Upload README.md with huggingface_hub
Browse files
README.md
CHANGED
|
@@ -6,9 +6,14 @@ base_model:
|
|
| 6 |
- Qwen/Qwen3-4B
|
| 7 |
pipeline_tag: visual-question-answering
|
| 8 |
---
|
| 9 |
-
# R-4B
|
| 10 |
|
| 11 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 12 |
|
| 13 |
<div align="center">
|
| 14 |
<img src="asset/R-4B.png" width="100%" alt="R-4B Performance">
|
|
@@ -28,12 +33,6 @@ R-4B achieves state-of-the-art performance among models of its scale. In evaluat
|
|
| 28 |
|
| 29 |
Below, we provide simple examples to show how to use R-4B with π€ Transformers.
|
| 30 |
|
| 31 |
-
<!-- The code of R-4B has been in the latest Hugging face transformers and we advise you to build from source with command: οΌComing Soon!οΌ
|
| 32 |
-
|
| 33 |
-
```
|
| 34 |
-
pip install git+https://github.com/huggingface/transformers accelerate
|
| 35 |
-
``` -->
|
| 36 |
-
|
| 37 |
### Using π€ Transformers to Chat
|
| 38 |
|
| 39 |
> [!NOTE]
|
|
@@ -104,6 +103,183 @@ print("Auto Thinking Output:", output_text_auto_thinking)
|
|
| 104 |
|
| 105 |
</details>
|
| 106 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 107 |
## π Experimental Results
|
| 108 |
|
| 109 |
<div align="center">
|
|
|
|
| 6 |
- Qwen/Qwen3-4B
|
| 7 |
pipeline_tag: visual-question-answering
|
| 8 |
---
|
|
|
|
| 9 |
|
| 10 |
+
# R-4B: Incentivizing General-Purpose Auto-Thinking Capibilities in MLLMs via Bi-Mode Integration
|
| 11 |
+
|
| 12 |
+
[[π Arxiv Paper (Coming soon)](https://huggingface.co/YannQi/R-4B)] [[π€ Hugging Face](https://huggingface.co/YannQi/R-4B)] [[π€οΈ ModelScope](https://huggingface.co/YannQi/R-4B)] [[π» Code](https://github.com/yannqi/R-4B)]
|
| 13 |
+
|
| 14 |
+
<div align="center">
|
| 15 |
+
<img src="asset/logo_R_4B.png" alt="logo" width="38" />
|
| 16 |
+
</div>
|
| 17 |
|
| 18 |
<div align="center">
|
| 19 |
<img src="asset/R-4B.png" width="100%" alt="R-4B Performance">
|
|
|
|
| 33 |
|
| 34 |
Below, we provide simple examples to show how to use R-4B with π€ Transformers.
|
| 35 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 36 |
### Using π€ Transformers to Chat
|
| 37 |
|
| 38 |
> [!NOTE]
|
|
|
|
| 103 |
|
| 104 |
</details>
|
| 105 |
|
| 106 |
+
### Using vLLM for fast R-4B deployment and inference.
|
| 107 |
+
|
| 108 |
+
- We recommend using vLLM for fast R-4B deployment and inference.
|
| 109 |
+
|
| 110 |
+
#### Install
|
| 111 |
+
|
| 112 |
+
The code of R-4B requires custom vllm. Please install from local source:
|
| 113 |
+
|
| 114 |
+
```bash
|
| 115 |
+
git clone https://github.com/yannqi/vllm.git
|
| 116 |
+
cd vllm
|
| 117 |
+
VLLM_USE_PRECOMPILED=1 uv pip install --editable .
|
| 118 |
+
```
|
| 119 |
+
|
| 120 |
+
##### Offline Inference
|
| 121 |
+
|
| 122 |
+
```python
|
| 123 |
+
import os
|
| 124 |
+
from transformers import AutoProcessor
|
| 125 |
+
from vllm import LLM, SamplingParams
|
| 126 |
+
from PIL import Image
|
| 127 |
+
import requests
|
| 128 |
+
from io import BytesIO
|
| 129 |
+
|
| 130 |
+
|
| 131 |
+
def load_image(image_path):
|
| 132 |
+
"""Load image from URL or local path"""
|
| 133 |
+
if image_path.startswith(('http://', 'https://')):
|
| 134 |
+
response = requests.get(image_path, timeout=10)
|
| 135 |
+
response.raise_for_status()
|
| 136 |
+
image = Image.open(BytesIO(response.content))
|
| 137 |
+
else:
|
| 138 |
+
image = Image.open(image_path)
|
| 139 |
+
|
| 140 |
+
# Convert RGBA to RGB if needed
|
| 141 |
+
if image.mode == "RGBA":
|
| 142 |
+
background = Image.new('RGB', image.size, (255, 255, 255))
|
| 143 |
+
background.paste(image, mask=image.split()[-1])
|
| 144 |
+
image = background
|
| 145 |
+
|
| 146 |
+
return image.convert("RGB")
|
| 147 |
+
|
| 148 |
+
|
| 149 |
+
def main():
|
| 150 |
+
|
| 151 |
+
model_path = "YannQi/R-4B/"
|
| 152 |
+
|
| 153 |
+
llm = LLM(
|
| 154 |
+
model=model_path,
|
| 155 |
+
limit_mm_per_prompt={"image": 5},
|
| 156 |
+
trust_remote_code=True,
|
| 157 |
+
tensor_parallel_size=1,
|
| 158 |
+
gpu_memory_utilization=0.8,
|
| 159 |
+
)
|
| 160 |
+
|
| 161 |
+
sampling_params = SamplingParams(
|
| 162 |
+
temperature=0.8,
|
| 163 |
+
max_tokens=16384,
|
| 164 |
+
)
|
| 165 |
+
|
| 166 |
+
image_url = "http://images.cocodataset.org/val2017/000000039769.jpg"
|
| 167 |
+
image = load_image(image_url)
|
| 168 |
+
text = "Describe this image."
|
| 169 |
+
|
| 170 |
+
messages = [
|
| 171 |
+
{
|
| 172 |
+
"role": "user",
|
| 173 |
+
"content": [
|
| 174 |
+
{"type": "image", "image": image},
|
| 175 |
+
{"type": "text", "text": text},
|
| 176 |
+
],
|
| 177 |
+
},
|
| 178 |
+
]
|
| 179 |
+
|
| 180 |
+
processor = AutoProcessor.from_pretrained(model_path, trust_remote_code=True)
|
| 181 |
+
prompt = processor.apply_chat_template(
|
| 182 |
+
messages,
|
| 183 |
+
tokenize=False,
|
| 184 |
+
add_generation_prompt=True,
|
| 185 |
+
)
|
| 186 |
+
|
| 187 |
+
mm_data = {"image": image}
|
| 188 |
+
llm_inputs = {
|
| 189 |
+
"prompt": prompt,
|
| 190 |
+
"multi_modal_data": mm_data,
|
| 191 |
+
}
|
| 192 |
+
|
| 193 |
+
outputs = llm.generate([llm_inputs], sampling_params=sampling_params)
|
| 194 |
+
generated_text = outputs[0].outputs[0].text
|
| 195 |
+
|
| 196 |
+
print(generated_text)
|
| 197 |
+
|
| 198 |
+
if __name__ == '__main__':
|
| 199 |
+
main()
|
| 200 |
+
```
|
| 201 |
+
|
| 202 |
+
##### Online Serving
|
| 203 |
+
|
| 204 |
+
- Serve
|
| 205 |
+
|
| 206 |
+
```bash
|
| 207 |
+
vllm serve \
|
| 208 |
+
yannqi/R-4B \
|
| 209 |
+
--served-model-name rvl \
|
| 210 |
+
--tensor-parallel-size 8 \
|
| 211 |
+
--gpu-memory-utilization 0.8 \
|
| 212 |
+
--host 0.0.0.0 \
|
| 213 |
+
--port 8000 \
|
| 214 |
+
--trust-remote-code
|
| 215 |
+
```
|
| 216 |
+
|
| 217 |
+
- Openai Chat Completion Client
|
| 218 |
+
|
| 219 |
+
```python
|
| 220 |
+
import base64
|
| 221 |
+
from PIL import Image
|
| 222 |
+
from openai import OpenAI
|
| 223 |
+
|
| 224 |
+
|
| 225 |
+
# Set OpenAI's API key and API base to use vLLM's API server.
|
| 226 |
+
openai_api_key = "EMPTY"
|
| 227 |
+
openai_api_base = "http://localhost:8000/v1"
|
| 228 |
+
|
| 229 |
+
client = OpenAI(
|
| 230 |
+
api_key=openai_api_key,
|
| 231 |
+
base_url=openai_api_base,
|
| 232 |
+
)
|
| 233 |
+
|
| 234 |
+
# image url
|
| 235 |
+
image_messages = [
|
| 236 |
+
{
|
| 237 |
+
"role": "user",
|
| 238 |
+
"content": [
|
| 239 |
+
{
|
| 240 |
+
"type": "image_url",
|
| 241 |
+
"image_url": {
|
| 242 |
+
"url": "http://images.cocodataset.org/val2017/000000039769.jpg"
|
| 243 |
+
},
|
| 244 |
+
},
|
| 245 |
+
{"type": "text", "text": "Describe this image."},
|
| 246 |
+
],
|
| 247 |
+
},
|
| 248 |
+
]
|
| 249 |
+
|
| 250 |
+
chat_response = client.chat.completions.create(
|
| 251 |
+
model="rvl",
|
| 252 |
+
messages=image_messages,
|
| 253 |
+
)
|
| 254 |
+
print("Chat response:", chat_response)
|
| 255 |
+
|
| 256 |
+
# image base64-encoded
|
| 257 |
+
image_path = "/path/to/local/image.png"
|
| 258 |
+
with open(image_path, "rb") as f:
|
| 259 |
+
encoded_image = base64.b64encode(f.read())
|
| 260 |
+
encoded_image_text = encoded_image.decode("utf-8")
|
| 261 |
+
image_messages = [
|
| 262 |
+
{
|
| 263 |
+
"role": "user",
|
| 264 |
+
"content": [
|
| 265 |
+
{
|
| 266 |
+
"type": "image_url",
|
| 267 |
+
"image_url": {
|
| 268 |
+
"url": f"data:image;base64,{encoded_image_text}"
|
| 269 |
+
},
|
| 270 |
+
},
|
| 271 |
+
{"type": "text", "text": "Describe this image."},
|
| 272 |
+
],
|
| 273 |
+
},
|
| 274 |
+
]
|
| 275 |
+
|
| 276 |
+
chat_response = client.chat.completions.create(
|
| 277 |
+
model="rvl",
|
| 278 |
+
messages=image_messages,
|
| 279 |
+
)
|
| 280 |
+
print("Chat response:", chat_response)
|
| 281 |
+
```
|
| 282 |
+
|
| 283 |
## π Experimental Results
|
| 284 |
|
| 285 |
<div align="center">
|