--- tags: - sentence-transformers - sentence-similarity - feature-extraction - dense base_model: UMCU/sap_snomed_medroberta.nl pipeline_tag: sentence-similarity library_name: sentence-transformers --- # SentenceTransformer based on UMCU/sap_snomed_medroberta.nl This is a [sentence-transformers](https://www.SBERT.net) model finetuned from [UMCU/sap_snomed_medroberta.nl](https://huggingface.co/UMCU/sap_snomed_medroberta.nl). It maps sentences & paragraphs to a 768-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more. ## Model Details ### Model Description - **Model Type:** Sentence Transformer - **Base model:** [UMCU/sap_snomed_medroberta.nl](https://huggingface.co/UMCU/sap_snomed_medroberta.nl) - **Maximum Sequence Length:** 30 tokens - **Output Dimensionality:** 768 dimensions - **Similarity Function:** Cosine Similarity ### Model Sources - **Documentation:** [Sentence Transformers Documentation](https://sbert.net) - **Repository:** [Sentence Transformers on GitHub](https://github.com/UKPLab/sentence-transformers) - **Hugging Face:** [Sentence Transformers on Hugging Face](https://huggingface.co/models?library=sentence-transformers) ### Full Model Architecture ``` SentenceTransformer( (0): Transformer({'max_seq_length': 30, 'do_lower_case': False, 'architecture': 'RobertaModel'}) (1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': True, 'pooling_mode_mean_tokens': False, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True}) ) ``` ## Usage ### Direct Usage (Sentence Transformers) First install the Sentence Transformers library: ```bash pip install -U sentence-transformers ``` Then you can load this model and run inference. ```python from sentence_transformers import SentenceTransformer # Download from the 🤗 Hub model = SentenceTransformer("sentence_transformers_model_id") # Run inference sentences = [ 'The weather is lovely today.', "It's so sunny outside!", 'He drove to the stadium.', ] embeddings = model.encode(sentences) print(embeddings.shape) # [3, 768] # Get the similarity scores for the embeddings similarities = model.similarity(embeddings, embeddings) print(similarities) # tensor([[1.0000, 0.4724, 0.4557], # [0.4724, 1.0000, 0.2822], # [0.4557, 0.2822, 1.0000]]) ``` ## Training Details ### Framework Versions - Python: 3.12.3 - Sentence Transformers: 5.0.0 - Transformers: 4.48.0 - PyTorch: 2.5.0+cu121 - Accelerate: 1.8.1 - Datasets: 3.6.0 - Tokenizers: 0.21.2 ## Citation ### BibTeX