Update README.md
Browse files
README.md
CHANGED
|
@@ -9,26 +9,19 @@ pipeline_tag: text-generation
|
|
| 9 |
base_model: Qwen/Qwen1.5-7B-Chat
|
| 10 |
# (Assuming Qwen1.5-7B-Chat is the closest equivalent, as qwen3-8b is not a standard HF model name. Please adjust if a more precise base_model identifier is available)
|
| 11 |
---
|
| 12 |
-
|
| 13 |
-
# RewardAnything: Generalizable Principle-Following Reward Models (8B-v1)
|
| 14 |
-
|
| 15 |
<div align="center">
|
| 16 |
<picture>
|
| 17 |
-
<source media="(prefers-color-scheme: dark)" srcset="https://raw.githubusercontent.com/
|
| 18 |
-
<source media="(prefers-color-scheme: light)" srcset="https://raw.githubusercontent.com/
|
| 19 |
-
<img alt="RewardAnything" src="https://raw.githubusercontent.com/
|
| 20 |
</picture>
|
| 21 |
-
<br/>
|
| 22 |
<p>
|
| 23 |
<a href="https://zhuohaoyu.github.io/RewardAnything"><img alt="Website" src="https://img.shields.io/badge/π_Project-Website-A593C2?style=flat-square&labelColor=8A7AA8"></a>
|
| 24 |
-
<a href="https://huggingface.co/
|
| 25 |
<a href="https://arxiv.org/abs/XXXX.XXXXX"><img alt="Paper" src="https://img.shields.io/badge/π_arXiv-Paper-C7969C?style=flat-square&labelColor=A8798A"></a>
|
| 26 |
<a href="https://pypi.org/project/rewardanything/"><img alt="PyPI" src="https://img.shields.io/pypi/v/rewardanything.svg?style=flat-square&color=7B9BB3&labelColor=5A7A94"></a>
|
| 27 |
</p>
|
| 28 |
-
<
|
| 29 |
-
|
| 30 |
-
# RewardAnything: Generalizable Principle-Following Reward Models
|
| 31 |
-
|
| 32 |
<a>Zhuohao Yu<sup>1,Β§</sup></a> 
|
| 33 |
<a>Jiali Zeng<sup>2</sup></a> 
|
| 34 |
<a>Weizheng Gu<sup>1</sup></a> 
|
|
@@ -40,7 +33,6 @@ base_model: Qwen/Qwen1.5-7B-Chat
|
|
| 40 |
<a>Shikun Zhang<sup>1</sup></a> 
|
| 41 |
<a>Wei Ye<sup>1,β </sup></a>
|
| 42 |
<div>
|
| 43 |
-
<br/>
|
| 44 |
<p>
|
| 45 |
<sup>1</sup>Peking University 
|
| 46 |
<sup>2</sup>WeChat AI 
|
|
@@ -87,7 +79,7 @@ import rewardanything
|
|
| 87 |
|
| 88 |
# Load model locally (similar to HuggingFace)
|
| 89 |
reward_model = rewardanything.from_pretrained(
|
| 90 |
-
"
|
| 91 |
device="cuda", # Device placement
|
| 92 |
torch_dtype="auto" # Automatic dtype selection
|
| 93 |
)
|
|
@@ -131,7 +123,7 @@ First, install and start a vLLM server. See the [vLLM quickstart guide](https://
|
|
| 131 |
pip install vllm
|
| 132 |
|
| 133 |
# Start vLLM server with RewardAnything model
|
| 134 |
-
vllm serve
|
| 135 |
--host 0.0.0.0 \
|
| 136 |
--port 8000 \
|
| 137 |
--max-model-len 8192 \
|
|
@@ -145,7 +137,7 @@ Create a config file `config.json`:
|
|
| 145 |
```json
|
| 146 |
{
|
| 147 |
"api_key": ["dummy-key-for-vllm"],
|
| 148 |
-
"api_model": "
|
| 149 |
"api_base": ["http://localhost:8000/v1"],
|
| 150 |
"api_timeout": 120.0,
|
| 151 |
"generation_config": {
|
|
@@ -205,11 +197,11 @@ from rewardanything.processing import prepare_chat_messages, parse_rewardanythin
|
|
| 205 |
|
| 206 |
# Load model and tokenizer directly
|
| 207 |
model = AutoModelForCausalLM.from_pretrained(
|
| 208 |
-
"
|
| 209 |
torch_dtype="auto",
|
| 210 |
device_map="auto"
|
| 211 |
)
|
| 212 |
-
tokenizer = AutoTokenizer.from_pretrained("
|
| 213 |
|
| 214 |
# Prepare evaluation data
|
| 215 |
principle = "Judge responses based on helpfulness and accuracy"
|
|
|
|
| 9 |
base_model: Qwen/Qwen1.5-7B-Chat
|
| 10 |
# (Assuming Qwen1.5-7B-Chat is the closest equivalent, as qwen3-8b is not a standard HF model name. Please adjust if a more precise base_model identifier is available)
|
| 11 |
---
|
|
|
|
|
|
|
|
|
|
| 12 |
<div align="center">
|
| 13 |
<picture>
|
| 14 |
+
<source media="(prefers-color-scheme: dark)" srcset="https://raw.githubusercontent.com/zhuohaoyu/RewardAnything/main/assets/rewardanything-logo-horizontal-dark-mode.png">
|
| 15 |
+
<source media="(prefers-color-scheme: light)" srcset="https://raw.githubusercontent.com/zhuohaoyu/RewardAnything/main/assets/rewardanything-logo-horizontal.png">
|
| 16 |
+
<img alt="RewardAnything" src="https://raw.githubusercontent.com/zhuohaoyu/RewardAnything/main/assets/rewardanything-logo-horizontal.png" width="400">
|
| 17 |
</picture>
|
|
|
|
| 18 |
<p>
|
| 19 |
<a href="https://zhuohaoyu.github.io/RewardAnything"><img alt="Website" src="https://img.shields.io/badge/π_Project-Website-A593C2?style=flat-square&labelColor=8A7AA8"></a>
|
| 20 |
+
<a href="https://huggingface.co/WisdomShell/RewardAnything-8B-v1"><img alt="Model Weights" src="https://img.shields.io/badge/π€_HuggingFace-Model_Weights-D4A574?style=flat-square&labelColor=B8956A"></a>
|
| 21 |
<a href="https://arxiv.org/abs/XXXX.XXXXX"><img alt="Paper" src="https://img.shields.io/badge/π_arXiv-Paper-C7969C?style=flat-square&labelColor=A8798A"></a>
|
| 22 |
<a href="https://pypi.org/project/rewardanything/"><img alt="PyPI" src="https://img.shields.io/pypi/v/rewardanything.svg?style=flat-square&color=7B9BB3&labelColor=5A7A94"></a>
|
| 23 |
</p>
|
| 24 |
+
<h1> RewardAnything: Generalizable Principle-Following Reward Models </h1>
|
|
|
|
|
|
|
|
|
|
| 25 |
<a>Zhuohao Yu<sup>1,Β§</sup></a> 
|
| 26 |
<a>Jiali Zeng<sup>2</sup></a> 
|
| 27 |
<a>Weizheng Gu<sup>1</sup></a> 
|
|
|
|
| 33 |
<a>Shikun Zhang<sup>1</sup></a> 
|
| 34 |
<a>Wei Ye<sup>1,β </sup></a>
|
| 35 |
<div>
|
|
|
|
| 36 |
<p>
|
| 37 |
<sup>1</sup>Peking University 
|
| 38 |
<sup>2</sup>WeChat AI 
|
|
|
|
| 79 |
|
| 80 |
# Load model locally (similar to HuggingFace)
|
| 81 |
reward_model = rewardanything.from_pretrained(
|
| 82 |
+
"WisdomShell/RewardAnything-8B-v1", # Model path/name
|
| 83 |
device="cuda", # Device placement
|
| 84 |
torch_dtype="auto" # Automatic dtype selection
|
| 85 |
)
|
|
|
|
| 123 |
pip install vllm
|
| 124 |
|
| 125 |
# Start vLLM server with RewardAnything model
|
| 126 |
+
vllm serve WisdomShell/RewardAnything-8B-v1 \
|
| 127 |
--host 0.0.0.0 \
|
| 128 |
--port 8000 \
|
| 129 |
--max-model-len 8192 \
|
|
|
|
| 137 |
```json
|
| 138 |
{
|
| 139 |
"api_key": ["dummy-key-for-vllm"],
|
| 140 |
+
"api_model": "WisdomShell/RewardAnything-8B-v1",
|
| 141 |
"api_base": ["http://localhost:8000/v1"],
|
| 142 |
"api_timeout": 120.0,
|
| 143 |
"generation_config": {
|
|
|
|
| 197 |
|
| 198 |
# Load model and tokenizer directly
|
| 199 |
model = AutoModelForCausalLM.from_pretrained(
|
| 200 |
+
"WisdomShell/RewardAnything-8B-v1",
|
| 201 |
torch_dtype="auto",
|
| 202 |
device_map="auto"
|
| 203 |
)
|
| 204 |
+
tokenizer = AutoTokenizer.from_pretrained("WisdomShell/RewardAnything-8B-v1")
|
| 205 |
|
| 206 |
# Prepare evaluation data
|
| 207 |
principle = "Judge responses based on helpfulness and accuracy"
|