File size: 18,846 Bytes
2db463d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
import sys
import os
import numpy as np
import random
from collections import deque
import gymnasium as gym
import ale_py

import torch
import torch.nn as nn
import torch.optim as optim
import torch.nn.functional as F
from torch.distributions import Categorical

from PyQt5.QtWidgets import (QApplication, QMainWindow, QWidget, QVBoxLayout, 
                             QHBoxLayout, QPushButton, QLabel, QComboBox, 
                             QTextEdit, QProgressBar, QTabWidget, QFrame)
from PyQt5.QtCore import QTimer, Qt, pyqtSignal, QThread
from PyQt5.QtGui import QImage, QPixmap, QFont

# Register ALE environments
gym.register_envs(ale_py)

# Environment setup
def create_env(env_name='ALE/Breakout-v5'):
    """
    Create ALE environment with Gymnasium API
    Available environments: 
    - ALE/Breakout-v5, ALE/Pong-v5, ALE/SpaceInvaders-v5, 
    - ALE/Assault-v5, ALE/BeamRider-v5, ALE/Enduro-v5
    """
    env = gym.make(env_name, render_mode='rgb_array')
    return env

# Neural Network for Dueling DQN
class DuelingDQN(nn.Module):
    def __init__(self, input_shape, n_actions):
        super(DuelingDQN, self).__init__()
        self.conv = nn.Sequential(
            nn.Conv2d(input_shape[0], 32, kernel_size=8, stride=4),
            nn.ReLU(),
            nn.Conv2d(32, 64, kernel_size=4, stride=2),
            nn.ReLU(),
            nn.Conv2d(64, 64, kernel_size=3, stride=1),
            nn.ReLU()
        )
        
        conv_out_size = self._get_conv_out(input_shape)
        
        self.fc_advantage = nn.Sequential(
            nn.Linear(conv_out_size, 512),
            nn.ReLU(),
            nn.Linear(512, n_actions)
        )
        
        self.fc_value = nn.Sequential(
            nn.Linear(conv_out_size, 512),
            nn.ReLU(),
            nn.Linear(512, 1)
        )
        
    def _get_conv_out(self, shape):
        o = self.conv(torch.zeros(1, *shape))
        return int(np.prod(o.size()))
    
    def forward(self, x):
        conv_out = self.conv(x).view(x.size()[0], -1)
        advantage = self.fc_advantage(conv_out)
        value = self.fc_value(conv_out)
        return value + advantage - advantage.mean()

# Neural Network for PPO
class PPONetwork(nn.Module):
    def __init__(self, input_shape, n_actions):
        super(PPONetwork, self).__init__()
        self.conv = nn.Sequential(
            nn.Conv2d(input_shape[0], 32, kernel_size=8, stride=4),
            nn.ReLU(),
            nn.Conv2d(32, 64, kernel_size=4, stride=2),
            nn.ReLU(),
            nn.Conv2d(64, 64, kernel_size=3, stride=1),
            nn.ReLU()
        )
        
        conv_out_size = self._get_conv_out(input_shape)
        
        self.actor = nn.Sequential(
            nn.Linear(conv_out_size, 512),
            nn.ReLU(),
            nn.Linear(512, n_actions),
            nn.Softmax(dim=-1)
        )
        
        self.critic = nn.Sequential(
            nn.Linear(conv_out_size, 512),
            nn.ReLU(),
            nn.Linear(512, 1)
        )
        
    def _get_conv_out(self, shape):
        o = self.conv(torch.zeros(1, *shape))
        return int(np.prod(o.size()))
    
    def forward(self, x):
        conv_out = self.conv(x).view(x.size()[0], -1)
        return self.actor(conv_out), self.critic(conv_out)

# Dueling DQN Agent
class DuelingDQNAgent:
    def __init__(self, state_dim, action_dim, lr=1e-4, gamma=0.99, epsilon=1.0, 
                 epsilon_min=0.01, epsilon_decay=0.995, memory_size=10000, batch_size=32):
        self.state_dim = state_dim
        self.action_dim = action_dim
        self.lr = lr
        self.gamma = gamma
        self.epsilon = epsilon
        self.epsilon_min = epsilon_min
        self.epsilon_decay = epsilon_decay
        self.batch_size = batch_size
        
        self.memory = deque(maxlen=memory_size)
        self.model = DuelingDQN(state_dim, action_dim)
        self.optimizer = optim.Adam(self.model.parameters(), lr=lr)
        self.criterion = nn.MSELoss()
        
    def remember(self, state, action, reward, next_state, done):
        self.memory.append((state, action, reward, next_state, done))
        
    def act(self, state):
        if np.random.random() <= self.epsilon:
            return random.randrange(self.action_dim)
        
        state = torch.FloatTensor(state).unsqueeze(0)
        with torch.no_grad():
            q_values = self.model(state)
        return np.argmax(q_values.detach().numpy())
    
    def replay(self):
        if len(self.memory) < self.batch_size:
            return
        
        batch = random.sample(self.memory, self.batch_size)
        states = torch.FloatTensor(np.array([e[0] for e in batch]))
        actions = torch.LongTensor([e[1] for e in batch])
        rewards = torch.FloatTensor([e[2] for e in batch])
        next_states = torch.FloatTensor(np.array([e[3] for e in batch]))
        dones = torch.BoolTensor([e[4] for e in batch])
        
        current_q_values = self.model(states).gather(1, actions.unsqueeze(1))
        with torch.no_grad():
            next_q_values = self.model(next_states).max(1)[0]
        target_q_values = rewards + (self.gamma * next_q_values * ~dones)
        
        loss = self.criterion(current_q_values.squeeze(), target_q_values)
        
        self.optimizer.zero_grad()
        loss.backward()
        self.optimizer.step()
        
        if self.epsilon > self.epsilon_min:
            self.epsilon *= self.epsilon_decay

# PPO Agent
class PPOAgent:
    def __init__(self, state_dim, action_dim, lr=3e-4, gamma=0.99, epsilon=0.2, 
                 entropy_coef=0.01, value_coef=0.5):
        self.state_dim = state_dim
        self.action_dim = action_dim
        self.gamma = gamma
        self.epsilon = epsilon
        self.entropy_coef = entropy_coef
        self.value_coef = value_coef
        
        self.model = PPONetwork(state_dim, action_dim)
        self.optimizer = optim.Adam(self.model.parameters(), lr=lr)
        
        self.memory = []
        
    def remember(self, state, action, reward, value, log_prob):
        self.memory.append((state, action, reward, value, log_prob))
        
    def act(self, state):
        state = torch.FloatTensor(state).unsqueeze(0)
        with torch.no_grad():
            probs, value = self.model(state)
        dist = Categorical(probs)
        action = dist.sample()
        return action.item(), dist.log_prob(action), value.squeeze()
    
    def train(self):
        if not self.memory:
            return
        
        states, actions, rewards, values, log_probs = zip(*self.memory)
        
        # Calculate returns and advantages
        returns = []
        R = 0
        
        for r in reversed(rewards):
            R = r + self.gamma * R
            returns.insert(0, R)
        
        returns = torch.FloatTensor(returns)
        values = torch.FloatTensor(values)
        advantages = returns - values
        
        # Normalize advantages
        advantages = (advantages - advantages.mean()) / (advantages.std() + 1e-8)
        
        # Convert to tensors
        states = torch.FloatTensor(np.array(states))
        actions = torch.LongTensor(actions)
        old_log_probs = torch.FloatTensor(log_probs)
        
        # Get new probabilities
        new_probs, new_values = self.model(states)
        dist = Categorical(new_probs)
        new_log_probs = dist.log_prob(actions)
        entropy = dist.entropy().mean()
        
        # PPO loss
        ratio = (new_log_probs - old_log_probs).exp()
        surr1 = ratio * advantages
        surr2 = torch.clamp(ratio, 1 - self.epsilon, 1 + self.epsilon) * advantages
        actor_loss = -torch.min(surr1, surr2).mean()
        
        critic_loss = F.mse_loss(new_values.squeeze(), returns)
        
        total_loss = actor_loss + self.value_coef * critic_loss - self.entropy_coef * entropy
        
        self.optimizer.zero_grad()
        total_loss.backward()
        self.optimizer.step()
        
        self.memory = []

# Training Thread
class TrainingThread(QThread):
    update_signal = pyqtSignal(dict)
    frame_signal = pyqtSignal(np.ndarray)
    
    def __init__(self, algorithm='dqn', env_name='ALE/Breakout-v5'):
        super().__init__()
        self.algorithm = algorithm
        self.env_name = env_name
        self.running = False
        self.env = None
        self.agent = None
        
    def preprocess_state(self, state):
        # Convert to CHW format and normalize
        state = state.transpose((2, 0, 1))
        state = state / 255.0
        return state
        
    def run(self):
        self.running = True
        try:
            self.env = create_env(self.env_name)
            state, info = self.env.reset()
            state = self.preprocess_state(state)
            
            n_actions = self.env.action_space.n
            state_dim = state.shape
            
            print(f"Environment: {self.env_name}")
            print(f"State shape: {state_dim}, Actions: {n_actions}")
            
            if self.algorithm == 'dqn':
                self.agent = DuelingDQNAgent(state_dim, n_actions)
            else:
                self.agent = PPOAgent(state_dim, n_actions)
                
            episode = 0
            total_reward = 0
            steps = 0
            episode_rewards = []
            
            while self.running:
                try:
                    if self.algorithm == 'dqn':
                        action = self.agent.act(state)
                        next_state, reward, terminated, truncated, info = self.env.step(action)
                        done = terminated or truncated
                        next_state = self.preprocess_state(next_state)
                        self.agent.remember(state, action, reward, next_state, done)
                        self.agent.replay()
                    else:
                        action, log_prob, value = self.agent.act(state)
                        next_state, reward, terminated, truncated, info = self.env.step(action)
                        done = terminated or truncated
                        next_state = self.preprocess_state(next_state)
                        self.agent.remember(state, action, reward, value, log_prob)
                        if done:
                            self.agent.train()
                    
                    state = next_state
                    total_reward += reward
                    steps += 1
                    
                    # Emit frame for display
                    try:
                        frame = self.env.render()
                        if frame is not None:
                            self.frame_signal.emit(frame)
                    except Exception as e:
                        # Create a placeholder frame if rendering fails
                        frame = np.zeros((210, 160, 3), dtype=np.uint8)
                        self.frame_signal.emit(frame)
                    
                    # Emit training progress
                    if steps % 10 == 0:
                        progress_data = {
                            'episode': episode,
                            'total_reward': total_reward,
                            'steps': steps,
                            'epsilon': self.agent.epsilon if self.algorithm == 'dqn' else 0.2,
                            'env_name': self.env_name,
                            'lives': info.get('lives', 0) if isinstance(info, dict) else 0
                        }
                        self.update_signal.emit(progress_data)
                    
                    if terminated or truncated:
                        episode_rewards.append(total_reward)
                        avg_reward = np.mean(episode_rewards[-10:]) if episode_rewards else total_reward
                        
                        print(f"Episode {episode}: Total Reward: {total_reward:.2f}, "
                              f"Steps: {steps}, Avg Reward (last 10): {avg_reward:.2f}")
                        
                        episode += 1
                        state, info = self.env.reset()
                        state = self.preprocess_state(state)
                        total_reward = 0
                        steps = 0
                        
                except Exception as e:
                    print(f"Error in training loop: {e}")
                    import traceback
                    traceback.print_exc()
                    break
                    
        except Exception as e:
            print(f"Error setting up environment: {e}")
            import traceback
            traceback.print_exc()
                
    def stop(self):
        self.running = False
        if self.env:
            self.env.close()

# Main Application Window
class ALE_RLApp(QMainWindow):
    def __init__(self):
        super().__init__()
        self.training_thread = None
        self.init_ui()
        
    def init_ui(self):
        self.setWindowTitle('🎮 ALE Arcade RL Training')
        self.setGeometry(100, 100, 1200, 800)
        
        central_widget = QWidget()
        self.setCentralWidget(central_widget)
        layout = QVBoxLayout(central_widget)
        
        # Title
        title = QLabel('🎮 Arcade Reinforcement Learning (ALE)')
        title.setFont(QFont('Arial', 16, QFont.Bold))
        title.setAlignment(Qt.AlignCenter)
        layout.addWidget(title)
        
        # Control Panel
        control_layout = QHBoxLayout()
        
        self.algorithm_combo = QComboBox()
        self.algorithm_combo.addItems(['Dueling DQN', 'PPO'])
        
        self.env_combo = QComboBox()
        self.env_combo.addItems([
            'ALE/Breakout-v5',
            'ALE/Pong-v5', 
            'ALE/SpaceInvaders-v5',
            'ALE/Assault-v5',
            'ALE/BeamRider-v5',
            'ALE/Enduro-v5',
            'ALE/Seaquest-v5',
            'ALE/Qbert-v5'
        ])
        
        self.start_btn = QPushButton('Start Training')
        self.start_btn.clicked.connect(self.start_training)
        
        self.stop_btn = QPushButton('Stop Training')
        self.stop_btn.clicked.connect(self.stop_training)
        self.stop_btn.setEnabled(False)
        
        control_layout.addWidget(QLabel('Algorithm:'))
        control_layout.addWidget(self.algorithm_combo)
        control_layout.addWidget(QLabel('Environment:'))
        control_layout.addWidget(self.env_combo)
        control_layout.addWidget(self.start_btn)
        control_layout.addWidget(self.stop_btn)
        control_layout.addStretch()
        
        layout.addLayout(control_layout)
        
        # Content Area
        content_layout = QHBoxLayout()
        
        # Left side - Game Display
        left_frame = QFrame()
        left_frame.setFrameStyle(QFrame.Box)
        left_layout = QVBoxLayout(left_frame)
        
        self.game_display = QLabel()
        self.game_display.setMinimumSize(400, 300)
        self.game_display.setAlignment(Qt.AlignCenter)
        self.game_display.setText('Game display will appear here\nPress "Start Training" to begin')
        self.game_display.setStyleSheet('border: 1px solid gray; background-color: black; color: white;')
        
        left_layout.addWidget(QLabel('Game Display:'))
        left_layout.addWidget(self.game_display)
        
        # Right side - Training Info
        right_frame = QFrame()
        right_frame.setFrameStyle(QFrame.Box)
        right_layout = QVBoxLayout(right_frame)
        
        # Progress bars
        self.env_label = QLabel('Environment: Not started')
        self.episode_label = QLabel('Episode: 0')
        self.reward_label = QLabel('Total Reward: 0')
        self.steps_label = QLabel('Steps: 0')
        self.epsilon_label = QLabel('Epsilon: 0')
        self.lives_label = QLabel('Lives: 0')
        
        right_layout.addWidget(self.env_label)
        right_layout.addWidget(self.episode_label)
        right_layout.addWidget(self.reward_label)
        right_layout.addWidget(self.steps_label)
        right_layout.addWidget(self.epsilon_label)
        right_layout.addWidget(self.lives_label)
        
        # Training log
        right_layout.addWidget(QLabel('Training Log:'))
        self.log_text = QTextEdit()
        self.log_text.setMaximumHeight(200)
        right_layout.addWidget(self.log_text)
        
        content_layout.addWidget(left_frame)
        content_layout.addWidget(right_frame)
        layout.addLayout(content_layout)
        
    def start_training(self):
        algorithm = 'dqn' if self.algorithm_combo.currentText() == 'Dueling DQN' else 'ppo'
        env_name = self.env_combo.currentText()
        
        self.training_thread = TrainingThread(algorithm, env_name)
        self.training_thread.update_signal.connect(self.update_training_info)
        self.training_thread.frame_signal.connect(self.update_game_display)
        self.training_thread.start()
        
        self.start_btn.setEnabled(False)
        self.stop_btn.setEnabled(True)
        
        self.log_text.append(f'Started {self.algorithm_combo.currentText()} training on {env_name}...')
        
    def stop_training(self):
        if self.training_thread:
            self.training_thread.stop()
            self.training_thread.wait()
            
        self.start_btn.setEnabled(True)
        self.stop_btn.setEnabled(False)
        self.log_text.append('Training stopped.')
        
    def update_training_info(self, data):
        self.env_label.setText(f'Environment: {data.get("env_name", "Unknown")}')
        self.episode_label.setText(f'Episode: {data["episode"]}')
        self.reward_label.setText(f'Total Reward: {data["total_reward"]:.2f}')
        self.steps_label.setText(f'Steps: {data["steps"]}')
        self.epsilon_label.setText(f'Epsilon: {data["epsilon"]:.3f}')
        self.lives_label.setText(f'Lives: {data.get("lives", 0)}')
        
    def update_game_display(self, frame):
        if frame is not None:
            try:
                h, w, ch = frame.shape
                bytes_per_line = ch * w
                q_img = QImage(frame.data, w, h, bytes_per_line, QImage.Format_RGB888)
                pixmap = QPixmap.fromImage(q_img)
                self.game_display.setPixmap(pixmap.scaled(400, 300, Qt.KeepAspectRatio))
            except Exception as e:
                print(f"Error updating display: {e}")
            
    def closeEvent(self, event):
        self.stop_training()
        event.accept()

def main():
    # Set random seeds for reproducibility
    torch.manual_seed(42)
    np.random.seed(42)
    random.seed(42)
    
    app = QApplication(sys.argv)
    window = ALE_RLApp()
    window.show()
    sys.exit(app.exec_())

if __name__ == '__main__':
    main()