Upload NewForSequenceClassification
Browse files- README.md +199 -0
 - config.json +96 -0
 - configuration.py +145 -0
 - model.safetensors +3 -0
 - modeling.py +1418 -0
 
    	
        README.md
    ADDED
    
    | 
         @@ -0,0 +1,199 @@ 
     | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
| 
         | 
|
| 1 | 
         
            +
            ---
         
     | 
| 2 | 
         
            +
            library_name: transformers
         
     | 
| 3 | 
         
            +
            tags: []
         
     | 
| 4 | 
         
            +
            ---
         
     | 
| 5 | 
         
            +
             
     | 
| 6 | 
         
            +
            # Model Card for Model ID
         
     | 
| 7 | 
         
            +
             
     | 
| 8 | 
         
            +
            <!-- Provide a quick summary of what the model is/does. -->
         
     | 
| 9 | 
         
            +
             
     | 
| 10 | 
         
            +
             
     | 
| 11 | 
         
            +
             
     | 
| 12 | 
         
            +
            ## Model Details
         
     | 
| 13 | 
         
            +
             
     | 
| 14 | 
         
            +
            ### Model Description
         
     | 
| 15 | 
         
            +
             
     | 
| 16 | 
         
            +
            <!-- Provide a longer summary of what this model is. -->
         
     | 
| 17 | 
         
            +
             
     | 
| 18 | 
         
            +
            This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated.
         
     | 
| 19 | 
         
            +
             
     | 
| 20 | 
         
            +
            - **Developed by:** [More Information Needed]
         
     | 
| 21 | 
         
            +
            - **Funded by [optional]:** [More Information Needed]
         
     | 
| 22 | 
         
            +
            - **Shared by [optional]:** [More Information Needed]
         
     | 
| 23 | 
         
            +
            - **Model type:** [More Information Needed]
         
     | 
| 24 | 
         
            +
            - **Language(s) (NLP):** [More Information Needed]
         
     | 
| 25 | 
         
            +
            - **License:** [More Information Needed]
         
     | 
| 26 | 
         
            +
            - **Finetuned from model [optional]:** [More Information Needed]
         
     | 
| 27 | 
         
            +
             
     | 
| 28 | 
         
            +
            ### Model Sources [optional]
         
     | 
| 29 | 
         
            +
             
     | 
| 30 | 
         
            +
            <!-- Provide the basic links for the model. -->
         
     | 
| 31 | 
         
            +
             
     | 
| 32 | 
         
            +
            - **Repository:** [More Information Needed]
         
     | 
| 33 | 
         
            +
            - **Paper [optional]:** [More Information Needed]
         
     | 
| 34 | 
         
            +
            - **Demo [optional]:** [More Information Needed]
         
     | 
| 35 | 
         
            +
             
     | 
| 36 | 
         
            +
            ## Uses
         
     | 
| 37 | 
         
            +
             
     | 
| 38 | 
         
            +
            <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
         
     | 
| 39 | 
         
            +
             
     | 
| 40 | 
         
            +
            ### Direct Use
         
     | 
| 41 | 
         
            +
             
     | 
| 42 | 
         
            +
            <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
         
     | 
| 43 | 
         
            +
             
     | 
| 44 | 
         
            +
            [More Information Needed]
         
     | 
| 45 | 
         
            +
             
     | 
| 46 | 
         
            +
            ### Downstream Use [optional]
         
     | 
| 47 | 
         
            +
             
     | 
| 48 | 
         
            +
            <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
         
     | 
| 49 | 
         
            +
             
     | 
| 50 | 
         
            +
            [More Information Needed]
         
     | 
| 51 | 
         
            +
             
     | 
| 52 | 
         
            +
            ### Out-of-Scope Use
         
     | 
| 53 | 
         
            +
             
     | 
| 54 | 
         
            +
            <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
         
     | 
| 55 | 
         
            +
             
     | 
| 56 | 
         
            +
            [More Information Needed]
         
     | 
| 57 | 
         
            +
             
     | 
| 58 | 
         
            +
            ## Bias, Risks, and Limitations
         
     | 
| 59 | 
         
            +
             
     | 
| 60 | 
         
            +
            <!-- This section is meant to convey both technical and sociotechnical limitations. -->
         
     | 
| 61 | 
         
            +
             
     | 
| 62 | 
         
            +
            [More Information Needed]
         
     | 
| 63 | 
         
            +
             
     | 
| 64 | 
         
            +
            ### Recommendations
         
     | 
| 65 | 
         
            +
             
     | 
| 66 | 
         
            +
            <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
         
     | 
| 67 | 
         
            +
             
     | 
| 68 | 
         
            +
            Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
         
     | 
| 69 | 
         
            +
             
     | 
| 70 | 
         
            +
            ## How to Get Started with the Model
         
     | 
| 71 | 
         
            +
             
     | 
| 72 | 
         
            +
            Use the code below to get started with the model.
         
     | 
| 73 | 
         
            +
             
     | 
| 74 | 
         
            +
            [More Information Needed]
         
     | 
| 75 | 
         
            +
             
     | 
| 76 | 
         
            +
            ## Training Details
         
     | 
| 77 | 
         
            +
             
     | 
| 78 | 
         
            +
            ### Training Data
         
     | 
| 79 | 
         
            +
             
     | 
| 80 | 
         
            +
            <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
         
     | 
| 81 | 
         
            +
             
     | 
| 82 | 
         
            +
            [More Information Needed]
         
     | 
| 83 | 
         
            +
             
     | 
| 84 | 
         
            +
            ### Training Procedure
         
     | 
| 85 | 
         
            +
             
     | 
| 86 | 
         
            +
            <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
         
     | 
| 87 | 
         
            +
             
     | 
| 88 | 
         
            +
            #### Preprocessing [optional]
         
     | 
| 89 | 
         
            +
             
     | 
| 90 | 
         
            +
            [More Information Needed]
         
     | 
| 91 | 
         
            +
             
     | 
| 92 | 
         
            +
             
     | 
| 93 | 
         
            +
            #### Training Hyperparameters
         
     | 
| 94 | 
         
            +
             
     | 
| 95 | 
         
            +
            - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
         
     | 
| 96 | 
         
            +
             
     | 
| 97 | 
         
            +
            #### Speeds, Sizes, Times [optional]
         
     | 
| 98 | 
         
            +
             
     | 
| 99 | 
         
            +
            <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
         
     | 
| 100 | 
         
            +
             
     | 
| 101 | 
         
            +
            [More Information Needed]
         
     | 
| 102 | 
         
            +
             
     | 
| 103 | 
         
            +
            ## Evaluation
         
     | 
| 104 | 
         
            +
             
     | 
| 105 | 
         
            +
            <!-- This section describes the evaluation protocols and provides the results. -->
         
     | 
| 106 | 
         
            +
             
     | 
| 107 | 
         
            +
            ### Testing Data, Factors & Metrics
         
     | 
| 108 | 
         
            +
             
     | 
| 109 | 
         
            +
            #### Testing Data
         
     | 
| 110 | 
         
            +
             
     | 
| 111 | 
         
            +
            <!-- This should link to a Dataset Card if possible. -->
         
     | 
| 112 | 
         
            +
             
     | 
| 113 | 
         
            +
            [More Information Needed]
         
     | 
| 114 | 
         
            +
             
     | 
| 115 | 
         
            +
            #### Factors
         
     | 
| 116 | 
         
            +
             
     | 
| 117 | 
         
            +
            <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
         
     | 
| 118 | 
         
            +
             
     | 
| 119 | 
         
            +
            [More Information Needed]
         
     | 
| 120 | 
         
            +
             
     | 
| 121 | 
         
            +
            #### Metrics
         
     | 
| 122 | 
         
            +
             
     | 
| 123 | 
         
            +
            <!-- These are the evaluation metrics being used, ideally with a description of why. -->
         
     | 
| 124 | 
         
            +
             
     | 
| 125 | 
         
            +
            [More Information Needed]
         
     | 
| 126 | 
         
            +
             
     | 
| 127 | 
         
            +
            ### Results
         
     | 
| 128 | 
         
            +
             
     | 
| 129 | 
         
            +
            [More Information Needed]
         
     | 
| 130 | 
         
            +
             
     | 
| 131 | 
         
            +
            #### Summary
         
     | 
| 132 | 
         
            +
             
     | 
| 133 | 
         
            +
             
     | 
| 134 | 
         
            +
             
     | 
| 135 | 
         
            +
            ## Model Examination [optional]
         
     | 
| 136 | 
         
            +
             
     | 
| 137 | 
         
            +
            <!-- Relevant interpretability work for the model goes here -->
         
     | 
| 138 | 
         
            +
             
     | 
| 139 | 
         
            +
            [More Information Needed]
         
     | 
| 140 | 
         
            +
             
     | 
| 141 | 
         
            +
            ## Environmental Impact
         
     | 
| 142 | 
         
            +
             
     | 
| 143 | 
         
            +
            <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
         
     | 
| 144 | 
         
            +
             
     | 
| 145 | 
         
            +
            Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
         
     | 
| 146 | 
         
            +
             
     | 
| 147 | 
         
            +
            - **Hardware Type:** [More Information Needed]
         
     | 
| 148 | 
         
            +
            - **Hours used:** [More Information Needed]
         
     | 
| 149 | 
         
            +
            - **Cloud Provider:** [More Information Needed]
         
     | 
| 150 | 
         
            +
            - **Compute Region:** [More Information Needed]
         
     | 
| 151 | 
         
            +
            - **Carbon Emitted:** [More Information Needed]
         
     | 
| 152 | 
         
            +
             
     | 
| 153 | 
         
            +
            ## Technical Specifications [optional]
         
     | 
| 154 | 
         
            +
             
     | 
| 155 | 
         
            +
            ### Model Architecture and Objective
         
     | 
| 156 | 
         
            +
             
     | 
| 157 | 
         
            +
            [More Information Needed]
         
     | 
| 158 | 
         
            +
             
     | 
| 159 | 
         
            +
            ### Compute Infrastructure
         
     | 
| 160 | 
         
            +
             
     | 
| 161 | 
         
            +
            [More Information Needed]
         
     | 
| 162 | 
         
            +
             
     | 
| 163 | 
         
            +
            #### Hardware
         
     | 
| 164 | 
         
            +
             
     | 
| 165 | 
         
            +
            [More Information Needed]
         
     | 
| 166 | 
         
            +
             
     | 
| 167 | 
         
            +
            #### Software
         
     | 
| 168 | 
         
            +
             
     | 
| 169 | 
         
            +
            [More Information Needed]
         
     | 
| 170 | 
         
            +
             
     | 
| 171 | 
         
            +
            ## Citation [optional]
         
     | 
| 172 | 
         
            +
             
     | 
| 173 | 
         
            +
            <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
         
     | 
| 174 | 
         
            +
             
     | 
| 175 | 
         
            +
            **BibTeX:**
         
     | 
| 176 | 
         
            +
             
     | 
| 177 | 
         
            +
            [More Information Needed]
         
     | 
| 178 | 
         
            +
             
     | 
| 179 | 
         
            +
            **APA:**
         
     | 
| 180 | 
         
            +
             
     | 
| 181 | 
         
            +
            [More Information Needed]
         
     | 
| 182 | 
         
            +
             
     | 
| 183 | 
         
            +
            ## Glossary [optional]
         
     | 
| 184 | 
         
            +
             
     | 
| 185 | 
         
            +
            <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
         
     | 
| 186 | 
         
            +
             
     | 
| 187 | 
         
            +
            [More Information Needed]
         
     | 
| 188 | 
         
            +
             
     | 
| 189 | 
         
            +
            ## More Information [optional]
         
     | 
| 190 | 
         
            +
             
     | 
| 191 | 
         
            +
            [More Information Needed]
         
     | 
| 192 | 
         
            +
             
     | 
| 193 | 
         
            +
            ## Model Card Authors [optional]
         
     | 
| 194 | 
         
            +
             
     | 
| 195 | 
         
            +
            [More Information Needed]
         
     | 
| 196 | 
         
            +
             
     | 
| 197 | 
         
            +
            ## Model Card Contact
         
     | 
| 198 | 
         
            +
             
     | 
| 199 | 
         
            +
            [More Information Needed]
         
     | 
    	
        config.json
    ADDED
    
    | 
         @@ -0,0 +1,96 @@ 
     | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
| 
         | 
|
| 1 | 
         
            +
            {
         
     | 
| 2 | 
         
            +
              "_name_or_path": "../../delve/ontologies/checkpoints/gte-base-en-v1.5_topic-v3.8_url1",
         
     | 
| 3 | 
         
            +
              "architectures": [
         
     | 
| 4 | 
         
            +
                "NewForSequenceClassification"
         
     | 
| 5 | 
         
            +
              ],
         
     | 
| 6 | 
         
            +
              "attention_probs_dropout_prob": 0.0,
         
     | 
| 7 | 
         
            +
              "auto_map": {
         
     | 
| 8 | 
         
            +
                "AutoConfig": "configuration.NewConfig",
         
     | 
| 9 | 
         
            +
                "AutoModel": "Alibaba-NLP/new-impl--modeling.NewModel",
         
     | 
| 10 | 
         
            +
                "AutoModelForMaskedLM": "Alibaba-NLP/new-impl--modeling.NewForMaskedLM",
         
     | 
| 11 | 
         
            +
                "AutoModelForMultipleChoice": "Alibaba-NLP/new-impl--modeling.NewForMultipleChoice",
         
     | 
| 12 | 
         
            +
                "AutoModelForQuestionAnswering": "Alibaba-NLP/new-impl--modeling.NewForQuestionAnswering",
         
     | 
| 13 | 
         
            +
                "AutoModelForSequenceClassification": "modeling.NewForSequenceClassification",
         
     | 
| 14 | 
         
            +
                "AutoModelForTokenClassification": "Alibaba-NLP/new-impl--modeling.NewForTokenClassification"
         
     | 
| 15 | 
         
            +
              },
         
     | 
| 16 | 
         
            +
              "classifier_dropout": null,
         
     | 
| 17 | 
         
            +
              "hidden_act": "gelu",
         
     | 
| 18 | 
         
            +
              "hidden_dropout_prob": 0.1,
         
     | 
| 19 | 
         
            +
              "hidden_size": 768,
         
     | 
| 20 | 
         
            +
              "id2label": {
         
     | 
| 21 | 
         
            +
                "0": "Adult",
         
     | 
| 22 | 
         
            +
                "1": "Art & Design",
         
     | 
| 23 | 
         
            +
                "10": "Food & Dining",
         
     | 
| 24 | 
         
            +
                "11": "Games",
         
     | 
| 25 | 
         
            +
                "12": "Health",
         
     | 
| 26 | 
         
            +
                "13": "History",
         
     | 
| 27 | 
         
            +
                "14": "Home & Hobbies",
         
     | 
| 28 | 
         
            +
                "15": "Industrial",
         
     | 
| 29 | 
         
            +
                "16": "Literature",
         
     | 
| 30 | 
         
            +
                "17": "Politics",
         
     | 
| 31 | 
         
            +
                "18": "Religion",
         
     | 
| 32 | 
         
            +
                "19": "Science & Tech.",
         
     | 
| 33 | 
         
            +
                "2": "Software Dev.",
         
     | 
| 34 | 
         
            +
                "20": "Software",
         
     | 
| 35 | 
         
            +
                "21": "Sports & Fitness",
         
     | 
| 36 | 
         
            +
                "22": "Transportation",
         
     | 
| 37 | 
         
            +
                "23": "Travel",
         
     | 
| 38 | 
         
            +
                "3": "Crime & Law",
         
     | 
| 39 | 
         
            +
                "4": "Education & Jobs",
         
     | 
| 40 | 
         
            +
                "5": "Hardware",
         
     | 
| 41 | 
         
            +
                "6": "Entertainment",
         
     | 
| 42 | 
         
            +
                "7": "Social Life",
         
     | 
| 43 | 
         
            +
                "8": "Fashion & Beauty",
         
     | 
| 44 | 
         
            +
                "9": "Finance & Business"
         
     | 
| 45 | 
         
            +
              },
         
     | 
| 46 | 
         
            +
              "initializer_range": 0.02,
         
     | 
| 47 | 
         
            +
              "intermediate_size": 3072,
         
     | 
| 48 | 
         
            +
              "label2id": {
         
     | 
| 49 | 
         
            +
                "Adult": 0,
         
     | 
| 50 | 
         
            +
                "Art & Design": 1,
         
     | 
| 51 | 
         
            +
                "Crime & Law": 3,
         
     | 
| 52 | 
         
            +
                "Education & Jobs": 4,
         
     | 
| 53 | 
         
            +
                "Entertainment": 6,
         
     | 
| 54 | 
         
            +
                "Fashion & Beauty": 8,
         
     | 
| 55 | 
         
            +
                "Finance & Business": 9,
         
     | 
| 56 | 
         
            +
                "Food & Dining": 10,
         
     | 
| 57 | 
         
            +
                "Games": 11,
         
     | 
| 58 | 
         
            +
                "Hardware": 5,
         
     | 
| 59 | 
         
            +
                "Health": 12,
         
     | 
| 60 | 
         
            +
                "History": 13,
         
     | 
| 61 | 
         
            +
                "Home & Hobbies": 14,
         
     | 
| 62 | 
         
            +
                "Industrial": 15,
         
     | 
| 63 | 
         
            +
                "Literature": 16,
         
     | 
| 64 | 
         
            +
                "Politics": 17,
         
     | 
| 65 | 
         
            +
                "Religion": 18,
         
     | 
| 66 | 
         
            +
                "Science & Tech.": 19,
         
     | 
| 67 | 
         
            +
                "Social Life": 7,
         
     | 
| 68 | 
         
            +
                "Software": 20,
         
     | 
| 69 | 
         
            +
                "Software Dev.": 2,
         
     | 
| 70 | 
         
            +
                "Sports & Fitness": 21,
         
     | 
| 71 | 
         
            +
                "Transportation": 22,
         
     | 
| 72 | 
         
            +
                "Travel": 23
         
     | 
| 73 | 
         
            +
              },
         
     | 
| 74 | 
         
            +
              "layer_norm_eps": 1e-12,
         
     | 
| 75 | 
         
            +
              "layer_norm_type": "layer_norm",
         
     | 
| 76 | 
         
            +
              "logn_attention_clip1": false,
         
     | 
| 77 | 
         
            +
              "logn_attention_scale": false,
         
     | 
| 78 | 
         
            +
              "max_position_embeddings": 8192,
         
     | 
| 79 | 
         
            +
              "model_type": "new",
         
     | 
| 80 | 
         
            +
              "num_attention_heads": 12,
         
     | 
| 81 | 
         
            +
              "num_hidden_layers": 12,
         
     | 
| 82 | 
         
            +
              "pack_qkv": true,
         
     | 
| 83 | 
         
            +
              "pad_token_id": 0,
         
     | 
| 84 | 
         
            +
              "position_embedding_type": "rope",
         
     | 
| 85 | 
         
            +
              "rope_scaling": {
         
     | 
| 86 | 
         
            +
                "factor": 2.0,
         
     | 
| 87 | 
         
            +
                "type": "ntk"
         
     | 
| 88 | 
         
            +
              },
         
     | 
| 89 | 
         
            +
              "rope_theta": 500000,
         
     | 
| 90 | 
         
            +
              "torch_dtype": "float32",
         
     | 
| 91 | 
         
            +
              "transformers_version": "4.41.2",
         
     | 
| 92 | 
         
            +
              "type_vocab_size": 0,
         
     | 
| 93 | 
         
            +
              "unpad_inputs": true,
         
     | 
| 94 | 
         
            +
              "use_memory_efficient_attention": true,
         
     | 
| 95 | 
         
            +
              "vocab_size": 30528
         
     | 
| 96 | 
         
            +
            }
         
     | 
    	
        configuration.py
    ADDED
    
    | 
         @@ -0,0 +1,145 @@ 
     | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
| 
         | 
|
| 1 | 
         
            +
            # coding=utf-8
         
     | 
| 2 | 
         
            +
            # Copyright 2024 The GTE Team Authors and Alibaba Group.
         
     | 
| 3 | 
         
            +
            # Copyright (c) 2018, NVIDIA CORPORATION.  All rights reserved.
         
     | 
| 4 | 
         
            +
            #
         
     | 
| 5 | 
         
            +
            # Licensed under the Apache License, Version 2.0 (the "License");
         
     | 
| 6 | 
         
            +
            # you may not use this file except in compliance with the License.
         
     | 
| 7 | 
         
            +
            # You may obtain a copy of the License at
         
     | 
| 8 | 
         
            +
            #
         
     | 
| 9 | 
         
            +
            #     http://www.apache.org/licenses/LICENSE-2.0
         
     | 
| 10 | 
         
            +
            #
         
     | 
| 11 | 
         
            +
            # Unless required by applicable law or agreed to in writing, software
         
     | 
| 12 | 
         
            +
            # distributed under the License is distributed on an "AS IS" BASIS,
         
     | 
| 13 | 
         
            +
            # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
         
     | 
| 14 | 
         
            +
            # See the License for the specific language governing permissions and
         
     | 
| 15 | 
         
            +
            # limitations under the License.
         
     | 
| 16 | 
         
            +
            """ NEW model configuration"""
         
     | 
| 17 | 
         
            +
            from transformers.configuration_utils import PretrainedConfig
         
     | 
| 18 | 
         
            +
            from transformers.utils import logging
         
     | 
| 19 | 
         
            +
             
     | 
| 20 | 
         
            +
            logger = logging.get_logger(__name__)
         
     | 
| 21 | 
         
            +
             
     | 
| 22 | 
         
            +
             
     | 
| 23 | 
         
            +
            class NewConfig(PretrainedConfig):
         
     | 
| 24 | 
         
            +
                r"""
         
     | 
| 25 | 
         
            +
                This is the configuration class to store the configuration of a [`NewModel`] or a [`TFNewModel`]. It is used to
         
     | 
| 26 | 
         
            +
                instantiate a NEW model according to the specified arguments, defining the model architecture. Instantiating a
         
     | 
| 27 | 
         
            +
                configuration with the defaults will yield a similar configuration to that of the NEW
         
     | 
| 28 | 
         
            +
                [izhx/new-base-en](https://huggingface.co/izhx/new-base-en) architecture.
         
     | 
| 29 | 
         
            +
             
     | 
| 30 | 
         
            +
                Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the
         
     | 
| 31 | 
         
            +
                documentation from [`PretrainedConfig`] for more information.
         
     | 
| 32 | 
         
            +
             
     | 
| 33 | 
         
            +
             
     | 
| 34 | 
         
            +
                Args:
         
     | 
| 35 | 
         
            +
                    vocab_size (`int`, *optional*, defaults to 30522):
         
     | 
| 36 | 
         
            +
                        Vocabulary size of the NEW model. Defines the number of different tokens that can be represented by the
         
     | 
| 37 | 
         
            +
                        `inputs_ids` passed when calling [`NewModel`] or [`TFNewModel`].
         
     | 
| 38 | 
         
            +
                    hidden_size (`int`, *optional*, defaults to 768):
         
     | 
| 39 | 
         
            +
                        Dimensionality of the encoder layers and the pooler layer.
         
     | 
| 40 | 
         
            +
                    num_hidden_layers (`int`, *optional*, defaults to 12):
         
     | 
| 41 | 
         
            +
                        Number of hidden layers in the Transformer encoder.
         
     | 
| 42 | 
         
            +
                    num_attention_heads (`int`, *optional*, defaults to 12):
         
     | 
| 43 | 
         
            +
                        Number of attention heads for each attention layer in the Transformer encoder.
         
     | 
| 44 | 
         
            +
                    intermediate_size (`int`, *optional*, defaults to 3072):
         
     | 
| 45 | 
         
            +
                        Dimensionality of the "intermediate" (often named feed-forward) layer in the Transformer encoder.
         
     | 
| 46 | 
         
            +
                    hidden_act (`str` or `Callable`, *optional*, defaults to `"gelu"`):
         
     | 
| 47 | 
         
            +
                        The non-linear activation function (function or string) in the encoder and pooler. If string, `"gelu"`,
         
     | 
| 48 | 
         
            +
                        `"relu"`, `"silu"` and `"gelu_new"` are supported.
         
     | 
| 49 | 
         
            +
                    hidden_dropout_prob (`float`, *optional*, defaults to 0.1):
         
     | 
| 50 | 
         
            +
                        The dropout probability for all fully connected layers in the embeddings, encoder, and pooler.
         
     | 
| 51 | 
         
            +
                    attention_probs_dropout_prob (`float`, *optional*, defaults to 0.1):
         
     | 
| 52 | 
         
            +
                        The dropout ratio for the attention probabilities.
         
     | 
| 53 | 
         
            +
                    max_position_embeddings (`int`, *optional*, defaults to 512):
         
     | 
| 54 | 
         
            +
                        The maximum sequence length that this model might ever be used with. Typically set this to something large
         
     | 
| 55 | 
         
            +
                        just in case (e.g., 512 or 1024 or 2048).
         
     | 
| 56 | 
         
            +
                    type_vocab_size (`int`, *optional*, defaults to 2):
         
     | 
| 57 | 
         
            +
                        The vocabulary size of the `token_type_ids` passed when calling [`NewModel`] or [`TFNewModel`].
         
     | 
| 58 | 
         
            +
                    initializer_range (`float`, *optional*, defaults to 0.02):
         
     | 
| 59 | 
         
            +
                        The standard deviation of the truncated_normal_initializer for initializing all weight matrices.
         
     | 
| 60 | 
         
            +
                    layer_norm_eps (`float`, *optional*, defaults to 1e-12):
         
     | 
| 61 | 
         
            +
                        The epsilon used by the layer normalization layers.
         
     | 
| 62 | 
         
            +
                    position_embedding_type (`str`, *optional*, defaults to `"rope"`):
         
     | 
| 63 | 
         
            +
                        Type of position embedding. Choose one of `"absolute"`, `"rope"`.
         
     | 
| 64 | 
         
            +
                    rope_theta (`float`, *optional*, defaults to 10000.0):
         
     | 
| 65 | 
         
            +
                        The base period of the RoPE embeddings.
         
     | 
| 66 | 
         
            +
                    rope_scaling (`Dict`, *optional*):
         
     | 
| 67 | 
         
            +
                        Dictionary containing the scaling configuration for the RoPE embeddings. Currently supports two scaling
         
     | 
| 68 | 
         
            +
                        strategies: linear and dynamic. Their scaling factor must be a float greater than 1. The expected format is
         
     | 
| 69 | 
         
            +
                        `{"type": strategy name, "factor": scaling factor}`. When using this flag, don't update
         
     | 
| 70 | 
         
            +
                        `max_position_embeddings` to the expected new maximum. See the following thread for more information on how
         
     | 
| 71 | 
         
            +
                        these scaling strategies behave:
         
     | 
| 72 | 
         
            +
                        https://www.reddit.com/r/LocalLLaMA/comments/14mrgpr/dynamically_scaled_rope_further_increases/. This is an
         
     | 
| 73 | 
         
            +
                        experimental feature, subject to breaking API changes in future versions.
         
     | 
| 74 | 
         
            +
                    classifier_dropout (`float`, *optional*):
         
     | 
| 75 | 
         
            +
                        The dropout ratio for the classification head.
         
     | 
| 76 | 
         
            +
             
     | 
| 77 | 
         
            +
                Examples:
         
     | 
| 78 | 
         
            +
             
     | 
| 79 | 
         
            +
                ```python
         
     | 
| 80 | 
         
            +
                >>> from transformers import NewConfig, NewModel
         
     | 
| 81 | 
         
            +
             
     | 
| 82 | 
         
            +
                >>> # Initializing a NEW izhx/new-base-en style configuration
         
     | 
| 83 | 
         
            +
                >>> configuration = NewConfig()
         
     | 
| 84 | 
         
            +
             
     | 
| 85 | 
         
            +
                >>> # Initializing a model (with random weights) from the izhx/new-base-en style configuration
         
     | 
| 86 | 
         
            +
                >>> model = NewModel(configuration)
         
     | 
| 87 | 
         
            +
             
     | 
| 88 | 
         
            +
                >>> # Accessing the model configuration
         
     | 
| 89 | 
         
            +
                >>> configuration = model.config
         
     | 
| 90 | 
         
            +
                ```"""
         
     | 
| 91 | 
         
            +
             
     | 
| 92 | 
         
            +
                model_type = "new"
         
     | 
| 93 | 
         
            +
             
     | 
| 94 | 
         
            +
                def __init__(
         
     | 
| 95 | 
         
            +
                    self,
         
     | 
| 96 | 
         
            +
                    vocab_size=30528,
         
     | 
| 97 | 
         
            +
                    hidden_size=768,
         
     | 
| 98 | 
         
            +
                    num_hidden_layers=12,
         
     | 
| 99 | 
         
            +
                    num_attention_heads=12,
         
     | 
| 100 | 
         
            +
                    intermediate_size=3072,
         
     | 
| 101 | 
         
            +
                    hidden_act="gelu",
         
     | 
| 102 | 
         
            +
                    hidden_dropout_prob=0.1,
         
     | 
| 103 | 
         
            +
                    attention_probs_dropout_prob=0.0,
         
     | 
| 104 | 
         
            +
                    max_position_embeddings=2048,
         
     | 
| 105 | 
         
            +
                    type_vocab_size=1,
         
     | 
| 106 | 
         
            +
                    initializer_range=0.02,
         
     | 
| 107 | 
         
            +
                    layer_norm_type='layer_norm',
         
     | 
| 108 | 
         
            +
                    layer_norm_eps=1e-12,
         
     | 
| 109 | 
         
            +
                    # pad_token_id=0,
         
     | 
| 110 | 
         
            +
                    position_embedding_type="rope",
         
     | 
| 111 | 
         
            +
                    rope_theta=10000.0,
         
     | 
| 112 | 
         
            +
                    rope_scaling=None,
         
     | 
| 113 | 
         
            +
                    classifier_dropout=None,
         
     | 
| 114 | 
         
            +
                    pack_qkv=True,
         
     | 
| 115 | 
         
            +
                    unpad_inputs=False,
         
     | 
| 116 | 
         
            +
                    use_memory_efficient_attention=False,
         
     | 
| 117 | 
         
            +
                    logn_attention_scale=False,
         
     | 
| 118 | 
         
            +
                    logn_attention_clip1=False,
         
     | 
| 119 | 
         
            +
                    **kwargs,
         
     | 
| 120 | 
         
            +
                ):
         
     | 
| 121 | 
         
            +
                    super().__init__(**kwargs)
         
     | 
| 122 | 
         
            +
             
     | 
| 123 | 
         
            +
                    self.vocab_size = vocab_size
         
     | 
| 124 | 
         
            +
                    self.hidden_size = hidden_size
         
     | 
| 125 | 
         
            +
                    self.num_hidden_layers = num_hidden_layers
         
     | 
| 126 | 
         
            +
                    self.num_attention_heads = num_attention_heads
         
     | 
| 127 | 
         
            +
                    self.hidden_act = hidden_act
         
     | 
| 128 | 
         
            +
                    self.intermediate_size = intermediate_size
         
     | 
| 129 | 
         
            +
                    self.hidden_dropout_prob = hidden_dropout_prob
         
     | 
| 130 | 
         
            +
                    self.attention_probs_dropout_prob = attention_probs_dropout_prob
         
     | 
| 131 | 
         
            +
                    self.max_position_embeddings = max_position_embeddings
         
     | 
| 132 | 
         
            +
                    self.type_vocab_size = type_vocab_size
         
     | 
| 133 | 
         
            +
                    self.initializer_range = initializer_range
         
     | 
| 134 | 
         
            +
                    self.layer_norm_type = layer_norm_type
         
     | 
| 135 | 
         
            +
                    self.layer_norm_eps = layer_norm_eps
         
     | 
| 136 | 
         
            +
                    self.position_embedding_type = position_embedding_type
         
     | 
| 137 | 
         
            +
                    self.rope_theta = rope_theta
         
     | 
| 138 | 
         
            +
                    self.rope_scaling = rope_scaling
         
     | 
| 139 | 
         
            +
                    self.classifier_dropout = classifier_dropout
         
     | 
| 140 | 
         
            +
             
     | 
| 141 | 
         
            +
                    self.pack_qkv = pack_qkv
         
     | 
| 142 | 
         
            +
                    self.unpad_inputs = unpad_inputs
         
     | 
| 143 | 
         
            +
                    self.use_memory_efficient_attention = use_memory_efficient_attention
         
     | 
| 144 | 
         
            +
                    self.logn_attention_scale = logn_attention_scale
         
     | 
| 145 | 
         
            +
                    self.logn_attention_clip1 = logn_attention_clip1
         
     | 
    	
        model.safetensors
    ADDED
    
    | 
         @@ -0,0 +1,3 @@ 
     | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
| 
         | 
|
| 1 | 
         
            +
            version https://git-lfs.github.com/spec/v1
         
     | 
| 2 | 
         
            +
            oid sha256:575a94d43a27559df8afa2b52b0f0fdac568a10107f2e611d83a5504dfcee0e4
         
     | 
| 3 | 
         
            +
            size 549556200
         
     | 
    	
        modeling.py
    ADDED
    
    | 
         @@ -0,0 +1,1418 @@ 
     | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
| 
         | 
|
| 1 | 
         
            +
            # coding=utf-8
         
     | 
| 2 | 
         
            +
            # Copyright 2024 The GTE Team Authors and Alibaba Group.
         
     | 
| 3 | 
         
            +
            # Copyright (c) 2018, NVIDIA CORPORATION.  All rights reserved.
         
     | 
| 4 | 
         
            +
            #
         
     | 
| 5 | 
         
            +
            # Licensed under the Apache License, Version 2.0 (the "License");
         
     | 
| 6 | 
         
            +
            # you may not use this file except in compliance with the License.
         
     | 
| 7 | 
         
            +
            # You may obtain a copy of the License at
         
     | 
| 8 | 
         
            +
            #
         
     | 
| 9 | 
         
            +
            #     http://www.apache.org/licenses/LICENSE-2.0
         
     | 
| 10 | 
         
            +
            #
         
     | 
| 11 | 
         
            +
            # Unless required by applicable law or agreed to in writing, software
         
     | 
| 12 | 
         
            +
            # distributed under the License is distributed on an "AS IS" BASIS,
         
     | 
| 13 | 
         
            +
            # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
         
     | 
| 14 | 
         
            +
            # See the License for the specific language governing permissions and
         
     | 
| 15 | 
         
            +
            # limitations under the License.
         
     | 
| 16 | 
         
            +
            """PyTorch NEW model."""
         
     | 
| 17 | 
         
            +
             
     | 
| 18 | 
         
            +
            import math
         
     | 
| 19 | 
         
            +
            from dataclasses import dataclass
         
     | 
| 20 | 
         
            +
            from typing import List, Optional, Tuple, Union
         
     | 
| 21 | 
         
            +
             
     | 
| 22 | 
         
            +
            import torch
         
     | 
| 23 | 
         
            +
            import torch.utils.checkpoint
         
     | 
| 24 | 
         
            +
            from torch import nn
         
     | 
| 25 | 
         
            +
             
     | 
| 26 | 
         
            +
            from transformers.activations import ACT2FN
         
     | 
| 27 | 
         
            +
            from transformers.modeling_outputs import (
         
     | 
| 28 | 
         
            +
                BaseModelOutput,
         
     | 
| 29 | 
         
            +
                BaseModelOutputWithPooling,
         
     | 
| 30 | 
         
            +
                MaskedLMOutput,
         
     | 
| 31 | 
         
            +
                MultipleChoiceModelOutput,
         
     | 
| 32 | 
         
            +
                QuestionAnsweringModelOutput,
         
     | 
| 33 | 
         
            +
                SequenceClassifierOutput,
         
     | 
| 34 | 
         
            +
                ModelOutput,
         
     | 
| 35 | 
         
            +
            )
         
     | 
| 36 | 
         
            +
            from transformers.modeling_utils import PreTrainedModel
         
     | 
| 37 | 
         
            +
            from transformers.utils import logging
         
     | 
| 38 | 
         
            +
             
     | 
| 39 | 
         
            +
            try:
         
     | 
| 40 | 
         
            +
                import xformers.ops as xops
         
     | 
| 41 | 
         
            +
            except ImportError as e:
         
     | 
| 42 | 
         
            +
                xops = None
         
     | 
| 43 | 
         
            +
             
     | 
| 44 | 
         
            +
            from .configuration import NewConfig
         
     | 
| 45 | 
         
            +
             
     | 
| 46 | 
         
            +
             
     | 
| 47 | 
         
            +
            logger = logging.get_logger(__name__)
         
     | 
| 48 | 
         
            +
             
     | 
| 49 | 
         
            +
             
     | 
| 50 | 
         
            +
            # Adapted from https://github.com/HazyResearch/flash-attention/blob/main/flash_attn/bert_padding.py
         
     | 
| 51 | 
         
            +
            # Which was adapted from https://github.com/mlcommons/training_results_v1.1/blob/main/NVIDIA/benchmarks/bert/implementations/pytorch/padding.py
         
     | 
| 52 | 
         
            +
            class IndexFirstAxis(torch.autograd.Function):
         
     | 
| 53 | 
         
            +
                @staticmethod
         
     | 
| 54 | 
         
            +
                def forward(ctx, input, indices):
         
     | 
| 55 | 
         
            +
                    ctx.save_for_backward(indices)
         
     | 
| 56 | 
         
            +
                    assert input.ndim >= 2
         
     | 
| 57 | 
         
            +
                    ctx.first_axis_dim, other_shape = input.shape[0], input.shape[1:]
         
     | 
| 58 | 
         
            +
                    second_dim = other_shape.numel()
         
     | 
| 59 | 
         
            +
                    # TD [2022-03-04] For some reason torch.gather is a bit faster than indexing.
         
     | 
| 60 | 
         
            +
                    # return input[indices]
         
     | 
| 61 | 
         
            +
                    # return torch.gather(
         
     | 
| 62 | 
         
            +
                    #     rearrange(input, "b ... -> b (...)"), 0, repeat(indices, "z -> z d", d=second_dim)
         
     | 
| 63 | 
         
            +
                    # ).reshape(-1, *other_shape)
         
     | 
| 64 | 
         
            +
                    return torch.gather(
         
     | 
| 65 | 
         
            +
                        input.view(ctx.first_axis_dim, second_dim),
         
     | 
| 66 | 
         
            +
                        0,
         
     | 
| 67 | 
         
            +
                        indices.unsqueeze(-1).expand(indices.size(0), second_dim)
         
     | 
| 68 | 
         
            +
                    ).reshape(-1, *other_shape)
         
     | 
| 69 | 
         
            +
             
     | 
| 70 | 
         
            +
                @staticmethod
         
     | 
| 71 | 
         
            +
                def backward(ctx, grad_output):
         
     | 
| 72 | 
         
            +
                    (indices,) = ctx.saved_tensors
         
     | 
| 73 | 
         
            +
                    assert grad_output.ndim >= 2
         
     | 
| 74 | 
         
            +
                    other_shape = grad_output.shape[1:]
         
     | 
| 75 | 
         
            +
                    # grad_output = rearrange(grad_output, "b ... -> b (...)")
         
     | 
| 76 | 
         
            +
                    grad_output = grad_output.view(grad_output.size(0), other_shape.numel())
         
     | 
| 77 | 
         
            +
                    grad_input = torch.zeros(
         
     | 
| 78 | 
         
            +
                        [ctx.first_axis_dim, grad_output.shape[1]],
         
     | 
| 79 | 
         
            +
                        device=grad_output.device,
         
     | 
| 80 | 
         
            +
                        dtype=grad_output.dtype,
         
     | 
| 81 | 
         
            +
                    )
         
     | 
| 82 | 
         
            +
                    # TD [2022-03-04] For some reason torch.scatter is a bit faster than indexing.
         
     | 
| 83 | 
         
            +
                    # grad_input[indices] = grad_output
         
     | 
| 84 | 
         
            +
                    # grad_input.scatter_(0, repeat(indices, "z -> z d", d=grad_output.shape[1]), grad_output)
         
     | 
| 85 | 
         
            +
                    grad_input.scatter_(
         
     | 
| 86 | 
         
            +
                        0, indices.unsqueeze(-1).expand(indices.size(0), grad_output.size(1)), grad_output
         
     | 
| 87 | 
         
            +
                    )
         
     | 
| 88 | 
         
            +
                    return grad_input.reshape(ctx.first_axis_dim, *other_shape), None
         
     | 
| 89 | 
         
            +
             
     | 
| 90 | 
         
            +
             
     | 
| 91 | 
         
            +
            index_first_axis = IndexFirstAxis.apply
         
     | 
| 92 | 
         
            +
             
     | 
| 93 | 
         
            +
             
     | 
| 94 | 
         
            +
            def unpad_input(hidden_states, attention_mask=None, indices=None):
         
     | 
| 95 | 
         
            +
                """
         
     | 
| 96 | 
         
            +
                Arguments:
         
     | 
| 97 | 
         
            +
                    hidden_states: (batch, seqlen, ...)
         
     | 
| 98 | 
         
            +
                    attention_mask: (batch, seqlen), bool / int, 1 means valid and 0 means not valid.
         
     | 
| 99 | 
         
            +
                    indices: (total_nnz), the indices of non-masked tokens from the flattened input sequence.
         
     | 
| 100 | 
         
            +
                Return:
         
     | 
| 101 | 
         
            +
                    hidden_states: (total_nnz, ...), where total_nnz = number of tokens in selected in attention_mask.
         
     | 
| 102 | 
         
            +
                """
         
     | 
| 103 | 
         
            +
                if indices is None:
         
     | 
| 104 | 
         
            +
                    assert attention_mask is not None
         
     | 
| 105 | 
         
            +
                    indices = torch.nonzero(attention_mask.flatten(), as_tuple=False).flatten()
         
     | 
| 106 | 
         
            +
             
     | 
| 107 | 
         
            +
                # TD [2022-03-04] We don't want to index with a bool mask, because Pytorch will expand the
         
     | 
| 108 | 
         
            +
                # bool mask, then call nonzero to get the indices, then index with those. The indices is @dim
         
     | 
| 109 | 
         
            +
                # times larger than it needs to be, wasting memory. It's faster and more memory-efficient to
         
     | 
| 110 | 
         
            +
                # index with integer indices. Moreover, torch's index is a bit slower than it needs to be,
         
     | 
| 111 | 
         
            +
                # so we write custom forward and backward to make it a bit faster.
         
     | 
| 112 | 
         
            +
                hidden_states = hidden_states.view(-1, *hidden_states.shape[2:])
         
     | 
| 113 | 
         
            +
                return index_first_axis(hidden_states, indices)
         
     | 
| 114 | 
         
            +
             
     | 
| 115 | 
         
            +
             
     | 
| 116 | 
         
            +
            class IndexPutFirstAxis(torch.autograd.Function):
         
     | 
| 117 | 
         
            +
                @staticmethod
         
     | 
| 118 | 
         
            +
                def forward(
         
     | 
| 119 | 
         
            +
                    ctx,
         
     | 
| 120 | 
         
            +
                    values: torch.Tensor,
         
     | 
| 121 | 
         
            +
                    indices: torch.Tensor,
         
     | 
| 122 | 
         
            +
                    first_axis_dim
         
     | 
| 123 | 
         
            +
                ) -> torch.Tensor:
         
     | 
| 124 | 
         
            +
                    ctx.save_for_backward(indices)
         
     | 
| 125 | 
         
            +
                    assert indices.ndim == 1
         
     | 
| 126 | 
         
            +
                    assert values.ndim >= 2
         
     | 
| 127 | 
         
            +
                    output = torch.zeros(
         
     | 
| 128 | 
         
            +
                        first_axis_dim, *values.shape[1:], device=values.device, dtype=values.dtype
         
     | 
| 129 | 
         
            +
                    )
         
     | 
| 130 | 
         
            +
                    output[indices] = values
         
     | 
| 131 | 
         
            +
                    return output
         
     | 
| 132 | 
         
            +
             
     | 
| 133 | 
         
            +
                @staticmethod
         
     | 
| 134 | 
         
            +
                def backward(ctx, grad_output: torch.Tensor) -> Tuple[torch.Tensor, None, None]:
         
     | 
| 135 | 
         
            +
                    indices, = ctx.saved_tensors
         
     | 
| 136 | 
         
            +
                    grad_values = grad_output[indices]
         
     | 
| 137 | 
         
            +
                    return grad_values, None, None
         
     | 
| 138 | 
         
            +
             
     | 
| 139 | 
         
            +
             
     | 
| 140 | 
         
            +
            index_put_first_axis = IndexPutFirstAxis.apply
         
     | 
| 141 | 
         
            +
             
     | 
| 142 | 
         
            +
             
     | 
| 143 | 
         
            +
            def pad_input(inputs: torch.Tensor, indices: torch.Tensor, batch: int, seqlen: int) -> torch.Tensor:
         
     | 
| 144 | 
         
            +
                """Add padding to sequences.
         
     | 
| 145 | 
         
            +
             
     | 
| 146 | 
         
            +
                Arguments:
         
     | 
| 147 | 
         
            +
                    inputs: (total_nnz, ...), where total_nnz = number of tokens in selected in attention_mask.
         
     | 
| 148 | 
         
            +
                    indices: (total_nnz), `indices = torch.nonzero(attention_mask.flatten(), as_tuple=False).flatten()`
         
     | 
| 149 | 
         
            +
                    batch: int batch_size
         
     | 
| 150 | 
         
            +
                    seqlen: int max sequence length
         
     | 
| 151 | 
         
            +
             
     | 
| 152 | 
         
            +
                Returns:
         
     | 
| 153 | 
         
            +
                    inputs: (batch, seqlen, ...)
         
     | 
| 154 | 
         
            +
                """
         
     | 
| 155 | 
         
            +
                output = index_put_first_axis(inputs, indices, batch * seqlen)
         
     | 
| 156 | 
         
            +
                return output.view(batch, seqlen, *inputs.shape[1:])
         
     | 
| 157 | 
         
            +
             
     | 
| 158 | 
         
            +
             
     | 
| 159 | 
         
            +
            def rotate_half(x):
         
     | 
| 160 | 
         
            +
                """Rotates half the hidden dims of the input."""
         
     | 
| 161 | 
         
            +
                x1 = x[..., : x.shape[-1] // 2]
         
     | 
| 162 | 
         
            +
                x2 = x[..., x.shape[-1] // 2 :]
         
     | 
| 163 | 
         
            +
                return torch.cat((-x2, x1), dim=-1)
         
     | 
| 164 | 
         
            +
             
     | 
| 165 | 
         
            +
             
     | 
| 166 | 
         
            +
            def apply_rotary_pos_emb(q, k, cos, sin):
         
     | 
| 167 | 
         
            +
                """Applies Rotary Position Embedding to the query and key tensors.
         
     | 
| 168 | 
         
            +
             
     | 
| 169 | 
         
            +
                Args:
         
     | 
| 170 | 
         
            +
                    q (`torch.Tensor`): The query tensor.
         
     | 
| 171 | 
         
            +
                    k (`torch.Tensor`): The key tensor.
         
     | 
| 172 | 
         
            +
                    cos (`torch.Tensor`): The cosine part of the rotary embedding.
         
     | 
| 173 | 
         
            +
                    sin (`torch.Tensor`): The sine part of the rotary embedding.
         
     | 
| 174 | 
         
            +
                Returns:
         
     | 
| 175 | 
         
            +
                    `tuple(torch.Tensor)` comprising of the query and key tensors rotated using the Rotary Position Embedding.
         
     | 
| 176 | 
         
            +
                """
         
     | 
| 177 | 
         
            +
                cos, sin = cos.to(q.dtype), sin.to(q.dtype)
         
     | 
| 178 | 
         
            +
                q_embed = (q * cos) + (rotate_half(q) * sin)
         
     | 
| 179 | 
         
            +
                k_embed = (k * cos) + (rotate_half(k) * sin)
         
     | 
| 180 | 
         
            +
                return q_embed, k_embed
         
     | 
| 181 | 
         
            +
             
     | 
| 182 | 
         
            +
             
     | 
| 183 | 
         
            +
            class RotaryEmbedding(torch.nn.Module):
         
     | 
| 184 | 
         
            +
                def __init__(self, dim, max_position_embeddings=512, base=10000.0, device=None):
         
     | 
| 185 | 
         
            +
                    super().__init__()
         
     | 
| 186 | 
         
            +
             
     | 
| 187 | 
         
            +
                    self.dim = dim
         
     | 
| 188 | 
         
            +
                    self.max_position_embeddings = max_position_embeddings
         
     | 
| 189 | 
         
            +
                    self.base = base
         
     | 
| 190 | 
         
            +
                    inv_freq = 1.0 / (self.base ** (torch.arange(0, self.dim, 2).float().to(device) / self.dim))
         
     | 
| 191 | 
         
            +
                    self.register_buffer("inv_freq", inv_freq, persistent=False)
         
     | 
| 192 | 
         
            +
             
     | 
| 193 | 
         
            +
                    # Build here to make `torch.jit.trace` work.
         
     | 
| 194 | 
         
            +
                    self._set_cos_sin_cache(
         
     | 
| 195 | 
         
            +
                        seq_len=max_position_embeddings, device=self.inv_freq.device, dtype=torch.get_default_dtype()
         
     | 
| 196 | 
         
            +
                    )
         
     | 
| 197 | 
         
            +
             
     | 
| 198 | 
         
            +
                def _set_cos_sin_cache(self, seq_len, device, dtype):
         
     | 
| 199 | 
         
            +
                    self.max_seq_len_cached = seq_len
         
     | 
| 200 | 
         
            +
                    t = torch.arange(self.max_seq_len_cached, device=device, dtype=torch.float32)
         
     | 
| 201 | 
         
            +
             
     | 
| 202 | 
         
            +
                    freqs = torch.einsum("i,j->ij", t, self.inv_freq)
         
     | 
| 203 | 
         
            +
                    # Different from paper, but it uses a different permutation in order to obtain the same calculation
         
     | 
| 204 | 
         
            +
                    emb = torch.cat((freqs, freqs), dim=-1)
         
     | 
| 205 | 
         
            +
                    self.register_buffer("cos_cached", emb.cos().to(dtype), persistent=False)
         
     | 
| 206 | 
         
            +
                    self.register_buffer("sin_cached", emb.sin().to(dtype), persistent=False)
         
     | 
| 207 | 
         
            +
             
     | 
| 208 | 
         
            +
                def forward(self, x, seq_len=None):
         
     | 
| 209 | 
         
            +
                    # x: [bs, num_attention_heads, seq_len, head_size]
         
     | 
| 210 | 
         
            +
                    if seq_len > self.max_seq_len_cached:
         
     | 
| 211 | 
         
            +
                        self._set_cos_sin_cache(seq_len=seq_len, device=x.device, dtype=x.dtype)
         
     | 
| 212 | 
         
            +
             
     | 
| 213 | 
         
            +
                    return (
         
     | 
| 214 | 
         
            +
                        self.cos_cached[:seq_len, ...].to(dtype=x.dtype),
         
     | 
| 215 | 
         
            +
                        self.sin_cached[:seq_len, ...].to(dtype=x.dtype),
         
     | 
| 216 | 
         
            +
                    )
         
     | 
| 217 | 
         
            +
             
     | 
| 218 | 
         
            +
             
     | 
| 219 | 
         
            +
            class NTKScalingRotaryEmbedding(RotaryEmbedding):
         
     | 
| 220 | 
         
            +
                """RotaryEmbedding extended with fixed and mixed NTK scaling. https://kexue.fm/archives/9706 """
         
     | 
| 221 | 
         
            +
             
     | 
| 222 | 
         
            +
                def __init__(self, dim, max_position_embeddings=512, base=10000, device=None, scaling_factor=1.0, mixed_b=None):
         
     | 
| 223 | 
         
            +
                    self.scaling_factor = scaling_factor
         
     | 
| 224 | 
         
            +
                    self.mixed_b = mixed_b
         
     | 
| 225 | 
         
            +
                    super().__init__(dim, max_position_embeddings, base, device)
         
     | 
| 226 | 
         
            +
                    max_position_embeddings = max_position_embeddings * self.scaling_factor
         
     | 
| 227 | 
         
            +
                    self._set_cos_sin_cache(max_position_embeddings, self.inv_freq.device, torch.get_default_dtype())
         
     | 
| 228 | 
         
            +
             
     | 
| 229 | 
         
            +
                def _set_cos_sin_cache(self, seq_len, device, dtype):
         
     | 
| 230 | 
         
            +
                    self.max_seq_len_cached = seq_len
         
     | 
| 231 | 
         
            +
             
     | 
| 232 | 
         
            +
                    if seq_len > self.max_position_embeddings:
         
     | 
| 233 | 
         
            +
                        base = self.base * (self.scaling_factor if self.mixed_b is None else 1)
         
     | 
| 234 | 
         
            +
                        inv_freq = 1.0 / (base ** (torch.arange(0, self.dim, 2).float().to(device) / self.dim))
         
     | 
| 235 | 
         
            +
             
     | 
| 236 | 
         
            +
                        if self.mixed_b is None:
         
     | 
| 237 | 
         
            +
                            inv_freq = inv_freq / self.scaling_factor ** (2 / self.dim)  # (6)
         
     | 
| 238 | 
         
            +
                        else:
         
     | 
| 239 | 
         
            +
                            a = torch.tensor(self.scaling_factor).log() / (self.dim / 2) ** self.mixed_b  # (13)
         
     | 
| 240 | 
         
            +
                            lambda_1_m = (a * torch.arange(1, self.dim // 2 + 1).float().to(device) ** self.mixed_b).exp()  # (12)
         
     | 
| 241 | 
         
            +
                            inv_freq = inv_freq / lambda_1_m  # (10)
         
     | 
| 242 | 
         
            +
             
     | 
| 243 | 
         
            +
                        self.register_buffer("inv_freq", inv_freq, persistent=False)
         
     | 
| 244 | 
         
            +
             
     | 
| 245 | 
         
            +
                    t = torch.arange(self.max_seq_len_cached, device=device, dtype=torch.float32)
         
     | 
| 246 | 
         
            +
             
     | 
| 247 | 
         
            +
                    freqs = torch.einsum("i,j->ij", t, self.inv_freq)
         
     | 
| 248 | 
         
            +
                    # Different from paper, but it uses a different permutation in order to obtain the same calculation
         
     | 
| 249 | 
         
            +
                    emb = torch.cat((freqs, freqs), dim=-1)
         
     | 
| 250 | 
         
            +
                    self.register_buffer("cos_cached", emb.cos().to(dtype), persistent=False)
         
     | 
| 251 | 
         
            +
                    self.register_buffer("sin_cached", emb.sin().to(dtype), persistent=False)
         
     | 
| 252 | 
         
            +
             
     | 
| 253 | 
         
            +
             
     | 
| 254 | 
         
            +
            class RMSNorm(nn.Module):
         
     | 
| 255 | 
         
            +
                def __init__(self, hidden_size, eps=1e-6):
         
     | 
| 256 | 
         
            +
                    """
         
     | 
| 257 | 
         
            +
                    RMSNorm is equivalent to T5LayerNorm
         
     | 
| 258 | 
         
            +
                    """
         
     | 
| 259 | 
         
            +
                    super().__init__()
         
     | 
| 260 | 
         
            +
                    self.weight = nn.Parameter(torch.ones(hidden_size))
         
     | 
| 261 | 
         
            +
                    self.variance_epsilon = eps
         
     | 
| 262 | 
         
            +
             
     | 
| 263 | 
         
            +
                def forward(self, hidden_states):
         
     | 
| 264 | 
         
            +
                    input_dtype = hidden_states.dtype
         
     | 
| 265 | 
         
            +
                    hidden_states = hidden_states.to(torch.float32)
         
     | 
| 266 | 
         
            +
                    variance = hidden_states.pow(2).mean(-1, keepdim=True)
         
     | 
| 267 | 
         
            +
                    hidden_states = hidden_states * torch.rsqrt(variance + self.variance_epsilon)
         
     | 
| 268 | 
         
            +
                    return self.weight * hidden_states.to(input_dtype)
         
     | 
| 269 | 
         
            +
             
     | 
| 270 | 
         
            +
             
     | 
| 271 | 
         
            +
            LAYER_NORM = {
         
     | 
| 272 | 
         
            +
                'layer_norm': nn.LayerNorm,
         
     | 
| 273 | 
         
            +
                'rms_norm': RMSNorm
         
     | 
| 274 | 
         
            +
            }
         
     | 
| 275 | 
         
            +
             
     | 
| 276 | 
         
            +
             
     | 
| 277 | 
         
            +
            class NewEmbeddings(nn.Module):
         
     | 
| 278 | 
         
            +
                """
         
     | 
| 279 | 
         
            +
                Embedding and Unpadding.
         
     | 
| 280 | 
         
            +
                """
         
     | 
| 281 | 
         
            +
             
     | 
| 282 | 
         
            +
                def __init__(self, config: NewConfig):
         
     | 
| 283 | 
         
            +
                    super().__init__()
         
     | 
| 284 | 
         
            +
                    self.padding_idx = config.pad_token_id
         
     | 
| 285 | 
         
            +
                    self.word_embeddings = nn.Embedding(
         
     | 
| 286 | 
         
            +
                        config.vocab_size, config.hidden_size, padding_idx=self.padding_idx
         
     | 
| 287 | 
         
            +
                    )
         
     | 
| 288 | 
         
            +
             
     | 
| 289 | 
         
            +
                    self.position_embedding_type = config.position_embedding_type
         
     | 
| 290 | 
         
            +
                    if self.position_embedding_type == 'absolute':
         
     | 
| 291 | 
         
            +
                        self.position_embeddings = nn.Embedding(
         
     | 
| 292 | 
         
            +
                            config.max_position_embeddings, config.hidden_size, padding_idx=self.padding_idx
         
     | 
| 293 | 
         
            +
                        )
         
     | 
| 294 | 
         
            +
                    elif self.position_embedding_type == 'rope':
         
     | 
| 295 | 
         
            +
                        self._init_rope(config)
         
     | 
| 296 | 
         
            +
                    else:
         
     | 
| 297 | 
         
            +
                        raise ValueError
         
     | 
| 298 | 
         
            +
             
     | 
| 299 | 
         
            +
                    self.type_vocab_size = config.type_vocab_size
         
     | 
| 300 | 
         
            +
                    if self.type_vocab_size > 0:
         
     | 
| 301 | 
         
            +
                        self.token_type_embeddings = nn.Embedding(config.type_vocab_size, config.hidden_size)
         
     | 
| 302 | 
         
            +
             
     | 
| 303 | 
         
            +
                    # self.LayerNorm is not snake-cased to stick with TensorFlow model variable name and be able to load
         
     | 
| 304 | 
         
            +
                    # any TensorFlow checkpoint file
         
     | 
| 305 | 
         
            +
                    self.LayerNorm = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps)
         
     | 
| 306 | 
         
            +
                    self.dropout = nn.Dropout(config.hidden_dropout_prob)
         
     | 
| 307 | 
         
            +
                    # position_ids is contiguous in memory and excluded when serialized
         
     | 
| 308 | 
         
            +
                    self.register_buffer(
         
     | 
| 309 | 
         
            +
                        "position_ids", torch.arange(config.max_position_embeddings), persistent=False
         
     | 
| 310 | 
         
            +
                    )
         
     | 
| 311 | 
         
            +
             
     | 
| 312 | 
         
            +
                def _init_rope(self, config):
         
     | 
| 313 | 
         
            +
                    kwargs = dict(
         
     | 
| 314 | 
         
            +
                        dim=int(config.hidden_size / config.num_attention_heads),
         
     | 
| 315 | 
         
            +
                        max_position_embeddings=config.max_position_embeddings,
         
     | 
| 316 | 
         
            +
                        base=config.rope_theta
         
     | 
| 317 | 
         
            +
                    )
         
     | 
| 318 | 
         
            +
                    if config.rope_scaling is None:
         
     | 
| 319 | 
         
            +
                        self.rotary_emb = RotaryEmbedding(**kwargs)
         
     | 
| 320 | 
         
            +
                    else:
         
     | 
| 321 | 
         
            +
                        kwargs.update(scaling_factor=config.rope_scaling["factor"])
         
     | 
| 322 | 
         
            +
                        scaling_type = config.rope_scaling["type"]
         
     | 
| 323 | 
         
            +
                        if scaling_type == 'ntk':
         
     | 
| 324 | 
         
            +
                            kwargs.update(mixed_b=config.rope_scaling.get('mixed_b', None))
         
     | 
| 325 | 
         
            +
                            self.rotary_emb = NTKScalingRotaryEmbedding(**kwargs)
         
     | 
| 326 | 
         
            +
                        # elif scaling_type == "linear":
         
     | 
| 327 | 
         
            +
                        #     self.rotary_emb = LinearScalingRotaryEmbedding(**kwargs)
         
     | 
| 328 | 
         
            +
                        # elif scaling_type == "dynamic":
         
     | 
| 329 | 
         
            +
                        #     self.rotary_emb = DynamicNTKScalingRotaryEmbedding(**kwargs)
         
     | 
| 330 | 
         
            +
                        else:
         
     | 
| 331 | 
         
            +
                            raise ValueError(f"Unknown RoPE scaling type {scaling_type}")
         
     | 
| 332 | 
         
            +
             
     | 
| 333 | 
         
            +
                def forward(
         
     | 
| 334 | 
         
            +
                    self,
         
     | 
| 335 | 
         
            +
                    unpad_inputs: bool,
         
     | 
| 336 | 
         
            +
                    input_ids: Optional[torch.Tensor] = None,
         
     | 
| 337 | 
         
            +
                    attention_mask: Optional[torch.Tensor] = None,
         
     | 
| 338 | 
         
            +
                    length: Optional[List[int]] = None,
         
     | 
| 339 | 
         
            +
                    token_type_ids: Optional[torch.Tensor] = None,
         
     | 
| 340 | 
         
            +
                    position_ids: Optional[torch.Tensor] = None,
         
     | 
| 341 | 
         
            +
                    inputs_embeds: Optional[torch.Tensor] = None,
         
     | 
| 342 | 
         
            +
                ) -> Tuple[torch.Tensor, torch.Tensor, Optional[Tuple], Optional[List[int]]]:
         
     | 
| 343 | 
         
            +
                    """
         
     | 
| 344 | 
         
            +
                    """
         
     | 
| 345 | 
         
            +
                    if inputs_embeds is None:
         
     | 
| 346 | 
         
            +
                        device, input_shape = input_ids.device, input_ids.shape
         
     | 
| 347 | 
         
            +
                    else:
         
     | 
| 348 | 
         
            +
                        device, input_shape = inputs_embeds.device, inputs_embeds.shape[:2]
         
     | 
| 349 | 
         
            +
                    batch_size, seq_length = input_shape
         
     | 
| 350 | 
         
            +
             
     | 
| 351 | 
         
            +
                    # Set attention_mask if it's None
         
     | 
| 352 | 
         
            +
                    if attention_mask is None:
         
     | 
| 353 | 
         
            +
                        attention_mask = torch.ones(input_shape, device=device)
         
     | 
| 354 | 
         
            +
                        if length is not None:
         
     | 
| 355 | 
         
            +
                            for i, l in enumerate(length):
         
     | 
| 356 | 
         
            +
                                attention_mask[i, l:] = 0
         
     | 
| 357 | 
         
            +
             
     | 
| 358 | 
         
            +
                    # Set attention_mask_bool for unpadding
         
     | 
| 359 | 
         
            +
                    if unpad_inputs:
         
     | 
| 360 | 
         
            +
                        attention_mask_bool = attention_mask.bool()
         
     | 
| 361 | 
         
            +
                        if length is None:
         
     | 
| 362 | 
         
            +
                            length = attention_mask.sum(-1).tolist()
         
     | 
| 363 | 
         
            +
             
     | 
| 364 | 
         
            +
                    # Get word embeddings
         
     | 
| 365 | 
         
            +
                    if inputs_embeds is None:
         
     | 
| 366 | 
         
            +
                        if unpad_inputs:
         
     | 
| 367 | 
         
            +
                            input_ids = input_ids[attention_mask_bool].unsqueeze(0)
         
     | 
| 368 | 
         
            +
                        inputs_embeds = self.word_embeddings(input_ids)
         
     | 
| 369 | 
         
            +
                    else:
         
     | 
| 370 | 
         
            +
                        if unpad_inputs:
         
     | 
| 371 | 
         
            +
                            inputs_embeds = inputs_embeds[attention_mask_bool].unsqueeze(0)
         
     | 
| 372 | 
         
            +
                    embeddings = inputs_embeds
         
     | 
| 373 | 
         
            +
             
     | 
| 374 | 
         
            +
                    # Set and unpad position_ids
         
     | 
| 375 | 
         
            +
                    if position_ids is None:
         
     | 
| 376 | 
         
            +
                        if seq_length > self.position_ids.size(0):
         
     | 
| 377 | 
         
            +
                            self.register_buffer(
         
     | 
| 378 | 
         
            +
                                "position_ids", torch.arange(seq_length, device=embeddings.device), persistent=False
         
     | 
| 379 | 
         
            +
                            )
         
     | 
| 380 | 
         
            +
                        if unpad_inputs:
         
     | 
| 381 | 
         
            +
                            # [1, cumsum_seq_len]
         
     | 
| 382 | 
         
            +
                            position_ids = torch.cat([self.position_ids[:l] for l in length]).unsqueeze(0)
         
     | 
| 383 | 
         
            +
                        else:
         
     | 
| 384 | 
         
            +
                            # [bs, seq_len]
         
     | 
| 385 | 
         
            +
                            position_ids = self.position_ids[:seq_length].expand(batch_size, -1)
         
     | 
| 386 | 
         
            +
                    elif unpad_inputs:
         
     | 
| 387 | 
         
            +
                        position_ids = position_ids[attention_mask_bool].unsqueeze(0)  # [1, cumsum_seq_len]
         
     | 
| 388 | 
         
            +
             
     | 
| 389 | 
         
            +
                    # Compute rotary embedding
         
     | 
| 390 | 
         
            +
                    if self.position_embedding_type == 'rope':
         
     | 
| 391 | 
         
            +
                        rope_cos, rope_sin = self.rotary_emb(inputs_embeds, seq_len=seq_length)
         
     | 
| 392 | 
         
            +
                        rope_cos = rope_cos[position_ids].unsqueeze(2)  # [bs, seq_len, 1, dim]
         
     | 
| 393 | 
         
            +
                        rope_sin = rope_sin[position_ids].unsqueeze(2)  # [bs, seq_len, 1, dim]
         
     | 
| 394 | 
         
            +
                        rope_embeds = rope_cos, rope_sin
         
     | 
| 395 | 
         
            +
                    else:
         
     | 
| 396 | 
         
            +
                        rope_embeds = None
         
     | 
| 397 | 
         
            +
             
     | 
| 398 | 
         
            +
                    if self.type_vocab_size > 0:
         
     | 
| 399 | 
         
            +
                        if token_type_ids is None:
         
     | 
| 400 | 
         
            +
                            token_type_ids = position_ids.mul(0)
         
     | 
| 401 | 
         
            +
                        else:
         
     | 
| 402 | 
         
            +
                            if self.type_vocab_size < 2:
         
     | 
| 403 | 
         
            +
                                token_type_ids.mul_(0)
         
     | 
| 404 | 
         
            +
                            if unpad_inputs:
         
     | 
| 405 | 
         
            +
                                token_type_ids = token_type_ids[attention_mask_bool].unsqueeze(0)
         
     | 
| 406 | 
         
            +
             
     | 
| 407 | 
         
            +
                        token_type_embeddings = self.token_type_embeddings(token_type_ids)
         
     | 
| 408 | 
         
            +
                        embeddings = embeddings + token_type_embeddings
         
     | 
| 409 | 
         
            +
             
     | 
| 410 | 
         
            +
                    # BERT position
         
     | 
| 411 | 
         
            +
                    if self.position_embedding_type == "absolute":
         
     | 
| 412 | 
         
            +
                        position_embeddings = self.position_embeddings(position_ids)
         
     | 
| 413 | 
         
            +
                        embeddings = embeddings + position_embeddings
         
     | 
| 414 | 
         
            +
             
     | 
| 415 | 
         
            +
                    embeddings = self.LayerNorm(embeddings)
         
     | 
| 416 | 
         
            +
                    embeddings = self.dropout(embeddings)
         
     | 
| 417 | 
         
            +
             
     | 
| 418 | 
         
            +
                    return embeddings, attention_mask, rope_embeds, length
         
     | 
| 419 | 
         
            +
             
     | 
| 420 | 
         
            +
             
     | 
| 421 | 
         
            +
            class NewAttention(nn.Module):
         
     | 
| 422 | 
         
            +
                def __init__(self, config: NewConfig, pack_qkv=None, use_memory_efficient_attention=None):
         
     | 
| 423 | 
         
            +
                    super().__init__()
         
     | 
| 424 | 
         
            +
                    self.config = config
         
     | 
| 425 | 
         
            +
                    if config.hidden_size % config.num_attention_heads != 0 and not hasattr(config, "embedding_size"):
         
     | 
| 426 | 
         
            +
                        raise ValueError(
         
     | 
| 427 | 
         
            +
                            f"The hidden size ({config.hidden_size}) is not a multiple of the number of attention "
         
     | 
| 428 | 
         
            +
                            f"heads ({config.num_attention_heads})"
         
     | 
| 429 | 
         
            +
                        )
         
     | 
| 430 | 
         
            +
             
     | 
| 431 | 
         
            +
                    self.hidden_size = config.hidden_size
         
     | 
| 432 | 
         
            +
                    self.num_attention_heads = config.num_attention_heads
         
     | 
| 433 | 
         
            +
                    self.attention_head_size = int(config.hidden_size / config.num_attention_heads)
         
     | 
| 434 | 
         
            +
                    self.all_head_size = self.num_attention_heads * self.attention_head_size
         
     | 
| 435 | 
         
            +
             
     | 
| 436 | 
         
            +
                    if pack_qkv is None:
         
     | 
| 437 | 
         
            +
                        pack_qkv = config.pack_qkv
         
     | 
| 438 | 
         
            +
                    self.pack_qkv = pack_qkv
         
     | 
| 439 | 
         
            +
             
     | 
| 440 | 
         
            +
                    if self.pack_qkv:
         
     | 
| 441 | 
         
            +
                        self.qkv_proj = nn.Linear(config.hidden_size, self.all_head_size * 3, bias=True)
         
     | 
| 442 | 
         
            +
                    else:
         
     | 
| 443 | 
         
            +
                        self.q_proj = nn.Linear(config.hidden_size, self.all_head_size, bias=True)
         
     | 
| 444 | 
         
            +
                        self.k_proj = nn.Linear(config.hidden_size, self.all_head_size, bias=True)
         
     | 
| 445 | 
         
            +
                        self.v_proj = nn.Linear(config.hidden_size, self.all_head_size, bias=True)
         
     | 
| 446 | 
         
            +
             
     | 
| 447 | 
         
            +
                    self.dropout = nn.Dropout(config.attention_probs_dropout_prob)
         
     | 
| 448 | 
         
            +
                    self.o_proj = nn.Linear(config.hidden_size, config.hidden_size, bias=True)
         
     | 
| 449 | 
         
            +
             
     | 
| 450 | 
         
            +
                    if use_memory_efficient_attention is None:
         
     | 
| 451 | 
         
            +
                        use_memory_efficient_attention = self.config.use_memory_efficient_attention
         
     | 
| 452 | 
         
            +
                    self.use_memory_efficient_attention = use_memory_efficient_attention
         
     | 
| 453 | 
         
            +
                    self.memory_efficient_attention = None if xops is None else xops.memory_efficient_attention
         
     | 
| 454 | 
         
            +
                    if self.use_memory_efficient_attention:
         
     | 
| 455 | 
         
            +
                        assert self.memory_efficient_attention is not None, 'please install xformers'
         
     | 
| 456 | 
         
            +
             
     | 
| 457 | 
         
            +
                def forward(
         
     | 
| 458 | 
         
            +
                    self,
         
     | 
| 459 | 
         
            +
                    hidden_states: torch.Tensor,
         
     | 
| 460 | 
         
            +
                    attention_bias: torch.FloatTensor,
         
     | 
| 461 | 
         
            +
                    rope_embeds: Optional[Tuple[torch.FloatTensor, torch.FloatTensor]] = None,
         
     | 
| 462 | 
         
            +
                    padding_inputs: Optional[Tuple] = None,  # indices, batch, seqlen
         
     | 
| 463 | 
         
            +
                    attention_scale: Optional[torch.FloatTensor] = None,
         
     | 
| 464 | 
         
            +
                    head_mask: Optional[torch.FloatTensor] = None,
         
     | 
| 465 | 
         
            +
                    output_attentions: Optional[bool] = False,
         
     | 
| 466 | 
         
            +
                    qkv_inputs: Optional[Tuple] = None,  # For RetroMAE
         
     | 
| 467 | 
         
            +
                ) -> Tuple[torch.Tensor, ...]:
         
     | 
| 468 | 
         
            +
                    shape_hd = (self.num_attention_heads, self.attention_head_size)
         
     | 
| 469 | 
         
            +
                    # qkv
         
     | 
| 470 | 
         
            +
                    if self.pack_qkv and qkv_inputs is None:
         
     | 
| 471 | 
         
            +
                        qkv_pack = self.qkv_proj(hidden_states).split(self.all_head_size, dim=-1)
         
     | 
| 472 | 
         
            +
                    else:
         
     | 
| 473 | 
         
            +
                        if qkv_inputs is None:
         
     | 
| 474 | 
         
            +
                            qkv_inputs = (hidden_states, hidden_states, hidden_states)
         
     | 
| 475 | 
         
            +
                        qkv_pack = [
         
     | 
| 476 | 
         
            +
                            getattr(self, n + '_proj')(s) for s, n in zip(qkv_inputs, 'qkv')
         
     | 
| 477 | 
         
            +
                        ]
         
     | 
| 478 | 
         
            +
                    query_states, key_states, value_states = [t.view(t.shape[:-1] + shape_hd) for t in qkv_pack]
         
     | 
| 479 | 
         
            +
             
     | 
| 480 | 
         
            +
                    if self.config.position_embedding_type == 'rope':
         
     | 
| 481 | 
         
            +
                        query_states, key_states = apply_rotary_pos_emb(query_states, key_states, *rope_embeds)
         
     | 
| 482 | 
         
            +
             
     | 
| 483 | 
         
            +
                    dtype = query_states.dtype
         
     | 
| 484 | 
         
            +
             
     | 
| 485 | 
         
            +
                    if self.config.logn_attention_scale and attention_scale is not None:
         
     | 
| 486 | 
         
            +
                        # https://kexue.fm/archives/8823
         
     | 
| 487 | 
         
            +
                        query_states = query_states * attention_scale.to(dtype)
         
     | 
| 488 | 
         
            +
             
     | 
| 489 | 
         
            +
                    if padding_inputs is not None:
         
     | 
| 490 | 
         
            +
                        query_states = pad_input(query_states.squeeze(), *padding_inputs)
         
     | 
| 491 | 
         
            +
                        key_states = pad_input(key_states.squeeze(), *padding_inputs)
         
     | 
| 492 | 
         
            +
                        value_states = pad_input(value_states.squeeze(), *padding_inputs)
         
     | 
| 493 | 
         
            +
             
     | 
| 494 | 
         
            +
                    if self.use_memory_efficient_attention:
         
     | 
| 495 | 
         
            +
                        assert self.memory_efficient_attention is not None, "xformers is not loaded"
         
     | 
| 496 | 
         
            +
                        assert output_attentions is False, "memory_efficient_attention do not output attentions"
         
     | 
| 497 | 
         
            +
                        assert head_mask is None, "Not support yet"
         
     | 
| 498 | 
         
            +
                        attention_probs = None
         
     | 
| 499 | 
         
            +
                        if torch.is_tensor(attention_bias):
         
     | 
| 500 | 
         
            +
                            attention_bias = attention_bias.to(dtype)
         
     | 
| 501 | 
         
            +
                        context_layer = self.memory_efficient_attention(
         
     | 
| 502 | 
         
            +
                            query_states,
         
     | 
| 503 | 
         
            +
                            key_states,
         
     | 
| 504 | 
         
            +
                            value_states,
         
     | 
| 505 | 
         
            +
                            attn_bias=attention_bias,
         
     | 
| 506 | 
         
            +
                            p=self.dropout.p
         
     | 
| 507 | 
         
            +
                        )
         
     | 
| 508 | 
         
            +
                    else:
         
     | 
| 509 | 
         
            +
                        if output_attentions and isinstance(self, NewSdpaAttention):
         
     | 
| 510 | 
         
            +
                            raise RuntimeError("SDPA do not output attentions")
         
     | 
| 511 | 
         
            +
                        context_layer, attention_probs = self._attention(
         
     | 
| 512 | 
         
            +
                            query_states, key_states, value_states, attention_bias, head_mask
         
     | 
| 513 | 
         
            +
                        )
         
     | 
| 514 | 
         
            +
             
     | 
| 515 | 
         
            +
                    if padding_inputs is not None:
         
     | 
| 516 | 
         
            +
                        context_layer = unpad_input(context_layer, indices=padding_inputs[0])
         
     | 
| 517 | 
         
            +
             
     | 
| 518 | 
         
            +
                    new_context_layer_shape = context_layer.size()[:-2] + (self.all_head_size,)
         
     | 
| 519 | 
         
            +
                    context_layer = context_layer.view(new_context_layer_shape)
         
     | 
| 520 | 
         
            +
             
     | 
| 521 | 
         
            +
                    # output proj
         
     | 
| 522 | 
         
            +
                    attn_output = self.o_proj(context_layer)
         
     | 
| 523 | 
         
            +
             
     | 
| 524 | 
         
            +
                    # add attentions if we output them
         
     | 
| 525 | 
         
            +
                    outputs = (attn_output, attention_probs) if output_attentions else (attn_output,)
         
     | 
| 526 | 
         
            +
                    return outputs
         
     | 
| 527 | 
         
            +
             
     | 
| 528 | 
         
            +
                def _attention(self, query_states, key_states, value_states, attention_bias, head_mask):
         
     | 
| 529 | 
         
            +
                    """
         
     | 
| 530 | 
         
            +
                    Args:
         
     | 
| 531 | 
         
            +
                        q/k/v: (B, L, n_head, head_dim),
         
     | 
| 532 | 
         
            +
                    Returns:
         
     | 
| 533 | 
         
            +
                        attn_output: (B L, n_head, head_dim)
         
     | 
| 534 | 
         
            +
                    """
         
     | 
| 535 | 
         
            +
                    query_states = query_states.transpose(1, 2)
         
     | 
| 536 | 
         
            +
                    key_states = key_states.transpose(1, 2)
         
     | 
| 537 | 
         
            +
                    value_states = value_states.transpose(1, 2)
         
     | 
| 538 | 
         
            +
                    # Take the dot product between "query" and "key" to get the raw attention scores.
         
     | 
| 539 | 
         
            +
                    attention_scores = torch.matmul(query_states, key_states.transpose(-1, -2))
         
     | 
| 540 | 
         
            +
             
     | 
| 541 | 
         
            +
                    attention_scores = attention_scores / math.sqrt(self.attention_head_size)
         
     | 
| 542 | 
         
            +
                    if attention_bias is not None:
         
     | 
| 543 | 
         
            +
                        # Apply the attention mask is (precomputed for all layers in BertModel forward() function)
         
     | 
| 544 | 
         
            +
                        attention_scores = attention_scores + attention_bias
         
     | 
| 545 | 
         
            +
             
     | 
| 546 | 
         
            +
                    # Normalize the attention scores to probabilities.
         
     | 
| 547 | 
         
            +
                    attention_probs = nn.functional.softmax(attention_scores, dim=-1)
         
     | 
| 548 | 
         
            +
             
     | 
| 549 | 
         
            +
                    # This is actually dropping out entire tokens to attend to, which might
         
     | 
| 550 | 
         
            +
                    # seem a bit unusual, but is taken from the original Transformer paper.
         
     | 
| 551 | 
         
            +
                    if self.dropout.p > 0:
         
     | 
| 552 | 
         
            +
                        attention_probs = self.dropout(attention_probs)
         
     | 
| 553 | 
         
            +
             
     | 
| 554 | 
         
            +
                    # Mask heads if we want to
         
     | 
| 555 | 
         
            +
                    if head_mask is not None:
         
     | 
| 556 | 
         
            +
                        attention_probs = attention_probs * head_mask
         
     | 
| 557 | 
         
            +
             
     | 
| 558 | 
         
            +
                    context_layer = torch.matmul(attention_probs, value_states)
         
     | 
| 559 | 
         
            +
             
     | 
| 560 | 
         
            +
                    context_layer = context_layer.permute(0, 2, 1, 3).contiguous()
         
     | 
| 561 | 
         
            +
                    return context_layer, attention_probs
         
     | 
| 562 | 
         
            +
             
     | 
| 563 | 
         
            +
             
     | 
| 564 | 
         
            +
            class NewSdpaAttention(NewAttention):
         
     | 
| 565 | 
         
            +
                """
         
     | 
| 566 | 
         
            +
                New attention module using torch.nn.functional.scaled_dot_product_attention. This module inherits from
         
     | 
| 567 | 
         
            +
                `NewAttention` as the weights of the module stays untouched. The only changes are on the forward pass to adapt to
         
     | 
| 568 | 
         
            +
                SDPA API.
         
     | 
| 569 | 
         
            +
                """
         
     | 
| 570 | 
         
            +
                def __init__(self, config: NewConfig, **kwargs):
         
     | 
| 571 | 
         
            +
                    super().__init__(config, **kwargs)
         
     | 
| 572 | 
         
            +
                    # torch.backends.cuda.enable_mem_efficient_sdp(False)
         
     | 
| 573 | 
         
            +
                    # logger.warning(
         
     | 
| 574 | 
         
            +
                    #     "Disable memory efficient attention kernel for `NewSdpaAttention`, you can set "
         
     | 
| 575 | 
         
            +
                    #     "`use_memory_efficient_attention=True` if it expected to use."
         
     | 
| 576 | 
         
            +
                    # )
         
     | 
| 577 | 
         
            +
             
     | 
| 578 | 
         
            +
                def _attention(self, query_states, key_states, value_states, attention_bias, head_mask):
         
     | 
| 579 | 
         
            +
                    attn_output = torch.nn.functional.scaled_dot_product_attention(
         
     | 
| 580 | 
         
            +
                        query_states.transpose(1, 2),
         
     | 
| 581 | 
         
            +
                        key_states.transpose(1, 2),
         
     | 
| 582 | 
         
            +
                        value_states.transpose(1, 2),
         
     | 
| 583 | 
         
            +
                        attn_mask=attention_bias,
         
     | 
| 584 | 
         
            +
                        dropout_p=self.dropout.p if self.training else 0.0,
         
     | 
| 585 | 
         
            +
                    )
         
     | 
| 586 | 
         
            +
                    attn_output = attn_output.permute(0, 2, 1, 3).contiguous()
         
     | 
| 587 | 
         
            +
                    return attn_output, None
         
     | 
| 588 | 
         
            +
             
     | 
| 589 | 
         
            +
             
     | 
| 590 | 
         
            +
            NEW_ATTENTION_CLASSES = {
         
     | 
| 591 | 
         
            +
                "eager": NewAttention,
         
     | 
| 592 | 
         
            +
                # "flash_attention_2": ,  # TODO
         
     | 
| 593 | 
         
            +
                "sdpa": NewSdpaAttention,
         
     | 
| 594 | 
         
            +
            }
         
     | 
| 595 | 
         
            +
             
     | 
| 596 | 
         
            +
             
     | 
| 597 | 
         
            +
            class NewGatedMLP(nn.Module):
         
     | 
| 598 | 
         
            +
                """
         
     | 
| 599 | 
         
            +
                GLU Variants Improve Transformer.
         
     | 
| 600 | 
         
            +
                """
         
     | 
| 601 | 
         
            +
             
     | 
| 602 | 
         
            +
                def __init__(self, config: NewConfig):
         
     | 
| 603 | 
         
            +
                    super().__init__()
         
     | 
| 604 | 
         
            +
                    self.intermediate_size = config.intermediate_size
         
     | 
| 605 | 
         
            +
                    self.up_gate_proj = nn.Linear(config.hidden_size, self.intermediate_size * 2, bias=False)
         
     | 
| 606 | 
         
            +
                    self.down_proj = nn.Linear(self.intermediate_size, config.hidden_size, bias=True)
         
     | 
| 607 | 
         
            +
                    self.act_fn = ACT2FN[config.hidden_act]
         
     | 
| 608 | 
         
            +
                    if config.hidden_dropout_prob > 0:
         
     | 
| 609 | 
         
            +
                        self.hidden_dropout = nn.Dropout(config.hidden_dropout_prob)
         
     | 
| 610 | 
         
            +
                    else:
         
     | 
| 611 | 
         
            +
                        self.hidden_dropout = None
         
     | 
| 612 | 
         
            +
             
     | 
| 613 | 
         
            +
                def forward(self, hidden_states):
         
     | 
| 614 | 
         
            +
                    up_gate = self.up_gate_proj(hidden_states)
         
     | 
| 615 | 
         
            +
                    up_states, gate = torch.split(up_gate, self.intermediate_size, dim=-1)
         
     | 
| 616 | 
         
            +
                    gate = self.act_fn(gate)
         
     | 
| 617 | 
         
            +
                    gated_states = gate * up_states
         
     | 
| 618 | 
         
            +
                    if self.hidden_dropout is not None:
         
     | 
| 619 | 
         
            +
                        gated_states = self.hidden_dropout(gated_states)
         
     | 
| 620 | 
         
            +
                    down_states = self.down_proj(gated_states)
         
     | 
| 621 | 
         
            +
                    return down_states
         
     | 
| 622 | 
         
            +
             
     | 
| 623 | 
         
            +
             
     | 
| 624 | 
         
            +
            class NewLayer(nn.Module):
         
     | 
| 625 | 
         
            +
                def __init__(
         
     | 
| 626 | 
         
            +
                    self,
         
     | 
| 627 | 
         
            +
                    config: NewConfig,
         
     | 
| 628 | 
         
            +
                    pack_qkv=None,
         
     | 
| 629 | 
         
            +
                    use_memory_efficient_attention=None,
         
     | 
| 630 | 
         
            +
                    attn_implementation=None
         
     | 
| 631 | 
         
            +
                ):
         
     | 
| 632 | 
         
            +
                    super().__init__()
         
     | 
| 633 | 
         
            +
                    if attn_implementation is None:
         
     | 
| 634 | 
         
            +
                        attn_implementation = config._attn_implementation
         
     | 
| 635 | 
         
            +
                    if use_memory_efficient_attention is None:
         
     | 
| 636 | 
         
            +
                        use_memory_efficient_attention = config.use_memory_efficient_attention
         
     | 
| 637 | 
         
            +
                    if use_memory_efficient_attention:
         
     | 
| 638 | 
         
            +
                        if attn_implementation != 'eager':
         
     | 
| 639 | 
         
            +
                            logger.warning_once(f"Override {attn_implementation=} to 'eager' as {use_memory_efficient_attention=}")
         
     | 
| 640 | 
         
            +
                            attn_implementation = 'eager'  # Since it will be SDPA by default for torch>=2.1.1
         
     | 
| 641 | 
         
            +
                    self.attention = NEW_ATTENTION_CLASSES[attn_implementation](
         
     | 
| 642 | 
         
            +
                        config, pack_qkv=pack_qkv, use_memory_efficient_attention=use_memory_efficient_attention
         
     | 
| 643 | 
         
            +
                    )
         
     | 
| 644 | 
         
            +
                    self.mlp = NewGatedMLP(config)
         
     | 
| 645 | 
         
            +
             
     | 
| 646 | 
         
            +
                    ln_class = LAYER_NORM[config.layer_norm_type]
         
     | 
| 647 | 
         
            +
                    self.attn_ln = ln_class(config.hidden_size, eps=config.layer_norm_eps)
         
     | 
| 648 | 
         
            +
                    self.mlp_ln = ln_class(config.hidden_size, eps=config.layer_norm_eps)
         
     | 
| 649 | 
         
            +
             
     | 
| 650 | 
         
            +
                    if config.hidden_dropout_prob > 0:
         
     | 
| 651 | 
         
            +
                        self.hidden_dropout = nn.Dropout(config.hidden_dropout_prob)
         
     | 
| 652 | 
         
            +
                    else:
         
     | 
| 653 | 
         
            +
                        self.hidden_dropout = None
         
     | 
| 654 | 
         
            +
             
     | 
| 655 | 
         
            +
                def forward(
         
     | 
| 656 | 
         
            +
                    self,
         
     | 
| 657 | 
         
            +
                    hidden_states: torch.Tensor,
         
     | 
| 658 | 
         
            +
                    attention_bias: torch.FloatTensor,
         
     | 
| 659 | 
         
            +
                    rope_embeds: Optional[Tuple[torch.FloatTensor, torch.FloatTensor]] = None,
         
     | 
| 660 | 
         
            +
                    padding_inputs: Optional[Tuple] = None,  # indices, batch, seqlen
         
     | 
| 661 | 
         
            +
                    attention_scale: Optional[torch.FloatTensor] = None,
         
     | 
| 662 | 
         
            +
                    subset_indices: Optional[torch.LongTensor] = None,
         
     | 
| 663 | 
         
            +
                    head_mask: Optional[torch.FloatTensor] = None,
         
     | 
| 664 | 
         
            +
                    output_attentions: Optional[bool] = False,
         
     | 
| 665 | 
         
            +
                    qkv_inputs: Optional[Tuple] = None,  # For RetroMAE
         
     | 
| 666 | 
         
            +
                ) -> Tuple[torch.Tensor, ...]:
         
     | 
| 667 | 
         
            +
                    # Multi head self attention
         
     | 
| 668 | 
         
            +
                    residual = hidden_states if qkv_inputs is None else qkv_inputs[0]
         
     | 
| 669 | 
         
            +
                    attention_outputs = self.attention(
         
     | 
| 670 | 
         
            +
                        hidden_states,
         
     | 
| 671 | 
         
            +
                        attention_bias,
         
     | 
| 672 | 
         
            +
                        rope_embeds,
         
     | 
| 673 | 
         
            +
                        padding_inputs,
         
     | 
| 674 | 
         
            +
                        attention_scale,
         
     | 
| 675 | 
         
            +
                        head_mask,
         
     | 
| 676 | 
         
            +
                        output_attentions=output_attentions,
         
     | 
| 677 | 
         
            +
                        qkv_inputs=qkv_inputs,
         
     | 
| 678 | 
         
            +
                    )
         
     | 
| 679 | 
         
            +
                    hidden_states = attention_outputs[0]
         
     | 
| 680 | 
         
            +
                    if self.hidden_dropout is not None:
         
     | 
| 681 | 
         
            +
                        hidden_states = self.hidden_dropout(hidden_states)
         
     | 
| 682 | 
         
            +
                    hidden_states = residual + hidden_states
         
     | 
| 683 | 
         
            +
             
     | 
| 684 | 
         
            +
                    # In pretraining, after the attention of last layer, we only need the masked tokens.
         
     | 
| 685 | 
         
            +
                    if subset_indices is not None:
         
     | 
| 686 | 
         
            +
                        hidden_states = hidden_states[subset_indices]
         
     | 
| 687 | 
         
            +
             
     | 
| 688 | 
         
            +
                    hidden_states = self.attn_ln(hidden_states)
         
     | 
| 689 | 
         
            +
             
     | 
| 690 | 
         
            +
                    # Fully Connected
         
     | 
| 691 | 
         
            +
                    residual = hidden_states
         
     | 
| 692 | 
         
            +
                    hidden_states = self.mlp(hidden_states)
         
     | 
| 693 | 
         
            +
                    if self.hidden_dropout is not None:
         
     | 
| 694 | 
         
            +
                        hidden_states = self.hidden_dropout(hidden_states)
         
     | 
| 695 | 
         
            +
                    hidden_states = residual + hidden_states
         
     | 
| 696 | 
         
            +
                    hidden_states = self.mlp_ln(hidden_states)
         
     | 
| 697 | 
         
            +
             
     | 
| 698 | 
         
            +
                    # add self attentions if we output attention weights
         
     | 
| 699 | 
         
            +
                    outputs = (hidden_states,) + attention_outputs[1:]
         
     | 
| 700 | 
         
            +
                    return outputs
         
     | 
| 701 | 
         
            +
             
     | 
| 702 | 
         
            +
             
     | 
| 703 | 
         
            +
            class NewEncoder(nn.Module):
         
     | 
| 704 | 
         
            +
                def __init__(self, config):
         
     | 
| 705 | 
         
            +
                    super().__init__()
         
     | 
| 706 | 
         
            +
                    self.config = config
         
     | 
| 707 | 
         
            +
                    self.layer = nn.ModuleList([NewLayer(config) for _ in range(config.num_hidden_layers)])
         
     | 
| 708 | 
         
            +
                    self.gradient_checkpointing = False
         
     | 
| 709 | 
         
            +
             
     | 
| 710 | 
         
            +
                def forward(
         
     | 
| 711 | 
         
            +
                    self,
         
     | 
| 712 | 
         
            +
                    hidden_states: torch.Tensor,
         
     | 
| 713 | 
         
            +
                    attention_bias: Optional[torch.FloatTensor] = None,
         
     | 
| 714 | 
         
            +
                    rope_embeds: Optional[Tuple[torch.FloatTensor, torch.FloatTensor]] = None,
         
     | 
| 715 | 
         
            +
                    padding_inputs: Optional[Tuple] = None,  # indices, batch, seqlen
         
     | 
| 716 | 
         
            +
                    attention_scale: Optional[torch.FloatTensor] = None,
         
     | 
| 717 | 
         
            +
                    subset_indices: Optional[torch.LongTensor] = None,
         
     | 
| 718 | 
         
            +
                    head_mask: Optional[torch.FloatTensor] = None,
         
     | 
| 719 | 
         
            +
                    output_attentions: Optional[bool] = False,
         
     | 
| 720 | 
         
            +
                    output_hidden_states: Optional[bool] = False,
         
     | 
| 721 | 
         
            +
                    return_dict: Optional[bool] = True,
         
     | 
| 722 | 
         
            +
                ) -> Union[Tuple[torch.Tensor], BaseModelOutput]:
         
     | 
| 723 | 
         
            +
                    all_hidden_states = () if output_hidden_states else None
         
     | 
| 724 | 
         
            +
                    all_self_attentions = () if output_attentions else None
         
     | 
| 725 | 
         
            +
             
     | 
| 726 | 
         
            +
                    for i, layer_module in enumerate(self.layer):
         
     | 
| 727 | 
         
            +
                        if output_hidden_states:
         
     | 
| 728 | 
         
            +
                            all_hidden_states = all_hidden_states + (hidden_states,)
         
     | 
| 729 | 
         
            +
             
     | 
| 730 | 
         
            +
                        if i >= len(self.layer) - 1:
         
     | 
| 731 | 
         
            +
                            layer_subset_indices = subset_indices
         
     | 
| 732 | 
         
            +
                        else:
         
     | 
| 733 | 
         
            +
                            layer_subset_indices = None
         
     | 
| 734 | 
         
            +
             
     | 
| 735 | 
         
            +
                        layer_head_mask = head_mask[i] if head_mask is not None else None
         
     | 
| 736 | 
         
            +
             
     | 
| 737 | 
         
            +
                        if self.gradient_checkpointing and self.training:
         
     | 
| 738 | 
         
            +
                            layer_outputs = self._gradient_checkpointing_func(
         
     | 
| 739 | 
         
            +
                                layer_module.__call__,
         
     | 
| 740 | 
         
            +
                                hidden_states,
         
     | 
| 741 | 
         
            +
                                attention_bias,
         
     | 
| 742 | 
         
            +
                                rope_embeds,
         
     | 
| 743 | 
         
            +
                                padding_inputs,
         
     | 
| 744 | 
         
            +
                                attention_scale,
         
     | 
| 745 | 
         
            +
                                layer_subset_indices,
         
     | 
| 746 | 
         
            +
                                layer_head_mask,
         
     | 
| 747 | 
         
            +
                            )
         
     | 
| 748 | 
         
            +
                        else:
         
     | 
| 749 | 
         
            +
                            layer_outputs = layer_module(
         
     | 
| 750 | 
         
            +
                                hidden_states,
         
     | 
| 751 | 
         
            +
                                attention_bias,
         
     | 
| 752 | 
         
            +
                                rope_embeds,
         
     | 
| 753 | 
         
            +
                                padding_inputs,
         
     | 
| 754 | 
         
            +
                                attention_scale,
         
     | 
| 755 | 
         
            +
                                layer_subset_indices,
         
     | 
| 756 | 
         
            +
                                layer_head_mask,
         
     | 
| 757 | 
         
            +
                                output_attentions,
         
     | 
| 758 | 
         
            +
                            )
         
     | 
| 759 | 
         
            +
             
     | 
| 760 | 
         
            +
                        hidden_states = layer_outputs[0]
         
     | 
| 761 | 
         
            +
                        if output_attentions:
         
     | 
| 762 | 
         
            +
                            all_self_attentions = all_self_attentions + (layer_outputs[1],)
         
     | 
| 763 | 
         
            +
             
     | 
| 764 | 
         
            +
                    if output_hidden_states:
         
     | 
| 765 | 
         
            +
                        all_hidden_states = all_hidden_states + (hidden_states,)
         
     | 
| 766 | 
         
            +
             
     | 
| 767 | 
         
            +
                    if not return_dict:
         
     | 
| 768 | 
         
            +
                        return tuple(
         
     | 
| 769 | 
         
            +
                            v
         
     | 
| 770 | 
         
            +
                            for v in [
         
     | 
| 771 | 
         
            +
                                hidden_states,
         
     | 
| 772 | 
         
            +
                                all_hidden_states,
         
     | 
| 773 | 
         
            +
                                all_self_attentions,
         
     | 
| 774 | 
         
            +
                            ]
         
     | 
| 775 | 
         
            +
                            if v is not None
         
     | 
| 776 | 
         
            +
                        )
         
     | 
| 777 | 
         
            +
                    return BaseModelOutput(
         
     | 
| 778 | 
         
            +
                        last_hidden_state=hidden_states,
         
     | 
| 779 | 
         
            +
                        hidden_states=all_hidden_states,
         
     | 
| 780 | 
         
            +
                        attentions=all_self_attentions,
         
     | 
| 781 | 
         
            +
                    )
         
     | 
| 782 | 
         
            +
             
     | 
| 783 | 
         
            +
             
     | 
| 784 | 
         
            +
            # Copied from transformers.models.bert.modeling_bert.BertPooler with Bert->New
         
     | 
| 785 | 
         
            +
            class NewPooler(nn.Module):
         
     | 
| 786 | 
         
            +
                def __init__(self, config):
         
     | 
| 787 | 
         
            +
                    super().__init__()
         
     | 
| 788 | 
         
            +
                    self.dense = nn.Linear(config.hidden_size, config.hidden_size)
         
     | 
| 789 | 
         
            +
                    self.activation = nn.Tanh()
         
     | 
| 790 | 
         
            +
             
     | 
| 791 | 
         
            +
                def forward(self, hidden_states: torch.Tensor) -> torch.Tensor:
         
     | 
| 792 | 
         
            +
                    # We "pool" the model by simply taking the hidden state corresponding
         
     | 
| 793 | 
         
            +
                    # to the first token.
         
     | 
| 794 | 
         
            +
                    first_token_tensor = hidden_states[:, 0]
         
     | 
| 795 | 
         
            +
                    pooled_output = self.dense(first_token_tensor)
         
     | 
| 796 | 
         
            +
                    pooled_output = self.activation(pooled_output)
         
     | 
| 797 | 
         
            +
                    return pooled_output
         
     | 
| 798 | 
         
            +
             
     | 
| 799 | 
         
            +
             
     | 
| 800 | 
         
            +
            class NewPreTrainedModel(PreTrainedModel):
         
     | 
| 801 | 
         
            +
                """
         
     | 
| 802 | 
         
            +
                An abstract class to handle weights initialization and a simple interface for downloading and loading pretrained
         
     | 
| 803 | 
         
            +
                models.
         
     | 
| 804 | 
         
            +
                """
         
     | 
| 805 | 
         
            +
             
     | 
| 806 | 
         
            +
                config_class = NewConfig
         
     | 
| 807 | 
         
            +
                base_model_prefix = "new"
         
     | 
| 808 | 
         
            +
                supports_gradient_checkpointing = True
         
     | 
| 809 | 
         
            +
                _supports_sdpa = True
         
     | 
| 810 | 
         
            +
             
     | 
| 811 | 
         
            +
                def _init_weights(self, module):
         
     | 
| 812 | 
         
            +
                    """Initialize the weights"""
         
     | 
| 813 | 
         
            +
                    if isinstance(module, nn.Linear):
         
     | 
| 814 | 
         
            +
                        # Slightly different from the TF version which uses truncated_normal for initialization
         
     | 
| 815 | 
         
            +
                        # cf https://github.com/pytorch/pytorch/pull/5617
         
     | 
| 816 | 
         
            +
                        module.weight.data.normal_(mean=0.0, std=self.config.initializer_range)
         
     | 
| 817 | 
         
            +
                        if module.bias is not None:
         
     | 
| 818 | 
         
            +
                            module.bias.data.zero_()
         
     | 
| 819 | 
         
            +
                    elif isinstance(module, nn.Embedding):
         
     | 
| 820 | 
         
            +
                        module.weight.data.normal_(mean=0.0, std=self.config.initializer_range)
         
     | 
| 821 | 
         
            +
                        if module.padding_idx is not None:
         
     | 
| 822 | 
         
            +
                            module.weight.data[module.padding_idx].zero_()
         
     | 
| 823 | 
         
            +
                    elif isinstance(module, nn.LayerNorm):
         
     | 
| 824 | 
         
            +
                        module.bias.data.zero_()
         
     | 
| 825 | 
         
            +
                        module.weight.data.fill_(1.0)
         
     | 
| 826 | 
         
            +
             
     | 
| 827 | 
         
            +
             
     | 
| 828 | 
         
            +
            class NewModel(NewPreTrainedModel):
         
     | 
| 829 | 
         
            +
                """
         
     | 
| 830 | 
         
            +
                The bare New Model transformer outputting raw hidden-states without any specific head on top.
         
     | 
| 831 | 
         
            +
                """
         
     | 
| 832 | 
         
            +
             
     | 
| 833 | 
         
            +
                def __init__(self, config: NewConfig, add_pooling_layer=False):
         
     | 
| 834 | 
         
            +
                    super().__init__(config)
         
     | 
| 835 | 
         
            +
                    self.config = config
         
     | 
| 836 | 
         
            +
             
     | 
| 837 | 
         
            +
                    self.embeddings = NewEmbeddings(config)
         
     | 
| 838 | 
         
            +
                    self.encoder = NewEncoder(config)
         
     | 
| 839 | 
         
            +
             
     | 
| 840 | 
         
            +
                    self.pooler = NewPooler(config) if add_pooling_layer else None
         
     | 
| 841 | 
         
            +
             
     | 
| 842 | 
         
            +
                    # Initialize weights and apply final processing
         
     | 
| 843 | 
         
            +
                    self.post_init()
         
     | 
| 844 | 
         
            +
             
     | 
| 845 | 
         
            +
                def get_input_embeddings(self):
         
     | 
| 846 | 
         
            +
                    return self.embeddings.word_embeddings
         
     | 
| 847 | 
         
            +
             
     | 
| 848 | 
         
            +
                def set_input_embeddings(self, value):
         
     | 
| 849 | 
         
            +
                    self.embeddings.word_embeddings = value
         
     | 
| 850 | 
         
            +
             
     | 
| 851 | 
         
            +
                def forward(
         
     | 
| 852 | 
         
            +
                    self,
         
     | 
| 853 | 
         
            +
                    input_ids: Optional[torch.Tensor] = None,
         
     | 
| 854 | 
         
            +
                    attention_mask: Optional[torch.Tensor] = None,
         
     | 
| 855 | 
         
            +
                    length: Optional[List[int]] = None,
         
     | 
| 856 | 
         
            +
                    subset_indices: Optional[torch.LongTensor] = None,
         
     | 
| 857 | 
         
            +
                    token_type_ids: Optional[torch.Tensor] = None,
         
     | 
| 858 | 
         
            +
                    position_ids: Optional[torch.Tensor] = None,
         
     | 
| 859 | 
         
            +
                    head_mask: Optional[torch.Tensor] = None,
         
     | 
| 860 | 
         
            +
                    inputs_embeds: Optional[torch.Tensor] = None,
         
     | 
| 861 | 
         
            +
                    output_attentions: Optional[bool] = None,
         
     | 
| 862 | 
         
            +
                    output_hidden_states: Optional[bool] = None,
         
     | 
| 863 | 
         
            +
                    return_dict: Optional[bool] = None,
         
     | 
| 864 | 
         
            +
                    unpad_inputs: Optional[bool] = None,
         
     | 
| 865 | 
         
            +
                ) -> Union[Tuple[torch.Tensor], BaseModelOutputWithPooling]:
         
     | 
| 866 | 
         
            +
                    r"""
         
     | 
| 867 | 
         
            +
                    length  (`list` of length `batch_size`, *optional*):
         
     | 
| 868 | 
         
            +
                        If is `None`, return padded `last_hidden_state`.
         
     | 
| 869 | 
         
            +
                    subset_indices  ():
         
     | 
| 870 | 
         
            +
                        pass
         
     | 
| 871 | 
         
            +
                    unpad_inputs  (`bool`, *optional*):
         
     | 
| 872 | 
         
            +
                        pass
         
     | 
| 873 | 
         
            +
                    """
         
     | 
| 874 | 
         
            +
                    output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
         
     | 
| 875 | 
         
            +
                    output_hidden_states = (
         
     | 
| 876 | 
         
            +
                        output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
         
     | 
| 877 | 
         
            +
                    )
         
     | 
| 878 | 
         
            +
                    return_dict = return_dict if return_dict is not None else self.config.use_return_dict
         
     | 
| 879 | 
         
            +
                    unpad_inputs = unpad_inputs if unpad_inputs is not None else self.config.unpad_inputs
         
     | 
| 880 | 
         
            +
                    output_padded = length is None
         
     | 
| 881 | 
         
            +
             
     | 
| 882 | 
         
            +
                    if input_ids is not None and inputs_embeds is not None:
         
     | 
| 883 | 
         
            +
                        raise ValueError("You cannot specify both input_ids and inputs_embeds at the same time")
         
     | 
| 884 | 
         
            +
                    elif input_ids is not None:
         
     | 
| 885 | 
         
            +
                        self.warn_if_padding_and_no_attention_mask(input_ids, attention_mask)
         
     | 
| 886 | 
         
            +
                        input_shape = input_ids.size()
         
     | 
| 887 | 
         
            +
                    elif inputs_embeds is not None:
         
     | 
| 888 | 
         
            +
                        input_shape = inputs_embeds.size()[:-1]
         
     | 
| 889 | 
         
            +
                    else:
         
     | 
| 890 | 
         
            +
                        raise ValueError("You have to specify either input_ids or inputs_embeds")
         
     | 
| 891 | 
         
            +
             
     | 
| 892 | 
         
            +
                    # TODO: not used
         
     | 
| 893 | 
         
            +
                    # # Prepare head mask if needed
         
     | 
| 894 | 
         
            +
                    # # 1.0 in head_mask indicate we keep the head
         
     | 
| 895 | 
         
            +
                    # # attention_probs has shape bsz x n_heads x N x N
         
     | 
| 896 | 
         
            +
                    # # input head_mask has shape [num_heads] or [num_hidden_layers x num_heads]
         
     | 
| 897 | 
         
            +
                    # # and head_mask is converted to shape [num_hidden_layers x batch x num_heads x seq_length x seq_length]
         
     | 
| 898 | 
         
            +
                    # head_mask = self.get_head_mask(head_mask, self.config.num_hidden_layers)
         
     | 
| 899 | 
         
            +
             
     | 
| 900 | 
         
            +
                    # Get embeddings, may unpad them
         
     | 
| 901 | 
         
            +
                    (embedding_output, attention_mask, rope_embeds, length) = self.embeddings(
         
     | 
| 902 | 
         
            +
                        unpad_inputs,
         
     | 
| 903 | 
         
            +
                        input_ids=input_ids,
         
     | 
| 904 | 
         
            +
                        attention_mask=attention_mask,
         
     | 
| 905 | 
         
            +
                        length=length,
         
     | 
| 906 | 
         
            +
                        token_type_ids=token_type_ids,
         
     | 
| 907 | 
         
            +
                        position_ids=position_ids,
         
     | 
| 908 | 
         
            +
                        inputs_embeds=inputs_embeds
         
     | 
| 909 | 
         
            +
                    )
         
     | 
| 910 | 
         
            +
             
     | 
| 911 | 
         
            +
                    batch_size, seq_length = input_shape
         
     | 
| 912 | 
         
            +
                    if unpad_inputs and self.config.use_memory_efficient_attention:
         
     | 
| 913 | 
         
            +
                        attention_bias = xops.fmha.attn_bias.BlockDiagonalMask.from_seqlens(length)
         
     | 
| 914 | 
         
            +
                    else:
         
     | 
| 915 | 
         
            +
                        # We can provide a self-attention mask of dimensions [batch_size, from_seq_length, to_seq_length]
         
     | 
| 916 | 
         
            +
                        # ourselves in which case we just need to make it broadcastable to all heads.
         
     | 
| 917 | 
         
            +
                        attention_bias = self.get_extended_attention_mask(attention_mask, input_shape)
         
     | 
| 918 | 
         
            +
                        if self.config.use_memory_efficient_attention:
         
     | 
| 919 | 
         
            +
                            # Invalid shape for attention bias: torch.Size([48, 1, 1, 512]) (expected (48, 12, 512, 512))
         
     | 
| 920 | 
         
            +
                            attention_bias = attention_bias.expand(-1, self.config.num_attention_heads, seq_length, -1)
         
     | 
| 921 | 
         
            +
             
     | 
| 922 | 
         
            +
                    padding_inputs = None
         
     | 
| 923 | 
         
            +
                    if unpad_inputs and (output_padded or not self.config.use_memory_efficient_attention):
         
     | 
| 924 | 
         
            +
                        indices = torch.nonzero(attention_mask.flatten(), as_tuple=False).flatten()
         
     | 
| 925 | 
         
            +
                        if not self.config.use_memory_efficient_attention:
         
     | 
| 926 | 
         
            +
                            padding_inputs = (indices, *input_shape)
         
     | 
| 927 | 
         
            +
             
     | 
| 928 | 
         
            +
                    attention_scale = None
         
     | 
| 929 | 
         
            +
                    if self.config.logn_attention_scale:
         
     | 
| 930 | 
         
            +
                        logger.warning_once("TODO: logn_attention_scale")
         
     | 
| 931 | 
         
            +
                    #     # attention scale log_512(input_len)
         
     | 
| 932 | 
         
            +
                    #     attention_scale = attention_mask.sum(1).log() / torch.tensor(self.config.max_position_embeddings).log()
         
     | 
| 933 | 
         
            +
                    #     # inference-time logn scale need clip 1
         
     | 
| 934 | 
         
            +
                    #     if self.config.logn_attention_clip1:
         
     | 
| 935 | 
         
            +
                    #         attention_scale.clip_(1)
         
     | 
| 936 | 
         
            +
                    #     attention_scale = attention_scale[:, None, None, None]
         
     | 
| 937 | 
         
            +
                    # else:
         
     | 
| 938 | 
         
            +
                    #     attention_scale = None
         
     | 
| 939 | 
         
            +
             
     | 
| 940 | 
         
            +
                    encoder_outputs = self.encoder(
         
     | 
| 941 | 
         
            +
                        embedding_output,
         
     | 
| 942 | 
         
            +
                        attention_bias=attention_bias,
         
     | 
| 943 | 
         
            +
                        rope_embeds=rope_embeds,
         
     | 
| 944 | 
         
            +
                        padding_inputs=padding_inputs,
         
     | 
| 945 | 
         
            +
                        attention_scale=attention_scale,
         
     | 
| 946 | 
         
            +
                        subset_indices=subset_indices,
         
     | 
| 947 | 
         
            +
                        head_mask=head_mask,
         
     | 
| 948 | 
         
            +
                        output_attentions=output_attentions,
         
     | 
| 949 | 
         
            +
                        output_hidden_states=output_hidden_states,
         
     | 
| 950 | 
         
            +
                        return_dict=return_dict,
         
     | 
| 951 | 
         
            +
                    )
         
     | 
| 952 | 
         
            +
                    sequence_output = encoder_outputs[0]
         
     | 
| 953 | 
         
            +
                    if unpad_inputs and output_padded:
         
     | 
| 954 | 
         
            +
                        sequence_output = pad_input(
         
     | 
| 955 | 
         
            +
                            sequence_output.squeeze(), indices, batch_size, seq_length
         
     | 
| 956 | 
         
            +
                        )
         
     | 
| 957 | 
         
            +
             
     | 
| 958 | 
         
            +
                    pooled_output = self.pooler(sequence_output) if self.pooler is not None else None
         
     | 
| 959 | 
         
            +
             
     | 
| 960 | 
         
            +
                    if not return_dict:
         
     | 
| 961 | 
         
            +
                        return (sequence_output, pooled_output) + encoder_outputs[1:]
         
     | 
| 962 | 
         
            +
             
     | 
| 963 | 
         
            +
                    return BaseModelOutputWithPooling(
         
     | 
| 964 | 
         
            +
                        last_hidden_state=sequence_output,
         
     | 
| 965 | 
         
            +
                        pooler_output=pooled_output,
         
     | 
| 966 | 
         
            +
                        hidden_states=encoder_outputs.hidden_states,
         
     | 
| 967 | 
         
            +
                        attentions=encoder_outputs.attentions,
         
     | 
| 968 | 
         
            +
                    )
         
     | 
| 969 | 
         
            +
             
     | 
| 970 | 
         
            +
             
     | 
| 971 | 
         
            +
            class NewLMPredictionHead(nn.Module):
         
     | 
| 972 | 
         
            +
                def __init__(self, config):
         
     | 
| 973 | 
         
            +
                    super().__init__()
         
     | 
| 974 | 
         
            +
                    self.dense = nn.Linear(config.hidden_size, config.hidden_size)
         
     | 
| 975 | 
         
            +
                    self.transform_act_fn = ACT2FN[config.hidden_act]
         
     | 
| 976 | 
         
            +
                    self.norm = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps)
         
     | 
| 977 | 
         
            +
             
     | 
| 978 | 
         
            +
                    # The output weights are the same as the input embeddings, but there is
         
     | 
| 979 | 
         
            +
                    # an output-only bias for each token.
         
     | 
| 980 | 
         
            +
                    self.decoder = nn.Linear(config.hidden_size, config.vocab_size)
         
     | 
| 981 | 
         
            +
             
     | 
| 982 | 
         
            +
                def forward(self, hidden_states):
         
     | 
| 983 | 
         
            +
                    hidden_states = self.dense(hidden_states)
         
     | 
| 984 | 
         
            +
                    hidden_states = self.transform_act_fn(hidden_states)
         
     | 
| 985 | 
         
            +
                    hidden_states = self.norm(hidden_states)
         
     | 
| 986 | 
         
            +
                    hidden_states = self.decoder(hidden_states)
         
     | 
| 987 | 
         
            +
                    return hidden_states
         
     | 
| 988 | 
         
            +
             
     | 
| 989 | 
         
            +
             
     | 
| 990 | 
         
            +
            class NewForMaskedLM(NewPreTrainedModel):
         
     | 
| 991 | 
         
            +
                _tied_weights_keys = ["lm_head.decoder.bias", "lm_head.decoder.weight"]
         
     | 
| 992 | 
         
            +
             
     | 
| 993 | 
         
            +
                def __init__(self, config: NewConfig):
         
     | 
| 994 | 
         
            +
                    super().__init__(config)
         
     | 
| 995 | 
         
            +
                    self.new = NewModel(config, add_pooling_layer=False)
         
     | 
| 996 | 
         
            +
                    self.lm_head = NewLMPredictionHead(config)
         
     | 
| 997 | 
         
            +
                    self.loss_fct = nn.CrossEntropyLoss()
         
     | 
| 998 | 
         
            +
             
     | 
| 999 | 
         
            +
                    # Initialize weights and apply final processing
         
     | 
| 1000 | 
         
            +
                    self.post_init()
         
     | 
| 1001 | 
         
            +
             
     | 
| 1002 | 
         
            +
                def get_output_embeddings(self):
         
     | 
| 1003 | 
         
            +
                    return self.lm_head.decoder
         
     | 
| 1004 | 
         
            +
             
     | 
| 1005 | 
         
            +
                def set_output_embeddings(self, new_embeddings):
         
     | 
| 1006 | 
         
            +
                    self.lm_head.decoder = new_embeddings
         
     | 
| 1007 | 
         
            +
             
     | 
| 1008 | 
         
            +
                def forward(
         
     | 
| 1009 | 
         
            +
                    self,
         
     | 
| 1010 | 
         
            +
                    input_ids: Optional[torch.Tensor] = None,
         
     | 
| 1011 | 
         
            +
                    attention_mask: Optional[torch.Tensor] = None,
         
     | 
| 1012 | 
         
            +
                    token_type_ids: Optional[torch.Tensor] = None,
         
     | 
| 1013 | 
         
            +
                    position_ids: Optional[torch.Tensor] = None,
         
     | 
| 1014 | 
         
            +
                    head_mask: Optional[torch.Tensor] = None,
         
     | 
| 1015 | 
         
            +
                    inputs_embeds: Optional[torch.Tensor] = None,
         
     | 
| 1016 | 
         
            +
                    labels: Optional[torch.Tensor] = None,
         
     | 
| 1017 | 
         
            +
                    output_attentions: Optional[bool] = None,
         
     | 
| 1018 | 
         
            +
                    output_hidden_states: Optional[bool] = None,
         
     | 
| 1019 | 
         
            +
                    return_dict: Optional[bool] = None,
         
     | 
| 1020 | 
         
            +
                    unpad_inputs: Optional[bool] = None,
         
     | 
| 1021 | 
         
            +
                ) -> Union[Tuple[torch.Tensor], MaskedLMOutput]:
         
     | 
| 1022 | 
         
            +
                    r"""
         
     | 
| 1023 | 
         
            +
                    labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
         
     | 
| 1024 | 
         
            +
                        Labels for computing the masked language modeling loss. Indices should be in `[-100, 0, ...,
         
     | 
| 1025 | 
         
            +
                        config.vocab_size]` (see `input_ids` docstring) Tokens with indices set to `-100` are ignored (masked), the
         
     | 
| 1026 | 
         
            +
                        loss is only computed for the tokens with labels in `[0, ..., config.vocab_size]`
         
     | 
| 1027 | 
         
            +
                    """
         
     | 
| 1028 | 
         
            +
             
     | 
| 1029 | 
         
            +
                    return_dict = return_dict if return_dict is not None else self.config.use_return_dict
         
     | 
| 1030 | 
         
            +
             
     | 
| 1031 | 
         
            +
                    if labels is None or not self.new.config.unpad_inputs:
         
     | 
| 1032 | 
         
            +
                        length = None
         
     | 
| 1033 | 
         
            +
                        subset_indices = None
         
     | 
| 1034 | 
         
            +
                    else:
         
     | 
| 1035 | 
         
            +
                        length = attention_mask.sum(-1).tolist()
         
     | 
| 1036 | 
         
            +
                        labels = labels[attention_mask.bool()].unsqueeze(0)
         
     | 
| 1037 | 
         
            +
                        subset_indices = labels > -100
         
     | 
| 1038 | 
         
            +
             
     | 
| 1039 | 
         
            +
                    outputs = self.new(
         
     | 
| 1040 | 
         
            +
                        input_ids,
         
     | 
| 1041 | 
         
            +
                        attention_mask=attention_mask,
         
     | 
| 1042 | 
         
            +
                        length=length,
         
     | 
| 1043 | 
         
            +
                        subset_indices=subset_indices,
         
     | 
| 1044 | 
         
            +
                        token_type_ids=token_type_ids,
         
     | 
| 1045 | 
         
            +
                        position_ids=position_ids,
         
     | 
| 1046 | 
         
            +
                        head_mask=head_mask,
         
     | 
| 1047 | 
         
            +
                        inputs_embeds=inputs_embeds,
         
     | 
| 1048 | 
         
            +
                        output_attentions=output_attentions,
         
     | 
| 1049 | 
         
            +
                        output_hidden_states=output_hidden_states,
         
     | 
| 1050 | 
         
            +
                        return_dict=return_dict,
         
     | 
| 1051 | 
         
            +
                        unpad_inputs=unpad_inputs,
         
     | 
| 1052 | 
         
            +
                    )
         
     | 
| 1053 | 
         
            +
             
     | 
| 1054 | 
         
            +
                    sequence_output = outputs[0]
         
     | 
| 1055 | 
         
            +
                    prediction_scores = self.lm_head(sequence_output)
         
     | 
| 1056 | 
         
            +
             
     | 
| 1057 | 
         
            +
                    masked_lm_loss = None
         
     | 
| 1058 | 
         
            +
                    if labels is not None:
         
     | 
| 1059 | 
         
            +
                        if subset_indices is None:
         
     | 
| 1060 | 
         
            +
                            mask = attention_mask.bool()
         
     | 
| 1061 | 
         
            +
                            prediction_scores = prediction_scores[mask]
         
     | 
| 1062 | 
         
            +
                            labels = labels[mask]
         
     | 
| 1063 | 
         
            +
                        else:
         
     | 
| 1064 | 
         
            +
                            labels = labels[subset_indices]
         
     | 
| 1065 | 
         
            +
                        masked_lm_loss = self.loss_fct(prediction_scores, labels)
         
     | 
| 1066 | 
         
            +
             
     | 
| 1067 | 
         
            +
                    if not return_dict:
         
     | 
| 1068 | 
         
            +
                        output = (prediction_scores,) + outputs[2:]
         
     | 
| 1069 | 
         
            +
                        return ((masked_lm_loss,) + output) if masked_lm_loss is not None else output
         
     | 
| 1070 | 
         
            +
             
     | 
| 1071 | 
         
            +
                    return MaskedLMOutput(
         
     | 
| 1072 | 
         
            +
                        loss=masked_lm_loss,
         
     | 
| 1073 | 
         
            +
                        logits=prediction_scores,
         
     | 
| 1074 | 
         
            +
                        hidden_states=outputs.hidden_states,
         
     | 
| 1075 | 
         
            +
                        attentions=outputs.attentions,
         
     | 
| 1076 | 
         
            +
                    )
         
     | 
| 1077 | 
         
            +
             
     | 
| 1078 | 
         
            +
             
     | 
| 1079 | 
         
            +
            class NewForSequenceClassification(NewPreTrainedModel):
         
     | 
| 1080 | 
         
            +
                def __init__(self, config):
         
     | 
| 1081 | 
         
            +
                    super().__init__(config)
         
     | 
| 1082 | 
         
            +
                    self.num_labels = config.num_labels
         
     | 
| 1083 | 
         
            +
                    self.config = config
         
     | 
| 1084 | 
         
            +
             
     | 
| 1085 | 
         
            +
                    self.new = NewModel(config, add_pooling_layer=True)
         
     | 
| 1086 | 
         
            +
                    classifier_dropout = (
         
     | 
| 1087 | 
         
            +
                        config.classifier_dropout if config.classifier_dropout is not None else config.hidden_dropout_prob
         
     | 
| 1088 | 
         
            +
                    )
         
     | 
| 1089 | 
         
            +
                    self.dropout = nn.Dropout(classifier_dropout)
         
     | 
| 1090 | 
         
            +
                    self.classifier = nn.Linear(config.hidden_size, config.num_labels)
         
     | 
| 1091 | 
         
            +
             
     | 
| 1092 | 
         
            +
                    # Initialize weights and apply final processing
         
     | 
| 1093 | 
         
            +
                    self.post_init()
         
     | 
| 1094 | 
         
            +
             
     | 
| 1095 | 
         
            +
                def forward(
         
     | 
| 1096 | 
         
            +
                    self,
         
     | 
| 1097 | 
         
            +
                    input_ids: Optional[torch.Tensor] = None,
         
     | 
| 1098 | 
         
            +
                    attention_mask: Optional[torch.Tensor] = None,
         
     | 
| 1099 | 
         
            +
                    token_type_ids: Optional[torch.Tensor] = None,
         
     | 
| 1100 | 
         
            +
                    position_ids: Optional[torch.Tensor] = None,
         
     | 
| 1101 | 
         
            +
                    head_mask: Optional[torch.Tensor] = None,
         
     | 
| 1102 | 
         
            +
                    inputs_embeds: Optional[torch.Tensor] = None,
         
     | 
| 1103 | 
         
            +
                    labels: Optional[torch.Tensor] = None,
         
     | 
| 1104 | 
         
            +
                    output_attentions: Optional[bool] = None,
         
     | 
| 1105 | 
         
            +
                    output_hidden_states: Optional[bool] = None,
         
     | 
| 1106 | 
         
            +
                    return_dict: Optional[bool] = None,
         
     | 
| 1107 | 
         
            +
                    unpad_inputs: Optional[bool] = None,
         
     | 
| 1108 | 
         
            +
                ) -> Union[Tuple[torch.Tensor], SequenceClassifierOutput]:
         
     | 
| 1109 | 
         
            +
                    r"""
         
     | 
| 1110 | 
         
            +
                    labels (`torch.LongTensor` of shape `(batch_size,)`, *optional*):
         
     | 
| 1111 | 
         
            +
                        Labels for computing the sequence classification/regression loss. Indices should be in `[0, ...,
         
     | 
| 1112 | 
         
            +
                        config.num_labels - 1]`. If `config.num_labels == 1` a regression loss is computed (Mean-Square loss), If
         
     | 
| 1113 | 
         
            +
                        `config.num_labels > 1` a classification loss is computed (Cross-Entropy).
         
     | 
| 1114 | 
         
            +
                    """
         
     | 
| 1115 | 
         
            +
                    return_dict = return_dict if return_dict is not None else self.config.use_return_dict
         
     | 
| 1116 | 
         
            +
             
     | 
| 1117 | 
         
            +
                    outputs = self.new(
         
     | 
| 1118 | 
         
            +
                        input_ids,
         
     | 
| 1119 | 
         
            +
                        attention_mask=attention_mask,
         
     | 
| 1120 | 
         
            +
                        token_type_ids=token_type_ids,
         
     | 
| 1121 | 
         
            +
                        position_ids=position_ids,
         
     | 
| 1122 | 
         
            +
                        head_mask=head_mask,
         
     | 
| 1123 | 
         
            +
                        inputs_embeds=inputs_embeds,
         
     | 
| 1124 | 
         
            +
                        output_attentions=output_attentions,
         
     | 
| 1125 | 
         
            +
                        output_hidden_states=output_hidden_states,
         
     | 
| 1126 | 
         
            +
                        return_dict=return_dict,
         
     | 
| 1127 | 
         
            +
                        unpad_inputs=unpad_inputs,
         
     | 
| 1128 | 
         
            +
                    )
         
     | 
| 1129 | 
         
            +
             
     | 
| 1130 | 
         
            +
                    pooled_output = outputs[1]
         
     | 
| 1131 | 
         
            +
             
     | 
| 1132 | 
         
            +
                    pooled_output = self.dropout(pooled_output)
         
     | 
| 1133 | 
         
            +
                    logits = self.classifier(pooled_output)
         
     | 
| 1134 | 
         
            +
             
     | 
| 1135 | 
         
            +
                    loss = None
         
     | 
| 1136 | 
         
            +
                    if labels is not None:
         
     | 
| 1137 | 
         
            +
                        if self.config.problem_type is None:
         
     | 
| 1138 | 
         
            +
                            if self.num_labels == 1:
         
     | 
| 1139 | 
         
            +
                                self.config.problem_type = "regression"
         
     | 
| 1140 | 
         
            +
                            elif self.num_labels > 1 and (labels.dtype == torch.long or labels.dtype == torch.int):
         
     | 
| 1141 | 
         
            +
                                self.config.problem_type = "single_label_classification"
         
     | 
| 1142 | 
         
            +
                            else:
         
     | 
| 1143 | 
         
            +
                                self.config.problem_type = "multi_label_classification"
         
     | 
| 1144 | 
         
            +
             
     | 
| 1145 | 
         
            +
                        if self.config.problem_type == "regression":
         
     | 
| 1146 | 
         
            +
                            loss_fct = nn.MSELoss()
         
     | 
| 1147 | 
         
            +
                            if self.num_labels == 1:
         
     | 
| 1148 | 
         
            +
                                loss = loss_fct(logits.squeeze(), labels.squeeze())
         
     | 
| 1149 | 
         
            +
                            else:
         
     | 
| 1150 | 
         
            +
                                loss = loss_fct(logits, labels)
         
     | 
| 1151 | 
         
            +
                        elif self.config.problem_type == "single_label_classification":
         
     | 
| 1152 | 
         
            +
                            loss_fct = nn.CrossEntropyLoss()
         
     | 
| 1153 | 
         
            +
                            loss = loss_fct(logits.view(-1, self.num_labels), labels.view(-1))
         
     | 
| 1154 | 
         
            +
                        elif self.config.problem_type == "multi_label_classification":
         
     | 
| 1155 | 
         
            +
                            loss_fct = nn.BCEWithLogitsLoss()
         
     | 
| 1156 | 
         
            +
                            loss = loss_fct(logits, labels)
         
     | 
| 1157 | 
         
            +
             
     | 
| 1158 | 
         
            +
                    if not return_dict:
         
     | 
| 1159 | 
         
            +
                        output = (logits,) + outputs[2:]
         
     | 
| 1160 | 
         
            +
                        return ((loss,) + output) if loss is not None else output
         
     | 
| 1161 | 
         
            +
             
     | 
| 1162 | 
         
            +
                    return SequenceClassifierOutput(
         
     | 
| 1163 | 
         
            +
                        loss=loss,
         
     | 
| 1164 | 
         
            +
                        logits=logits,
         
     | 
| 1165 | 
         
            +
                        hidden_states=outputs.hidden_states,
         
     | 
| 1166 | 
         
            +
                        attentions=outputs.attentions,
         
     | 
| 1167 | 
         
            +
                    )
         
     | 
| 1168 | 
         
            +
             
     | 
| 1169 | 
         
            +
             
     | 
| 1170 | 
         
            +
            class NewForMultipleChoice(NewPreTrainedModel):
         
     | 
| 1171 | 
         
            +
                def __init__(self, config):
         
     | 
| 1172 | 
         
            +
                    super().__init__(config)
         
     | 
| 1173 | 
         
            +
             
     | 
| 1174 | 
         
            +
                    self.new = NewModel(config, add_pooling_layer=True)
         
     | 
| 1175 | 
         
            +
                    classifier_dropout = (
         
     | 
| 1176 | 
         
            +
                        config.classifier_dropout if config.classifier_dropout is not None else config.hidden_dropout_prob
         
     | 
| 1177 | 
         
            +
                    )
         
     | 
| 1178 | 
         
            +
                    self.dropout = nn.Dropout(classifier_dropout)
         
     | 
| 1179 | 
         
            +
                    self.classifier = nn.Linear(config.hidden_size, 1)
         
     | 
| 1180 | 
         
            +
             
     | 
| 1181 | 
         
            +
                    # Initialize weights and apply final processing
         
     | 
| 1182 | 
         
            +
                    self.post_init()
         
     | 
| 1183 | 
         
            +
             
     | 
| 1184 | 
         
            +
                def forward(
         
     | 
| 1185 | 
         
            +
                    self,
         
     | 
| 1186 | 
         
            +
                    input_ids: Optional[torch.Tensor] = None,
         
     | 
| 1187 | 
         
            +
                    attention_mask: Optional[torch.Tensor] = None,
         
     | 
| 1188 | 
         
            +
                    token_type_ids: Optional[torch.Tensor] = None,
         
     | 
| 1189 | 
         
            +
                    position_ids: Optional[torch.Tensor] = None,
         
     | 
| 1190 | 
         
            +
                    head_mask: Optional[torch.Tensor] = None,
         
     | 
| 1191 | 
         
            +
                    inputs_embeds: Optional[torch.Tensor] = None,
         
     | 
| 1192 | 
         
            +
                    labels: Optional[torch.Tensor] = None,
         
     | 
| 1193 | 
         
            +
                    output_attentions: Optional[bool] = None,
         
     | 
| 1194 | 
         
            +
                    output_hidden_states: Optional[bool] = None,
         
     | 
| 1195 | 
         
            +
                    return_dict: Optional[bool] = None,
         
     | 
| 1196 | 
         
            +
                    unpad_inputs: Optional[bool] = None,
         
     | 
| 1197 | 
         
            +
                ) -> Union[Tuple[torch.Tensor], MultipleChoiceModelOutput]:
         
     | 
| 1198 | 
         
            +
                    r"""
         
     | 
| 1199 | 
         
            +
                    labels (`torch.LongTensor` of shape `(batch_size,)`, *optional*):
         
     | 
| 1200 | 
         
            +
                        Labels for computing the multiple choice classification loss. Indices should be in `[0, ...,
         
     | 
| 1201 | 
         
            +
                        num_choices-1]` where `num_choices` is the size of the second dimension of the input tensors. (See
         
     | 
| 1202 | 
         
            +
                        `input_ids` above)
         
     | 
| 1203 | 
         
            +
                    """
         
     | 
| 1204 | 
         
            +
                    return_dict = return_dict if return_dict is not None else self.config.use_return_dict
         
     | 
| 1205 | 
         
            +
                    num_choices = input_ids.shape[1] if input_ids is not None else inputs_embeds.shape[1]
         
     | 
| 1206 | 
         
            +
             
     | 
| 1207 | 
         
            +
                    input_ids = input_ids.view(-1, input_ids.size(-1)) if input_ids is not None else None
         
     | 
| 1208 | 
         
            +
                    attention_mask = attention_mask.view(-1, attention_mask.size(-1)) if attention_mask is not None else None
         
     | 
| 1209 | 
         
            +
                    token_type_ids = token_type_ids.view(-1, token_type_ids.size(-1)) if token_type_ids is not None else None
         
     | 
| 1210 | 
         
            +
                    position_ids = position_ids.view(-1, position_ids.size(-1)) if position_ids is not None else None
         
     | 
| 1211 | 
         
            +
                    inputs_embeds = (
         
     | 
| 1212 | 
         
            +
                        inputs_embeds.view(-1, inputs_embeds.size(-2), inputs_embeds.size(-1))
         
     | 
| 1213 | 
         
            +
                        if inputs_embeds is not None
         
     | 
| 1214 | 
         
            +
                        else None
         
     | 
| 1215 | 
         
            +
                    )
         
     | 
| 1216 | 
         
            +
             
     | 
| 1217 | 
         
            +
                    outputs = self.new(
         
     | 
| 1218 | 
         
            +
                        input_ids,
         
     | 
| 1219 | 
         
            +
                        attention_mask=attention_mask,
         
     | 
| 1220 | 
         
            +
                        token_type_ids=token_type_ids,
         
     | 
| 1221 | 
         
            +
                        position_ids=position_ids,
         
     | 
| 1222 | 
         
            +
                        head_mask=head_mask,
         
     | 
| 1223 | 
         
            +
                        inputs_embeds=inputs_embeds,
         
     | 
| 1224 | 
         
            +
                        output_attentions=output_attentions,
         
     | 
| 1225 | 
         
            +
                        output_hidden_states=output_hidden_states,
         
     | 
| 1226 | 
         
            +
                        return_dict=return_dict,
         
     | 
| 1227 | 
         
            +
                        unpad_inputs=unpad_inputs,
         
     | 
| 1228 | 
         
            +
                    )
         
     | 
| 1229 | 
         
            +
             
     | 
| 1230 | 
         
            +
                    pooled_output = outputs[1]
         
     | 
| 1231 | 
         
            +
             
     | 
| 1232 | 
         
            +
                    pooled_output = self.dropout(pooled_output)
         
     | 
| 1233 | 
         
            +
                    logits = self.classifier(pooled_output)
         
     | 
| 1234 | 
         
            +
                    reshaped_logits = logits.view(-1, num_choices)
         
     | 
| 1235 | 
         
            +
             
     | 
| 1236 | 
         
            +
                    loss = None
         
     | 
| 1237 | 
         
            +
                    if labels is not None:
         
     | 
| 1238 | 
         
            +
                        loss_fct = nn.CrossEntropyLoss()
         
     | 
| 1239 | 
         
            +
                        loss = loss_fct(reshaped_logits, labels)
         
     | 
| 1240 | 
         
            +
             
     | 
| 1241 | 
         
            +
                    if not return_dict:
         
     | 
| 1242 | 
         
            +
                        output = (reshaped_logits,) + outputs[2:]
         
     | 
| 1243 | 
         
            +
                        return ((loss,) + output) if loss is not None else output
         
     | 
| 1244 | 
         
            +
             
     | 
| 1245 | 
         
            +
                    return MultipleChoiceModelOutput(
         
     | 
| 1246 | 
         
            +
                        loss=loss,
         
     | 
| 1247 | 
         
            +
                        logits=reshaped_logits,
         
     | 
| 1248 | 
         
            +
                        hidden_states=outputs.hidden_states,
         
     | 
| 1249 | 
         
            +
                        attentions=outputs.attentions,
         
     | 
| 1250 | 
         
            +
                    )
         
     | 
| 1251 | 
         
            +
             
     | 
| 1252 | 
         
            +
             
     | 
| 1253 | 
         
            +
            @dataclass
         
     | 
| 1254 | 
         
            +
            class NewTokenClassifierOutput(ModelOutput):
         
     | 
| 1255 | 
         
            +
                loss: Optional[torch.FloatTensor] = None
         
     | 
| 1256 | 
         
            +
                logits: torch.FloatTensor = None
         
     | 
| 1257 | 
         
            +
                last_hidden_state: torch.FloatTensor = None
         
     | 
| 1258 | 
         
            +
                hidden_states: Optional[Tuple[torch.FloatTensor, ...]] = None
         
     | 
| 1259 | 
         
            +
                attentions: Optional[Tuple[torch.FloatTensor, ...]] = None
         
     | 
| 1260 | 
         
            +
             
     | 
| 1261 | 
         
            +
             
     | 
| 1262 | 
         
            +
            class NewForTokenClassification(NewPreTrainedModel):
         
     | 
| 1263 | 
         
            +
                def __init__(self, config):
         
     | 
| 1264 | 
         
            +
                    super().__init__(config)
         
     | 
| 1265 | 
         
            +
                    self.num_labels = config.num_labels
         
     | 
| 1266 | 
         
            +
             
     | 
| 1267 | 
         
            +
                    self.new = NewModel(config, add_pooling_layer=False)
         
     | 
| 1268 | 
         
            +
                    classifier_dropout = (
         
     | 
| 1269 | 
         
            +
                        config.classifier_dropout if config.classifier_dropout is not None else config.hidden_dropout_prob
         
     | 
| 1270 | 
         
            +
                    )
         
     | 
| 1271 | 
         
            +
                    self.dropout = nn.Dropout(classifier_dropout)
         
     | 
| 1272 | 
         
            +
                    self.classifier = nn.Linear(config.hidden_size, config.num_labels)
         
     | 
| 1273 | 
         
            +
             
     | 
| 1274 | 
         
            +
                    # Initialize weights and apply final processing
         
     | 
| 1275 | 
         
            +
                    self.post_init()
         
     | 
| 1276 | 
         
            +
             
     | 
| 1277 | 
         
            +
                def forward(
         
     | 
| 1278 | 
         
            +
                    self,
         
     | 
| 1279 | 
         
            +
                    input_ids: Optional[torch.Tensor] = None,
         
     | 
| 1280 | 
         
            +
                    attention_mask: Optional[torch.Tensor] = None,
         
     | 
| 1281 | 
         
            +
                    token_type_ids: Optional[torch.Tensor] = None,
         
     | 
| 1282 | 
         
            +
                    position_ids: Optional[torch.Tensor] = None,
         
     | 
| 1283 | 
         
            +
                    head_mask: Optional[torch.Tensor] = None,
         
     | 
| 1284 | 
         
            +
                    inputs_embeds: Optional[torch.Tensor] = None,
         
     | 
| 1285 | 
         
            +
                    labels: Optional[torch.Tensor] = None,
         
     | 
| 1286 | 
         
            +
                    output_attentions: Optional[bool] = None,
         
     | 
| 1287 | 
         
            +
                    output_hidden_states: Optional[bool] = None,
         
     | 
| 1288 | 
         
            +
                    return_dict: Optional[bool] = None,
         
     | 
| 1289 | 
         
            +
                    unpad_inputs: Optional[bool] = None,
         
     | 
| 1290 | 
         
            +
                ) -> Union[Tuple[torch.Tensor], NewTokenClassifierOutput]:
         
     | 
| 1291 | 
         
            +
                    r"""
         
     | 
| 1292 | 
         
            +
                    labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
         
     | 
| 1293 | 
         
            +
                        Labels for computing the token classification loss. Indices should be in `[0, ..., config.num_labels - 1]`.
         
     | 
| 1294 | 
         
            +
                    """
         
     | 
| 1295 | 
         
            +
                    return_dict = return_dict if return_dict is not None else self.config.use_return_dict
         
     | 
| 1296 | 
         
            +
             
     | 
| 1297 | 
         
            +
                    outputs = self.new(
         
     | 
| 1298 | 
         
            +
                        input_ids,
         
     | 
| 1299 | 
         
            +
                        attention_mask=attention_mask,
         
     | 
| 1300 | 
         
            +
                        token_type_ids=token_type_ids,
         
     | 
| 1301 | 
         
            +
                        position_ids=position_ids,
         
     | 
| 1302 | 
         
            +
                        head_mask=head_mask,
         
     | 
| 1303 | 
         
            +
                        inputs_embeds=inputs_embeds,
         
     | 
| 1304 | 
         
            +
                        output_attentions=output_attentions,
         
     | 
| 1305 | 
         
            +
                        output_hidden_states=output_hidden_states,
         
     | 
| 1306 | 
         
            +
                        return_dict=return_dict,
         
     | 
| 1307 | 
         
            +
                        unpad_inputs=unpad_inputs,
         
     | 
| 1308 | 
         
            +
                    )
         
     | 
| 1309 | 
         
            +
             
     | 
| 1310 | 
         
            +
                    sequence_output = outputs[0]
         
     | 
| 1311 | 
         
            +
             
     | 
| 1312 | 
         
            +
                    sequence_output = self.dropout(sequence_output)
         
     | 
| 1313 | 
         
            +
                    logits = self.classifier(sequence_output)
         
     | 
| 1314 | 
         
            +
             
     | 
| 1315 | 
         
            +
                    loss = None
         
     | 
| 1316 | 
         
            +
                    if labels is not None:
         
     | 
| 1317 | 
         
            +
                        loss_fct = nn.CrossEntropyLoss()
         
     | 
| 1318 | 
         
            +
                        loss = loss_fct(logits.view(-1, self.num_labels), labels.view(-1))
         
     | 
| 1319 | 
         
            +
             
     | 
| 1320 | 
         
            +
                    if not return_dict:
         
     | 
| 1321 | 
         
            +
                        output = (logits,) + outputs[2:]
         
     | 
| 1322 | 
         
            +
                        return ((loss,) + output) if loss is not None else output
         
     | 
| 1323 | 
         
            +
             
     | 
| 1324 | 
         
            +
                    return NewTokenClassifierOutput(
         
     | 
| 1325 | 
         
            +
                        loss=loss,
         
     | 
| 1326 | 
         
            +
                        logits=logits,
         
     | 
| 1327 | 
         
            +
                        last_hidden_state=sequence_output,
         
     | 
| 1328 | 
         
            +
                        hidden_states=outputs.hidden_states,
         
     | 
| 1329 | 
         
            +
                        attentions=outputs.attentions,
         
     | 
| 1330 | 
         
            +
                    )
         
     | 
| 1331 | 
         
            +
             
     | 
| 1332 | 
         
            +
             
     | 
| 1333 | 
         
            +
            class NewForQuestionAnswering(NewPreTrainedModel):
         
     | 
| 1334 | 
         
            +
                def __init__(self, config):
         
     | 
| 1335 | 
         
            +
                    super().__init__(config)
         
     | 
| 1336 | 
         
            +
                    self.num_labels = config.num_labels
         
     | 
| 1337 | 
         
            +
             
     | 
| 1338 | 
         
            +
                    self.new = NewModel(config, add_pooling_layer=False)
         
     | 
| 1339 | 
         
            +
                    self.qa_outputs = nn.Linear(config.hidden_size, config.num_labels)
         
     | 
| 1340 | 
         
            +
             
     | 
| 1341 | 
         
            +
                    # Initialize weights and apply final processing
         
     | 
| 1342 | 
         
            +
                    self.post_init()
         
     | 
| 1343 | 
         
            +
             
     | 
| 1344 | 
         
            +
                def forward(
         
     | 
| 1345 | 
         
            +
                    self,
         
     | 
| 1346 | 
         
            +
                    input_ids: Optional[torch.Tensor] = None,
         
     | 
| 1347 | 
         
            +
                    attention_mask: Optional[torch.Tensor] = None,
         
     | 
| 1348 | 
         
            +
                    token_type_ids: Optional[torch.Tensor] = None,
         
     | 
| 1349 | 
         
            +
                    position_ids: Optional[torch.Tensor] = None,
         
     | 
| 1350 | 
         
            +
                    head_mask: Optional[torch.Tensor] = None,
         
     | 
| 1351 | 
         
            +
                    inputs_embeds: Optional[torch.Tensor] = None,
         
     | 
| 1352 | 
         
            +
                    start_positions: Optional[torch.Tensor] = None,
         
     | 
| 1353 | 
         
            +
                    end_positions: Optional[torch.Tensor] = None,
         
     | 
| 1354 | 
         
            +
                    output_attentions: Optional[bool] = None,
         
     | 
| 1355 | 
         
            +
                    output_hidden_states: Optional[bool] = None,
         
     | 
| 1356 | 
         
            +
                    return_dict: Optional[bool] = None,
         
     | 
| 1357 | 
         
            +
                    unpad_inputs: Optional[bool] = None,
         
     | 
| 1358 | 
         
            +
                ) -> Union[Tuple[torch.Tensor], QuestionAnsweringModelOutput]:
         
     | 
| 1359 | 
         
            +
                    r"""
         
     | 
| 1360 | 
         
            +
                    start_positions (`torch.LongTensor` of shape `(batch_size,)`, *optional*):
         
     | 
| 1361 | 
         
            +
                        Labels for position (index) of the start of the labelled span for computing the token classification loss.
         
     | 
| 1362 | 
         
            +
                        Positions are clamped to the length of the sequence (`sequence_length`). Position outside of the sequence
         
     | 
| 1363 | 
         
            +
                        are not taken into account for computing the loss.
         
     | 
| 1364 | 
         
            +
                    end_positions (`torch.LongTensor` of shape `(batch_size,)`, *optional*):
         
     | 
| 1365 | 
         
            +
                        Labels for position (index) of the end of the labelled span for computing the token classification loss.
         
     | 
| 1366 | 
         
            +
                        Positions are clamped to the length of the sequence (`sequence_length`). Position outside of the sequence
         
     | 
| 1367 | 
         
            +
                        are not taken into account for computing the loss.
         
     | 
| 1368 | 
         
            +
                    """
         
     | 
| 1369 | 
         
            +
                    return_dict = return_dict if return_dict is not None else self.config.use_return_dict
         
     | 
| 1370 | 
         
            +
             
     | 
| 1371 | 
         
            +
                    outputs = self.new(
         
     | 
| 1372 | 
         
            +
                        input_ids,
         
     | 
| 1373 | 
         
            +
                        attention_mask=attention_mask,
         
     | 
| 1374 | 
         
            +
                        token_type_ids=token_type_ids,
         
     | 
| 1375 | 
         
            +
                        position_ids=position_ids,
         
     | 
| 1376 | 
         
            +
                        head_mask=head_mask,
         
     | 
| 1377 | 
         
            +
                        inputs_embeds=inputs_embeds,
         
     | 
| 1378 | 
         
            +
                        output_attentions=output_attentions,
         
     | 
| 1379 | 
         
            +
                        output_hidden_states=output_hidden_states,
         
     | 
| 1380 | 
         
            +
                        return_dict=return_dict,
         
     | 
| 1381 | 
         
            +
                        unpad_inputs=unpad_inputs,
         
     | 
| 1382 | 
         
            +
                    )
         
     | 
| 1383 | 
         
            +
             
     | 
| 1384 | 
         
            +
                    sequence_output = outputs[0]
         
     | 
| 1385 | 
         
            +
             
     | 
| 1386 | 
         
            +
                    logits = self.qa_outputs(sequence_output)
         
     | 
| 1387 | 
         
            +
                    start_logits, end_logits = logits.split(1, dim=-1)
         
     | 
| 1388 | 
         
            +
                    start_logits = start_logits.squeeze(-1).contiguous()
         
     | 
| 1389 | 
         
            +
                    end_logits = end_logits.squeeze(-1).contiguous()
         
     | 
| 1390 | 
         
            +
             
     | 
| 1391 | 
         
            +
                    total_loss = None
         
     | 
| 1392 | 
         
            +
                    if start_positions is not None and end_positions is not None:
         
     | 
| 1393 | 
         
            +
                        # If we are on multi-GPU, split add a dimension
         
     | 
| 1394 | 
         
            +
                        if len(start_positions.size()) > 1:
         
     | 
| 1395 | 
         
            +
                            start_positions = start_positions.squeeze(-1)
         
     | 
| 1396 | 
         
            +
                        if len(end_positions.size()) > 1:
         
     | 
| 1397 | 
         
            +
                            end_positions = end_positions.squeeze(-1)
         
     | 
| 1398 | 
         
            +
                        # sometimes the start/end positions are outside our model inputs, we ignore these terms
         
     | 
| 1399 | 
         
            +
                        ignored_index = start_logits.size(1)
         
     | 
| 1400 | 
         
            +
                        start_positions = start_positions.clamp(0, ignored_index)
         
     | 
| 1401 | 
         
            +
                        end_positions = end_positions.clamp(0, ignored_index)
         
     | 
| 1402 | 
         
            +
             
     | 
| 1403 | 
         
            +
                        loss_fct = nn.CrossEntropyLoss(ignore_index=ignored_index)
         
     | 
| 1404 | 
         
            +
                        start_loss = loss_fct(start_logits, start_positions)
         
     | 
| 1405 | 
         
            +
                        end_loss = loss_fct(end_logits, end_positions)
         
     | 
| 1406 | 
         
            +
                        total_loss = (start_loss + end_loss) / 2
         
     | 
| 1407 | 
         
            +
             
     | 
| 1408 | 
         
            +
                    if not return_dict:
         
     | 
| 1409 | 
         
            +
                        output = (start_logits, end_logits) + outputs[2:]
         
     | 
| 1410 | 
         
            +
                        return ((total_loss,) + output) if total_loss is not None else output
         
     | 
| 1411 | 
         
            +
             
     | 
| 1412 | 
         
            +
                    return QuestionAnsweringModelOutput(
         
     | 
| 1413 | 
         
            +
                        loss=total_loss,
         
     | 
| 1414 | 
         
            +
                        start_logits=start_logits,
         
     | 
| 1415 | 
         
            +
                        end_logits=end_logits,
         
     | 
| 1416 | 
         
            +
                        hidden_states=outputs.hidden_states,
         
     | 
| 1417 | 
         
            +
                        attentions=outputs.attentions,
         
     | 
| 1418 | 
         
            +
                    )
         
     |