Upload 6 files
Browse files- dev.tsv +0 -0
- final-model.pt +3 -0
- loss.tsv +11 -0
- test.tsv +0 -0
- training.log +525 -0
- weights.txt +0 -0
dev.tsv
ADDED
|
The diff for this file is too large to render.
See raw diff
|
|
|
final-model.pt
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:6449d4d9b3888c8162027937aac17c089a102cb104e955dd269860fa572def9f
|
| 3 |
+
size 463652197
|
loss.tsv
ADDED
|
@@ -0,0 +1,11 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
EPOCH TIMESTAMP BAD_EPOCHS LEARNING_RATE TRAIN_LOSS DEV_LOSS DEV_PRECISION DEV_RECALL DEV_F1 DEV_ACCURACY
|
| 2 |
+
1 19:57:09 0 0.0100 0.2008437729789472 0.09606283158063889 0.7451 0.7602 0.7526 0.6768
|
| 3 |
+
2 20:09:48 0 0.0100 0.11846380610295361 0.07920133322477341 0.7996 0.8321 0.8155 0.7477
|
| 4 |
+
3 20:21:56 0 0.0100 0.09812578978029159 0.07603894919157028 0.8276 0.8448 0.8361 0.7699
|
| 5 |
+
4 20:37:53 1 0.0100 0.0853089421505088 0.07134225219488144 0.844 0.8235 0.8336 0.7731
|
| 6 |
+
5 20:51:56 0 0.0100 0.07707492752456371 0.06873895972967148 0.8429 0.8531 0.848 0.7903
|
| 7 |
+
6 21:04:16 0 0.0100 0.06804995682682495 0.05917559936642647 0.8827 0.8723 0.8775 0.8199
|
| 8 |
+
7 21:19:27 0 0.0100 0.061280448328724924 0.061052411794662476 0.8729 0.8901 0.8814 0.8264
|
| 9 |
+
8 21:31:53 1 0.0100 0.0552519113601074 0.06685522198677063 0.8813 0.8804 0.8808 0.8263
|
| 10 |
+
9 21:44:13 0 0.0100 0.04966619410573325 0.057355064898729324 0.8888 0.8957 0.8922 0.8432
|
| 11 |
+
10 22:02:22 1 0.0100 0.044047680323688256 0.06379110366106033 0.9023 0.8736 0.8877 0.8323
|
test.tsv
ADDED
|
The diff for this file is too large to render.
See raw diff
|
|
|
training.log
ADDED
|
@@ -0,0 +1,525 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
2022-10-26 19:45:19,393 ----------------------------------------------------------------------------------------------------
|
| 2 |
+
2022-10-26 19:45:19,398 Model: "SequenceTagger(
|
| 3 |
+
(embeddings): TransformerWordEmbeddings(
|
| 4 |
+
(model): BertModel(
|
| 5 |
+
(embeddings): BertEmbeddings(
|
| 6 |
+
(word_embeddings): Embedding(35000, 768, padding_idx=0)
|
| 7 |
+
(position_embeddings): Embedding(512, 768)
|
| 8 |
+
(token_type_embeddings): Embedding(2, 768)
|
| 9 |
+
(LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)
|
| 10 |
+
(dropout): Dropout(p=0.1, inplace=False)
|
| 11 |
+
)
|
| 12 |
+
(encoder): BertEncoder(
|
| 13 |
+
(layer): ModuleList(
|
| 14 |
+
(0): BertLayer(
|
| 15 |
+
(attention): BertAttention(
|
| 16 |
+
(self): BertSelfAttention(
|
| 17 |
+
(query): Linear(in_features=768, out_features=768, bias=True)
|
| 18 |
+
(key): Linear(in_features=768, out_features=768, bias=True)
|
| 19 |
+
(value): Linear(in_features=768, out_features=768, bias=True)
|
| 20 |
+
(dropout): Dropout(p=0.1, inplace=False)
|
| 21 |
+
)
|
| 22 |
+
(output): BertSelfOutput(
|
| 23 |
+
(dense): Linear(in_features=768, out_features=768, bias=True)
|
| 24 |
+
(LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)
|
| 25 |
+
(dropout): Dropout(p=0.1, inplace=False)
|
| 26 |
+
)
|
| 27 |
+
)
|
| 28 |
+
(intermediate): BertIntermediate(
|
| 29 |
+
(dense): Linear(in_features=768, out_features=3072, bias=True)
|
| 30 |
+
(intermediate_act_fn): GELUActivation()
|
| 31 |
+
)
|
| 32 |
+
(output): BertOutput(
|
| 33 |
+
(dense): Linear(in_features=3072, out_features=768, bias=True)
|
| 34 |
+
(LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)
|
| 35 |
+
(dropout): Dropout(p=0.1, inplace=False)
|
| 36 |
+
)
|
| 37 |
+
)
|
| 38 |
+
(1): BertLayer(
|
| 39 |
+
(attention): BertAttention(
|
| 40 |
+
(self): BertSelfAttention(
|
| 41 |
+
(query): Linear(in_features=768, out_features=768, bias=True)
|
| 42 |
+
(key): Linear(in_features=768, out_features=768, bias=True)
|
| 43 |
+
(value): Linear(in_features=768, out_features=768, bias=True)
|
| 44 |
+
(dropout): Dropout(p=0.1, inplace=False)
|
| 45 |
+
)
|
| 46 |
+
(output): BertSelfOutput(
|
| 47 |
+
(dense): Linear(in_features=768, out_features=768, bias=True)
|
| 48 |
+
(LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)
|
| 49 |
+
(dropout): Dropout(p=0.1, inplace=False)
|
| 50 |
+
)
|
| 51 |
+
)
|
| 52 |
+
(intermediate): BertIntermediate(
|
| 53 |
+
(dense): Linear(in_features=768, out_features=3072, bias=True)
|
| 54 |
+
(intermediate_act_fn): GELUActivation()
|
| 55 |
+
)
|
| 56 |
+
(output): BertOutput(
|
| 57 |
+
(dense): Linear(in_features=3072, out_features=768, bias=True)
|
| 58 |
+
(LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)
|
| 59 |
+
(dropout): Dropout(p=0.1, inplace=False)
|
| 60 |
+
)
|
| 61 |
+
)
|
| 62 |
+
(2): BertLayer(
|
| 63 |
+
(attention): BertAttention(
|
| 64 |
+
(self): BertSelfAttention(
|
| 65 |
+
(query): Linear(in_features=768, out_features=768, bias=True)
|
| 66 |
+
(key): Linear(in_features=768, out_features=768, bias=True)
|
| 67 |
+
(value): Linear(in_features=768, out_features=768, bias=True)
|
| 68 |
+
(dropout): Dropout(p=0.1, inplace=False)
|
| 69 |
+
)
|
| 70 |
+
(output): BertSelfOutput(
|
| 71 |
+
(dense): Linear(in_features=768, out_features=768, bias=True)
|
| 72 |
+
(LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)
|
| 73 |
+
(dropout): Dropout(p=0.1, inplace=False)
|
| 74 |
+
)
|
| 75 |
+
)
|
| 76 |
+
(intermediate): BertIntermediate(
|
| 77 |
+
(dense): Linear(in_features=768, out_features=3072, bias=True)
|
| 78 |
+
(intermediate_act_fn): GELUActivation()
|
| 79 |
+
)
|
| 80 |
+
(output): BertOutput(
|
| 81 |
+
(dense): Linear(in_features=3072, out_features=768, bias=True)
|
| 82 |
+
(LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)
|
| 83 |
+
(dropout): Dropout(p=0.1, inplace=False)
|
| 84 |
+
)
|
| 85 |
+
)
|
| 86 |
+
(3): BertLayer(
|
| 87 |
+
(attention): BertAttention(
|
| 88 |
+
(self): BertSelfAttention(
|
| 89 |
+
(query): Linear(in_features=768, out_features=768, bias=True)
|
| 90 |
+
(key): Linear(in_features=768, out_features=768, bias=True)
|
| 91 |
+
(value): Linear(in_features=768, out_features=768, bias=True)
|
| 92 |
+
(dropout): Dropout(p=0.1, inplace=False)
|
| 93 |
+
)
|
| 94 |
+
(output): BertSelfOutput(
|
| 95 |
+
(dense): Linear(in_features=768, out_features=768, bias=True)
|
| 96 |
+
(LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)
|
| 97 |
+
(dropout): Dropout(p=0.1, inplace=False)
|
| 98 |
+
)
|
| 99 |
+
)
|
| 100 |
+
(intermediate): BertIntermediate(
|
| 101 |
+
(dense): Linear(in_features=768, out_features=3072, bias=True)
|
| 102 |
+
(intermediate_act_fn): GELUActivation()
|
| 103 |
+
)
|
| 104 |
+
(output): BertOutput(
|
| 105 |
+
(dense): Linear(in_features=3072, out_features=768, bias=True)
|
| 106 |
+
(LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)
|
| 107 |
+
(dropout): Dropout(p=0.1, inplace=False)
|
| 108 |
+
)
|
| 109 |
+
)
|
| 110 |
+
(4): BertLayer(
|
| 111 |
+
(attention): BertAttention(
|
| 112 |
+
(self): BertSelfAttention(
|
| 113 |
+
(query): Linear(in_features=768, out_features=768, bias=True)
|
| 114 |
+
(key): Linear(in_features=768, out_features=768, bias=True)
|
| 115 |
+
(value): Linear(in_features=768, out_features=768, bias=True)
|
| 116 |
+
(dropout): Dropout(p=0.1, inplace=False)
|
| 117 |
+
)
|
| 118 |
+
(output): BertSelfOutput(
|
| 119 |
+
(dense): Linear(in_features=768, out_features=768, bias=True)
|
| 120 |
+
(LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)
|
| 121 |
+
(dropout): Dropout(p=0.1, inplace=False)
|
| 122 |
+
)
|
| 123 |
+
)
|
| 124 |
+
(intermediate): BertIntermediate(
|
| 125 |
+
(dense): Linear(in_features=768, out_features=3072, bias=True)
|
| 126 |
+
(intermediate_act_fn): GELUActivation()
|
| 127 |
+
)
|
| 128 |
+
(output): BertOutput(
|
| 129 |
+
(dense): Linear(in_features=3072, out_features=768, bias=True)
|
| 130 |
+
(LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)
|
| 131 |
+
(dropout): Dropout(p=0.1, inplace=False)
|
| 132 |
+
)
|
| 133 |
+
)
|
| 134 |
+
(5): BertLayer(
|
| 135 |
+
(attention): BertAttention(
|
| 136 |
+
(self): BertSelfAttention(
|
| 137 |
+
(query): Linear(in_features=768, out_features=768, bias=True)
|
| 138 |
+
(key): Linear(in_features=768, out_features=768, bias=True)
|
| 139 |
+
(value): Linear(in_features=768, out_features=768, bias=True)
|
| 140 |
+
(dropout): Dropout(p=0.1, inplace=False)
|
| 141 |
+
)
|
| 142 |
+
(output): BertSelfOutput(
|
| 143 |
+
(dense): Linear(in_features=768, out_features=768, bias=True)
|
| 144 |
+
(LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)
|
| 145 |
+
(dropout): Dropout(p=0.1, inplace=False)
|
| 146 |
+
)
|
| 147 |
+
)
|
| 148 |
+
(intermediate): BertIntermediate(
|
| 149 |
+
(dense): Linear(in_features=768, out_features=3072, bias=True)
|
| 150 |
+
(intermediate_act_fn): GELUActivation()
|
| 151 |
+
)
|
| 152 |
+
(output): BertOutput(
|
| 153 |
+
(dense): Linear(in_features=3072, out_features=768, bias=True)
|
| 154 |
+
(LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)
|
| 155 |
+
(dropout): Dropout(p=0.1, inplace=False)
|
| 156 |
+
)
|
| 157 |
+
)
|
| 158 |
+
(6): BertLayer(
|
| 159 |
+
(attention): BertAttention(
|
| 160 |
+
(self): BertSelfAttention(
|
| 161 |
+
(query): Linear(in_features=768, out_features=768, bias=True)
|
| 162 |
+
(key): Linear(in_features=768, out_features=768, bias=True)
|
| 163 |
+
(value): Linear(in_features=768, out_features=768, bias=True)
|
| 164 |
+
(dropout): Dropout(p=0.1, inplace=False)
|
| 165 |
+
)
|
| 166 |
+
(output): BertSelfOutput(
|
| 167 |
+
(dense): Linear(in_features=768, out_features=768, bias=True)
|
| 168 |
+
(LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)
|
| 169 |
+
(dropout): Dropout(p=0.1, inplace=False)
|
| 170 |
+
)
|
| 171 |
+
)
|
| 172 |
+
(intermediate): BertIntermediate(
|
| 173 |
+
(dense): Linear(in_features=768, out_features=3072, bias=True)
|
| 174 |
+
(intermediate_act_fn): GELUActivation()
|
| 175 |
+
)
|
| 176 |
+
(output): BertOutput(
|
| 177 |
+
(dense): Linear(in_features=3072, out_features=768, bias=True)
|
| 178 |
+
(LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)
|
| 179 |
+
(dropout): Dropout(p=0.1, inplace=False)
|
| 180 |
+
)
|
| 181 |
+
)
|
| 182 |
+
(7): BertLayer(
|
| 183 |
+
(attention): BertAttention(
|
| 184 |
+
(self): BertSelfAttention(
|
| 185 |
+
(query): Linear(in_features=768, out_features=768, bias=True)
|
| 186 |
+
(key): Linear(in_features=768, out_features=768, bias=True)
|
| 187 |
+
(value): Linear(in_features=768, out_features=768, bias=True)
|
| 188 |
+
(dropout): Dropout(p=0.1, inplace=False)
|
| 189 |
+
)
|
| 190 |
+
(output): BertSelfOutput(
|
| 191 |
+
(dense): Linear(in_features=768, out_features=768, bias=True)
|
| 192 |
+
(LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)
|
| 193 |
+
(dropout): Dropout(p=0.1, inplace=False)
|
| 194 |
+
)
|
| 195 |
+
)
|
| 196 |
+
(intermediate): BertIntermediate(
|
| 197 |
+
(dense): Linear(in_features=768, out_features=3072, bias=True)
|
| 198 |
+
(intermediate_act_fn): GELUActivation()
|
| 199 |
+
)
|
| 200 |
+
(output): BertOutput(
|
| 201 |
+
(dense): Linear(in_features=3072, out_features=768, bias=True)
|
| 202 |
+
(LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)
|
| 203 |
+
(dropout): Dropout(p=0.1, inplace=False)
|
| 204 |
+
)
|
| 205 |
+
)
|
| 206 |
+
(8): BertLayer(
|
| 207 |
+
(attention): BertAttention(
|
| 208 |
+
(self): BertSelfAttention(
|
| 209 |
+
(query): Linear(in_features=768, out_features=768, bias=True)
|
| 210 |
+
(key): Linear(in_features=768, out_features=768, bias=True)
|
| 211 |
+
(value): Linear(in_features=768, out_features=768, bias=True)
|
| 212 |
+
(dropout): Dropout(p=0.1, inplace=False)
|
| 213 |
+
)
|
| 214 |
+
(output): BertSelfOutput(
|
| 215 |
+
(dense): Linear(in_features=768, out_features=768, bias=True)
|
| 216 |
+
(LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)
|
| 217 |
+
(dropout): Dropout(p=0.1, inplace=False)
|
| 218 |
+
)
|
| 219 |
+
)
|
| 220 |
+
(intermediate): BertIntermediate(
|
| 221 |
+
(dense): Linear(in_features=768, out_features=3072, bias=True)
|
| 222 |
+
(intermediate_act_fn): GELUActivation()
|
| 223 |
+
)
|
| 224 |
+
(output): BertOutput(
|
| 225 |
+
(dense): Linear(in_features=3072, out_features=768, bias=True)
|
| 226 |
+
(LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)
|
| 227 |
+
(dropout): Dropout(p=0.1, inplace=False)
|
| 228 |
+
)
|
| 229 |
+
)
|
| 230 |
+
(9): BertLayer(
|
| 231 |
+
(attention): BertAttention(
|
| 232 |
+
(self): BertSelfAttention(
|
| 233 |
+
(query): Linear(in_features=768, out_features=768, bias=True)
|
| 234 |
+
(key): Linear(in_features=768, out_features=768, bias=True)
|
| 235 |
+
(value): Linear(in_features=768, out_features=768, bias=True)
|
| 236 |
+
(dropout): Dropout(p=0.1, inplace=False)
|
| 237 |
+
)
|
| 238 |
+
(output): BertSelfOutput(
|
| 239 |
+
(dense): Linear(in_features=768, out_features=768, bias=True)
|
| 240 |
+
(LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)
|
| 241 |
+
(dropout): Dropout(p=0.1, inplace=False)
|
| 242 |
+
)
|
| 243 |
+
)
|
| 244 |
+
(intermediate): BertIntermediate(
|
| 245 |
+
(dense): Linear(in_features=768, out_features=3072, bias=True)
|
| 246 |
+
(intermediate_act_fn): GELUActivation()
|
| 247 |
+
)
|
| 248 |
+
(output): BertOutput(
|
| 249 |
+
(dense): Linear(in_features=3072, out_features=768, bias=True)
|
| 250 |
+
(LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)
|
| 251 |
+
(dropout): Dropout(p=0.1, inplace=False)
|
| 252 |
+
)
|
| 253 |
+
)
|
| 254 |
+
(10): BertLayer(
|
| 255 |
+
(attention): BertAttention(
|
| 256 |
+
(self): BertSelfAttention(
|
| 257 |
+
(query): Linear(in_features=768, out_features=768, bias=True)
|
| 258 |
+
(key): Linear(in_features=768, out_features=768, bias=True)
|
| 259 |
+
(value): Linear(in_features=768, out_features=768, bias=True)
|
| 260 |
+
(dropout): Dropout(p=0.1, inplace=False)
|
| 261 |
+
)
|
| 262 |
+
(output): BertSelfOutput(
|
| 263 |
+
(dense): Linear(in_features=768, out_features=768, bias=True)
|
| 264 |
+
(LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)
|
| 265 |
+
(dropout): Dropout(p=0.1, inplace=False)
|
| 266 |
+
)
|
| 267 |
+
)
|
| 268 |
+
(intermediate): BertIntermediate(
|
| 269 |
+
(dense): Linear(in_features=768, out_features=3072, bias=True)
|
| 270 |
+
(intermediate_act_fn): GELUActivation()
|
| 271 |
+
)
|
| 272 |
+
(output): BertOutput(
|
| 273 |
+
(dense): Linear(in_features=3072, out_features=768, bias=True)
|
| 274 |
+
(LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)
|
| 275 |
+
(dropout): Dropout(p=0.1, inplace=False)
|
| 276 |
+
)
|
| 277 |
+
)
|
| 278 |
+
(11): BertLayer(
|
| 279 |
+
(attention): BertAttention(
|
| 280 |
+
(self): BertSelfAttention(
|
| 281 |
+
(query): Linear(in_features=768, out_features=768, bias=True)
|
| 282 |
+
(key): Linear(in_features=768, out_features=768, bias=True)
|
| 283 |
+
(value): Linear(in_features=768, out_features=768, bias=True)
|
| 284 |
+
(dropout): Dropout(p=0.1, inplace=False)
|
| 285 |
+
)
|
| 286 |
+
(output): BertSelfOutput(
|
| 287 |
+
(dense): Linear(in_features=768, out_features=768, bias=True)
|
| 288 |
+
(LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)
|
| 289 |
+
(dropout): Dropout(p=0.1, inplace=False)
|
| 290 |
+
)
|
| 291 |
+
)
|
| 292 |
+
(intermediate): BertIntermediate(
|
| 293 |
+
(dense): Linear(in_features=768, out_features=3072, bias=True)
|
| 294 |
+
(intermediate_act_fn): GELUActivation()
|
| 295 |
+
)
|
| 296 |
+
(output): BertOutput(
|
| 297 |
+
(dense): Linear(in_features=3072, out_features=768, bias=True)
|
| 298 |
+
(LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)
|
| 299 |
+
(dropout): Dropout(p=0.1, inplace=False)
|
| 300 |
+
)
|
| 301 |
+
)
|
| 302 |
+
)
|
| 303 |
+
)
|
| 304 |
+
(pooler): BertPooler(
|
| 305 |
+
(dense): Linear(in_features=768, out_features=768, bias=True)
|
| 306 |
+
(activation): Tanh()
|
| 307 |
+
)
|
| 308 |
+
)
|
| 309 |
+
)
|
| 310 |
+
(word_dropout): WordDropout(p=0.05)
|
| 311 |
+
(locked_dropout): LockedDropout(p=0.5)
|
| 312 |
+
(embedding2nn): Linear(in_features=768, out_features=768, bias=True)
|
| 313 |
+
(rnn): LSTM(768, 256, batch_first=True, bidirectional=True)
|
| 314 |
+
(linear): Linear(in_features=512, out_features=15, bias=True)
|
| 315 |
+
(loss_function): ViterbiLoss()
|
| 316 |
+
(crf): CRF()
|
| 317 |
+
)"
|
| 318 |
+
2022-10-26 19:45:19,409 ----------------------------------------------------------------------------------------------------
|
| 319 |
+
2022-10-26 19:45:19,415 Corpus: "Corpus: 8551 train + 1425 dev + 1425 test sentences"
|
| 320 |
+
2022-10-26 19:45:19,418 ----------------------------------------------------------------------------------------------------
|
| 321 |
+
2022-10-26 19:45:19,425 Parameters:
|
| 322 |
+
2022-10-26 19:45:19,429 - learning_rate: "0.010000"
|
| 323 |
+
2022-10-26 19:45:19,436 - mini_batch_size: "8"
|
| 324 |
+
2022-10-26 19:45:19,441 - patience: "3"
|
| 325 |
+
2022-10-26 19:45:19,446 - anneal_factor: "0.5"
|
| 326 |
+
2022-10-26 19:45:19,447 - max_epochs: "10"
|
| 327 |
+
2022-10-26 19:45:19,466 - shuffle: "True"
|
| 328 |
+
2022-10-26 19:45:19,470 - train_with_dev: "False"
|
| 329 |
+
2022-10-26 19:45:19,475 - batch_growth_annealing: "False"
|
| 330 |
+
2022-10-26 19:45:19,476 ----------------------------------------------------------------------------------------------------
|
| 331 |
+
2022-10-26 19:45:19,479 Model training base path: "/content/model/mono_ner"
|
| 332 |
+
2022-10-26 19:45:19,480 ----------------------------------------------------------------------------------------------------
|
| 333 |
+
2022-10-26 19:45:19,484 Device: cuda:0
|
| 334 |
+
2022-10-26 19:45:19,489 ----------------------------------------------------------------------------------------------------
|
| 335 |
+
2022-10-26 19:45:19,491 Embeddings storage mode: none
|
| 336 |
+
2022-10-26 19:45:19,496 ----------------------------------------------------------------------------------------------------
|
| 337 |
+
2022-10-26 19:46:27,364 epoch 1 - iter 106/1069 - loss 0.49979466 - samples/sec: 12.50 - lr: 0.010000
|
| 338 |
+
2022-10-26 19:47:29,408 epoch 1 - iter 212/1069 - loss 0.36858293 - samples/sec: 13.67 - lr: 0.010000
|
| 339 |
+
2022-10-26 19:48:32,710 epoch 1 - iter 318/1069 - loss 0.31288040 - samples/sec: 13.40 - lr: 0.010000
|
| 340 |
+
2022-10-26 19:49:36,271 epoch 1 - iter 424/1069 - loss 0.27906252 - samples/sec: 13.34 - lr: 0.010000
|
| 341 |
+
2022-10-26 19:50:40,278 epoch 1 - iter 530/1069 - loss 0.25802546 - samples/sec: 13.25 - lr: 0.010000
|
| 342 |
+
2022-10-26 19:51:45,008 epoch 1 - iter 636/1069 - loss 0.24111842 - samples/sec: 13.10 - lr: 0.010000
|
| 343 |
+
2022-10-26 19:52:47,602 epoch 1 - iter 742/1069 - loss 0.22829427 - samples/sec: 13.55 - lr: 0.010000
|
| 344 |
+
2022-10-26 19:53:50,115 epoch 1 - iter 848/1069 - loss 0.21731094 - samples/sec: 13.57 - lr: 0.010000
|
| 345 |
+
2022-10-26 19:54:53,793 epoch 1 - iter 954/1069 - loss 0.20876564 - samples/sec: 13.32 - lr: 0.010000
|
| 346 |
+
2022-10-26 19:55:55,252 epoch 1 - iter 1060/1069 - loss 0.20166716 - samples/sec: 13.80 - lr: 0.010000
|
| 347 |
+
2022-10-26 19:56:00,400 ----------------------------------------------------------------------------------------------------
|
| 348 |
+
2022-10-26 19:56:00,402 EPOCH 1 done: loss 0.2008 - lr 0.010000
|
| 349 |
+
2022-10-26 19:57:09,701 Evaluating as a multi-label problem: False
|
| 350 |
+
2022-10-26 19:57:09,740 DEV : loss 0.09606283158063889 - f1-score (micro avg) 0.7526
|
| 351 |
+
2022-10-26 19:57:09,783 BAD EPOCHS (no improvement): 0
|
| 352 |
+
2022-10-26 19:57:09,785 saving best model
|
| 353 |
+
2022-10-26 19:57:11,433 ----------------------------------------------------------------------------------------------------
|
| 354 |
+
2022-10-26 19:58:18,467 epoch 2 - iter 106/1069 - loss 0.12276787 - samples/sec: 12.65 - lr: 0.010000
|
| 355 |
+
2022-10-26 19:59:24,322 epoch 2 - iter 212/1069 - loss 0.12231755 - samples/sec: 12.88 - lr: 0.010000
|
| 356 |
+
2022-10-26 20:00:41,700 epoch 2 - iter 318/1069 - loss 0.12435630 - samples/sec: 10.96 - lr: 0.010000
|
| 357 |
+
2022-10-26 20:01:46,059 epoch 2 - iter 424/1069 - loss 0.12564768 - samples/sec: 13.18 - lr: 0.010000
|
| 358 |
+
2022-10-26 20:02:49,678 epoch 2 - iter 530/1069 - loss 0.12512958 - samples/sec: 13.33 - lr: 0.010000
|
| 359 |
+
2022-10-26 20:04:05,654 epoch 2 - iter 636/1069 - loss 0.12238487 - samples/sec: 11.16 - lr: 0.010000
|
| 360 |
+
2022-10-26 20:05:09,552 epoch 2 - iter 742/1069 - loss 0.12010170 - samples/sec: 13.27 - lr: 0.010000
|
| 361 |
+
2022-10-26 20:06:14,022 epoch 2 - iter 848/1069 - loss 0.11967127 - samples/sec: 13.16 - lr: 0.010000
|
| 362 |
+
2022-10-26 20:07:19,659 epoch 2 - iter 954/1069 - loss 0.11888882 - samples/sec: 12.92 - lr: 0.010000
|
| 363 |
+
2022-10-26 20:08:29,253 epoch 2 - iter 1060/1069 - loss 0.11866747 - samples/sec: 12.19 - lr: 0.010000
|
| 364 |
+
2022-10-26 20:08:34,370 ----------------------------------------------------------------------------------------------------
|
| 365 |
+
2022-10-26 20:08:34,372 EPOCH 2 done: loss 0.1185 - lr 0.010000
|
| 366 |
+
2022-10-26 20:09:47,920 Evaluating as a multi-label problem: False
|
| 367 |
+
2022-10-26 20:09:47,955 DEV : loss 0.07920133322477341 - f1-score (micro avg) 0.8155
|
| 368 |
+
2022-10-26 20:09:47,998 BAD EPOCHS (no improvement): 0
|
| 369 |
+
2022-10-26 20:09:48,000 saving best model
|
| 370 |
+
2022-10-26 20:09:49,587 ----------------------------------------------------------------------------------------------------
|
| 371 |
+
2022-10-26 20:10:53,964 epoch 3 - iter 106/1069 - loss 0.10166018 - samples/sec: 13.18 - lr: 0.010000
|
| 372 |
+
2022-10-26 20:11:56,797 epoch 3 - iter 212/1069 - loss 0.10111216 - samples/sec: 13.50 - lr: 0.010000
|
| 373 |
+
2022-10-26 20:13:03,180 epoch 3 - iter 318/1069 - loss 0.10239146 - samples/sec: 12.78 - lr: 0.010000
|
| 374 |
+
2022-10-26 20:14:08,543 epoch 3 - iter 424/1069 - loss 0.10173990 - samples/sec: 12.98 - lr: 0.010000
|
| 375 |
+
2022-10-26 20:15:13,145 epoch 3 - iter 530/1069 - loss 0.10135509 - samples/sec: 13.13 - lr: 0.010000
|
| 376 |
+
2022-10-26 20:16:19,356 epoch 3 - iter 636/1069 - loss 0.10020505 - samples/sec: 12.81 - lr: 0.010000
|
| 377 |
+
2022-10-26 20:17:21,470 epoch 3 - iter 742/1069 - loss 0.10033292 - samples/sec: 13.65 - lr: 0.010000
|
| 378 |
+
2022-10-26 20:18:25,712 epoch 3 - iter 848/1069 - loss 0.09965180 - samples/sec: 13.20 - lr: 0.010000
|
| 379 |
+
2022-10-26 20:19:32,123 epoch 3 - iter 954/1069 - loss 0.09942363 - samples/sec: 12.77 - lr: 0.010000
|
| 380 |
+
2022-10-26 20:20:37,362 epoch 3 - iter 1060/1069 - loss 0.09818458 - samples/sec: 13.00 - lr: 0.010000
|
| 381 |
+
2022-10-26 20:20:42,922 ----------------------------------------------------------------------------------------------------
|
| 382 |
+
2022-10-26 20:20:42,923 EPOCH 3 done: loss 0.0981 - lr 0.010000
|
| 383 |
+
2022-10-26 20:21:56,678 Evaluating as a multi-label problem: False
|
| 384 |
+
2022-10-26 20:21:56,717 DEV : loss 0.07603894919157028 - f1-score (micro avg) 0.8361
|
| 385 |
+
2022-10-26 20:21:56,759 BAD EPOCHS (no improvement): 0
|
| 386 |
+
2022-10-26 20:21:56,761 saving best model
|
| 387 |
+
2022-10-26 20:21:58,329 ----------------------------------------------------------------------------------------------------
|
| 388 |
+
2022-10-26 20:23:02,865 epoch 4 - iter 106/1069 - loss 0.08581557 - samples/sec: 13.14 - lr: 0.010000
|
| 389 |
+
2022-10-26 20:24:06,558 epoch 4 - iter 212/1069 - loss 0.08690126 - samples/sec: 13.32 - lr: 0.010000
|
| 390 |
+
2022-10-26 20:25:11,549 epoch 4 - iter 318/1069 - loss 0.08740134 - samples/sec: 13.05 - lr: 0.010000
|
| 391 |
+
2022-10-26 20:26:16,171 epoch 4 - iter 424/1069 - loss 0.08691255 - samples/sec: 13.12 - lr: 0.010000
|
| 392 |
+
2022-10-26 20:27:21,108 epoch 4 - iter 530/1069 - loss 0.08743159 - samples/sec: 13.06 - lr: 0.010000
|
| 393 |
+
2022-10-26 20:28:26,306 epoch 4 - iter 636/1069 - loss 0.08700733 - samples/sec: 13.01 - lr: 0.010000
|
| 394 |
+
2022-10-26 20:29:28,907 epoch 4 - iter 742/1069 - loss 0.08700591 - samples/sec: 13.55 - lr: 0.010000
|
| 395 |
+
2022-10-26 20:30:34,735 epoch 4 - iter 848/1069 - loss 0.08615337 - samples/sec: 12.88 - lr: 0.010000
|
| 396 |
+
2022-10-26 20:32:03,266 epoch 4 - iter 954/1069 - loss 0.08562659 - samples/sec: 9.58 - lr: 0.010000
|
| 397 |
+
2022-10-26 20:33:59,270 epoch 4 - iter 1060/1069 - loss 0.08544457 - samples/sec: 7.31 - lr: 0.010000
|
| 398 |
+
2022-10-26 20:34:09,369 ----------------------------------------------------------------------------------------------------
|
| 399 |
+
2022-10-26 20:34:09,371 EPOCH 4 done: loss 0.0853 - lr 0.010000
|
| 400 |
+
2022-10-26 20:37:53,248 Evaluating as a multi-label problem: False
|
| 401 |
+
2022-10-26 20:37:53,283 DEV : loss 0.07134225219488144 - f1-score (micro avg) 0.8336
|
| 402 |
+
2022-10-26 20:37:53,326 BAD EPOCHS (no improvement): 1
|
| 403 |
+
2022-10-26 20:37:53,328 ----------------------------------------------------------------------------------------------------
|
| 404 |
+
2022-10-26 20:39:45,902 epoch 5 - iter 106/1069 - loss 0.07612726 - samples/sec: 7.53 - lr: 0.010000
|
| 405 |
+
2022-10-26 20:41:42,470 epoch 5 - iter 212/1069 - loss 0.07932025 - samples/sec: 7.28 - lr: 0.010000
|
| 406 |
+
2022-10-26 20:43:01,451 epoch 5 - iter 318/1069 - loss 0.07766485 - samples/sec: 10.74 - lr: 0.010000
|
| 407 |
+
2022-10-26 20:44:06,242 epoch 5 - iter 424/1069 - loss 0.07782655 - samples/sec: 13.09 - lr: 0.010000
|
| 408 |
+
2022-10-26 20:45:10,011 epoch 5 - iter 530/1069 - loss 0.07797363 - samples/sec: 13.30 - lr: 0.010000
|
| 409 |
+
2022-10-26 20:46:18,444 epoch 5 - iter 636/1069 - loss 0.07784710 - samples/sec: 12.39 - lr: 0.010000
|
| 410 |
+
2022-10-26 20:47:22,712 epoch 5 - iter 742/1069 - loss 0.07764170 - samples/sec: 13.20 - lr: 0.010000
|
| 411 |
+
2022-10-26 20:48:26,544 epoch 5 - iter 848/1069 - loss 0.07765970 - samples/sec: 13.29 - lr: 0.010000
|
| 412 |
+
2022-10-26 20:49:32,065 epoch 5 - iter 954/1069 - loss 0.07726613 - samples/sec: 12.94 - lr: 0.010000
|
| 413 |
+
2022-10-26 20:50:36,714 epoch 5 - iter 1060/1069 - loss 0.07692019 - samples/sec: 13.12 - lr: 0.010000
|
| 414 |
+
2022-10-26 20:50:41,823 ----------------------------------------------------------------------------------------------------
|
| 415 |
+
2022-10-26 20:50:41,825 EPOCH 5 done: loss 0.0771 - lr 0.010000
|
| 416 |
+
2022-10-26 20:51:56,635 Evaluating as a multi-label problem: False
|
| 417 |
+
2022-10-26 20:51:56,681 DEV : loss 0.06873895972967148 - f1-score (micro avg) 0.848
|
| 418 |
+
2022-10-26 20:51:56,730 BAD EPOCHS (no improvement): 0
|
| 419 |
+
2022-10-26 20:51:56,732 saving best model
|
| 420 |
+
2022-10-26 20:51:58,276 ----------------------------------------------------------------------------------------------------
|
| 421 |
+
2022-10-26 20:53:04,269 epoch 6 - iter 106/1069 - loss 0.07259857 - samples/sec: 12.85 - lr: 0.010000
|
| 422 |
+
2022-10-26 20:54:08,435 epoch 6 - iter 212/1069 - loss 0.06894409 - samples/sec: 13.22 - lr: 0.010000
|
| 423 |
+
2022-10-26 20:55:15,290 epoch 6 - iter 318/1069 - loss 0.06918623 - samples/sec: 12.69 - lr: 0.010000
|
| 424 |
+
2022-10-26 20:56:20,441 epoch 6 - iter 424/1069 - loss 0.06917844 - samples/sec: 13.02 - lr: 0.010000
|
| 425 |
+
2022-10-26 20:57:24,834 epoch 6 - iter 530/1069 - loss 0.06940973 - samples/sec: 13.17 - lr: 0.010000
|
| 426 |
+
2022-10-26 20:58:31,661 epoch 6 - iter 636/1069 - loss 0.06932249 - samples/sec: 12.69 - lr: 0.010000
|
| 427 |
+
2022-10-26 20:59:37,057 epoch 6 - iter 742/1069 - loss 0.06858729 - samples/sec: 12.97 - lr: 0.010000
|
| 428 |
+
2022-10-26 21:00:42,037 epoch 6 - iter 848/1069 - loss 0.06850174 - samples/sec: 13.05 - lr: 0.010000
|
| 429 |
+
2022-10-26 21:01:48,234 epoch 6 - iter 954/1069 - loss 0.06855966 - samples/sec: 12.81 - lr: 0.010000
|
| 430 |
+
2022-10-26 21:02:54,530 epoch 6 - iter 1060/1069 - loss 0.06812598 - samples/sec: 12.79 - lr: 0.010000
|
| 431 |
+
2022-10-26 21:03:00,480 ----------------------------------------------------------------------------------------------------
|
| 432 |
+
2022-10-26 21:03:00,482 EPOCH 6 done: loss 0.0680 - lr 0.010000
|
| 433 |
+
2022-10-26 21:04:16,435 Evaluating as a multi-label problem: False
|
| 434 |
+
2022-10-26 21:04:16,476 DEV : loss 0.05917559936642647 - f1-score (micro avg) 0.8775
|
| 435 |
+
2022-10-26 21:04:16,522 BAD EPOCHS (no improvement): 0
|
| 436 |
+
2022-10-26 21:04:16,526 saving best model
|
| 437 |
+
2022-10-26 21:04:18,071 ----------------------------------------------------------------------------------------------------
|
| 438 |
+
2022-10-26 21:05:24,303 epoch 7 - iter 106/1069 - loss 0.06352705 - samples/sec: 12.81 - lr: 0.010000
|
| 439 |
+
2022-10-26 21:06:30,784 epoch 7 - iter 212/1069 - loss 0.06166309 - samples/sec: 12.76 - lr: 0.010000
|
| 440 |
+
2022-10-26 21:07:35,118 epoch 7 - iter 318/1069 - loss 0.06134693 - samples/sec: 13.18 - lr: 0.010000
|
| 441 |
+
2022-10-26 21:08:39,228 epoch 7 - iter 424/1069 - loss 0.06161759 - samples/sec: 13.23 - lr: 0.010000
|
| 442 |
+
2022-10-26 21:10:15,880 epoch 7 - iter 530/1069 - loss 0.06137938 - samples/sec: 8.77 - lr: 0.010000
|
| 443 |
+
2022-10-26 21:12:14,808 epoch 7 - iter 636/1069 - loss 0.06149529 - samples/sec: 7.13 - lr: 0.010000
|
| 444 |
+
2022-10-26 21:14:13,856 epoch 7 - iter 742/1069 - loss 0.06173201 - samples/sec: 7.12 - lr: 0.010000
|
| 445 |
+
2022-10-26 21:15:51,294 epoch 7 - iter 848/1069 - loss 0.06166752 - samples/sec: 8.70 - lr: 0.010000
|
| 446 |
+
2022-10-26 21:16:59,785 epoch 7 - iter 954/1069 - loss 0.06152770 - samples/sec: 12.38 - lr: 0.010000
|
| 447 |
+
2022-10-26 21:18:05,005 epoch 7 - iter 1060/1069 - loss 0.06131402 - samples/sec: 13.00 - lr: 0.010000
|
| 448 |
+
2022-10-26 21:18:10,767 ----------------------------------------------------------------------------------------------------
|
| 449 |
+
2022-10-26 21:18:10,769 EPOCH 7 done: loss 0.0613 - lr 0.010000
|
| 450 |
+
2022-10-26 21:19:27,868 Evaluating as a multi-label problem: False
|
| 451 |
+
2022-10-26 21:19:27,905 DEV : loss 0.061052411794662476 - f1-score (micro avg) 0.8814
|
| 452 |
+
2022-10-26 21:19:27,952 BAD EPOCHS (no improvement): 0
|
| 453 |
+
2022-10-26 21:19:27,954 saving best model
|
| 454 |
+
2022-10-26 21:19:29,378 ----------------------------------------------------------------------------------------------------
|
| 455 |
+
2022-10-26 21:20:36,789 epoch 8 - iter 106/1069 - loss 0.05390116 - samples/sec: 12.58 - lr: 0.010000
|
| 456 |
+
2022-10-26 21:21:41,786 epoch 8 - iter 212/1069 - loss 0.05771654 - samples/sec: 13.05 - lr: 0.010000
|
| 457 |
+
2022-10-26 21:22:48,800 epoch 8 - iter 318/1069 - loss 0.05630827 - samples/sec: 12.66 - lr: 0.010000
|
| 458 |
+
2022-10-26 21:23:54,308 epoch 8 - iter 424/1069 - loss 0.05571937 - samples/sec: 12.95 - lr: 0.010000
|
| 459 |
+
2022-10-26 21:25:00,994 epoch 8 - iter 530/1069 - loss 0.05600622 - samples/sec: 12.72 - lr: 0.010000
|
| 460 |
+
2022-10-26 21:26:05,543 epoch 8 - iter 636/1069 - loss 0.05638838 - samples/sec: 13.14 - lr: 0.010000
|
| 461 |
+
2022-10-26 21:27:11,826 epoch 8 - iter 742/1069 - loss 0.05616568 - samples/sec: 12.80 - lr: 0.010000
|
| 462 |
+
2022-10-26 21:28:18,954 epoch 8 - iter 848/1069 - loss 0.05584409 - samples/sec: 12.64 - lr: 0.010000
|
| 463 |
+
2022-10-26 21:29:25,542 epoch 8 - iter 954/1069 - loss 0.05561947 - samples/sec: 12.74 - lr: 0.010000
|
| 464 |
+
2022-10-26 21:30:30,533 epoch 8 - iter 1060/1069 - loss 0.05524983 - samples/sec: 13.05 - lr: 0.010000
|
| 465 |
+
2022-10-26 21:30:35,751 ----------------------------------------------------------------------------------------------------
|
| 466 |
+
2022-10-26 21:30:35,755 EPOCH 8 done: loss 0.0553 - lr 0.010000
|
| 467 |
+
2022-10-26 21:31:53,000 Evaluating as a multi-label problem: False
|
| 468 |
+
2022-10-26 21:31:53,038 DEV : loss 0.06685522198677063 - f1-score (micro avg) 0.8808
|
| 469 |
+
2022-10-26 21:31:53,088 BAD EPOCHS (no improvement): 1
|
| 470 |
+
2022-10-26 21:31:53,092 ----------------------------------------------------------------------------------------------------
|
| 471 |
+
2022-10-26 21:33:00,202 epoch 9 - iter 106/1069 - loss 0.04591263 - samples/sec: 12.64 - lr: 0.010000
|
| 472 |
+
2022-10-26 21:34:05,608 epoch 9 - iter 212/1069 - loss 0.04753505 - samples/sec: 12.97 - lr: 0.010000
|
| 473 |
+
2022-10-26 21:35:08,841 epoch 9 - iter 318/1069 - loss 0.04983626 - samples/sec: 13.41 - lr: 0.010000
|
| 474 |
+
2022-10-26 21:36:15,599 epoch 9 - iter 424/1069 - loss 0.04851610 - samples/sec: 12.70 - lr: 0.010000
|
| 475 |
+
2022-10-26 21:37:22,043 epoch 9 - iter 530/1069 - loss 0.04882362 - samples/sec: 12.77 - lr: 0.010000
|
| 476 |
+
2022-10-26 21:38:26,514 epoch 9 - iter 636/1069 - loss 0.04925004 - samples/sec: 13.16 - lr: 0.010000
|
| 477 |
+
2022-10-26 21:39:34,184 epoch 9 - iter 742/1069 - loss 0.04945580 - samples/sec: 12.53 - lr: 0.010000
|
| 478 |
+
2022-10-26 21:40:39,778 epoch 9 - iter 848/1069 - loss 0.04945835 - samples/sec: 12.93 - lr: 0.010000
|
| 479 |
+
2022-10-26 21:41:44,710 epoch 9 - iter 954/1069 - loss 0.04953811 - samples/sec: 13.06 - lr: 0.010000
|
| 480 |
+
2022-10-26 21:42:52,682 epoch 9 - iter 1060/1069 - loss 0.04944091 - samples/sec: 12.48 - lr: 0.010000
|
| 481 |
+
2022-10-26 21:42:57,825 ----------------------------------------------------------------------------------------------------
|
| 482 |
+
2022-10-26 21:42:57,826 EPOCH 9 done: loss 0.0497 - lr 0.010000
|
| 483 |
+
2022-10-26 21:44:13,770 Evaluating as a multi-label problem: False
|
| 484 |
+
2022-10-26 21:44:13,809 DEV : loss 0.057355064898729324 - f1-score (micro avg) 0.8922
|
| 485 |
+
2022-10-26 21:44:13,856 BAD EPOCHS (no improvement): 0
|
| 486 |
+
2022-10-26 21:44:13,859 saving best model
|
| 487 |
+
2022-10-26 21:44:15,333 ----------------------------------------------------------------------------------------------------
|
| 488 |
+
2022-10-26 21:45:22,992 epoch 10 - iter 106/1069 - loss 0.03999971 - samples/sec: 12.54 - lr: 0.010000
|
| 489 |
+
2022-10-26 21:46:28,166 epoch 10 - iter 212/1069 - loss 0.04223290 - samples/sec: 13.01 - lr: 0.010000
|
| 490 |
+
2022-10-26 21:47:34,530 epoch 10 - iter 318/1069 - loss 0.04233629 - samples/sec: 12.78 - lr: 0.010000
|
| 491 |
+
2022-10-26 21:49:21,523 epoch 10 - iter 424/1069 - loss 0.04293457 - samples/sec: 7.93 - lr: 0.010000
|
| 492 |
+
2022-10-26 21:51:20,933 epoch 10 - iter 530/1069 - loss 0.04261612 - samples/sec: 7.10 - lr: 0.010000
|
| 493 |
+
2022-10-26 21:53:16,486 epoch 10 - iter 636/1069 - loss 0.04316492 - samples/sec: 7.34 - lr: 0.010000
|
| 494 |
+
2022-10-26 21:55:14,355 epoch 10 - iter 742/1069 - loss 0.04313719 - samples/sec: 7.20 - lr: 0.010000
|
| 495 |
+
2022-10-26 21:57:14,471 epoch 10 - iter 848/1069 - loss 0.04345674 - samples/sec: 7.06 - lr: 0.010000
|
| 496 |
+
2022-10-26 21:59:14,125 epoch 10 - iter 954/1069 - loss 0.04368164 - samples/sec: 7.09 - lr: 0.010000
|
| 497 |
+
2022-10-26 22:01:02,494 epoch 10 - iter 1060/1069 - loss 0.04413420 - samples/sec: 7.83 - lr: 0.010000
|
| 498 |
+
2022-10-26 22:01:08,438 ----------------------------------------------------------------------------------------------------
|
| 499 |
+
2022-10-26 22:01:08,440 EPOCH 10 done: loss 0.0440 - lr 0.010000
|
| 500 |
+
2022-10-26 22:02:22,434 Evaluating as a multi-label problem: False
|
| 501 |
+
2022-10-26 22:02:22,472 DEV : loss 0.06379110366106033 - f1-score (micro avg) 0.8877
|
| 502 |
+
2022-10-26 22:02:22,522 BAD EPOCHS (no improvement): 1
|
| 503 |
+
2022-10-26 22:02:23,953 ----------------------------------------------------------------------------------------------------
|
| 504 |
+
2022-10-26 22:02:23,963 loading file /content/model/mono_ner/best-model.pt
|
| 505 |
+
2022-10-26 22:02:26,538 SequenceTagger predicts: Dictionary with 15 tags: O, S-PER, B-PER, E-PER, I-PER, S-MISC, B-MISC, E-MISC, I-MISC, S-LOC, B-LOC, E-LOC, I-LOC, <START>, <STOP>
|
| 506 |
+
2022-10-26 22:03:39,014 Evaluating as a multi-label problem: False
|
| 507 |
+
2022-10-26 22:03:39,054 0.8798 0.8959 0.8878 0.8324
|
| 508 |
+
2022-10-26 22:03:39,056
|
| 509 |
+
Results:
|
| 510 |
+
- F-score (micro) 0.8878
|
| 511 |
+
- F-score (macro) 0.8574
|
| 512 |
+
- Accuracy 0.8324
|
| 513 |
+
|
| 514 |
+
By class:
|
| 515 |
+
precision recall f1-score support
|
| 516 |
+
|
| 517 |
+
PER 0.9124 0.9445 0.9282 2127
|
| 518 |
+
MISC 0.8092 0.8317 0.8203 933
|
| 519 |
+
LOC 0.8686 0.7835 0.8238 388
|
| 520 |
+
|
| 521 |
+
micro avg 0.8798 0.8959 0.8878 3448
|
| 522 |
+
macro avg 0.8634 0.8533 0.8574 3448
|
| 523 |
+
weighted avg 0.8795 0.8959 0.8872 3448
|
| 524 |
+
|
| 525 |
+
2022-10-26 22:03:39,059 ----------------------------------------------------------------------------------------------------
|
weights.txt
ADDED
|
File without changes
|