--- license: apache-2.0 language: - en - code library_name: transformers tags: - causal-lm - moe - mixture-of-experts - qwen - distillation - svd - lora-merged - code-generation - mlx - mlx-my-repo base_model: BasedBase/Qwen3-Coder-30B-A3B-Instruct-480B-Distill-V2-Fp32 --- # YOYO-AI/Qwen3-Coder-30B-A3B-Instruct-480B-Distill-V2-Fp32-mlx-fp16 The Model [YOYO-AI/Qwen3-Coder-30B-A3B-Instruct-480B-Distill-V2-Fp32-mlx-fp16](https://huggingface.co/YOYO-AI/Qwen3-Coder-30B-A3B-Instruct-480B-Distill-V2-Fp32-mlx-fp16) was converted to MLX format from [BasedBase/Qwen3-Coder-30B-A3B-Instruct-480B-Distill-V2-Fp32](https://huggingface.co/BasedBase/Qwen3-Coder-30B-A3B-Instruct-480B-Distill-V2-Fp32) using mlx-lm version **0.26.4**. ## Use with mlx ```bash pip install mlx-lm ``` ```python from mlx_lm import load, generate model, tokenizer = load("YOYO-AI/Qwen3-Coder-30B-A3B-Instruct-480B-Distill-V2-Fp32-mlx-fp16") prompt="hello" if hasattr(tokenizer, "apply_chat_template") and tokenizer.chat_template is not None: messages = [{"role": "user", "content": prompt}] prompt = tokenizer.apply_chat_template( messages, tokenize=False, add_generation_prompt=True ) response = generate(model, tokenizer, prompt=prompt, verbose=True) ```