RL_Models / ale_pyqt5 /app_2.py
TroglodyteDerivations's picture
Upload 32 files
2db463d verified
import sys
import os
import numpy as np
import random
from collections import deque
import gymnasium as gym
import ale_py
import torch
import torch.nn as nn
import torch.optim as optim
import torch.nn.functional as F
from torch.distributions import Categorical
from PyQt5.QtWidgets import (QApplication, QMainWindow, QWidget, QVBoxLayout,
QHBoxLayout, QPushButton, QLabel, QComboBox,
QTextEdit, QProgressBar, QTabWidget, QFrame)
from PyQt5.QtCore import QTimer, Qt, pyqtSignal, QThread
from PyQt5.QtGui import QImage, QPixmap, QFont
# Register ALE environments
gym.register_envs(ale_py)
# Environment setup
def create_env(env_name='ALE/SpaceInvaders-v5'):
"""
Create ALE environment with Gymnasium API
"""
env = gym.make(env_name, render_mode='rgb_array')
return env
# Enhanced Neural Network for Dueling DQN
class DuelingDQN(nn.Module):
def __init__(self, input_shape, n_actions):
super(DuelingDQN, self).__init__()
self.conv = nn.Sequential(
nn.Conv2d(input_shape[0], 32, kernel_size=8, stride=4),
nn.ReLU(),
nn.Conv2d(32, 64, kernel_size=4, stride=2),
nn.ReLU(),
nn.Conv2d(64, 64, kernel_size=3, stride=1),
nn.ReLU()
)
conv_out_size = self._get_conv_out(input_shape)
self.fc_advantage = nn.Sequential(
nn.Linear(conv_out_size, 256),
nn.ReLU(),
nn.Linear(256, n_actions)
)
self.fc_value = nn.Sequential(
nn.Linear(conv_out_size, 256),
nn.ReLU(),
nn.Linear(256, 1)
)
def _get_conv_out(self, shape):
o = self.conv(torch.zeros(1, *shape))
return int(np.prod(o.size()))
def forward(self, x):
conv_out = self.conv(x).view(x.size()[0], -1)
advantage = self.fc_advantage(conv_out)
value = self.fc_value(conv_out)
return value + advantage - advantage.mean()
# Enhanced Neural Network for PPO
class PPONetwork(nn.Module):
def __init__(self, input_shape, n_actions):
super(PPONetwork, self).__init__()
self.conv = nn.Sequential(
nn.Conv2d(input_shape[0], 32, kernel_size=8, stride=4),
nn.ReLU(),
nn.Conv2d(32, 64, kernel_size=4, stride=2),
nn.ReLU(),
nn.Conv2d(64, 64, kernel_size=3, stride=1),
nn.ReLU()
)
conv_out_size = self._get_conv_out(input_shape)
self.actor = nn.Sequential(
nn.Linear(conv_out_size, 256),
nn.ReLU(),
nn.Linear(256, n_actions),
nn.Softmax(dim=-1)
)
self.critic = nn.Sequential(
nn.Linear(conv_out_size, 256),
nn.ReLU(),
nn.Linear(256, 1)
)
def _get_conv_out(self, shape):
o = self.conv(torch.zeros(1, *shape))
return int(np.prod(o.size()))
def forward(self, x):
conv_out = self.conv(x).view(x.size()[0], -1)
return self.actor(conv_out), self.critic(conv_out)
# Enhanced Dueling DQN Agent with better training
class DuelingDQNAgent:
def __init__(self, state_dim, action_dim, lr=1e-4, gamma=0.99, epsilon=1.0,
epsilon_min=0.01, epsilon_decay=0.999, memory_size=50000, batch_size=32):
self.state_dim = state_dim
self.action_dim = action_dim
self.lr = lr
self.gamma = gamma
self.epsilon = epsilon
self.epsilon_min = epsilon_min
self.epsilon_decay = epsilon_decay
self.batch_size = batch_size
self.memory = deque(maxlen=memory_size)
self.model = DuelingDQN(state_dim, action_dim)
self.optimizer = optim.Adam(self.model.parameters(), lr=lr, weight_decay=1e-5)
self.criterion = nn.SmoothL1Loss() # Huber loss for better stability
# Target network for stable training
self.target_model = DuelingDQN(state_dim, action_dim)
self.update_target_network()
self.target_update_frequency = 1000
self.train_step = 0
def update_target_network(self):
self.target_model.load_state_dict(self.model.state_dict())
def remember(self, state, action, reward, next_state, done):
self.memory.append((state, action, reward, next_state, done))
def act(self, state):
if np.random.random() <= self.epsilon:
return random.randrange(self.action_dim)
state = torch.FloatTensor(state).unsqueeze(0)
with torch.no_grad():
q_values = self.model(state)
return np.argmax(q_values.detach().numpy())
def replay(self):
if len(self.memory) < self.batch_size:
return
batch = random.sample(self.memory, self.batch_size)
states = torch.FloatTensor(np.array([e[0] for e in batch]))
actions = torch.LongTensor([e[1] for e in batch])
rewards = torch.FloatTensor([e[2] for e in batch])
next_states = torch.FloatTensor(np.array([e[3] for e in batch]))
dones = torch.BoolTensor([e[4] for e in batch])
current_q_values = self.model(states).gather(1, actions.unsqueeze(1))
with torch.no_grad():
next_actions = self.model(next_states).max(1)[1]
next_q_values = self.target_model(next_states).gather(1, next_actions.unsqueeze(1)).squeeze()
target_q_values = rewards + (self.gamma * next_q_values * ~dones)
loss = self.criterion(current_q_values.squeeze(), target_q_values)
self.optimizer.zero_grad()
loss.backward()
# Gradient clipping
torch.nn.utils.clip_grad_norm_(self.model.parameters(), 1.0)
self.optimizer.step()
# Update target network periodically
self.train_step += 1
if self.train_step % self.target_update_frequency == 0:
self.update_target_network()
if self.epsilon > self.epsilon_min:
self.epsilon *= self.epsilon_decay
# Enhanced PPO Agent
class PPOAgent:
def __init__(self, state_dim, action_dim, lr=3e-4, gamma=0.99, epsilon=0.2,
entropy_coef=0.01, value_coef=0.5, ppo_epochs=4, batch_size=64):
self.state_dim = state_dim
self.action_dim = action_dim
self.gamma = gamma
self.epsilon = epsilon
self.entropy_coef = entropy_coef
self.value_coef = value_coef
self.ppo_epochs = ppo_epochs
self.batch_size = batch_size
self.model = PPONetwork(state_dim, action_dim)
self.optimizer = optim.Adam(self.model.parameters(), lr=lr)
self.memory = []
def remember(self, state, action, reward, value, log_prob):
self.memory.append((state, action, reward, value, log_prob))
def act(self, state):
state = torch.FloatTensor(state).unsqueeze(0)
with torch.no_grad():
probs, value = self.model(state)
dist = Categorical(probs)
action = dist.sample()
return action.item(), dist.log_prob(action), value.squeeze()
def train(self):
if len(self.memory) < self.batch_size:
return
states, actions, rewards, values, log_probs = zip(*self.memory)
# Calculate returns and advantages
returns = []
R = 0
for r in reversed(rewards):
R = r + self.gamma * R
returns.insert(0, R)
returns = torch.FloatTensor(returns)
old_values = torch.FloatTensor(values)
advantages = returns - old_values
# Normalize advantages
advantages = (advantages - advantages.mean()) / (advantages.std() + 1e-8)
# Convert to tensors
states_tensor = torch.FloatTensor(np.array(states))
actions_tensor = torch.LongTensor(actions)
old_log_probs = torch.FloatTensor(log_probs)
# PPO epochs
for _ in range(self.ppo_epochs):
# Get new probabilities
new_probs, new_values = self.model(states_tensor)
dist = Categorical(new_probs)
new_log_probs = dist.log_prob(actions_tensor)
entropy = dist.entropy().mean()
# PPO loss
ratio = (new_log_probs - old_log_probs).exp()
surr1 = ratio * advantages
surr2 = torch.clamp(ratio, 1 - self.epsilon, 1 + self.epsilon) * advantages
actor_loss = -torch.min(surr1, surr2).mean()
critic_loss = F.mse_loss(new_values.squeeze(), returns)
total_loss = actor_loss + self.value_coef * critic_loss - self.entropy_coef * entropy
self.optimizer.zero_grad()
total_loss.backward()
torch.nn.utils.clip_grad_norm_(self.model.parameters(), 0.5)
self.optimizer.step()
self.memory = []
# Enhanced Training Thread with better state processing
class TrainingThread(QThread):
update_signal = pyqtSignal(dict)
frame_signal = pyqtSignal(np.ndarray)
def __init__(self, algorithm='dqn', env_name='ALE/Breakout-v5'):
super().__init__()
self.algorithm = algorithm
self.env_name = env_name
self.running = False
self.env = None
self.agent = None
def preprocess_state(self, state):
# Convert to CHW format, normalize, and convert to grayscale
if len(state.shape) == 3:
# Convert to grayscale and resize for faster processing
state = state.mean(axis=2, keepdims=True) # Convert to grayscale
state = state.transpose((2, 0, 1))
state = state / 255.0
return state
def run(self):
self.running = True
try:
self.env = create_env(self.env_name)
state, info = self.env.reset()
state = self.preprocess_state(state)
n_actions = self.env.action_space.n
state_dim = state.shape
print(f"๐ŸŽฎ Training on: {self.env_name}")
print(f"๐Ÿ“Š State shape: {state_dim}, Actions: {n_actions}")
print(f"๐Ÿค– Algorithm: {self.algorithm}")
if self.algorithm == 'dqn':
self.agent = DuelingDQNAgent(state_dim, n_actions)
else:
self.agent = PPOAgent(state_dim, n_actions)
episode = 0
total_reward = 0
steps = 0
episode_rewards = []
best_reward = -float('inf')
while self.running:
try:
if self.algorithm == 'dqn':
action = self.agent.act(state)
next_state, reward, terminated, truncated, info = self.env.step(action)
done = terminated or truncated
next_state = self.preprocess_state(next_state)
self.agent.remember(state, action, reward, next_state, done)
self.agent.replay()
else:
action, log_prob, value = self.agent.act(state)
next_state, reward, terminated, truncated, info = self.env.step(action)
done = terminated or truncated
next_state = self.preprocess_state(next_state)
self.agent.remember(state, action, reward, value, log_prob)
if done:
self.agent.train()
state = next_state
total_reward += reward
steps += 1
# Emit frame for display
try:
frame = self.env.render()
if frame is not None:
self.frame_signal.emit(frame)
except Exception as e:
# Create a placeholder frame if rendering fails
frame = np.zeros((210, 160, 3), dtype=np.uint8)
self.frame_signal.emit(frame)
# Emit training progress more frequently for better feedback
if steps % 5 == 0:
avg_reward = np.mean(episode_rewards[-10:]) if episode_rewards else total_reward
progress_data = {
'episode': episode,
'total_reward': total_reward,
'steps': steps,
'epsilon': self.agent.epsilon if self.algorithm == 'dqn' else 0.2,
'env_name': self.env_name,
'lives': info.get('lives', 0) if isinstance(info, dict) else 0,
'avg_reward': avg_reward,
'best_reward': best_reward
}
self.update_signal.emit(progress_data)
if terminated or truncated:
episode_rewards.append(total_reward)
if total_reward > best_reward:
best_reward = total_reward
avg_reward = np.mean(episode_rewards[-10:]) if episode_rewards else total_reward
print(f"๐ŸŽฏ Episode {episode}: Reward: {total_reward:.1f}, "
f"Steps: {steps}, Avg (last 10): {avg_reward:.1f}, "
f"Best: {best_reward:.1f}, Epsilon: {self.agent.epsilon:.3f}")
episode += 1
state, info = self.env.reset()
state = self.preprocess_state(state)
total_reward = 0
steps = 0
except Exception as e:
print(f"โŒ Error in training loop: {e}")
import traceback
traceback.print_exc()
break
except Exception as e:
print(f"โŒ Error setting up environment: {e}")
import traceback
traceback.print_exc()
def stop(self):
self.running = False
if self.env:
self.env.close()
# Enhanced Main Application Window
class ALE_RLApp(QMainWindow):
def __init__(self):
super().__init__()
self.training_thread = None
self.init_ui()
def init_ui(self):
self.setWindowTitle('๐ŸŽฎ ALE Arcade RL Training - Enhanced')
self.setGeometry(100, 100, 1200, 800)
central_widget = QWidget()
self.setCentralWidget(central_widget)
layout = QVBoxLayout(central_widget)
# Title
title = QLabel('๐ŸŽฎ Arcade Reinforcement Learning (ALE) - Enhanced Training')
title.setFont(QFont('Arial', 16, QFont.Bold))
title.setAlignment(Qt.AlignCenter)
layout.addWidget(title)
# Control Panel
control_layout = QHBoxLayout()
self.algorithm_combo = QComboBox()
self.algorithm_combo.addItems(['Dueling DQN', 'PPO'])
self.env_combo = QComboBox()
self.env_combo.addItems([
'ALE/Breakout-v5',
'ALE/Pong-v5',
'ALE/SpaceInvaders-v5',
'ALE/Assault-v5',
'ALE/BeamRider-v5',
'ALE/Enduro-v5',
'ALE/Seaquest-v5',
'ALE/Qbert-v5'
])
self.start_btn = QPushButton('๐Ÿš€ Start Training')
self.start_btn.clicked.connect(self.start_training)
self.stop_btn = QPushButton('โน๏ธ Stop Training')
self.stop_btn.clicked.connect(self.stop_training)
self.stop_btn.setEnabled(False)
control_layout.addWidget(QLabel('๐Ÿค– Algorithm:'))
control_layout.addWidget(self.algorithm_combo)
control_layout.addWidget(QLabel('๐ŸŽฎ Environment:'))
control_layout.addWidget(self.env_combo)
control_layout.addWidget(self.start_btn)
control_layout.addWidget(self.stop_btn)
control_layout.addStretch()
layout.addLayout(control_layout)
# Content Area
content_layout = QHBoxLayout()
# Left side - Game Display
left_frame = QFrame()
left_frame.setFrameStyle(QFrame.Box)
left_layout = QVBoxLayout(left_frame)
self.game_display = QLabel()
self.game_display.setMinimumSize(400, 300)
self.game_display.setAlignment(Qt.AlignCenter)
self.game_display.setText('Game display will appear here\nPress "๐Ÿš€ Start Training" to begin')
self.game_display.setStyleSheet('border: 1px solid gray; background-color: black; color: white; font-size: 14px;')
left_layout.addWidget(QLabel('๐ŸŽฎ Game Display:'))
left_layout.addWidget(self.game_display)
# Right side - Training Info
right_frame = QFrame()
right_frame.setFrameStyle(QFrame.Box)
right_layout = QVBoxLayout(right_frame)
# Progress bars with better styling
self.env_label = QLabel('๐ŸŽฏ Environment: Not started')
self.episode_label = QLabel('๐Ÿ“ˆ Episode: 0')
self.reward_label = QLabel('๐Ÿ† Total Reward: 0')
self.avg_reward_label = QLabel('๐Ÿ“Š Avg Reward (last 10): 0')
self.best_reward_label = QLabel('โญ Best Reward: 0')
self.steps_label = QLabel('โฑ๏ธ Steps: 0')
self.epsilon_label = QLabel('๐ŸŽฒ Epsilon: 0')
self.lives_label = QLabel('โค๏ธ Lives: 0')
# Style the labels
for label in [self.env_label, self.episode_label, self.reward_label,
self.avg_reward_label, self.best_reward_label, self.steps_label,
self.epsilon_label, self.lives_label]:
label.setStyleSheet('font-weight: bold; font-size: 12px;')
right_layout.addWidget(self.env_label)
right_layout.addWidget(self.episode_label)
right_layout.addWidget(self.reward_label)
right_layout.addWidget(self.avg_reward_label)
right_layout.addWidget(self.best_reward_label)
right_layout.addWidget(self.steps_label)
right_layout.addWidget(self.epsilon_label)
right_layout.addWidget(self.lives_label)
# Training log
right_layout.addWidget(QLabel('๐Ÿ“ Training Log:'))
self.log_text = QTextEdit()
self.log_text.setMaximumHeight(200)
self.log_text.setStyleSheet('font-family: monospace; font-size: 10px;')
right_layout.addWidget(self.log_text)
content_layout.addWidget(left_frame)
content_layout.addWidget(right_frame)
layout.addLayout(content_layout)
def start_training(self):
algorithm = 'dqn' if self.algorithm_combo.currentText() == 'Dueling DQN' else 'ppo'
env_name = self.env_combo.currentText()
self.training_thread = TrainingThread(algorithm, env_name)
self.training_thread.update_signal.connect(self.update_training_info)
self.training_thread.frame_signal.connect(self.update_game_display)
self.training_thread.start()
self.start_btn.setEnabled(False)
self.stop_btn.setEnabled(True)
self.log_text.append(f'๐Ÿš€ Started {self.algorithm_combo.currentText()} training on {env_name}...')
def stop_training(self):
if self.training_thread:
self.training_thread.stop()
self.training_thread.wait()
self.start_btn.setEnabled(True)
self.stop_btn.setEnabled(False)
self.log_text.append('โน๏ธ Training stopped.')
def update_training_info(self, data):
self.env_label.setText(f'๐ŸŽฏ Environment: {data.get("env_name", "Unknown")}')
self.episode_label.setText(f'๐Ÿ“ˆ Episode: {data["episode"]}')
self.reward_label.setText(f'๐Ÿ† Total Reward: {data["total_reward"]:.1f}')
self.avg_reward_label.setText(f'๐Ÿ“Š Avg Reward (last 10): {data.get("avg_reward", 0):.1f}')
self.best_reward_label.setText(f'โญ Best Reward: {data.get("best_reward", 0):.1f}')
self.steps_label.setText(f'โฑ๏ธ Steps: {data["steps"]}')
self.epsilon_label.setText(f'๐ŸŽฒ Epsilon: {data["epsilon"]:.3f}')
self.lives_label.setText(f'โค๏ธ Lives: {data.get("lives", 0)}')
def update_game_display(self, frame):
if frame is not None:
try:
h, w, ch = frame.shape
bytes_per_line = ch * w
q_img = QImage(frame.data, w, h, bytes_per_line, QImage.Format_RGB888)
pixmap = QPixmap.fromImage(q_img)
self.game_display.setPixmap(pixmap.scaled(400, 300, Qt.KeepAspectRatio))
except Exception as e:
print(f"Error updating display: {e}")
def closeEvent(self, event):
self.stop_training()
event.accept()
def main():
# Set random seeds for reproducibility
torch.manual_seed(42)
np.random.seed(42)
random.seed(42)
app = QApplication(sys.argv)
window = ALE_RLApp()
window.show()
sys.exit(app.exec_())
if __name__ == '__main__':
main()