TunahanGokcimen commited on
Commit
fc896b2
·
verified ·
1 Parent(s): 74c48c8

Training complete

Browse files
Files changed (1) hide show
  1. README.md +68 -0
README.md ADDED
@@ -0,0 +1,68 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ license: apache-2.0
3
+ base_model: albert/albert-base-v2
4
+ tags:
5
+ - generated_from_trainer
6
+ metrics:
7
+ - precision
8
+ - recall
9
+ - f1
10
+ - accuracy
11
+ model-index:
12
+ - name: albert-base-v2-cased-ner
13
+ results: []
14
+ ---
15
+
16
+ <!-- This model card has been generated automatically according to the information the Trainer had access to. You
17
+ should probably proofread and complete it, then remove this comment. -->
18
+
19
+ # albert-base-v2-cased-ner
20
+
21
+ This model is a fine-tuned version of [albert/albert-base-v2](https://huggingface.co/albert/albert-base-v2) on an unknown dataset.
22
+ It achieves the following results on the evaluation set:
23
+ - Loss: 0.1912
24
+ - Precision: 0.7496
25
+ - Recall: 0.8064
26
+ - F1: 0.7770
27
+ - Accuracy: 0.9384
28
+
29
+ ## Model description
30
+
31
+ More information needed
32
+
33
+ ## Intended uses & limitations
34
+
35
+ More information needed
36
+
37
+ ## Training and evaluation data
38
+
39
+ More information needed
40
+
41
+ ## Training procedure
42
+
43
+ ### Training hyperparameters
44
+
45
+ The following hyperparameters were used during training:
46
+ - learning_rate: 2e-05
47
+ - train_batch_size: 8
48
+ - eval_batch_size: 8
49
+ - seed: 42
50
+ - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
51
+ - lr_scheduler_type: linear
52
+ - num_epochs: 3
53
+
54
+ ### Training results
55
+
56
+ | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy |
57
+ |:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:|
58
+ | 0.225 | 1.0 | 2078 | 0.2281 | 0.6778 | 0.7389 | 0.7070 | 0.9224 |
59
+ | 0.1849 | 2.0 | 4156 | 0.1909 | 0.7194 | 0.8032 | 0.7590 | 0.9360 |
60
+ | 0.1379 | 3.0 | 6234 | 0.1912 | 0.7496 | 0.8064 | 0.7770 | 0.9384 |
61
+
62
+
63
+ ### Framework versions
64
+
65
+ - Transformers 4.35.2
66
+ - Pytorch 2.1.0+cu121
67
+ - Datasets 2.16.1
68
+ - Tokenizers 0.15.1