VirtualInsight commited on
Commit
86b5931
·
verified ·
1 Parent(s): 0185573

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +76 -376
README.md CHANGED
@@ -1,6 +1,6 @@
1
  ---
2
  language: en
3
- license: mit
4
  library_name: pytorch
5
  tags:
6
  - transformer
@@ -12,369 +12,123 @@ tags:
12
 
13
  # Model Card for LumenBase
14
 
15
- <!-- Provide a quick summary of what the model is/does. -->
16
-
17
- LumenBase is a 128M parameter GPT-style transformer language model built entirely from scratch for educational and research purposes. The model features modern architectural components including Grouped Multi-Query Attention (GQA), SwiGLU activation, RMSNorm, and Rotary Position Embeddings (RoPE).
18
 
19
  ## Model Details
20
 
21
  ### Model Description
22
 
23
- <!-- Provide a longer summary of what this model is. -->
24
-
25
- LumenBase is a foundational language model created entirely from scratch to explore every step of modern LLM development — from data preprocessing and tokenization to architecture design, training, and evaluation. This project implements a decoder-only transformer architecture with several modern optimizations:
26
-
27
- - **Grouped Multi-Query Attention (GQA)**: Efficient attention mechanism with 12 query heads and 4 key-value heads (3 groups)
28
- - **SwiGLU Activation**: Advanced feed-forward network activation function
29
- - **RMSNorm**: Layer normalization for improved training stability
30
- - **Rotary Position Embeddings (RoPE)**: Relative position encoding
31
- - **Weight Tying**: Shared weights between embedding and output layers
32
 
33
- The model was trained on custom datasets using mixed precision training (FP16/BF16) with gradient accumulation, cosine annealing scheduler with linear warmup, and automatic checkpointing.
34
-
35
- - **Developed by:** Hariom Jangra (HariomJangra)
36
- - **Model type:** Decoder-only Transformer Language Model
37
- - **Language(s) (NLP):** English
38
  - **License:** MIT
39
- - **Finetuned from model [optional]:** N/A (trained from scratch)
40
-
41
- ### Model Sources [optional]
42
-
43
- <!-- Provide the basic links for the model. -->
44
-
45
  - **Repository:** https://github.com/HariomJangra/project-lumen
46
- - **Paper [optional]:** N/A
47
- - **Demo [optional]:** N/A
48
 
49
  ## Uses
50
 
51
- <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
52
-
53
- ### Direct Use
 
 
54
 
55
- <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
 
 
 
56
 
57
- LumenBase can be used directly for:
58
- - Text generation and completion tasks
59
- - Educational purposes to understand transformer architecture and training
60
- - Research on language model behavior and capabilities
61
- - Baseline for fine-tuning on specific downstream tasks
62
- - Understanding modern LLM architectural components
63
 
64
- ### Downstream Use [optional]
65
 
66
- <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
 
 
 
67
 
68
- The model can be fine-tuned for:
69
- - Instruction following
70
- - Chat-based applications
71
- - Domain-specific text generation
72
- - Task-specific adaptations
73
- - Further research on specialized applications
74
 
75
- ### Out-of-Scope Use
76
 
77
- <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
78
 
79
- This model is **not suitable** for:
80
- - Production deployments requiring high-quality generation
81
- - Safety-critical applications
82
- - Applications requiring factual accuracy without verification
83
- - Generation of harmful, hateful, or biased content
84
- - Large-scale commercial applications without proper evaluation
85
 
86
- This is an educational/research implementation. For production use, consider established frameworks like Hugging Face Transformers.
 
 
 
 
 
 
87
 
88
- ## Bias, Risks, and Limitations
89
 
90
- <!-- This section is meant to convey both technical and sociotechnical limitations. -->
91
 
92
- **Technical Limitations:**
93
- - Limited model size (128M parameters) compared to larger production models
94
- - Performance on benchmarks is below state-of-the-art models
95
- - May generate incoherent or nonsensical text for complex prompts
96
- - Limited context window (2048 tokens)
97
 
98
- **Bias and Social Limitations:**
99
- - The model may perpetuate biases present in training data
100
- - Not evaluated for fairness across different demographic groups
101
- - May generate inappropriate or offensive content
102
- - Should not be relied upon for factual information without verification
103
 
104
- **Research/Educational Nature:**
105
- - This is a learning project, not optimized for production use
106
- - Training data sources and quality may vary
107
- - Limited testing across diverse use cases
108
 
109
- ### Recommendations
110
 
111
- <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
 
 
 
 
112
 
113
- Users (both direct and downstream) should:
114
- - Be aware this is an educational model with limited capabilities
115
- - Not use for safety-critical or production applications
116
- - Verify all generated content before use
117
- - Implement appropriate content filtering for downstream applications
118
- - Consider the model's limitations when interpreting results
119
- - Use established production-ready models for commercial applications
120
 
121
- ## How to Get Started with the Model
122
 
123
- Use the code below to get started with the model.
124
 
125
  ```python
126
  import torch
127
  from ModelArchitecture import Transformer, ModelConfig, generate
128
  from tokenizers import Tokenizer
129
 
130
- # Load model configuration
131
- config = ModelConfig(
132
- vocab_size=32000,
133
- hidden_size=768,
134
- n_heads=12,
135
- n_kv_heads=4,
136
- n_kv_groups=3,
137
- head_dim=64,
138
- n_layers=12,
139
- attention_bias=False,
140
- intermediate_size=3072,
141
- mlp_bias=False,
142
- eps=1e-5,
143
- dropout=0.0,
144
- max_position_embeddings=2048,
145
- pre_norm=True,
146
- tie_weights=True,
147
- max_seq_len=2048
148
- )
149
-
150
- # Initialize model
151
- model = Transformer(config)
152
 
153
- # Load trained weights
154
- checkpoint = torch.load('LumenBase.safetensors', map_location='cpu')
155
- model.load_state_dict(checkpoint)
156
  model.eval()
157
 
158
- # Load tokenizer
159
- tokenizer = Tokenizer.from_file('LumenTokenizer.json')
160
-
161
  # Generate text
 
162
  prompt = "Once upon a time"
163
  input_ids = torch.tensor([tokenizer.encode(prompt).ids])
164
 
165
- output = generate(
166
- model=model,
167
- input_ids=input_ids,
168
- max_new_tokens=100,
169
- temperature=0.8,
170
- top_k=50,
171
- top_p=0.9,
172
- do_sample=True
173
- )
174
-
175
- generated_text = tokenizer.decode(output[0].tolist())
176
- print(generated_text)
177
- ```
178
-
179
- ## Training Details
180
-
181
- ### Training Data
182
-
183
- <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
184
-
185
- The model was trained on custom datasets prepared specifically for this project. The training pipeline included:
186
-
187
- 1. **Dataset Preparation**: Text data collection and preprocessing
188
- 2. **Tokenization**: Custom BPE (Byte Pair Encoding) tokenizer trained with a vocabulary size of 32,000 tokens
189
- 3. **Data Processing**: Text tokenization and conversion to token IDs stored as NumPy arrays
190
- - TokenizedDataSet1.npy
191
- - TokenizedDataSet2.npy
192
- - TokenizedDataset3.npy
193
-
194
- The training data was tokenized using a custom-trained tokenizer (LumenTokenizer) optimized for the target domain.
195
-
196
- ### Training Procedure
197
-
198
- <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
199
-
200
- #### Preprocessing [optional]
201
-
202
- - Text cleaning and normalization
203
- - BPE tokenization with 32K vocabulary
204
- - Sequence chunking to 2048 token context windows
205
- - Data stored in efficient NumPy format for fast loading
206
-
207
- #### Training Hyperparameters
208
-
209
- - **Optimizer**: AdamW (lr=3e-4, betas=(0.9, 0.95), weight_decay=0.1)
210
- - **Scheduler**: Linear warmup (2000 steps) + Cosine annealing
211
- - **Batch Size**: 12 sequences per batch
212
- - **Gradient Accumulation Steps**: 4 (effective batch size: 48)
213
- - **Sequence Length**: 2048 tokens
214
- - **Dropout**: 0.1 during training, 0.0 during inference
215
- - **Gradient Clipping**: Max norm 1.0
216
- - **Training regime**: Mixed precision (automatic FP16/BF16/FP32 based on hardware)
217
-
218
- #### Speeds, Sizes, Times [optional]
219
-
220
- <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
221
-
222
- - **Model Parameters**: 128M (128 million)
223
- - **Model Size**: ~512 MB (FP32), ~256 MB (FP16)
224
- - **Checkpoint Frequency**: Every N steps with automatic best model saving
225
- - **Training monitored with**: Training and validation loss curves
226
- - **Final checkpoint**: best_model_params_110k.pt
227
-
228
- ![Training Loss Curve](PreTraining/images/training_loss_curve.png)
229
-
230
- ## Evaluation
231
-
232
- <!-- This section describes the evaluation protocols and provides the results. -->
233
-
234
- ### Testing Data, Factors & Metrics
235
-
236
- #### Testing Data
237
-
238
- <!-- This should link to a Dataset Card if possible. -->
239
-
240
- The model was evaluated on three standard NLP benchmarks:
241
-
242
- 1. **ARC-Easy** (AI2 Reasoning Challenge - Easy): 2,376 questions
243
- 2. **ARC-Challenge** (AI2 Reasoning Challenge - Challenge): 1,172 questions
244
- 3. **HellaSwag**: 1,024 examples for commonsense reasoning
245
-
246
- #### Factors
247
-
248
- <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
249
-
250
- The model was evaluated on:
251
- - Multiple-choice question answering
252
- - Commonsense reasoning
253
- - Scientific reasoning
254
- - Reading comprehension
255
-
256
- #### Metrics
257
-
258
- <!-- These are the evaluation metrics being used, ideally with a description of why. -->
259
-
260
- **Accuracy**: The primary metric used for all benchmarks, measuring the percentage of correctly answered questions.
261
-
262
- ### Results
263
-
264
- | Benchmark | Accuracy | Correct | Total |
265
- |-----------|----------|---------|-------|
266
- | **ARC-Easy** | 39.48% | 938 | 2,376 |
267
- | **ARC-Challenge** | 23.55% | 276 | 1,172 |
268
- | **HellaSwag** | 32.62% | 334 | 1,024 |
269
-
270
- #### Summary
271
-
272
- The LumenBase model demonstrates baseline performance on standard NLP benchmarks. As expected for a 128M parameter model trained from scratch for educational purposes:
273
-
274
- - **ARC-Easy**: Achieves ~39% accuracy, showing some capability on easier scientific reasoning tasks
275
- - **ARC-Challenge**: Scores ~24% on the more difficult version, indicating room for improvement on complex reasoning
276
- - **HellaSwag**: Reaches ~33% on commonsense reasoning, slightly above random chance (25% for 4-choice questions)
277
-
278
- These results are consistent with a small-scale educational model and provide a baseline for future improvements through:
279
- - Additional training data
280
- - Longer training duration
281
- - Model scaling
282
- - Fine-tuning on specific tasks
283
- - Improved training techniques
284
-
285
- ## Model Examination [optional]
286
-
287
- <!-- Relevant interpretability work for the model goes here -->
288
-
289
- **Architecture Details:**
290
- - **Attention Mechanism**: Grouped Multi-Query Attention reduces KV cache size while maintaining performance
291
- - **Activation Function**: SwiGLU provides better gradient flow compared to traditional ReLU
292
- - **Normalization**: RMSNorm (Root Mean Square Layer Normalization) for improved stability
293
- - **Position Encoding**: RoPE (Rotary Position Embeddings) for better handling of relative positions
294
- - **Weight Tying**: Embedding and output layer share weights, reducing parameter count
295
-
296
- **Key Design Choices:**
297
- - Decoder-only architecture following GPT design principles
298
- - Pre-normalization for better training stability
299
- - Efficient attention with 12 query heads, 4 KV heads (grouped into 3)
300
- - Intermediate FFN size of 3072 (4x hidden size)
301
-
302
- **Implementation Highlights:**
303
- - Custom implementation from scratch using PyTorch
304
- - Supports various sampling strategies: greedy, top-k, top-p (nucleus), temperature scaling
305
- - Gradient accumulation for effective larger batch sizes
306
- - Automatic mixed precision training support
307
-
308
- ## Environmental Impact
309
-
310
- <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
311
-
312
- Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
313
-
314
- - **Hardware Type:** Consumer-grade GPU (specific hardware varies)
315
- - **Hours used:** Educational project, training time not formally tracked
316
- - **Cloud Provider:** N/A (local training)
317
- - **Compute Region:** N/A
318
- - **Carbon Emitted:** Not formally measured
319
-
320
- **Note**: As an educational project, formal carbon footprint tracking was not implemented. Future iterations could benefit from tracking environmental impact.
321
-
322
- ## Technical Specifications [optional]
323
-
324
- ### Model Architecture and Objective
325
-
326
- **Architecture**: Decoder-only Transformer (GPT-style)
327
-
328
- **Configuration:**
329
- ```python
330
- vocab_size: 32000
331
- hidden_size: 768
332
- n_heads: 12
333
- n_kv_heads: 4
334
- n_kv_groups: 3
335
- head_dim: 64
336
- n_layers: 12
337
- intermediate_size: 3072
338
- max_position_embeddings: 2048
339
- dropout: 0.1 (training) / 0.0 (inference)
340
- ```
341
-
342
- **Key Components:**
343
- - **Grouped Multi-Query Attention**: 12 query heads, 4 key-value heads
344
- - **Feed-Forward Network**: SwiGLU activation with 3072 intermediate dimensions
345
- - **Layer Normalization**: RMSNorm (epsilon=1e-5)
346
- - **Position Encoding**: Rotary Position Embeddings (RoPE)
347
- - **Weight Tying**: Shared embedding and output projection weights
348
-
349
- **Training Objective**: Causal language modeling with cross-entropy loss
350
-
351
- ### Compute Infrastructure
352
-
353
- Educational project trained on consumer hardware.
354
-
355
- #### Hardware
356
-
357
- - Consumer-grade GPU (specific configuration varies)
358
- - Training performed locally, not on cloud infrastructure
359
-
360
- #### Software
361
-
362
- ```
363
- Python 3.13
364
- PyTorch (latest)
365
- NumPy
366
- Tokenizers (Hugging Face)
367
- tqdm (progress tracking)
368
- matplotlib (visualization)
369
  ```
370
 
371
- **Custom Implementation**: All model components implemented from scratch in PyTorch without using high-level transformer libraries.
372
-
373
- ## Citation [optional]
374
-
375
- <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
376
-
377
- **BibTeX:**
378
 
379
  ```bibtex
380
  @misc{lumenbase2024,
@@ -382,66 +136,12 @@ matplotlib (visualization)
382
  title = {LumenBase: A 128M Parameter Language Model Built from Scratch},
383
  year = {2024},
384
  publisher = {GitHub},
385
- journal = {GitHub repository},
386
  howpublished = {\url{https://github.com/HariomJangra/project-lumen}}
387
  }
388
  ```
389
 
390
- **APA:**
391
-
392
- Jangra, H. (2024). *LumenBase: A 128M Parameter Language Model Built from Scratch* [Computer software]. GitHub. https://github.com/HariomJangra/project-lumen
393
-
394
- ## Glossary [optional]
395
-
396
- <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
397
-
398
- **Terms:**
399
-
400
- - **BPE (Byte Pair Encoding)**: Tokenization algorithm that builds vocabulary by iteratively merging frequent character pairs
401
- - **GQA (Grouped Multi-Query Attention)**: Attention mechanism where multiple query heads share fewer key-value heads, reducing memory and computation
402
- - **RMSNorm**: Root Mean Square Layer Normalization - simplified normalization that only rescales using RMS statistics
403
- - **RoPE (Rotary Position Embeddings)**: Position encoding that encodes absolute positions with rotation matrices and naturally incorporates relative position information
404
- - **SwiGLU**: Activation function combining Swish activation with Gated Linear Units for improved model performance
405
- - **Weight Tying**: Technique where embedding and output layers share parameters to reduce model size
406
-
407
- **Sampling Strategies:**
408
- - **Greedy Decoding**: Always select the token with highest probability
409
- - **Top-k Sampling**: Sample from the k most likely tokens
410
- - **Top-p (Nucleus) Sampling**: Sample from smallest set of tokens whose cumulative probability exceeds p
411
- - **Temperature Scaling**: Adjust probability distribution sharpness (lower = more deterministic, higher = more random)
412
-
413
- ## More Information [optional]
414
-
415
- **Project Structure:**
416
- - `PreTraining/Implementation/`: Training scripts and data preparation notebooks
417
- - `PreTraining/Benchmark/`: Evaluation scripts and results
418
- - `PreTraining/Inference/`: Text generation and inference code
419
- - `PreTraining/Models/`: Saved model checkpoints
420
- - `PreTraining/DataSets/`: Tokenized training data
421
-
422
- **Future Work:**
423
- - Fine-tuning for instruction following
424
- - Chat model adaptation
425
- - Task-specific fine-tuning
426
- - Scaling to larger model sizes
427
- - Improved training data curation
428
- - Advanced sampling techniques
429
-
430
- **Learning Resources:**
431
- This project serves as a comprehensive educational resource covering:
432
- 1. Dataset preparation and cleaning
433
- 2. Custom tokenizer training
434
- 3. Transformer architecture implementation
435
- 4. Training loop with modern optimizations
436
- 5. Evaluation on standard benchmarks
437
- 6. Text generation with various sampling strategies
438
-
439
- For detailed implementation and usage, please refer to the [GitHub repository](https://github.com/HariomJangra/project-lumen).
440
-
441
- ## Model Card Authors [optional]
442
-
443
- Hariom Jangra ([@HariomJangra](https://github.com/HariomJangra))
444
 
445
- ## Model Card Contact
446
 
447
- For questions or feedback about this model, please open an issue on the [GitHub repository](https://github.com/HariomJangra/project-lumen).
 
1
  ---
2
  language: en
3
+ license: apache-2.0
4
  library_name: pytorch
5
  tags:
6
  - transformer
 
12
 
13
  # Model Card for LumenBase
14
 
15
+ A 128M parameter GPT-style transformer built from scratch for educational purposes, featuring Grouped Multi-Query Attention (GQA), SwiGLU, RMSNorm, and RoPE.
 
 
16
 
17
  ## Model Details
18
 
19
  ### Model Description
20
 
21
+ LumenBase is a decoder-only transformer language model implementing modern architectural optimizations:
22
+ - **Architecture**: 12-layer transformer with GQA (12 query heads, 4 KV heads), SwiGLU activation, RMSNorm, and RoPE
23
+ - **Parameters**: 128M (768 hidden size, 3072 FFN, 2048 context length)
24
+ - **Training**: Mixed precision (FP16/BF16) with custom tokenizer (32K vocab)
 
 
 
 
 
25
 
26
+ - **Developed by:** Hariom Jangra
27
+ - **Model type:** Decoder-only Transformer
28
+ - **Language:** English
 
 
29
  - **License:** MIT
 
 
 
 
 
 
30
  - **Repository:** https://github.com/HariomJangra/project-lumen
 
 
31
 
32
  ## Uses
33
 
34
+ **Direct Use:**
35
+ - Text generation and completion
36
+ - Educational resource for understanding transformer architecture
37
+ - Research baseline for language models
38
+ - Foundation for fine-tuning on specific tasks
39
 
40
+ **Downstream Use:**
41
+ - Instruction tuning
42
+ - Chat applications
43
+ - Domain-specific fine-tuning
44
 
45
+ **Out-of-Scope:**
46
+ - Production deployments
47
+ - Safety-critical applications
48
+ - Applications requiring factual accuracy without verification
49
+ - This is an educational model - use established frameworks for production
 
50
 
51
+ ## Limitations
52
 
53
+ **Technical:**
54
+ - Limited size (128M parameters) - below state-of-the-art performance
55
+ - 2048 token context window
56
+ - May generate incoherent text for complex prompts
57
 
58
+ **Bias & Safety:**
59
+ - May perpetuate training data biases
60
+ - Not evaluated for fairness across demographics
61
+ - Can generate inappropriate content
62
+ - Should not be relied upon for factual information
 
63
 
64
+ **Recommendations:** This is an educational model. Verify all outputs, implement content filtering for applications, and use production-ready models for commercial use.
65
 
66
+ ## Training
67
 
68
+ **Data:** Custom datasets tokenized with BPE (32K vocab)
 
 
 
 
 
69
 
70
+ **Hyperparameters:**
71
+ - Optimizer: AdamW (lr=3e-4, weight_decay=0.1)
72
+ - Batch: 12 × 4 gradient accumulation = 48 effective
73
+ - Sequence length: 2048 tokens
74
+ - Scheduler: Linear warmup + Cosine annealing
75
+ - Precision: Mixed (FP16/BF16/FP32)
76
+ - Dropout: 0.1 (training), 0.0 (inference)
77
 
78
+ ![Training Loss](PreTraining/images/training_loss_curve.png)
79
 
80
+ ## Evaluation
81
 
82
+ Evaluated on standard NLP benchmarks:
 
 
 
 
83
 
84
+ | Benchmark | Accuracy | Correct/Total |
85
+ |-----------|----------|---------------|
86
+ | **ARC-Easy** | 39.48% | 938/2,376 |
87
+ | **ARC-Challenge** | 23.55% | 276/1,172 |
88
+ | **HellaSwag** | 32.62% | 334/1,024 |
89
 
90
+ **Summary:** Baseline performance consistent with a 128M educational model. Results show capability on easier tasks with room for improvement on complex reasoning.
 
 
 
91
 
92
+ ## Technical Specifications
93
 
94
+ **Architecture:** Decoder-only Transformer
95
+ - 12 layers, 768 hidden size, 12 attention heads (4 KV heads)
96
+ - SwiGLU FFN (3072 intermediate), RMSNorm, RoPE
97
+ - 32K vocab, 2048 max sequence length
98
+ - Weight tying between embedding and output layers
99
 
100
+ **Implementation:** Custom PyTorch implementation from scratch
 
 
 
 
 
 
101
 
102
+ **Software:** Python 3.13, PyTorch, NumPy, Tokenizers, tqdm, matplotlib
103
 
104
+ ## How to Use
105
 
106
  ```python
107
  import torch
108
  from ModelArchitecture import Transformer, ModelConfig, generate
109
  from tokenizers import Tokenizer
110
 
111
+ # Load configuration and model
112
+ config = ModelConfig(vocab_size=32000, hidden_size=768, n_heads=12,
113
+ n_kv_heads=4, n_kv_groups=3, head_dim=64, n_layers=12,
114
+ intermediate_size=3072, max_position_embeddings=2048,
115
+ dropout=0.0, pre_norm=True, tie_weights=True)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
116
 
117
+ model = Transformer(config)
118
+ model.load_state_dict(torch.load('LumenBase.safetensors'))
 
119
  model.eval()
120
 
 
 
 
121
  # Generate text
122
+ tokenizer = Tokenizer.from_file('LumenTokenizer.json')
123
  prompt = "Once upon a time"
124
  input_ids = torch.tensor([tokenizer.encode(prompt).ids])
125
 
126
+ output = generate(model, input_ids, max_new_tokens=100,
127
+ temperature=0.8, top_k=50, top_p=0.9)
128
+ print(tokenizer.decode(output[0].tolist()))
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
129
  ```
130
 
131
+ ## Citation
 
 
 
 
 
 
132
 
133
  ```bibtex
134
  @misc{lumenbase2024,
 
136
  title = {LumenBase: A 128M Parameter Language Model Built from Scratch},
137
  year = {2024},
138
  publisher = {GitHub},
 
139
  howpublished = {\url{https://github.com/HariomJangra/project-lumen}}
140
  }
141
  ```
142
 
143
+ ## Contact
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
144
 
145
+ **Author:** Hariom Jangra ([@HariomJangra](https://github.com/HariomJangra))
146
 
147
+ For questions or feedback, please open an issue on the [GitHub repository](https://github.com/HariomJangra/project-lumen).