Delete processing_xvl.py
Browse files- processing_xvl.py +0 -244
processing_xvl.py
DELETED
|
@@ -1,244 +0,0 @@
|
|
| 1 |
-
# Licensed under the Apache License, Version 2.0 (the "License");
|
| 2 |
-
# you may not use this file except in compliance with the License.
|
| 3 |
-
# You may obtain a copy of the License at
|
| 4 |
-
#
|
| 5 |
-
# http://www.apache.org/licenses/LICENSE-2.0
|
| 6 |
-
#
|
| 7 |
-
# Unless required by applicable law or agreed to in writing, software
|
| 8 |
-
# distributed under the License is distributed on an "AS IS" BASIS,
|
| 9 |
-
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
| 10 |
-
# See the License for the specific language governing permissions and
|
| 11 |
-
# limitations under the License.
|
| 12 |
-
|
| 13 |
-
|
| 14 |
-
import math
|
| 15 |
-
from collections.abc import Iterable
|
| 16 |
-
from typing import Union
|
| 17 |
-
|
| 18 |
-
import numpy as np
|
| 19 |
-
|
| 20 |
-
from transformers.feature_extraction_utils import BatchFeature
|
| 21 |
-
from transformers.image_processing_utils import select_best_resolution
|
| 22 |
-
from transformers.image_utils import ImageInput, get_image_size, to_numpy_array
|
| 23 |
-
from transformers.processing_utils import ProcessingKwargs, ProcessorMixin, Unpack
|
| 24 |
-
from transformers.tokenization_utils_base import PreTokenizedInput, TextInput
|
| 25 |
-
from transformers.utils import logging
|
| 26 |
-
|
| 27 |
-
|
| 28 |
-
logger = logging.get_logger(__name__)
|
| 29 |
-
|
| 30 |
-
|
| 31 |
-
class RProcessorKwargs(ProcessingKwargs, total=False):
|
| 32 |
-
# see processing_utils.ProcessingKwargs documentation for usage.
|
| 33 |
-
_defaults = {
|
| 34 |
-
"text_kwargs": {
|
| 35 |
-
"padding": False,
|
| 36 |
-
|
| 37 |
-
},
|
| 38 |
-
"image_kwargs": {},
|
| 39 |
-
"videos_kwargs": {},
|
| 40 |
-
}
|
| 41 |
-
|
| 42 |
-
|
| 43 |
-
class RProcessor(ProcessorMixin):
|
| 44 |
-
attributes = ["image_processor", "tokenizer", "video_processor"]
|
| 45 |
-
valid_kwargs = [
|
| 46 |
-
"chat_template",
|
| 47 |
-
"num_image_tokens",
|
| 48 |
-
"image_processor_type",
|
| 49 |
-
"vision_feature_select_strategy",
|
| 50 |
-
"image_token",
|
| 51 |
-
"video_token",
|
| 52 |
-
"vision_aspect_ratio",
|
| 53 |
-
]
|
| 54 |
-
image_processor_class = "AutoImageProcessor"
|
| 55 |
-
tokenizer_class = "AutoTokenizer"
|
| 56 |
-
video_processor_class = "AutoVideoProcessor"
|
| 57 |
-
|
| 58 |
-
def __init__(
|
| 59 |
-
self,
|
| 60 |
-
image_processor=None,
|
| 61 |
-
tokenizer=None,
|
| 62 |
-
video_processor=None,
|
| 63 |
-
num_image_tokens=None,
|
| 64 |
-
vision_feature_select_strategy=None,
|
| 65 |
-
chat_template=None,
|
| 66 |
-
image_token="<image>",
|
| 67 |
-
video_token="<video>",
|
| 68 |
-
vision_aspect_ratio= "anyres",
|
| 69 |
-
**kwargs,
|
| 70 |
-
):
|
| 71 |
-
self.num_image_tokens = num_image_tokens
|
| 72 |
-
self.vision_feature_select_strategy = vision_feature_select_strategy
|
| 73 |
-
self.image_token = tokenizer.image_token if hasattr(tokenizer, "image_token") else image_token
|
| 74 |
-
self.video_token = tokenizer.video_token if hasattr(tokenizer, "video_token") else video_token
|
| 75 |
-
self.image_token_id = (
|
| 76 |
-
tokenizer.image_token_id
|
| 77 |
-
if getattr(tokenizer, "image_token_id", None)
|
| 78 |
-
else tokenizer.convert_tokens_to_ids(self.image_token)
|
| 79 |
-
)
|
| 80 |
-
self.video_token_id = (
|
| 81 |
-
tokenizer.video_token_id
|
| 82 |
-
if getattr(tokenizer, "video_token_id", None)
|
| 83 |
-
else tokenizer.convert_tokens_to_ids(self.video_token)
|
| 84 |
-
)
|
| 85 |
-
self.vision_aspect_ratio = vision_aspect_ratio
|
| 86 |
-
super().__init__(image_processor, tokenizer, video_processor, chat_template=chat_template)
|
| 87 |
-
|
| 88 |
-
def __call__(
|
| 89 |
-
self,
|
| 90 |
-
images: ImageInput = None,
|
| 91 |
-
text: Union[TextInput, PreTokenizedInput, list[TextInput], list[PreTokenizedInput]] = None,
|
| 92 |
-
audio=None,
|
| 93 |
-
videos=None,
|
| 94 |
-
**kwargs: Unpack[RProcessorKwargs],
|
| 95 |
-
) -> BatchFeature:
|
| 96 |
-
output_kwargs = self._merge_kwargs(
|
| 97 |
-
RProcessorKwargs,
|
| 98 |
-
tokenizer_init_kwargs=self.tokenizer.init_kwargs,
|
| 99 |
-
**kwargs,
|
| 100 |
-
)
|
| 101 |
-
|
| 102 |
-
if isinstance(text, str):
|
| 103 |
-
text = [text]
|
| 104 |
-
elif not isinstance(text, list) and not isinstance(text[0], str):
|
| 105 |
-
raise ValueError("Invalid input text. Please provide a string, or a list of strings")
|
| 106 |
-
|
| 107 |
-
image_inputs = video_inputs = {}
|
| 108 |
-
|
| 109 |
-
if images is not None:
|
| 110 |
-
image_inputs = self.image_processor(images, **output_kwargs["images_kwargs"])
|
| 111 |
-
|
| 112 |
-
batch_num_images = iter(image_inputs["batch_num_images"])
|
| 113 |
-
image_sizes = iter(image_inputs["image_sizes"])
|
| 114 |
-
height, width = get_image_size(
|
| 115 |
-
to_numpy_array(image_inputs["pixel_values"][0][0]),
|
| 116 |
-
channel_dim=output_kwargs["images_kwargs"].get("data_format"),
|
| 117 |
-
)
|
| 118 |
-
text, num_image_tokens = self._expand_image_tokens(
|
| 119 |
-
text, image_sizes, height, width, self.image_token, batch_num_images
|
| 120 |
-
)
|
| 121 |
-
|
| 122 |
-
if videos is not None:
|
| 123 |
-
video_inputs = self.video_processor(videos, **output_kwargs["videos_kwargs"])
|
| 124 |
-
|
| 125 |
-
one_video = video_inputs.get("pixel_values_videos")[0]
|
| 126 |
-
if isinstance(video_inputs.get("pixel_values_videos")[0], (list, tuple)):
|
| 127 |
-
one_video = np.array(one_video)
|
| 128 |
-
else:
|
| 129 |
-
one_video = to_numpy_array(one_video)
|
| 130 |
-
height, width = get_image_size(one_video[0], channel_dim=output_kwargs["images_kwargs"].get("data_format"))
|
| 131 |
-
num_frames = one_video.shape[0] # frame dim is always after batch dim
|
| 132 |
-
patches_height_width = int(math.sqrt(self.num_image_tokens))
|
| 133 |
-
pooled_height_width = math.ceil(patches_height_width / 2)
|
| 134 |
-
num_video_tokens = (num_frames * pooled_height_width * pooled_height_width) + 1 # +1 for newline token
|
| 135 |
-
text = [sample.replace(self.video_token, self.video_token * num_video_tokens) for sample in text]
|
| 136 |
-
|
| 137 |
-
return_tensors = output_kwargs["text_kwargs"].pop("return_tensors", None)
|
| 138 |
-
|
| 139 |
-
text_inputs = self.tokenizer(text, **output_kwargs["text_kwargs"])
|
| 140 |
-
self._check_special_mm_tokens(text, text_inputs, modalities=["image"])
|
| 141 |
-
|
| 142 |
-
|
| 143 |
-
return BatchFeature(data={**text_inputs, **image_inputs, **video_inputs}, tensor_type=return_tensors)
|
| 144 |
-
|
| 145 |
-
def _expand_image_tokens(
|
| 146 |
-
self,
|
| 147 |
-
text: list[TextInput],
|
| 148 |
-
image_sizes: Iterable[Union[list[int], int]],
|
| 149 |
-
height: int,
|
| 150 |
-
width: int,
|
| 151 |
-
special_token: str,
|
| 152 |
-
batch_num_images: Iterable[int],
|
| 153 |
-
):
|
| 154 |
-
|
| 155 |
-
prompt_strings = []
|
| 156 |
-
max_num_vision_tokens = 0
|
| 157 |
-
for sample in text:
|
| 158 |
-
if special_token in sample:
|
| 159 |
-
is_multi_image = next(batch_num_images) != 1
|
| 160 |
-
else:
|
| 161 |
-
is_multi_image = False
|
| 162 |
-
while special_token in sample:
|
| 163 |
-
if is_multi_image:
|
| 164 |
-
num_image_tokens = self.num_image_tokens + 1 # one for image_newline
|
| 165 |
-
else:
|
| 166 |
-
original_size = next(image_sizes)
|
| 167 |
-
if not isinstance(original_size, (list, tuple)):
|
| 168 |
-
# cast to list to avoid numerical precision errors when calculating unpadding
|
| 169 |
-
original_size = original_size.tolist()
|
| 170 |
-
orig_height, orig_width = original_size
|
| 171 |
-
num_image_tokens = self._get_number_of_features(orig_height, orig_width, height, width)
|
| 172 |
-
max_num_vision_tokens = max(max_num_vision_tokens, num_image_tokens)
|
| 173 |
-
if self.vision_feature_select_strategy == "default":
|
| 174 |
-
num_image_tokens -= 1
|
| 175 |
-
sample = sample.replace(special_token, "<placeholder>" * num_image_tokens, 1)
|
| 176 |
-
prompt_strings.append(sample)
|
| 177 |
-
text = [sample.replace("<placeholder>", special_token) for sample in prompt_strings]
|
| 178 |
-
return text, max_num_vision_tokens
|
| 179 |
-
|
| 180 |
-
def _get_number_of_features(self, orig_height: int, orig_width: int, height: int, width: int) -> int:
|
| 181 |
-
image_grid_pinpoints = self.image_processor.image_grid_pinpoints
|
| 182 |
-
|
| 183 |
-
height_best_resolution, width_best_resolution = select_best_resolution(
|
| 184 |
-
[orig_height, orig_width], image_grid_pinpoints
|
| 185 |
-
)
|
| 186 |
-
scale_height, scale_width = height_best_resolution // height, width_best_resolution // width
|
| 187 |
-
|
| 188 |
-
patches_height = patches_width = int(math.sqrt(self.num_image_tokens))
|
| 189 |
-
unpadded_features, newline_features = self._get_unpadded_features(
|
| 190 |
-
orig_height, orig_width, patches_height, patches_width, scale_height, scale_width
|
| 191 |
-
)
|
| 192 |
-
|
| 193 |
-
# The base patch covers the entire image (no CLS for SigLIP)
|
| 194 |
-
base_features = self.num_image_tokens
|
| 195 |
-
num_image_tokens = unpadded_features + newline_features + base_features
|
| 196 |
-
return num_image_tokens
|
| 197 |
-
|
| 198 |
-
# Adapted from transformers.models.llava_next.processing_llava_next.LlavaNextProcessor._get_unpadded_features
|
| 199 |
-
def _get_unpadded_features(self, height, width, patches_height, patches_width, scale_height, scale_width):
|
| 200 |
-
current_height = patches_height * scale_height
|
| 201 |
-
current_width = patches_width * scale_width
|
| 202 |
-
|
| 203 |
-
original_aspect_ratio = width / height
|
| 204 |
-
current_aspect_ratio = current_width / current_height
|
| 205 |
-
if original_aspect_ratio > current_aspect_ratio:
|
| 206 |
-
new_height = int(round(height * (current_width / width), 7))
|
| 207 |
-
padding = (current_height - new_height) // 2
|
| 208 |
-
current_height -= padding * 2
|
| 209 |
-
else:
|
| 210 |
-
new_width = int(round(width * (current_height / height), 7))
|
| 211 |
-
padding = (current_width - new_width) // 2
|
| 212 |
-
current_width -= padding * 2
|
| 213 |
-
|
| 214 |
-
unpadded_features = current_height * current_width
|
| 215 |
-
newline_features = current_height
|
| 216 |
-
|
| 217 |
-
return (unpadded_features, newline_features)
|
| 218 |
-
|
| 219 |
-
|
| 220 |
-
# Copied from transformers.models.clip.processing_clip.CLIPProcessor.batch_decode with CLIP->Llama
|
| 221 |
-
def batch_decode(self, *args, **kwargs):
|
| 222 |
-
"""
|
| 223 |
-
This method forwards all its arguments to LlamaTokenizerFast's [`~PreTrainedTokenizer.batch_decode`]. Please
|
| 224 |
-
refer to the docstring of this method for more information.
|
| 225 |
-
"""
|
| 226 |
-
return self.tokenizer.batch_decode(*args, **kwargs)
|
| 227 |
-
|
| 228 |
-
# Copied from transformers.models.clip.processing_clip.CLIPProcessor.decode with CLIP->Llama
|
| 229 |
-
def decode(self, *args, **kwargs):
|
| 230 |
-
"""
|
| 231 |
-
This method forwards all its arguments to LlamaTokenizerFast's [`~PreTrainedTokenizer.decode`]. Please refer to
|
| 232 |
-
the docstring of this method for more information.
|
| 233 |
-
"""
|
| 234 |
-
return self.tokenizer.decode(*args, **kwargs)
|
| 235 |
-
|
| 236 |
-
@property
|
| 237 |
-
# Copied from transformers.models.clip.processing_clip.CLIPProcessor.model_input_names
|
| 238 |
-
def model_input_names(self):
|
| 239 |
-
tokenizer_input_names = self.tokenizer.model_input_names
|
| 240 |
-
image_processor_input_names = self.image_processor.model_input_names
|
| 241 |
-
return list(dict.fromkeys(tokenizer_input_names + image_processor_input_names))
|
| 242 |
-
|
| 243 |
-
|
| 244 |
-
__all__ = ["RProcessor"]
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|