adding finetuning script
Browse files
train.py
ADDED
|
@@ -0,0 +1,297 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
"""
|
| 2 |
+
Fine-Tune SantaCoder on code/text dataset
|
| 3 |
+
"""
|
| 4 |
+
# copied from https://github.com/loubnabnl/santacoder-finetuning
|
| 5 |
+
# removed all parts related to FIM
|
| 6 |
+
# set --subset to default to None instead of "data" to avoid issues with my own datasets.
|
| 7 |
+
# added --resume_from_checkpoint to resume training from a checkpoint (untested)
|
| 8 |
+
|
| 9 |
+
|
| 10 |
+
import argparse
|
| 11 |
+
import os
|
| 12 |
+
import random
|
| 13 |
+
import sys
|
| 14 |
+
|
| 15 |
+
import numpy as np
|
| 16 |
+
import torch
|
| 17 |
+
from datasets import load_dataset
|
| 18 |
+
from torch.utils.data import IterableDataset
|
| 19 |
+
from torch.utils.data.dataloader import DataLoader
|
| 20 |
+
from tqdm import tqdm
|
| 21 |
+
from transformers import (
|
| 22 |
+
AutoModelForCausalLM,
|
| 23 |
+
AutoTokenizer,
|
| 24 |
+
Trainer,
|
| 25 |
+
TrainingArguments,
|
| 26 |
+
logging,
|
| 27 |
+
set_seed,
|
| 28 |
+
)
|
| 29 |
+
|
| 30 |
+
# import fim
|
| 31 |
+
|
| 32 |
+
|
| 33 |
+
def get_args():
|
| 34 |
+
parser = argparse.ArgumentParser()
|
| 35 |
+
parser.add_argument("--resume_from_checkpoint", type=str, default=None) #can pass a checkpoint dir to resume training
|
| 36 |
+
parser.add_argument("--model_path", type=str, default="bigcode/santacoder")
|
| 37 |
+
parser.add_argument("--dataset_name", type=str, default="bigcode/the-stack-dedup")
|
| 38 |
+
parser.add_argument("--subset", type=str, default=None) #None a bodge but not the solution
|
| 39 |
+
parser.add_argument("--split", type=str, default="train")
|
| 40 |
+
parser.add_argument("--size_valid_set", type=int, default=4000)
|
| 41 |
+
parser.add_argument("--streaming", action="store_true")
|
| 42 |
+
parser.add_argument("--shuffle_buffer", type=int, default=5000)
|
| 43 |
+
parser.add_argument("--data_column", type=str, default="content")
|
| 44 |
+
|
| 45 |
+
parser.add_argument("--seq_length", type=int, default=1024)
|
| 46 |
+
parser.add_argument("--max_steps", type=int, default=10000)
|
| 47 |
+
parser.add_argument("--batch_size", type=int, default=2)
|
| 48 |
+
parser.add_argument("--gradient_accumulation_steps", type=int, default=8)
|
| 49 |
+
parser.add_argument("--eos_token_id", type=int, default=49152)
|
| 50 |
+
|
| 51 |
+
parser.add_argument("--learning_rate", type=float, default=5e-5)
|
| 52 |
+
parser.add_argument("--lr_scheduler_type", type=str, default="cosine")
|
| 53 |
+
parser.add_argument("--num_warmup_steps", type=int, default=100)
|
| 54 |
+
parser.add_argument("--weight_decay", type=float, default=0.05)
|
| 55 |
+
|
| 56 |
+
parser.add_argument("--local_rank", type=int, default=0)
|
| 57 |
+
parser.add_argument("--no_fp16", action="store_false")
|
| 58 |
+
parser.add_argument("--bf16", action="store_true")
|
| 59 |
+
parser.add_argument("--no_gradient_checkpointing", action="store_false")
|
| 60 |
+
parser.add_argument("--seed", type=int, default=0)
|
| 61 |
+
parser.add_argument("--num_workers", type=int, default=None)
|
| 62 |
+
parser.add_argument("--output_dir", type=str, default="./checkpoints")
|
| 63 |
+
parser.add_argument("--log_freq", default=1, type=int)
|
| 64 |
+
parser.add_argument("--eval_freq", default=1000, type=int)
|
| 65 |
+
parser.add_argument("--save_freq", default=1000, type=int)
|
| 66 |
+
|
| 67 |
+
# parser.add_argument("--fim_rate", type=float, default=0)
|
| 68 |
+
# parser.add_argument("--fim_spm_rate", type=float, default=0)
|
| 69 |
+
return parser.parse_args()
|
| 70 |
+
|
| 71 |
+
|
| 72 |
+
def chars_token_ratio(dataset, tokenizer, data_column, nb_examples=400):
|
| 73 |
+
"""
|
| 74 |
+
Estimate the average number of characters per token in the dataset.
|
| 75 |
+
"""
|
| 76 |
+
total_characters, total_tokens = 0, 0
|
| 77 |
+
for _, example in tqdm(zip(range(nb_examples), iter(dataset)), total=nb_examples):
|
| 78 |
+
total_characters += len(example[data_column])
|
| 79 |
+
total_tokens += len(tokenizer(example[data_column]).tokens())
|
| 80 |
+
|
| 81 |
+
return total_characters / total_tokens
|
| 82 |
+
|
| 83 |
+
|
| 84 |
+
class ConstantLengthDataset(IterableDataset):
|
| 85 |
+
"""
|
| 86 |
+
Iterable dataset that returns constant length chunks of tokens from stream of text files.
|
| 87 |
+
Args:
|
| 88 |
+
tokenizer (Tokenizer): The processor used for proccessing the data.
|
| 89 |
+
dataset (dataset.Dataset): Dataset with text files.
|
| 90 |
+
infinite (bool): If True the iterator is reset after dataset reaches end else stops.
|
| 91 |
+
seq_length (int): Length of token sequences to return.
|
| 92 |
+
num_of_sequences (int): Number of token sequences to keep in buffer.
|
| 93 |
+
chars_per_token (int): Number of characters per token used to estimate number of tokens in text buffer.
|
| 94 |
+
# fim_rate (float): Rate (0.0 to 1.0) that sample will be permuted with FIM.
|
| 95 |
+
# fim_spm_rate (float): Rate (0.0 to 1.0) of FIM permuations that will use SPM.
|
| 96 |
+
seed (int): Seed for random number generator.
|
| 97 |
+
"""
|
| 98 |
+
|
| 99 |
+
def __init__(
|
| 100 |
+
self,
|
| 101 |
+
tokenizer,
|
| 102 |
+
dataset,
|
| 103 |
+
infinite=False,
|
| 104 |
+
seq_length=1024,
|
| 105 |
+
num_of_sequences=1024,
|
| 106 |
+
chars_per_token=3.6,
|
| 107 |
+
content_field="content",
|
| 108 |
+
# fim_rate=0.5,
|
| 109 |
+
# fim_spm_rate=0.5,
|
| 110 |
+
seed=0,
|
| 111 |
+
):
|
| 112 |
+
self.tokenizer = tokenizer
|
| 113 |
+
self.concat_token_id = (
|
| 114 |
+
tokenizer.eos_token_id if tokenizer.eos_token_id else args.eos_token_id
|
| 115 |
+
)
|
| 116 |
+
self.dataset = dataset
|
| 117 |
+
self.seq_length = seq_length
|
| 118 |
+
self.infinite = infinite
|
| 119 |
+
self.current_size = 0
|
| 120 |
+
self.max_buffer_size = seq_length * chars_per_token * num_of_sequences
|
| 121 |
+
self.content_field = content_field
|
| 122 |
+
# self.fim_rate = fim_rate
|
| 123 |
+
# self.fim_spm_rate = fim_spm_rate
|
| 124 |
+
self.seed = seed
|
| 125 |
+
|
| 126 |
+
# (
|
| 127 |
+
# self.suffix_tok_id,
|
| 128 |
+
# self.prefix_tok_id,
|
| 129 |
+
# self.middle_tok_id,
|
| 130 |
+
# self.pad_tok_id,
|
| 131 |
+
# ) = fim.get_fim_token_ids(self.tokenizer)
|
| 132 |
+
# if not self.suffix_tok_id and self.fim_rate > 0:
|
| 133 |
+
# print("FIM is not supported by tokenizer, disabling FIM")
|
| 134 |
+
# self.fim_rate = 0
|
| 135 |
+
|
| 136 |
+
def __iter__(self):
|
| 137 |
+
iterator = iter(self.dataset)
|
| 138 |
+
more_examples = True
|
| 139 |
+
while more_examples:
|
| 140 |
+
buffer, buffer_len = [], 0
|
| 141 |
+
while True:
|
| 142 |
+
if buffer_len >= self.max_buffer_size:
|
| 143 |
+
break
|
| 144 |
+
try:
|
| 145 |
+
buffer.append(next(iterator)[self.content_field])
|
| 146 |
+
buffer_len += len(buffer[-1])
|
| 147 |
+
except StopIteration:
|
| 148 |
+
if self.infinite:
|
| 149 |
+
iterator = iter(self.dataset)
|
| 150 |
+
else:
|
| 151 |
+
more_examples = False
|
| 152 |
+
break
|
| 153 |
+
tokenized_inputs = self.tokenizer(buffer, truncation=False)["input_ids"]
|
| 154 |
+
all_token_ids = []
|
| 155 |
+
|
| 156 |
+
np_rng = np.random.RandomState(seed=self.seed)
|
| 157 |
+
for tokenized_input in tokenized_inputs:
|
| 158 |
+
# optionally do FIM permutations
|
| 159 |
+
# if self.fim_rate > 0:
|
| 160 |
+
# tokenized_input, np_rng = fim.permute(
|
| 161 |
+
# tokenized_input,
|
| 162 |
+
# np_rng,
|
| 163 |
+
# self.suffix_tok_id,
|
| 164 |
+
# self.prefix_tok_id,
|
| 165 |
+
# self.middle_tok_id,
|
| 166 |
+
# self.pad_tok_id,
|
| 167 |
+
# fim_rate=self.fim_rate,
|
| 168 |
+
# fim_spm_rate=self.fim_spm_rate,
|
| 169 |
+
# truncate_or_pad=False,
|
| 170 |
+
# )
|
| 171 |
+
|
| 172 |
+
all_token_ids.extend(tokenized_input + [self.concat_token_id])
|
| 173 |
+
examples = []
|
| 174 |
+
for i in range(0, len(all_token_ids), self.seq_length):
|
| 175 |
+
input_ids = all_token_ids[i : i + self.seq_length]
|
| 176 |
+
if len(input_ids) == self.seq_length:
|
| 177 |
+
examples.append(input_ids)
|
| 178 |
+
random.shuffle(examples)
|
| 179 |
+
for example in examples:
|
| 180 |
+
self.current_size += 1
|
| 181 |
+
yield {
|
| 182 |
+
"input_ids": torch.LongTensor(example),
|
| 183 |
+
"labels": torch.LongTensor(example),
|
| 184 |
+
}
|
| 185 |
+
|
| 186 |
+
def create_datasets(tokenizer, args):
|
| 187 |
+
dataset = load_dataset(
|
| 188 |
+
args.dataset_name,
|
| 189 |
+
data_dir=args.subset,
|
| 190 |
+
split=args.split,
|
| 191 |
+
use_auth_token=True,
|
| 192 |
+
num_proc=args.num_workers if not args.streaming else None,
|
| 193 |
+
streaming=args.streaming,
|
| 194 |
+
)
|
| 195 |
+
if args.streaming:
|
| 196 |
+
print("Loading the dataset in streaming mode")
|
| 197 |
+
valid_data = dataset.take(args.size_valid_set)
|
| 198 |
+
train_data = dataset.skip(args.size_valid_set)
|
| 199 |
+
train_data = train_data.shuffle(buffer_size=args.shuffle_buffer, seed=args.seed)
|
| 200 |
+
else:
|
| 201 |
+
dataset = dataset.train_test_split(test_size=0.005, seed=args.seed)
|
| 202 |
+
train_data = dataset["train"]
|
| 203 |
+
valid_data = dataset["test"]
|
| 204 |
+
print(
|
| 205 |
+
f"Size of the train set: {len(train_data)}. Size of the validation set: {len(valid_data)}"
|
| 206 |
+
)
|
| 207 |
+
chars_per_token = chars_token_ratio(train_data, tokenizer, args.data_column)
|
| 208 |
+
print(f"The character to token ratio of the dataset is: {chars_per_token:.2f}")
|
| 209 |
+
train_dataset = ConstantLengthDataset(
|
| 210 |
+
tokenizer,
|
| 211 |
+
train_data,
|
| 212 |
+
infinite=True,
|
| 213 |
+
seq_length=args.seq_length,
|
| 214 |
+
chars_per_token=chars_per_token,
|
| 215 |
+
content_field=args.data_column,
|
| 216 |
+
# fim_rate=args.fim_rate,
|
| 217 |
+
# fim_spm_rate=args.fim_spm_rate,
|
| 218 |
+
seed=args.seed,
|
| 219 |
+
)
|
| 220 |
+
valid_dataset = ConstantLengthDataset(
|
| 221 |
+
tokenizer,
|
| 222 |
+
valid_data,
|
| 223 |
+
infinite=False,
|
| 224 |
+
seq_length=args.seq_length,
|
| 225 |
+
chars_per_token=chars_per_token,
|
| 226 |
+
content_field=args.data_column,
|
| 227 |
+
# fim_rate=args.fim_rate,
|
| 228 |
+
# fim_spm_rate=args.fim_spm_rate,
|
| 229 |
+
seed=args.seed,
|
| 230 |
+
)
|
| 231 |
+
|
| 232 |
+
return train_dataset, valid_dataset
|
| 233 |
+
|
| 234 |
+
|
| 235 |
+
def run_training(args, train_data, val_data):
|
| 236 |
+
print("Loading the model")
|
| 237 |
+
# disable caching mechanism when using gradient checkpointing
|
| 238 |
+
model = AutoModelForCausalLM.from_pretrained(
|
| 239 |
+
args.model_path,
|
| 240 |
+
trust_remote_code=True,
|
| 241 |
+
use_cache=not args.no_gradient_checkpointing,
|
| 242 |
+
)
|
| 243 |
+
train_data.start_iteration = 0
|
| 244 |
+
|
| 245 |
+
print(f"Starting main loop")
|
| 246 |
+
|
| 247 |
+
training_args = TrainingArguments(
|
| 248 |
+
output_dir=args.output_dir,
|
| 249 |
+
dataloader_drop_last=True,
|
| 250 |
+
evaluation_strategy="steps",
|
| 251 |
+
max_steps=args.max_steps,
|
| 252 |
+
eval_steps=args.eval_freq,
|
| 253 |
+
save_steps=args.save_freq,
|
| 254 |
+
logging_steps=args.log_freq,
|
| 255 |
+
per_device_train_batch_size=args.batch_size,
|
| 256 |
+
per_device_eval_batch_size=args.batch_size,
|
| 257 |
+
learning_rate=args.learning_rate,
|
| 258 |
+
lr_scheduler_type=args.lr_scheduler_type,
|
| 259 |
+
warmup_steps=args.num_warmup_steps,
|
| 260 |
+
gradient_accumulation_steps=args.gradient_accumulation_steps,
|
| 261 |
+
gradient_checkpointing=args.no_gradient_checkpointing,
|
| 262 |
+
fp16=args.no_fp16,
|
| 263 |
+
bf16=args.bf16,
|
| 264 |
+
weight_decay=args.weight_decay,
|
| 265 |
+
run_name=f"santacoder-{args.subset}",
|
| 266 |
+
# report_to="wandb", #I am not using that, so I just comment it out to avoid errors?
|
| 267 |
+
)
|
| 268 |
+
|
| 269 |
+
trainer = Trainer(
|
| 270 |
+
model=model, args=training_args, train_dataset=train_data, eval_dataset=val_data
|
| 271 |
+
)
|
| 272 |
+
|
| 273 |
+
print("Training...")
|
| 274 |
+
trainer.train(args.resume_from_checkpoint) #can resume here
|
| 275 |
+
|
| 276 |
+
print("Saving last checkpoint of the model")
|
| 277 |
+
model.save_pretrained(os.path.join(args.output_dir, "final_checkpoint/"))
|
| 278 |
+
|
| 279 |
+
|
| 280 |
+
def main(args):
|
| 281 |
+
tokenizer = AutoTokenizer.from_pretrained(args.model_path, use_auth_token=True)
|
| 282 |
+
|
| 283 |
+
train_dataset, eval_dataset = create_datasets(tokenizer, args)
|
| 284 |
+
|
| 285 |
+
run_training(args, train_dataset, eval_dataset)
|
| 286 |
+
|
| 287 |
+
|
| 288 |
+
if __name__ == "__main__":
|
| 289 |
+
print(sys.argv) #to abort early
|
| 290 |
+
args = get_args()
|
| 291 |
+
print(args) #see if the file actually red?
|
| 292 |
+
set_seed(args.seed)
|
| 293 |
+
os.makedirs(args.output_dir, exist_ok=True)
|
| 294 |
+
|
| 295 |
+
logging.set_verbosity_info() #lower verbosity
|
| 296 |
+
|
| 297 |
+
main(args)
|