self.stop_btn.setEnabled(False)
self.log_text.append('Training stopped.')
def update_training_info(self, data):
self.env_label.setText(f'Environment: {data.get("env_name", "Unknown")}')
self.episode_label.setText(f'Episode: {data["episode"]}')
self.reward_label.setText(f'Total Reward: {data["total_reward"]:.2f}')
self.steps_label.setText(f'Steps: {data["steps"]}')
self.epsilon_label.setText(f'Epsilon: {data["epsilon"]:.3f}')
self.lives_label.setText(f'Lives: {data.get("lives", 0)}')
def update_game_display(self, frame):
if frame is not None:
try:
h, w, ch = frame.shape
bytes_per_line = ch * w
q_img = QImage(frame.data, w, h, bytes_per_line, QImage.Format_RGB888)
pixmap = QPixmap.fromImage(q_img)
self.game_display.setPixmap(pixmap.scaled(400, 300, Qt.KeepAspectRatio))
except Exception as e:
print(f"Error updating display: {e}")
def closeEvent(self, event):
self.stop_training()
event.accept()
def main():
# Set random seeds for reproducibility
torch.manual_seed(42)
np.random.seed(42)
random.seed(42)
app = QApplication(sys.argv)
window = ALE_RLApp()
window.show()
sys.exit(app.exec_())
if __name__ == '__main__':
main() |