nielsr HF Staff commited on
Commit
baff4c9
·
verified ·
1 Parent(s): cc074fc

Improve model card: add abstract, project page, update paper link, refine tags

Browse files

Hello team,

This PR addresses several improvements to the model card for `Llama3.1-8B-Middo-Alpaca`:

* **Updated Paper Link**: The link to the paper has been updated to point to the Hugging Face Papers page (`https://huggingface.co/papers/2508.21589`) for better integration within the Hub.
* **Added Project Page**: A dedicated link to the [Middo Hugging Face Collection](https://huggingface.co/collections/Word2Li) has been added to provide users with a central location for related artifacts.
* **Included Abstract**: The paper's abstract has been added to the model card, offering a comprehensive overview of the model's approach and results.
* **Refined Tags**: Added `llm-finetuning` and `data-optimization` tags to improve discoverability and accurately reflect the model's core contributions. The less descriptive `full` tag has been removed.
* **Removed File Information**: The "File information" section, which is internal context, has been removed from the public-facing model card.

These changes enhance the model card's informativeness and adherence to best practices for documentation on the Hugging Face Hub.

Files changed (1) hide show
  1. README.md +94 -89
README.md CHANGED
@@ -1,106 +1,111 @@
1
  ---
2
- library_name: transformers
3
- license: llama3.1
4
  base_model: meta-llama/Llama-3.1-8B
5
- language: en
6
  datasets:
7
  - Word2Li/MiddOptimized
 
 
 
 
 
 
8
  tags:
9
  - llama-factory
10
- - full
11
- pipeline_tag: text-generation
12
  model-index:
13
  - name: Llama3.1-8B-Middo-Alpaca
14
  results:
15
- - task:
16
- type: text-generation
17
- dataset:
18
- name: MMLU
19
- type: MMLU
20
- metrics:
21
- - name: weighted accuracy
22
- type: weighted accuracy
23
- value: 51.32
24
- verified: true
25
- - task:
26
- type: text-generation
27
- dataset:
28
- name: IFEval
29
- type: IFEval
30
- metrics:
31
- - name: overall accuracy
32
- type: overall accuracy
33
- value: 43.20
34
- verified: true
35
- - task:
36
- type: text-generation
37
- dataset:
38
- name: GSM8K
39
- type: GSM8K
40
- metrics:
41
- - name: accuracy
42
- type: accuracy
43
- value: 51.18
44
- verified: true
45
- - task:
46
- type: text-generation
47
- dataset:
48
- name: MATH
49
- type: MATH
50
- metrics:
51
- - name: accuracy
52
- type: accuracy
53
- value: 12.92
54
- verified: true
55
- - task:
56
- type: text-generation
57
- dataset:
58
- name: HumanEval
59
- type: HumanEval
60
- metrics:
61
- - name: humaneval_pass@1
62
- type: humaneval_pass@1
63
- value: 39.63
64
- verified: true
65
- - task:
66
- type: text-generation
67
- dataset:
68
- name: MBPP
69
- type: MBPP
70
- metrics:
71
- - name: score
72
- type: score
73
- value: 41.80
74
- verified: true
75
- - task:
76
- type: text-generation
77
- dataset:
78
- name: Hellaswag
79
- type: Hellaswag
80
- metrics:
81
- - name: accuracy
82
- type: accuracy
83
- value: 58.78
84
- verified: true
85
- - task:
86
- type: text-generation
87
- dataset:
88
- name: GPQA
89
- type: GPQA
90
- metrics:
91
- - name: accuracy
92
- type: accuracy
93
- value: 16.67
94
- verified: true
95
- metrics:
96
- - accuracy
97
  ---
98
 
99
  # Llama3.1-8B-Middo-Alpaca
100
 
101
- Paper: [Middo: Model-Informed Dynamic Data Optimization for Enhanced LLM Fine-Tuning via Closed-Loop Learning](https://arxiv.org/abs/2508.21589)
102
-
103
  Code: https://github.com/Word2VecT/Middo
 
 
 
 
 
104
 
105
  ## Model description
106
 
 
1
  ---
 
 
2
  base_model: meta-llama/Llama-3.1-8B
 
3
  datasets:
4
  - Word2Li/MiddOptimized
5
+ language: en
6
+ library_name: transformers
7
+ license: llama3.1
8
+ metrics:
9
+ - accuracy
10
+ pipeline_tag: text-generation
11
  tags:
12
  - llama-factory
13
+ - llm-finetuning
14
+ - data-optimization
15
  model-index:
16
  - name: Llama3.1-8B-Middo-Alpaca
17
  results:
18
+ - task:
19
+ type: text-generation
20
+ dataset:
21
+ name: MMLU
22
+ type: MMLU
23
+ metrics:
24
+ - type: weighted accuracy
25
+ value: 51.32
26
+ name: weighted accuracy
27
+ verified: true
28
+ - task:
29
+ type: text-generation
30
+ dataset:
31
+ name: IFEval
32
+ type: IFEval
33
+ metrics:
34
+ - type: overall accuracy
35
+ value: 43.2
36
+ name: overall accuracy
37
+ verified: true
38
+ - task:
39
+ type: text-generation
40
+ dataset:
41
+ name: GSM8K
42
+ type: GSM8K
43
+ metrics:
44
+ - type: accuracy
45
+ value: 51.18
46
+ name: accuracy
47
+ verified: true
48
+ - task:
49
+ type: text-generation
50
+ dataset:
51
+ name: MATH
52
+ type: MATH
53
+ metrics:
54
+ - type: accuracy
55
+ value: 12.92
56
+ name: accuracy
57
+ verified: true
58
+ - task:
59
+ type: text-generation
60
+ dataset:
61
+ name: HumanEval
62
+ type: HumanEval
63
+ metrics:
64
+ - type: humaneval_pass@1
65
+ value: 39.63
66
+ name: humaneval_pass@1
67
+ verified: true
68
+ - task:
69
+ type: text-generation
70
+ dataset:
71
+ name: MBPP
72
+ type: MBPP
73
+ metrics:
74
+ - type: score
75
+ value: 41.8
76
+ name: score
77
+ verified: true
78
+ - task:
79
+ type: text-generation
80
+ dataset:
81
+ name: Hellaswag
82
+ type: Hellaswag
83
+ metrics:
84
+ - type: accuracy
85
+ value: 58.78
86
+ name: accuracy
87
+ verified: true
88
+ - task:
89
+ type: text-generation
90
+ dataset:
91
+ name: GPQA
92
+ type: GPQA
93
+ metrics:
94
+ - type: accuracy
95
+ value: 16.67
96
+ name: accuracy
97
+ verified: true
 
 
98
  ---
99
 
100
  # Llama3.1-8B-Middo-Alpaca
101
 
102
+ Paper: [Middo: Model-Informed Dynamic Data Optimization for Enhanced LLM Fine-Tuning via Closed-Loop Learning](https://huggingface.co/papers/2508.21589)
 
103
  Code: https://github.com/Word2VecT/Middo
104
+ Project page: [Middo Hugging Face Collection](https://huggingface.co/collections/Word2Li)
105
+
106
+ ## Abstract
107
+
108
+ Supervised Fine-Tuning (SFT) Large Language Models (LLM) fundamentally rely on high-quality training data. While data selection and data synthesis are two common strategies to improve data quality, existing approaches often face limitations in static dataset curation that fail to adapt to evolving model capabilities. In this paper, we introduce Middo, a self-evolving Model-informed dynamic data optimization framework that uses model-aware data selection and context-preserving data refinement. Unlike conventional one-off filtering/synthesis methods, our framework establishes a closed-loop optimization system: (1) A self-referential diagnostic module proactively identifies suboptimal samples through tri-axial model signals - loss patterns (complexity), embedding cluster dynamics (diversity), and self-alignment scores (quality); (2) An adaptive optimization engine then transforms suboptimal samples into pedagogically valuable training points while preserving semantic integrity; (3) This optimization process continuously evolves with model capability through dynamic learning principles. Experiments on multiple benchmarks demonstrate that our Middo consistently enhances the quality of seed data and boosts LLM's performance with improving accuracy by 7.15% on average while maintaining the original dataset scale. This work establishes a new paradigm for sustainable LLM training through dynamic human-AI co-evolution of data and models. Our datasets, models, and code are coming soon. Our datasets, models, and code are publicly available at this https URL
109
 
110
  ## Model description
111