|
|
import torch |
|
|
import torch.nn as nn |
|
|
import torch.nn.functional as F |
|
|
import math |
|
|
from dataclasses import dataclass |
|
|
from typing import Optional |
|
|
|
|
|
|
|
|
@dataclass |
|
|
class ModelConfig: |
|
|
vocab_size: int |
|
|
hidden_size: int |
|
|
n_heads: int |
|
|
n_kv_heads: int |
|
|
n_kv_groups: int |
|
|
head_dim: int |
|
|
n_layers: int |
|
|
attention_bias: bool |
|
|
intermediate_size: int |
|
|
mlp_bias: bool |
|
|
eps: float |
|
|
dropout: float |
|
|
max_position_embeddings: int |
|
|
pre_norm: bool |
|
|
tie_weights: bool |
|
|
max_seq_len: int |
|
|
|
|
|
|
|
|
class RMSNorm(nn.Module): |
|
|
def __init__(self, config: ModelConfig): |
|
|
super().__init__() |
|
|
self.eps = config.eps |
|
|
self.weight = nn.Parameter(torch.ones(config.hidden_size)) |
|
|
|
|
|
def forward(self, x: torch.Tensor) -> torch.Tensor: |
|
|
rms = torch.sqrt(torch.mean(x * x, dim=-1, keepdim=True) + self.eps) |
|
|
return (x / rms) * self.weight |
|
|
|
|
|
|
|
|
class RotaryEmbedding(nn.Module): |
|
|
def __init__(self, head_dim, max_position_embeddings=2048): |
|
|
super().__init__() |
|
|
inv_freq = 1.0 / (10000 ** (torch.arange(0, head_dim, 2).float() / head_dim)) |
|
|
t = torch.arange(max_position_embeddings, dtype=torch.float32) |
|
|
freqs = torch.einsum("i,j->ij", t, inv_freq) |
|
|
emb = torch.cat((freqs, freqs), dim=-1) |
|
|
self.register_buffer("cos", emb.cos()[None, None, :, :], persistent=False) |
|
|
self.register_buffer("sin", emb.sin()[None, None, :, :], persistent=False) |
|
|
|
|
|
def forward(self, seq_len: int, device: torch.device, dtype: torch.dtype): |
|
|
cos = self.cos[:, :, :seq_len, :].to(device=device, dtype=dtype) |
|
|
sin = self.sin[:, :, :seq_len, :].to(device=device, dtype=dtype) |
|
|
return cos, sin |
|
|
|
|
|
|
|
|
def apply_rotary(x, cos, sin): |
|
|
x1, x2 = x[..., ::2], x[..., 1::2] |
|
|
x_rot = torch.stack([-x2, x1], dim=-1).reshape_as(x) |
|
|
return (x * cos) + (x_rot * sin) |
|
|
|
|
|
|
|
|
class GroupedMultiQueryAttention(nn.Module): |
|
|
def __init__(self, config: ModelConfig): |
|
|
super().__init__() |
|
|
self.hidden_size = config.hidden_size |
|
|
self.n_heads = config.n_heads |
|
|
self.n_kv_heads = config.n_kv_heads |
|
|
self.head_dim = config.head_dim |
|
|
self.attention_bias = config.attention_bias |
|
|
self.dropout = nn.Dropout(config.dropout) |
|
|
|
|
|
if self.n_heads * self.head_dim != self.hidden_size: |
|
|
raise ValueError("hidden_size must equal n_heads * head_dim") |
|
|
|
|
|
|
|
|
if config.n_kv_groups is None: |
|
|
if self.n_kv_heads == 0: |
|
|
raise ValueError("n_kv_heads must be > 0") |
|
|
self.n_kv_groups = self.n_heads // self.n_kv_heads |
|
|
if self.n_heads % self.n_kv_heads != 0: |
|
|
raise ValueError("n_heads must be divisible by n_kv_heads to derive groups") |
|
|
else: |
|
|
self.n_kv_groups = config.n_kv_groups |
|
|
if self.n_kv_heads * self.n_kv_groups != self.n_heads: |
|
|
raise ValueError("n_heads must equal n_kv_heads * n_kv_groups") |
|
|
|
|
|
self.q_proj = nn.Linear(self.hidden_size, self.n_heads * self.head_dim, bias=self.attention_bias) |
|
|
self.k_proj = nn.Linear(self.hidden_size, self.n_kv_heads * self.head_dim, bias=self.attention_bias) |
|
|
self.v_proj = nn.Linear(self.hidden_size, self.n_kv_heads * self.head_dim, bias=self.attention_bias) |
|
|
self.w_o = nn.Linear(self.hidden_size, self.hidden_size, bias=False) |
|
|
self.rope = RotaryEmbedding(self.head_dim, config.max_position_embeddings) |
|
|
|
|
|
def forward(self, x): |
|
|
B, T, _ = x.shape |
|
|
device = x.device |
|
|
dtype = x.dtype |
|
|
|
|
|
q = self.q_proj(x).view(B, T, self.n_heads, self.head_dim).transpose(1, 2) |
|
|
k = self.k_proj(x).view(B, T, self.n_kv_heads, self.head_dim).transpose(1, 2) |
|
|
v = self.v_proj(x).view(B, T, self.n_kv_heads, self.head_dim).transpose(1, 2) |
|
|
|
|
|
cos, sin = self.rope(T, device=device, dtype=dtype) |
|
|
q = apply_rotary(q, cos, sin) |
|
|
k = apply_rotary(k, cos, sin) |
|
|
|
|
|
if self.n_kv_groups != 1: |
|
|
k = k.repeat_interleave(self.n_kv_groups, dim=1) |
|
|
v = v.repeat_interleave(self.n_kv_groups, dim=1) |
|
|
|
|
|
scores = torch.matmul(q, k.transpose(-2, -1)) / math.sqrt(self.head_dim) |
|
|
|
|
|
|
|
|
mask = torch.triu(torch.full((T, T), float("-inf"), device=device, dtype=dtype), diagonal=1) |
|
|
scores = scores + mask.unsqueeze(0).unsqueeze(0) |
|
|
attn = torch.softmax(scores, dim=-1) |
|
|
attn = self.dropout(attn) |
|
|
|
|
|
out = torch.matmul(attn, v) |
|
|
out = out.transpose(1, 2).contiguous().view(B, T, self.hidden_size) |
|
|
return self.w_o(out) |
|
|
|
|
|
|
|
|
class SwiGLUFeedForward(nn.Module): |
|
|
def __init__(self, config: ModelConfig): |
|
|
super().__init__() |
|
|
self.hidden_size = config.hidden_size |
|
|
self.intermediate_size = config.intermediate_size |
|
|
self.dropout = nn.Dropout(config.dropout) |
|
|
|
|
|
self.gate_proj = nn.Linear(self.hidden_size, self.intermediate_size) |
|
|
self.up_proj = nn.Linear(self.hidden_size, self.intermediate_size) |
|
|
self.down_proj = nn.Linear(self.intermediate_size, self.hidden_size) |
|
|
self.act = nn.SiLU() |
|
|
|
|
|
def forward(self, x): |
|
|
x = self.act(self.gate_proj(x)) * self.up_proj(x) |
|
|
x = self.down_proj(self.dropout(x)) |
|
|
return x |
|
|
|
|
|
|
|
|
class TransformerBlock(nn.Module): |
|
|
def __init__(self, config: ModelConfig): |
|
|
super().__init__() |
|
|
self.attention = GroupedMultiQueryAttention(config) |
|
|
self.feed_forward = SwiGLUFeedForward(config) |
|
|
self.attn_norm = RMSNorm(config) |
|
|
self.ffn_norm = RMSNorm(config) |
|
|
self.dropout = nn.Dropout(config.dropout) |
|
|
self.pre_norm = config.pre_norm |
|
|
|
|
|
def forward(self, x): |
|
|
if self.pre_norm: |
|
|
x = x + self.dropout(self.attention(self.attn_norm(x))) |
|
|
x = x + self.dropout(self.feed_forward(self.ffn_norm(x))) |
|
|
else: |
|
|
x = self.attn_norm(x + self.dropout(self.attention(x))) |
|
|
x = self.ffn_norm(x + self.dropout(self.feed_forward(x))) |
|
|
return x |
|
|
|
|
|
|
|
|
class Transformer(nn.Module): |
|
|
def __init__(self, config: ModelConfig): |
|
|
super().__init__() |
|
|
self.config = config |
|
|
self.token_embedding = nn.Embedding(config.vocab_size, config.hidden_size) |
|
|
self.blocks = nn.ModuleList([TransformerBlock(config) for _ in range(config.n_layers)]) |
|
|
self.embedding_dropout = nn.Dropout(config.dropout) |
|
|
self.final_norm = RMSNorm(config) |
|
|
self.lm_head = nn.Linear(config.hidden_size, config.vocab_size, bias=False) |
|
|
if config.tie_weights: |
|
|
self.lm_head.weight = self.token_embedding.weight |
|
|
|
|
|
self.apply(self._init_weights) |
|
|
|
|
|
def _init_weights(self, module): |
|
|
if isinstance(module, nn.Linear): |
|
|
nn.init.normal_(module.weight, mean=0.0, std=0.02 / math.sqrt(max(1, self.config.n_layers))) |
|
|
if module.bias is not None: |
|
|
nn.init.zeros_(module.bias) |
|
|
elif isinstance(module, nn.Embedding): |
|
|
nn.init.normal_(module.weight, mean=0.0, std=0.02) |
|
|
|
|
|
def forward(self, input_ids: torch.Tensor, targets: Optional[torch.Tensor] = None): |
|
|
x = self.token_embedding(input_ids) * math.sqrt(self.config.hidden_size) |
|
|
x = self.embedding_dropout(x) |
|
|
for block in self.blocks: |
|
|
x = block(x) |
|
|
x = self.final_norm(x) |
|
|
logits = self.lm_head(x) |
|
|
return logits |
|
|
|
|
|
def top_k_top_p_filtering(logits: torch.Tensor, top_k: int = 0, top_p: float = 0.0, filter_value: float = -float('Inf')) -> torch.Tensor: |
|
|
""" |
|
|
Filter a distribution of logits using top-k and/or nucleus (top-p) filtering. |
|
|
This is taken from common implementations (Hugging Face transformers style). |
|
|
Args: |
|
|
logits: logits distribution shape (batch, vocab) |
|
|
top_k: keep only top k tokens with highest probability (0 = no top-k) |
|
|
top_p: keep the top tokens with cumulative probability >= top_p (0.0 = no nucleus) |
|
|
filter_value: value to set for filtered logits |
|
|
Returns: |
|
|
filtered logits with the same shape |
|
|
""" |
|
|
top_k = max(top_k, 0) |
|
|
batch_size, vocab_size = logits.size() |
|
|
|
|
|
if top_k > 0: |
|
|
|
|
|
top_k = min(max(top_k, 1), vocab_size) |
|
|
values_to_keep, _ = torch.topk(logits, top_k) |
|
|
min_values = values_to_keep[:, -1].unsqueeze(1).expand_as(logits) |
|
|
logits = torch.where(logits < min_values, torch.full_like(logits, filter_value), logits) |
|
|
|
|
|
if top_p > 0.0: |
|
|
sorted_logits, sorted_indices = torch.sort(logits, descending=True, dim=-1) |
|
|
sorted_probs = F.softmax(sorted_logits, dim=-1) |
|
|
cumulative_probs = torch.cumsum(sorted_probs, dim=-1) |
|
|
|
|
|
|
|
|
sorted_mask = cumulative_probs > top_p |
|
|
|
|
|
|
|
|
sorted_mask[..., 1:] = sorted_mask[..., :-1].clone() |
|
|
sorted_mask[..., 0] = False |
|
|
|
|
|
indices_to_remove = sorted_mask.scatter(1, sorted_indices, sorted_mask) |
|
|
logits = logits.masked_fill(indices_to_remove, filter_value) |
|
|
|
|
|
return logits |
|
|
|
|
|
|
|
|
@torch.no_grad() |
|
|
def generate( |
|
|
model: Transformer, |
|
|
input_ids: torch.LongTensor, |
|
|
max_new_tokens: int = 50, |
|
|
temperature: float = 1.0, |
|
|
top_k: int = 0, |
|
|
top_p: float = 0.0, |
|
|
do_sample: bool = True, |
|
|
eos_token_id: Optional[int] = None, |
|
|
pad_token_id: Optional[int] = None, |
|
|
device: Optional[torch.device] = None, |
|
|
): |
|
|
""" |
|
|
Autoregressive generation helper for the model. This implementation does NOT use KV cache |
|
|
(the model defined in this file does not implement a cache), so generation is performed |
|
|
by repeatedly calling the model on the growing sequence. It supports temperature, |
|
|
top-k and nucleus (top-p) sampling, greedy decoding, and optional early stopping |
|
|
on an `eos_token_id`. |
|
|
|
|
|
Args: |
|
|
model: the Transformer instance |
|
|
input_ids: (batch, seq_len) input token ids |
|
|
max_new_tokens: number of tokens to generate |
|
|
temperature: sampling temperature (<=0 or do_sample=False => greedy) |
|
|
top_k: top-k filtering (0 disables) |
|
|
top_p: nucleus/top-p filtering (0.0 disables) |
|
|
do_sample: whether to sample (True) or do greedy decoding (False) |
|
|
eos_token_id: optional EOS id to stop generation for individual sequences |
|
|
pad_token_id: optional pad id to use for finished sequences |
|
|
device: optional torch.device to run on; if None uses model's device |
|
|
|
|
|
Returns: |
|
|
tensor of shape (batch, seq_len + generated) with generated tokens appended |
|
|
""" |
|
|
model.eval() |
|
|
if device is None: |
|
|
|
|
|
try: |
|
|
device = next(model.parameters()).device |
|
|
except StopIteration: |
|
|
device = torch.device('cpu') |
|
|
|
|
|
input_ids = input_ids.to(device) |
|
|
|
|
|
batch_size, seq_len = input_ids.shape |
|
|
generated = 0 |
|
|
unfinished = torch.ones(batch_size, dtype=torch.bool, device=device) |
|
|
|
|
|
for _ in range(max_new_tokens): |
|
|
logits = model(input_ids) |
|
|
|
|
|
next_token_logits = logits[:, -1, :] |
|
|
|
|
|
if temperature <= 0 or not do_sample: |
|
|
|
|
|
next_tokens = torch.argmax(next_token_logits, dim=-1) |
|
|
else: |
|
|
logits_proc = next_token_logits / max(temperature, 1e-8) |
|
|
logits_proc = top_k_top_p_filtering(logits_proc, top_k=top_k, top_p=top_p) |
|
|
probs = F.softmax(logits_proc, dim=-1) |
|
|
next_tokens = torch.multinomial(probs, num_samples=1).squeeze(-1) |
|
|
|
|
|
|
|
|
if eos_token_id is not None: |
|
|
is_eos = next_tokens.eq(eos_token_id) |
|
|
|
|
|
just_finished = unfinished & is_eos |
|
|
unfinished = unfinished & (~is_eos) |
|
|
|
|
|
|
|
|
if pad_token_id is not None and not unfinished.all(): |
|
|
finished_mask = ~unfinished |
|
|
if finished_mask.any(): |
|
|
next_tokens = next_tokens.masked_fill(finished_mask, pad_token_id) |
|
|
|
|
|
|
|
|
input_ids = torch.cat([input_ids, next_tokens.unsqueeze(-1)], dim=1) |
|
|
generated += 1 |
|
|
|
|
|
if eos_token_id is not None and not unfinished.any(): |
|
|
break |
|
|
|
|
|
return input_ids |
|
|
|
|
|
|
|
|
def _smoke_test(): |
|
|
config = ModelConfig( |
|
|
vocab_size=128, |
|
|
hidden_size=64, |
|
|
n_heads=4, |
|
|
n_kv_heads=4, |
|
|
n_kv_groups=None, |
|
|
head_dim=16, |
|
|
n_layers=2, |
|
|
attention_bias=False, |
|
|
intermediate_size=256, |
|
|
mlp_bias=False, |
|
|
eps=1e-5, |
|
|
) |
|
|
model = Transformer(config) |
|
|
model.eval() |
|
|
|
|
|
batch, seq_len = 2, 8 |
|
|
input_ids = torch.randint(0, config.vocab_size, (batch, seq_len)) |
|
|
logits, loss = model(input_ids, targets=input_ids) |
|
|
|
|
|
assert logits.shape == (batch, seq_len, config.vocab_size) |
|
|
assert loss.dim() == 0 |
|
|
print("Smoke test passed: logits shape", logits.shape, "loss", loss.detach().item()) |
|
|
|
|
|
|
|
|
if __name__ == "__main__": |
|
|
_smoke_test() |
|
|
|
|
|
|