Upload folder using huggingface_hub
Browse files- chat_template.json +3 -0
- config.json +117 -57
- configuration.json +1 -0
- configuration_hulumed_encoder.py +49 -0
- configuration_hulumed_qwen3.py +83 -0
- generation_config.json +3 -2
- image_processing_hulumed.py +481 -0
- model-00001-of-00007.safetensors → model-00001-of-00006.safetensors +2 -2
- model-00002-of-00007.safetensors → model-00002-of-00006.safetensors +2 -2
- model-00003-of-00007.safetensors → model-00003-of-00006.safetensors +2 -2
- model-00004-of-00007.safetensors → model-00004-of-00006.safetensors +2 -2
- model-00005-of-00006.safetensors +3 -0
- model-00005-of-00007.safetensors +0 -3
- model-00006-of-00006.safetensors +3 -0
- model-00006-of-00007.safetensors +0 -3
- model-00007-of-00007.safetensors +0 -3
- model.safetensors.index.json +0 -0
- modeling_hulumed_encoder.py +534 -0
- modeling_hulumed_qwen3.py +524 -0
- preprocessor_config.json +27 -0
- processing_hulumed.py +856 -0
- processor_config.json +10 -0
- tokenizer.json +0 -3
- tokenizer_config.json +1 -1
- vocab.json +0 -0
chat_template.json
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"chat_template": "\n{%- set identifier = 'im' %}\n{% for message in messages %}\n {% if add_system_prompt and loop.first and message['role'] != 'system' %}\n {{- '<|im_start|>system\nYou are Hulu-Med, a helpful health assistant that can understand text, 2D images, videos, and 3D images.<|im_end|>\n' -}}\n {% endif %}\n {% if message['role'] == 'stream' %}\n {% set identifier = 'stream' %}\n {% else %}\n {% set identifier = 'im' %}\n {% endif %}\n {{- '<|' + identifier + '_start|>' + message['role'] + '\n' -}}\n {% if message['content'] is string %}\n {{- message['content'] + '<|' + identifier + '_end|>\n' -}}\n {% else %}\n {% for content in message['content'] %}\n {% if content is string %}\n {{- content -}}\n {% elif content['type'] == 'text' or 'text' in content %}\n {{- content['text'] -}}\n {% elif content['type'] == 'image' or 'image' in content %}\n {% if 'timestamp' in content %}\n {{- 'Time ' + content['timestamp'] | round(1) | string + 's: ' -}}\n {% endif %}\n {{- image_token + '\n' -}}\n {% elif content['type'] == 'video' or 'video' in content %}\n {% for i in range(content['num_frames']) %}\n {% if 'timestamps' in content %}\n {{- 'Time ' + content['timestamps'][i] | round(1) | string + 's:' -}}\n {% endif %}\n {% if i < content['num_frames'] - 1 %}\n {{- image_token + ',' -}}\n {% else %}\n {{- image_token + '\n' -}}\n {% endif %}\n {% endfor %}\n {% endif %}\n {% endfor %}\n {% if identifier == 'stream' %}\n {{- '<|' + identifier + '_end|>' -}}\n {% else %}\n {{- '<|' + identifier + '_end|>\n' -}}\n {% endif %}\n {% endif %}\n{% endfor %}\n{% if add_generation_prompt %}\n {{- '<|im_start|>assistant\n' -}}\n{% endif %}\n"
|
| 3 |
+
}
|
config.json
CHANGED
|
@@ -1,58 +1,118 @@
|
|
| 1 |
{
|
| 2 |
-
|
| 3 |
-
|
| 4 |
-
|
| 5 |
-
|
| 6 |
-
|
| 7 |
-
|
| 8 |
-
|
| 9 |
-
|
| 10 |
-
|
| 11 |
-
|
| 12 |
-
|
| 13 |
-
|
| 14 |
-
|
| 15 |
-
|
| 16 |
-
|
| 17 |
-
|
| 18 |
-
|
| 19 |
-
|
| 20 |
-
|
| 21 |
-
|
| 22 |
-
|
| 23 |
-
|
| 24 |
-
|
| 25 |
-
|
| 26 |
-
|
| 27 |
-
|
| 28 |
-
|
| 29 |
-
|
| 30 |
-
|
| 31 |
-
|
| 32 |
-
|
| 33 |
-
|
| 34 |
-
|
| 35 |
-
|
| 36 |
-
|
| 37 |
-
|
| 38 |
-
|
| 39 |
-
|
| 40 |
-
|
| 41 |
-
|
| 42 |
-
|
| 43 |
-
|
| 44 |
-
|
| 45 |
-
|
| 46 |
-
|
| 47 |
-
|
| 48 |
-
|
| 49 |
-
|
| 50 |
-
|
| 51 |
-
|
| 52 |
-
|
| 53 |
-
|
| 54 |
-
|
| 55 |
-
|
| 56 |
-
|
| 57 |
-
|
| 58 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
{
|
| 2 |
+
"architectures": [
|
| 3 |
+
"HulumedQwen3ForCausalLM"
|
| 4 |
+
],
|
| 5 |
+
"auto_map": {
|
| 6 |
+
"AutoConfig": "configuration_hulumed_qwen3.HulumedQwen3Config",
|
| 7 |
+
"AutoModelForCausalLM": "modeling_hulumed_qwen3.HulumedQwen3ForCausalLM"
|
| 8 |
+
},
|
| 9 |
+
"vocab_size": 151936,
|
| 10 |
+
"max_position_embeddings": 40960,
|
| 11 |
+
"hidden_size": 5120,
|
| 12 |
+
"intermediate_size": 17408,
|
| 13 |
+
"num_hidden_layers": 40,
|
| 14 |
+
"num_attention_heads": 40,
|
| 15 |
+
"use_sliding_window": false,
|
| 16 |
+
"sliding_window": null,
|
| 17 |
+
"max_window_layers": 40,
|
| 18 |
+
"num_key_value_heads": 8,
|
| 19 |
+
"head_dim": 128,
|
| 20 |
+
"hidden_act": "silu",
|
| 21 |
+
"initializer_range": 0.02,
|
| 22 |
+
"rms_norm_eps": 1e-06,
|
| 23 |
+
"use_cache": true,
|
| 24 |
+
"rope_theta": 1000000,
|
| 25 |
+
"rope_scaling": null,
|
| 26 |
+
"attention_bias": false,
|
| 27 |
+
"attention_dropout": 0.0,
|
| 28 |
+
"return_dict": true,
|
| 29 |
+
"output_hidden_states": false,
|
| 30 |
+
"output_attentions": false,
|
| 31 |
+
"torchscript": false,
|
| 32 |
+
"torch_dtype": "bfloat16",
|
| 33 |
+
"use_bfloat16": false,
|
| 34 |
+
"tf_legacy_loss": false,
|
| 35 |
+
"pruned_heads": {},
|
| 36 |
+
"tie_word_embeddings": false,
|
| 37 |
+
"chunk_size_feed_forward": 0,
|
| 38 |
+
"is_encoder_decoder": false,
|
| 39 |
+
"is_decoder": false,
|
| 40 |
+
"cross_attention_hidden_size": null,
|
| 41 |
+
"add_cross_attention": false,
|
| 42 |
+
"tie_encoder_decoder": false,
|
| 43 |
+
"max_length": 20,
|
| 44 |
+
"min_length": 0,
|
| 45 |
+
"do_sample": false,
|
| 46 |
+
"early_stopping": false,
|
| 47 |
+
"num_beams": 1,
|
| 48 |
+
"num_beam_groups": 1,
|
| 49 |
+
"diversity_penalty": 0.0,
|
| 50 |
+
"temperature": 1.0,
|
| 51 |
+
"top_k": 50,
|
| 52 |
+
"top_p": 1.0,
|
| 53 |
+
"typical_p": 1.0,
|
| 54 |
+
"repetition_penalty": 1.0,
|
| 55 |
+
"length_penalty": 1.0,
|
| 56 |
+
"no_repeat_ngram_size": 0,
|
| 57 |
+
"encoder_no_repeat_ngram_size": 0,
|
| 58 |
+
"bad_words_ids": null,
|
| 59 |
+
"num_return_sequences": 1,
|
| 60 |
+
"output_scores": false,
|
| 61 |
+
"return_dict_in_generate": false,
|
| 62 |
+
"forced_bos_token_id": null,
|
| 63 |
+
"forced_eos_token_id": null,
|
| 64 |
+
"remove_invalid_values": false,
|
| 65 |
+
"exponential_decay_length_penalty": null,
|
| 66 |
+
"suppress_tokens": null,
|
| 67 |
+
"begin_suppress_tokens": null,
|
| 68 |
+
"finetuning_task": null,
|
| 69 |
+
"id2label": {
|
| 70 |
+
"0": "LABEL_0",
|
| 71 |
+
"1": "LABEL_1"
|
| 72 |
+
},
|
| 73 |
+
"label2id": {
|
| 74 |
+
"LABEL_0": 0,
|
| 75 |
+
"LABEL_1": 1
|
| 76 |
+
},
|
| 77 |
+
"tokenizer_class": null,
|
| 78 |
+
"prefix": null,
|
| 79 |
+
"bos_token_id": 151643,
|
| 80 |
+
"pad_token_id": null,
|
| 81 |
+
"eos_token_id": 151645,
|
| 82 |
+
"sep_token_id": null,
|
| 83 |
+
"decoder_start_token_id": null,
|
| 84 |
+
"task_specific_params": null,
|
| 85 |
+
"problem_type": null,
|
| 86 |
+
"_attn_implementation_autoset": true,
|
| 87 |
+
"transformers_version": "4.51.2",
|
| 88 |
+
"decoder_sparse_step": 1,
|
| 89 |
+
"image_aspect_ratio": "avt",
|
| 90 |
+
"image_size": -1,
|
| 91 |
+
"image_token_index": 151669,
|
| 92 |
+
"image_token_length": 1,
|
| 93 |
+
"is_alignment": false,
|
| 94 |
+
"llm_lr": 5e-05,
|
| 95 |
+
"max_frames": 180,
|
| 96 |
+
"mlp_only_layers": [],
|
| 97 |
+
"mm_hidden_size": 1152,
|
| 98 |
+
"mm_projector_lr": 1e-05,
|
| 99 |
+
"mm_projector_type": "mlp2x_gelu",
|
| 100 |
+
"model_type": "hulumed_qwen3",
|
| 101 |
+
"moe_intermediate_size": 768,
|
| 102 |
+
"norm_topk_prob": false,
|
| 103 |
+
"num_experts": 128,
|
| 104 |
+
"num_experts_per_tok": 8,
|
| 105 |
+
"output_router_logits": false,
|
| 106 |
+
"router_aux_loss_coef": 0.001,
|
| 107 |
+
"tokenizer_model_max_length": 16384,
|
| 108 |
+
"tokenizer_padding_side": "right",
|
| 109 |
+
"use_token_compression": false,
|
| 110 |
+
"vision_encoder_config": {
|
| 111 |
+
"hidden_size": 1152,
|
| 112 |
+
"intermediate_size": 4304,
|
| 113 |
+
"model_type": "hulumed_vision_encoder",
|
| 114 |
+
"num_attention_heads": 16,
|
| 115 |
+
"num_hidden_layers": 27,
|
| 116 |
+
"patch_size": 14
|
| 117 |
+
}
|
| 118 |
+
}
|
configuration.json
ADDED
|
@@ -0,0 +1 @@
|
|
|
|
|
|
|
| 1 |
+
{"framework": "pytorch", "task": "text-generation", "allow_remote": true}
|
configuration_hulumed_encoder.py
ADDED
|
@@ -0,0 +1,49 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
# Adopted from https://github.com/huggingface/transformers/blob/main/src/transformers/models/siglip/configuration_siglip.py.
|
| 2 |
+
# Below is the original copyright:
|
| 3 |
+
# coding=utf-8
|
| 4 |
+
# Copyright 2024 The HuggingFace Inc. team. All rights reserved.
|
| 5 |
+
#
|
| 6 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
| 7 |
+
# you may not use this file except in compliance with the License.
|
| 8 |
+
# You may obtain a copy of the License at
|
| 9 |
+
#
|
| 10 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
| 11 |
+
#
|
| 12 |
+
# Unless required by applicable law or agreed to in writing, software
|
| 13 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
| 14 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
| 15 |
+
# See the License for the specific language governing permissions and
|
| 16 |
+
# limitations under the License.
|
| 17 |
+
"""HuluMed vision encoder model configuration."""
|
| 18 |
+
|
| 19 |
+
from transformers import PretrainedConfig
|
| 20 |
+
|
| 21 |
+
|
| 22 |
+
class HulumedVisionEncoderConfig(PretrainedConfig):
|
| 23 |
+
|
| 24 |
+
model_type = "hulumed_vision_encoder"
|
| 25 |
+
|
| 26 |
+
def __init__(
|
| 27 |
+
self,
|
| 28 |
+
hidden_size=768,
|
| 29 |
+
intermediate_size=3072,
|
| 30 |
+
num_hidden_layers=12,
|
| 31 |
+
num_attention_heads=12,
|
| 32 |
+
num_channels=3,
|
| 33 |
+
patch_size=16,
|
| 34 |
+
hidden_act="gelu_pytorch_tanh",
|
| 35 |
+
layer_norm_eps=1e-6,
|
| 36 |
+
attention_dropout=0.0,
|
| 37 |
+
**kwargs,
|
| 38 |
+
):
|
| 39 |
+
super().__init__(**kwargs)
|
| 40 |
+
|
| 41 |
+
self.hidden_size = hidden_size
|
| 42 |
+
self.intermediate_size = intermediate_size
|
| 43 |
+
self.num_hidden_layers = num_hidden_layers
|
| 44 |
+
self.num_attention_heads = num_attention_heads
|
| 45 |
+
self.num_channels = num_channels
|
| 46 |
+
self.patch_size = patch_size
|
| 47 |
+
self.attention_dropout = attention_dropout
|
| 48 |
+
self.layer_norm_eps = layer_norm_eps
|
| 49 |
+
self.hidden_act = hidden_act
|
configuration_hulumed_qwen3.py
ADDED
|
@@ -0,0 +1,83 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
"""HuluMed model configuration."""
|
| 2 |
+
|
| 3 |
+
import importlib.util
|
| 4 |
+
import os.path as osp
|
| 5 |
+
from typing import Optional, Dict, Any
|
| 6 |
+
|
| 7 |
+
from transformers import AutoConfig, AutoModel, PretrainedConfig, Qwen3Config
|
| 8 |
+
|
| 9 |
+
try:
|
| 10 |
+
from .configuration_hulumed_encoder import HulumedVisionEncoderConfig
|
| 11 |
+
except ModuleNotFoundError:
|
| 12 |
+
spec = importlib.util.spec_from_file_location(
|
| 13 |
+
"configuration_hulumed_encoder",
|
| 14 |
+
osp.join(osp.dirname(__file__), "configuration_hulumed_encoder.py"),
|
| 15 |
+
)
|
| 16 |
+
configuration_hulumed_encoder = importlib.util.module_from_spec(spec)
|
| 17 |
+
spec.loader.exec_module(configuration_hulumed_encoder)
|
| 18 |
+
HulumedVisionEncoderConfig = getattr(
|
| 19 |
+
configuration_hulumed_encoder,
|
| 20 |
+
"HulumedVisionEncoderConfig",
|
| 21 |
+
)
|
| 22 |
+
|
| 23 |
+
try:
|
| 24 |
+
from .modeling_hulumed_encoder import HulumedVisionEncoderModel
|
| 25 |
+
except ModuleNotFoundError:
|
| 26 |
+
spec = importlib.util.spec_from_file_location(
|
| 27 |
+
"modeling_hulumed_encoder",
|
| 28 |
+
osp.join(osp.dirname(__file__), "modeling_hulumed_encoder.py"),
|
| 29 |
+
)
|
| 30 |
+
modeling_hulumed_encoder = importlib.util.module_from_spec(spec)
|
| 31 |
+
spec.loader.exec_module(modeling_hulumed_encoder)
|
| 32 |
+
HulumedVisionEncoderModel = getattr(
|
| 33 |
+
modeling_hulumed_encoder,
|
| 34 |
+
"HulumedVisionEncoderModel",
|
| 35 |
+
)
|
| 36 |
+
|
| 37 |
+
AutoConfig.register("hulumed_vision_encoder", HulumedVisionEncoderConfig)
|
| 38 |
+
AutoModel.register(HulumedVisionEncoderConfig, HulumedVisionEncoderModel)
|
| 39 |
+
|
| 40 |
+
|
| 41 |
+
class HulumedQwen3Config(Qwen3Config):
|
| 42 |
+
"""
|
| 43 |
+
HuluMed model configuration.
|
| 44 |
+
|
| 45 |
+
This configuration class extends Qwen2Config to store the configuration of a HuluMed model.
|
| 46 |
+
It includes configuration for the vision encoder and multimodal projector.
|
| 47 |
+
"""
|
| 48 |
+
|
| 49 |
+
model_type = "hulumed_qwen3"
|
| 50 |
+
sub_configs = {"vision_encoder_config": HulumedVisionEncoderConfig}
|
| 51 |
+
|
| 52 |
+
def __init__(
|
| 53 |
+
self,
|
| 54 |
+
vision_encoder: Optional[str] = None,
|
| 55 |
+
vision_encoder_config: Dict[str, Any] = {},
|
| 56 |
+
mm_projector_type: str = "mlp2x_gelu",
|
| 57 |
+
use_token_compression: bool = True,
|
| 58 |
+
image_token_index: int = -1,
|
| 59 |
+
**kwargs,
|
| 60 |
+
):
|
| 61 |
+
"""
|
| 62 |
+
Initialize HuluMed configuration.
|
| 63 |
+
|
| 64 |
+
Args:
|
| 65 |
+
vision_encoder (str, optional): Path or identifier of the vision encoder.
|
| 66 |
+
vision_encoder_config (dict, optional): Configuration for the vision encoder.
|
| 67 |
+
mm_projector_type (str): Type of multimodal projector. Default is "mlp2x_gelu".
|
| 68 |
+
use_token_compression (bool): Whether to use token compression for videos. Default is True.
|
| 69 |
+
image_token_index (int): Token index for image placeholders. Default is -1.
|
| 70 |
+
**kwargs: Additional arguments passed to Qwen2Config.
|
| 71 |
+
"""
|
| 72 |
+
super().__init__(**kwargs)
|
| 73 |
+
self.model_type = "hulumed_qwen3"
|
| 74 |
+
|
| 75 |
+
self.vision_encoder = vision_encoder
|
| 76 |
+
|
| 77 |
+
if vision_encoder_config is not None and not isinstance(vision_encoder_config, PretrainedConfig):
|
| 78 |
+
vision_encoder_config = HulumedVisionEncoderConfig(**vision_encoder_config)
|
| 79 |
+
|
| 80 |
+
self.vision_encoder_config = vision_encoder_config
|
| 81 |
+
self.mm_projector_type = mm_projector_type
|
| 82 |
+
self.use_token_compression = use_token_compression
|
| 83 |
+
self.image_token_index = image_token_index
|
generation_config.json
CHANGED
|
@@ -6,8 +6,9 @@
|
|
| 6 |
151643
|
| 7 |
],
|
| 8 |
"pad_token_id": 151643,
|
| 9 |
-
"
|
|
|
|
| 10 |
"top_k": 20,
|
| 11 |
-
"top_p": 0.
|
| 12 |
"transformers_version": "4.51.2"
|
| 13 |
}
|
|
|
|
| 6 |
151643
|
| 7 |
],
|
| 8 |
"pad_token_id": 151643,
|
| 9 |
+
"repetition_penalty": 1.05,
|
| 10 |
+
"temperature": 0.7,
|
| 11 |
"top_k": 20,
|
| 12 |
+
"top_p": 0.8,
|
| 13 |
"transformers_version": "4.51.2"
|
| 14 |
}
|
image_processing_hulumed.py
ADDED
|
@@ -0,0 +1,481 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
# Adopted from https://github.com/huggingface/transformers/blob/main/src/transformers/models/qwen2_vl/image_processing_qwen2_vl.py.
|
| 2 |
+
# Below is the original copyright:
|
| 3 |
+
# Copyright 2024 The Qwen team, Alibaba Group and the HuggingFace Inc. team. All rights reserved.
|
| 4 |
+
#
|
| 5 |
+
# This code is based on EleutherAI's GPT-NeoX library and the GPT-NeoX
|
| 6 |
+
# and OPT implementations in this library. It has been modified from its
|
| 7 |
+
# original forms to accommodate minor architectural differences compared
|
| 8 |
+
# to GPT-NeoX and OPT used by the Meta AI team that trained the model.
|
| 9 |
+
#
|
| 10 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
| 11 |
+
# you may not use this file except in compliance with the License.
|
| 12 |
+
# You may obtain a copy of the License at
|
| 13 |
+
#
|
| 14 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
| 15 |
+
#
|
| 16 |
+
# Unless required by applicable law or agreed to in writing, software
|
| 17 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
| 18 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
| 19 |
+
# See the License for the specific language governing permissions and
|
| 20 |
+
# limitations under the License.
|
| 21 |
+
"""Image processor class for HuluMed."""
|
| 22 |
+
|
| 23 |
+
import math
|
| 24 |
+
from typing import Dict, List, Optional, Union
|
| 25 |
+
|
| 26 |
+
import numpy as np
|
| 27 |
+
|
| 28 |
+
import torch
|
| 29 |
+
from transformers.image_processing_utils import BaseImageProcessor, BatchFeature
|
| 30 |
+
from transformers.image_utils import ImageInput
|
| 31 |
+
from transformers.image_transforms import (
|
| 32 |
+
convert_to_rgb,
|
| 33 |
+
resize,
|
| 34 |
+
to_channel_dimension_format,
|
| 35 |
+
)
|
| 36 |
+
from transformers.image_utils import (
|
| 37 |
+
OPENAI_CLIP_MEAN,
|
| 38 |
+
OPENAI_CLIP_STD,
|
| 39 |
+
ChannelDimension,
|
| 40 |
+
ImageInput,
|
| 41 |
+
PILImageResampling,
|
| 42 |
+
VideoInput,
|
| 43 |
+
get_image_size,
|
| 44 |
+
infer_channel_dimension_format,
|
| 45 |
+
is_scaled_image,
|
| 46 |
+
is_valid_image,
|
| 47 |
+
make_list_of_images,
|
| 48 |
+
to_numpy_array,
|
| 49 |
+
)
|
| 50 |
+
from transformers.utils import TensorType, is_vision_available, logging
|
| 51 |
+
|
| 52 |
+
|
| 53 |
+
logger = logging.get_logger(__name__)
|
| 54 |
+
|
| 55 |
+
|
| 56 |
+
if is_vision_available():
|
| 57 |
+
from PIL import Image
|
| 58 |
+
|
| 59 |
+
|
| 60 |
+
def is_valid_video(video) -> bool:
|
| 61 |
+
if isinstance(video, (list, tuple)):
|
| 62 |
+
return all(is_valid_image(frame) for frame in video)
|
| 63 |
+
elif isinstance(video, np.ndarray):
|
| 64 |
+
return video.ndim == 4
|
| 65 |
+
elif isinstance(video, torch.Tensor):
|
| 66 |
+
return video.ndim == 4
|
| 67 |
+
return False
|
| 68 |
+
|
| 69 |
+
|
| 70 |
+
def make_batched_images(images) -> List[List[ImageInput]]:
|
| 71 |
+
"""
|
| 72 |
+
Accepts images in list or nested list format, and makes a list of images for preprocessing.
|
| 73 |
+
|
| 74 |
+
Args:
|
| 75 |
+
images (`Union[List[List[ImageInput]], List[ImageInput], ImageInput]`):
|
| 76 |
+
The input image.
|
| 77 |
+
|
| 78 |
+
Returns:
|
| 79 |
+
list: A list of images.
|
| 80 |
+
"""
|
| 81 |
+
if isinstance(images, (list, tuple)):
|
| 82 |
+
# list of images/videos
|
| 83 |
+
if not all(is_valid_video(image) or is_valid_image(image) for image in images):
|
| 84 |
+
raise ValueError(f"Could not make batched images from {images}")
|
| 85 |
+
return images
|
| 86 |
+
elif is_valid_video(images) or is_valid_image(images):
|
| 87 |
+
# single image/video
|
| 88 |
+
return [images]
|
| 89 |
+
|
| 90 |
+
raise ValueError(f"Could not make batched images from {images}")
|
| 91 |
+
|
| 92 |
+
|
| 93 |
+
def simple_batched_resize(
|
| 94 |
+
images, factor: int = 28, min_tokens: int = 4 * 4, max_tokens: int = 16384, input_data_format: str = None
|
| 95 |
+
):
|
| 96 |
+
min_pixels = min_tokens * factor * factor
|
| 97 |
+
max_pixels = max_tokens * factor * factor
|
| 98 |
+
|
| 99 |
+
num_images = 0
|
| 100 |
+
for image in images:
|
| 101 |
+
if is_valid_video(image):
|
| 102 |
+
num_images += len(image)
|
| 103 |
+
else:
|
| 104 |
+
num_images += 1
|
| 105 |
+
|
| 106 |
+
image_sizes = []
|
| 107 |
+
for image in images:
|
| 108 |
+
if is_valid_video(image):
|
| 109 |
+
image = image[0]
|
| 110 |
+
if isinstance(image, Image.Image):
|
| 111 |
+
height, width = image.size
|
| 112 |
+
else:
|
| 113 |
+
height, width = get_image_size(image, channel_dim=input_data_format)
|
| 114 |
+
image_sizes.append([height, width])
|
| 115 |
+
|
| 116 |
+
tmp_image_sizes = []
|
| 117 |
+
for height, width in image_sizes:
|
| 118 |
+
h_bar = round(height / factor) * factor
|
| 119 |
+
w_bar = round(width / factor) * factor
|
| 120 |
+
if h_bar * w_bar > (max_pixels // num_images):
|
| 121 |
+
beta = math.sqrt((height * width) / (max_pixels // num_images))
|
| 122 |
+
h_bar = math.floor(height / beta / factor) * factor
|
| 123 |
+
w_bar = math.floor(width / beta / factor) * factor
|
| 124 |
+
# per image min_pixels
|
| 125 |
+
if h_bar * w_bar < min_pixels:
|
| 126 |
+
beta = math.sqrt(min_pixels / (height * width))
|
| 127 |
+
h_bar = math.ceil(height * beta / factor) * factor
|
| 128 |
+
w_bar = math.ceil(width * beta / factor) * factor
|
| 129 |
+
tmp_image_sizes.append((h_bar, w_bar))
|
| 130 |
+
image_sizes = tmp_image_sizes
|
| 131 |
+
return image_sizes
|
| 132 |
+
|
| 133 |
+
|
| 134 |
+
def batched_resize(
|
| 135 |
+
images, factors: List[int], min_tokens: int = 4 * 4, max_tokens: int = 16384, input_data_format: str = None
|
| 136 |
+
):
|
| 137 |
+
image_sizes = []
|
| 138 |
+
for image in images:
|
| 139 |
+
if is_valid_video(image):
|
| 140 |
+
num_frame = len(image)
|
| 141 |
+
image = image[0]
|
| 142 |
+
else:
|
| 143 |
+
num_frame = 1
|
| 144 |
+
if isinstance(image, Image.Image):
|
| 145 |
+
height, width = image.size
|
| 146 |
+
else:
|
| 147 |
+
height, width = get_image_size(image, channel_dim=input_data_format)
|
| 148 |
+
image_sizes.append([num_frame, height, width])
|
| 149 |
+
|
| 150 |
+
# global max_pixels
|
| 151 |
+
smart_scale_factors = 1.0
|
| 152 |
+
total_tokens = 0
|
| 153 |
+
for (num_frame, height, width), factor in zip(image_sizes, factors):
|
| 154 |
+
total_tokens += num_frame * math.ceil(height / factor) * math.ceil(width / factor)
|
| 155 |
+
|
| 156 |
+
# TODO: add min_pixels
|
| 157 |
+
if total_tokens > max_tokens:
|
| 158 |
+
beta = math.sqrt(total_tokens / max_tokens)
|
| 159 |
+
tmp_image_sizes = []
|
| 160 |
+
for (_, height, width), factor in zip(image_sizes, factors):
|
| 161 |
+
h_bar = math.floor(height / beta / factor) * factor
|
| 162 |
+
w_bar = math.floor(width / beta / factor) * factor
|
| 163 |
+
tmp_image_sizes.append((h_bar, w_bar))
|
| 164 |
+
image_sizes = tmp_image_sizes
|
| 165 |
+
else:
|
| 166 |
+
tmp_image_sizes = []
|
| 167 |
+
for (_, height, width), factor in zip(image_sizes, factors):
|
| 168 |
+
height = round(height / factor) * factor
|
| 169 |
+
width = round(width / factor) * factor
|
| 170 |
+
tmp_image_sizes.append((height, width))
|
| 171 |
+
image_sizes = tmp_image_sizes
|
| 172 |
+
|
| 173 |
+
return image_sizes
|
| 174 |
+
|
| 175 |
+
|
| 176 |
+
class HulumedImageProcessor(BaseImageProcessor):
|
| 177 |
+
r"""
|
| 178 |
+
Constructs a HuluMed image processor that dynamically resizes images based on the original images.
|
| 179 |
+
|
| 180 |
+
Args:
|
| 181 |
+
do_resize (`bool`, *optional*, defaults to `True`):
|
| 182 |
+
Whether to resize the image's (height, width) dimensions.
|
| 183 |
+
resample (`PILImageResampling`, *optional*, defaults to `Resampling.BICUBIC`):
|
| 184 |
+
Resampling filter to use when resizing the image.
|
| 185 |
+
do_rescale (`bool`, *optional*, defaults to `True`):
|
| 186 |
+
Whether to rescale the image by the specified scale `rescale_factor`.
|
| 187 |
+
rescale_factor (`int` or `float`, *optional*, defaults to `1/255`):
|
| 188 |
+
Scale factor to use if rescaling the image.
|
| 189 |
+
do_normalize (`bool`, *optional*, defaults to `True`):
|
| 190 |
+
Whether to normalize the image.
|
| 191 |
+
image_mean (`float` or `List[float]`, *optional*, defaults to `[0.48145466, 0.4578275, 0.40821073]`):
|
| 192 |
+
Mean to use if normalizing the image. This is a float or list of floats for each channel in the image.
|
| 193 |
+
image_std (`float` or `List[float]`, *optional*, defaults to `[0.26862954, 0.26130258, 0.27577711]`):
|
| 194 |
+
Standard deviation to use if normalizing the image. This is a float or list of floats for each channel in the image.
|
| 195 |
+
do_convert_rgb (`bool`, *optional*, defaults to `True`):
|
| 196 |
+
Whether to convert the image to RGB.
|
| 197 |
+
min_pixels (`int`, *optional*, defaults to `56 * 56`):
|
| 198 |
+
The min pixels of the image to resize the image.
|
| 199 |
+
max_pixels (`int`, *optional*, defaults to `28 * 28 * 1280`):
|
| 200 |
+
The max pixels of the image to resize the image.
|
| 201 |
+
patch_size (`int`, *optional*, defaults to 14):
|
| 202 |
+
The spacial patch size of the vision encoder.
|
| 203 |
+
merge_size (`int`, *optional*, defaults to `None`):
|
| 204 |
+
The default merge size for processing. If None, no default merge size is applied.
|
| 205 |
+
"""
|
| 206 |
+
|
| 207 |
+
model_input_names = ["pixel_values", "grid_sizes", "merge_sizes"]
|
| 208 |
+
|
| 209 |
+
def __init__(
|
| 210 |
+
self,
|
| 211 |
+
do_resize: bool = True,
|
| 212 |
+
resample: PILImageResampling = PILImageResampling.BICUBIC,
|
| 213 |
+
do_rescale: bool = True,
|
| 214 |
+
rescale_factor: Union[int, float] = 1 / 255,
|
| 215 |
+
do_normalize: bool = True,
|
| 216 |
+
image_mean: Optional[Union[float, List[float]]] = None,
|
| 217 |
+
image_std: Optional[Union[float, List[float]]] = None,
|
| 218 |
+
do_convert_rgb: bool = True,
|
| 219 |
+
min_tokens: int = 4 * 4,
|
| 220 |
+
max_tokens: int = 16384,
|
| 221 |
+
patch_size: int = 14,
|
| 222 |
+
merge_size: Optional[int] = None,
|
| 223 |
+
**kwargs,
|
| 224 |
+
) -> None:
|
| 225 |
+
super().__init__(**kwargs)
|
| 226 |
+
self.do_resize = do_resize
|
| 227 |
+
self.resample = resample
|
| 228 |
+
self.do_rescale = do_rescale
|
| 229 |
+
self.rescale_factor = rescale_factor
|
| 230 |
+
self.do_normalize = do_normalize
|
| 231 |
+
self.image_mean = image_mean if image_mean is not None else OPENAI_CLIP_MEAN
|
| 232 |
+
self.image_std = image_std if image_std is not None else OPENAI_CLIP_STD
|
| 233 |
+
self.min_tokens = min_tokens
|
| 234 |
+
self.max_tokens = max_tokens
|
| 235 |
+
self.patch_size = patch_size
|
| 236 |
+
self.do_convert_rgb = do_convert_rgb
|
| 237 |
+
self.merge_size = merge_size # Added: default merge_size
|
| 238 |
+
|
| 239 |
+
def _preprocess(
|
| 240 |
+
self,
|
| 241 |
+
images: Union[ImageInput, VideoInput],
|
| 242 |
+
target_size: List[int],
|
| 243 |
+
merge_size: int = 1,
|
| 244 |
+
do_resize: bool = None,
|
| 245 |
+
resample: PILImageResampling = None,
|
| 246 |
+
do_rescale: bool = None,
|
| 247 |
+
rescale_factor: float = None,
|
| 248 |
+
do_normalize: bool = None,
|
| 249 |
+
image_mean: Optional[Union[float, List[float]]] = None,
|
| 250 |
+
image_std: Optional[Union[float, List[float]]] = None,
|
| 251 |
+
do_convert_rgb: bool = None,
|
| 252 |
+
data_format: Optional[ChannelDimension] = ChannelDimension.FIRST,
|
| 253 |
+
input_data_format: Optional[Union[str, ChannelDimension]] = None,
|
| 254 |
+
):
|
| 255 |
+
"""
|
| 256 |
+
Preprocess an image or batch of images. Copy of the `preprocess` method from `CLIPImageProcessor`.
|
| 257 |
+
|
| 258 |
+
Args:
|
| 259 |
+
images (`ImageInput`):
|
| 260 |
+
Image or batch of images to preprocess. Expects pixel values ranging from 0 to 255. If pixel values range from 0 to 1, set `do_rescale=False`.
|
| 261 |
+
target_size (`List[int]`):
|
| 262 |
+
The target size to resize the image to. Should be a list of two integers: [target_height, target_width].
|
| 263 |
+
merge_size (`int`, *optional*, defaults to `1`):
|
| 264 |
+
The merge size after the vision encoder.
|
| 265 |
+
do_resize (`bool`, *optional*, defaults to `self.do_resize`):
|
| 266 |
+
Whether to resize the image.
|
| 267 |
+
resample (`PILImageResampling`, *optional*, defaults to `self.resample`):
|
| 268 |
+
Resampling filter to use if resizing the image. This can be one of the `PILImageResampling` enums.
|
| 269 |
+
do_rescale (`bool`, *optional*, defaults to `self.do_rescale`):
|
| 270 |
+
Whether to rescale the image.
|
| 271 |
+
rescale_factor (`float`, *optional*, defaults to `self.rescale_factor`):
|
| 272 |
+
Scale factor to use if rescaling the image.
|
| 273 |
+
do_normalize (`bool`, *optional*, defaults to `self.do_normalize`):
|
| 274 |
+
Whether to normalize the image.
|
| 275 |
+
image_mean (`float` or `List[float]`, *optional*, defaults to `self.image_mean`):
|
| 276 |
+
Mean to use if normalizing the image. Can be a float or a list of floats corresponding to the number of channels in the image.
|
| 277 |
+
image_std (`float` or `List[float]`, *optional*, defaults to `self.image_std`):
|
| 278 |
+
Standard deviation to use if normalizing the image. Can be a float or a list of floats corresponding to the number of channels in the image.
|
| 279 |
+
do_convert_rgb (`bool`, *optional*, defaults to `self.do_convert_rgb`):
|
| 280 |
+
Whether to convert the image to RGB.
|
| 281 |
+
data_format (`ChannelDimension`, *optional*, defaults to `ChannelDimension.FIRST`):
|
| 282 |
+
The channel dimension format for the output image. Can be one of:
|
| 283 |
+
- `"channels_first"` or `ChannelDimension.FIRST`: image in (num_channels, height, width) format.
|
| 284 |
+
- `"channels_last"` or `ChannelDimension.LAST`: image in (height, width, num_channels) format.
|
| 285 |
+
- Unset: Use the channel dimension format of the input image.
|
| 286 |
+
input_data_format (`ChannelDimension` or `str`, *optional*):
|
| 287 |
+
The channel dimension format for the input image. Can be one of:
|
| 288 |
+
- `"channels_first"` or `ChannelDimension.FIRST`: image in (num_channels, height, width) format.
|
| 289 |
+
- `"channels_last"` or `ChannelDimension.LAST`: image in (height, width, num_channels) format.
|
| 290 |
+
- `"none"` or `ChannelDimension.NONE`: image in (height, width) format.
|
| 291 |
+
"""
|
| 292 |
+
images = make_list_of_images(images)
|
| 293 |
+
|
| 294 |
+
if do_convert_rgb:
|
| 295 |
+
images = [convert_to_rgb(image) for image in images]
|
| 296 |
+
|
| 297 |
+
# All transformations expect numpy arrays.
|
| 298 |
+
images = [to_numpy_array(image) for image in images]
|
| 299 |
+
|
| 300 |
+
if is_scaled_image(images[0]) and do_rescale:
|
| 301 |
+
logger.warning_once(
|
| 302 |
+
"It looks like you are trying to rescale already rescaled images. If the input"
|
| 303 |
+
" images have pixel values between 0 and 1, set `do_rescale=False` to avoid rescaling them again."
|
| 304 |
+
)
|
| 305 |
+
if input_data_format is None:
|
| 306 |
+
# We assume that all images have the same channel dimension format.
|
| 307 |
+
input_data_format = infer_channel_dimension_format(images[0])
|
| 308 |
+
|
| 309 |
+
height, width = get_image_size(images[0], channel_dim=input_data_format)
|
| 310 |
+
resized_height, resized_width = height, width
|
| 311 |
+
processed_images = []
|
| 312 |
+
for image in images:
|
| 313 |
+
if do_resize:
|
| 314 |
+
resized_height, resized_width = target_size
|
| 315 |
+
image = resize(
|
| 316 |
+
image, size=(resized_height, resized_width), resample=resample, input_data_format=input_data_format
|
| 317 |
+
)
|
| 318 |
+
|
| 319 |
+
if do_rescale:
|
| 320 |
+
image = self.rescale(image, scale=rescale_factor, input_data_format=input_data_format)
|
| 321 |
+
|
| 322 |
+
if do_normalize:
|
| 323 |
+
image = self.normalize(
|
| 324 |
+
image=image, mean=image_mean, std=image_std, input_data_format=input_data_format
|
| 325 |
+
)
|
| 326 |
+
|
| 327 |
+
image = to_channel_dimension_format(image, data_format, input_channel_dim=input_data_format)
|
| 328 |
+
processed_images.append(image)
|
| 329 |
+
|
| 330 |
+
patches = np.array(processed_images)
|
| 331 |
+
if data_format == ChannelDimension.LAST:
|
| 332 |
+
patches = patches.transpose(0, 3, 1, 2)
|
| 333 |
+
t = patches.shape[0]
|
| 334 |
+
channel = patches.shape[1]
|
| 335 |
+
grid_h, grid_w = resized_height // self.patch_size, resized_width // self.patch_size
|
| 336 |
+
patches = patches.reshape(
|
| 337 |
+
t,
|
| 338 |
+
channel,
|
| 339 |
+
grid_h // merge_size,
|
| 340 |
+
merge_size,
|
| 341 |
+
self.patch_size,
|
| 342 |
+
grid_w // merge_size,
|
| 343 |
+
merge_size,
|
| 344 |
+
self.patch_size,
|
| 345 |
+
)
|
| 346 |
+
patches = patches.transpose(0, 2, 5, 3, 6, 1, 4, 7)
|
| 347 |
+
flatten_patches = patches.reshape(
|
| 348 |
+
t * grid_h * grid_w, channel * self.patch_size * self.patch_size
|
| 349 |
+
)
|
| 350 |
+
|
| 351 |
+
return flatten_patches, (t, grid_h, grid_w)
|
| 352 |
+
|
| 353 |
+
def preprocess(
|
| 354 |
+
self,
|
| 355 |
+
images: ImageInput,
|
| 356 |
+
do_resize: bool = None,
|
| 357 |
+
resample: PILImageResampling = None,
|
| 358 |
+
do_rescale: bool = None,
|
| 359 |
+
rescale_factor: float = None,
|
| 360 |
+
do_normalize: bool = None,
|
| 361 |
+
image_mean: Optional[Union[float, List[float]]] = None,
|
| 362 |
+
image_std: Optional[Union[float, List[float]]] = None,
|
| 363 |
+
do_convert_rgb: bool = None,
|
| 364 |
+
merge_size: Optional[Union[int, List[int]]] = None,
|
| 365 |
+
return_tensors: Optional[Union[str, TensorType]] = None,
|
| 366 |
+
data_format: Optional[ChannelDimension] = ChannelDimension.FIRST,
|
| 367 |
+
input_data_format: Optional[Union[str, ChannelDimension]] = None,
|
| 368 |
+
):
|
| 369 |
+
"""
|
| 370 |
+
Args:
|
| 371 |
+
images (`ImageInput`):
|
| 372 |
+
Image to preprocess. Expects a single or batch of images with pixel values ranging from 0 to 255. If
|
| 373 |
+
passing in images with pixel values between 0 and 1, set `do_rescale=False`.
|
| 374 |
+
do_resize (`bool`, *optional*, defaults to `self.do_resize`):
|
| 375 |
+
Whether to resize the image.
|
| 376 |
+
resample (`int`, *optional*, defaults to `self.resample`):
|
| 377 |
+
Resampling filter to use if resizing the image. This can be one of the enum `PILImageResampling`. Only
|
| 378 |
+
has an effect if `do_resize` is set to `True`.
|
| 379 |
+
do_rescale (`bool`, *optional*, defaults to `self.do_rescale`):
|
| 380 |
+
Whether to rescale the image.
|
| 381 |
+
rescale_factor (`float`, *optional*, defaults to `self.rescale_factor`):
|
| 382 |
+
Rescale factor to rescale the image by if `do_rescale` is set to `True`.
|
| 383 |
+
do_normalize (`bool`, *optional*, defaults to `self.do_normalize`):
|
| 384 |
+
Whether to normalize the image.
|
| 385 |
+
image_mean (`float` or `List[float]`, *optional*, defaults to `self.image_mean`):
|
| 386 |
+
Image mean to use for normalization. Only has an effect if `do_normalize` is set to `True`.
|
| 387 |
+
image_std (`float` or `List[float]`, *optional*, defaults to `self.image_std`):
|
| 388 |
+
Image standard deviation to use for normalization. Only has an effect if `do_normalize` is set to
|
| 389 |
+
`True`.
|
| 390 |
+
do_convert_rgb (`bool`, *optional*, defaults to `self.do_convert_rgb`):
|
| 391 |
+
Whether to convert the image to RGB.
|
| 392 |
+
merge_size (`int` or `List[int]`, *optional*, defaults to `self.merge_size`):
|
| 393 |
+
The merge size for processing. Can be a single value or a list of values (one per image).
|
| 394 |
+
return_tensors (`str` or `TensorType`, *optional*):
|
| 395 |
+
The type of tensors to return. Can be one of:
|
| 396 |
+
- Unset: Return a list of `np.ndarray`.
|
| 397 |
+
- `TensorType.TENSORFLOW` or `'tf'`: Return a batch of type `tf.Tensor`.
|
| 398 |
+
- `TensorType.PYTORCH` or `'pt'`: Return a batch of type `torch.Tensor`.
|
| 399 |
+
- `TensorType.NUMPY` or `'np'`: Return a batch of type `np.ndarray`.
|
| 400 |
+
- `TensorType.JAX` or `'jax'`: Return a batch of type `jax.numpy.ndarray`.
|
| 401 |
+
data_format (`ChannelDimension` or `str`, *optional*, defaults to `ChannelDimension.FIRST`):
|
| 402 |
+
The channel dimension format for the output image. Can be one of:
|
| 403 |
+
- `"channels_first"` or `ChannelDimension.FIRST`: image in (num_channels, height, width) format.
|
| 404 |
+
- `"channels_last"` or `ChannelDimension.LAST`: image in (height, width, num_channels) format.
|
| 405 |
+
- Unset: Use the channel dimension format of the input image.
|
| 406 |
+
input_data_format (`ChannelDimension` or `str`, *optional*):
|
| 407 |
+
The channel dimension format for the input image. If unset, the channel dimension format is inferred
|
| 408 |
+
from the input image. Can be one of:
|
| 409 |
+
- `"channels_first"` or `ChannelDimension.FIRST`: image in (num_channels, height, width) format.
|
| 410 |
+
- `"channels_last"` or `ChannelDimension.LAST`: image in (height, width, num_channels) format.
|
| 411 |
+
- `"none"` or `ChannelDimension.NONE`: image in (height, width) format.
|
| 412 |
+
|
| 413 |
+
"""
|
| 414 |
+
do_resize = do_resize if do_resize is not None else self.do_resize
|
| 415 |
+
resample = resample if resample is not None else self.resample
|
| 416 |
+
do_rescale = do_rescale if do_rescale is not None else self.do_rescale
|
| 417 |
+
rescale_factor = rescale_factor if rescale_factor is not None else self.rescale_factor
|
| 418 |
+
do_normalize = do_normalize if do_normalize is not None else self.do_normalize
|
| 419 |
+
image_mean = image_mean if image_mean is not None else self.image_mean
|
| 420 |
+
image_std = image_std if image_std is not None else self.image_std
|
| 421 |
+
do_convert_rgb = do_convert_rgb if do_convert_rgb is not None else self.do_convert_rgb
|
| 422 |
+
|
| 423 |
+
# Handle merge_size: use provided value, or fall back to instance default, or use 1
|
| 424 |
+
if merge_size is None:
|
| 425 |
+
merge_size = self.merge_size if self.merge_size is not None else 1
|
| 426 |
+
|
| 427 |
+
images = make_batched_images(images)
|
| 428 |
+
|
| 429 |
+
if isinstance(merge_size, (list, tuple)):
|
| 430 |
+
assert len(merge_size) == len(images), "Merge size must be the same length as images."
|
| 431 |
+
merge_sizes = merge_size
|
| 432 |
+
else:
|
| 433 |
+
merge_sizes = [merge_size for _ in images]
|
| 434 |
+
if all(merge_size == merge_sizes[0] for merge_size in merge_sizes):
|
| 435 |
+
target_sizes = simple_batched_resize(
|
| 436 |
+
images,
|
| 437 |
+
factor=self.patch_size * merge_sizes[0],
|
| 438 |
+
min_tokens=self.min_tokens,
|
| 439 |
+
max_tokens=self.max_tokens,
|
| 440 |
+
input_data_format=input_data_format,
|
| 441 |
+
)
|
| 442 |
+
else:
|
| 443 |
+
target_sizes = batched_resize(
|
| 444 |
+
images,
|
| 445 |
+
factors=[self.patch_size * merge_size for merge_size in merge_sizes],
|
| 446 |
+
min_tokens=self.min_tokens,
|
| 447 |
+
max_tokens=self.max_tokens,
|
| 448 |
+
input_data_format=input_data_format,
|
| 449 |
+
)
|
| 450 |
+
|
| 451 |
+
pixel_values, grid_sizes = [], []
|
| 452 |
+
for image, merge_size, target_size in zip(images, merge_sizes, target_sizes):
|
| 453 |
+
patches, grid_size = self._preprocess(
|
| 454 |
+
image,
|
| 455 |
+
target_size=target_size,
|
| 456 |
+
merge_size=merge_size,
|
| 457 |
+
do_resize=do_resize,
|
| 458 |
+
resample=resample,
|
| 459 |
+
do_rescale=do_rescale,
|
| 460 |
+
rescale_factor=rescale_factor,
|
| 461 |
+
do_normalize=do_normalize,
|
| 462 |
+
image_mean=image_mean,
|
| 463 |
+
image_std=image_std,
|
| 464 |
+
data_format=data_format,
|
| 465 |
+
do_convert_rgb=do_convert_rgb,
|
| 466 |
+
input_data_format=input_data_format,
|
| 467 |
+
)
|
| 468 |
+
pixel_values.append(patches)
|
| 469 |
+
grid_sizes.append(grid_size)
|
| 470 |
+
|
| 471 |
+
pixel_values = np.concatenate(pixel_values, axis=0)
|
| 472 |
+
grid_sizes = np.array(grid_sizes)
|
| 473 |
+
merge_sizes = np.array(merge_sizes)
|
| 474 |
+
|
| 475 |
+
data = {
|
| 476 |
+
"pixel_values": pixel_values,
|
| 477 |
+
"grid_sizes": grid_sizes,
|
| 478 |
+
"merge_sizes": merge_sizes,
|
| 479 |
+
}
|
| 480 |
+
|
| 481 |
+
return BatchFeature(data=data, tensor_type=return_tensors)
|
model-00001-of-00007.safetensors → model-00001-of-00006.safetensors
RENAMED
|
@@ -1,3 +1,3 @@
|
|
| 1 |
version https://git-lfs.github.com/spec/v1
|
| 2 |
-
oid sha256:
|
| 3 |
-
size
|
|
|
|
| 1 |
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:851ec07ebcf50eb48ada241b5fdba017a75b3b327256844ca65fc7f4073837a0
|
| 3 |
+
size 5341296816
|
model-00002-of-00007.safetensors → model-00002-of-00006.safetensors
RENAMED
|
@@ -1,3 +1,3 @@
|
|
| 1 |
version https://git-lfs.github.com/spec/v1
|
| 2 |
-
oid sha256:
|
| 3 |
-
size
|
|
|
|
| 1 |
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:97680c87cfe9290fd89ebf8a72aa4d284b0aaec55674fba644fe71600b7062cf
|
| 3 |
+
size 5285001096
|
model-00003-of-00007.safetensors → model-00003-of-00006.safetensors
RENAMED
|
@@ -1,3 +1,3 @@
|
|
| 1 |
version https://git-lfs.github.com/spec/v1
|
| 2 |
-
oid sha256:
|
| 3 |
-
size
|
|
|
|
| 1 |
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:f6a520cf82ff8dd49062b758541e3bde486fdd76a3d2db181e9b7776463b24a4
|
| 3 |
+
size 5285001144
|
model-00004-of-00007.safetensors → model-00004-of-00006.safetensors
RENAMED
|
@@ -1,3 +1,3 @@
|
|
| 1 |
version https://git-lfs.github.com/spec/v1
|
| 2 |
-
oid sha256:
|
| 3 |
-
size
|
|
|
|
| 1 |
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:ae6fea0a295f020e83aaa8d7d2eb53cef4f4dca9f9ba189aa55a4dce6254cdd0
|
| 3 |
+
size 5285001144
|
model-00005-of-00006.safetensors
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:d25ef567536d22a0d153b301d044944974dd594b6b124b6dffab7547fbc6a06e
|
| 3 |
+
size 5285001144
|
model-00005-of-00007.safetensors
DELETED
|
@@ -1,3 +0,0 @@
|
|
| 1 |
-
version https://git-lfs.github.com/spec/v1
|
| 2 |
-
oid sha256:85d22e011701f7fb6ff51d0c453abf6b248786c04d7a101b537c13f32e44310c
|
| 3 |
-
size 4928485104
|
|
|
|
|
|
|
|
|
|
|
|
model-00006-of-00006.safetensors
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:6a8dc222611730fc1672e0ebe7ffd28af977721849209dd3df7fdb26f2feafbf
|
| 3 |
+
size 3943963256
|
model-00006-of-00007.safetensors
DELETED
|
@@ -1,3 +0,0 @@
|
|
| 1 |
-
version https://git-lfs.github.com/spec/v1
|
| 2 |
-
oid sha256:33012c7d219507ff15784abbc8c431084383636704d177d3c7ba48e2644671a1
|
| 3 |
-
size 4065911432
|
|
|
|
|
|
|
|
|
|
|
|
model-00007-of-00007.safetensors
DELETED
|
@@ -1,3 +0,0 @@
|
|
| 1 |
-
version https://git-lfs.github.com/spec/v1
|
| 2 |
-
oid sha256:dc3972be4a080cd08d4bf691716a852a35ef8284ef4fdf082a5bdcb88141d80d
|
| 3 |
-
size 1555824768
|
|
|
|
|
|
|
|
|
|
|
|
model.safetensors.index.json
CHANGED
|
The diff for this file is too large to render.
See raw diff
|
|
|
modeling_hulumed_encoder.py
ADDED
|
@@ -0,0 +1,534 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
# Adopted from https://github.com/huggingface/transformers/blob/main/src/transformers/models/qwen2_vl/modeling_qwen2_vl.py.
|
| 2 |
+
# Below is the original copyright:
|
| 3 |
+
# Copyright 2024 The Qwen team, Alibaba Group and the HuggingFace Inc. team. All rights reserved.
|
| 4 |
+
#
|
| 5 |
+
# This code is based on EleutherAI's GPT-NeoX library and the GPT-NeoX
|
| 6 |
+
# and OPT implementations in this library. It has been modified from its
|
| 7 |
+
# original forms to accommodate minor architectural differences compared
|
| 8 |
+
# to GPT-NeoX and OPT used by the Meta AI team that trained the model.
|
| 9 |
+
#
|
| 10 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
| 11 |
+
# you may not use this file except in compliance with the License.
|
| 12 |
+
# You may obtain a copy of the License at
|
| 13 |
+
#
|
| 14 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
| 15 |
+
#
|
| 16 |
+
# Unless required by applicable law or agreed to in writing, software
|
| 17 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
| 18 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
| 19 |
+
# See the License for the specific language governing permissions and
|
| 20 |
+
# limitations under the License.
|
| 21 |
+
"""PyTorch HuluMed vision encoder model."""
|
| 22 |
+
|
| 23 |
+
import importlib.util
|
| 24 |
+
import os.path as osp
|
| 25 |
+
import math
|
| 26 |
+
import warnings
|
| 27 |
+
|
| 28 |
+
import torch
|
| 29 |
+
import torch.nn as nn
|
| 30 |
+
import torch.nn.functional as F
|
| 31 |
+
import torch.utils.checkpoint
|
| 32 |
+
from torch.nn.init import _calculate_fan_in_and_fan_out
|
| 33 |
+
|
| 34 |
+
from transformers.activations import ACT2FN
|
| 35 |
+
from transformers.modeling_utils import PreTrainedModel
|
| 36 |
+
from transformers.utils import is_flash_attn_2_available
|
| 37 |
+
|
| 38 |
+
if is_flash_attn_2_available():
|
| 39 |
+
from flash_attn import flash_attn_varlen_func
|
| 40 |
+
else:
|
| 41 |
+
flash_attn_varlen_func = None
|
| 42 |
+
|
| 43 |
+
try:
|
| 44 |
+
from .configuration_hulumed_encoder import HulumedVisionEncoderConfig
|
| 45 |
+
except ImportError:
|
| 46 |
+
spec = importlib.util.spec_from_file_location(
|
| 47 |
+
"configuration_hulumed_encoder",
|
| 48 |
+
osp.join(osp.dirname(__file__), "configuration_hulumed_encoder.py"),
|
| 49 |
+
)
|
| 50 |
+
configuration_hulumed_encoder = importlib.util.module_from_spec(spec)
|
| 51 |
+
spec.loader.exec_module(configuration_hulumed_encoder)
|
| 52 |
+
HulumedVisionEncoderConfig = getattr(
|
| 53 |
+
configuration_hulumed_encoder,
|
| 54 |
+
"HulumedVisionEncoderConfig",
|
| 55 |
+
)
|
| 56 |
+
|
| 57 |
+
|
| 58 |
+
def _trunc_normal_(tensor, mean, std, a, b):
|
| 59 |
+
# Cut & paste from PyTorch official master until it's in a few official releases - RW
|
| 60 |
+
# Method based on https://people.sc.fsu.edu/~jburkardt/presentations/truncated_normal.pdf
|
| 61 |
+
def norm_cdf(x):
|
| 62 |
+
# Computes standard normal cumulative distribution function
|
| 63 |
+
return (1.0 + math.erf(x / math.sqrt(2.0))) / 2.0
|
| 64 |
+
|
| 65 |
+
if (mean < a - 2 * std) or (mean > b + 2 * std):
|
| 66 |
+
warnings.warn(
|
| 67 |
+
"mean is more than 2 std from [a, b] in nn.init.trunc_normal_. "
|
| 68 |
+
"The distribution of values may be incorrect.",
|
| 69 |
+
stacklevel=2,
|
| 70 |
+
)
|
| 71 |
+
|
| 72 |
+
# Values are generated by using a truncated uniform distribution and
|
| 73 |
+
# then using the inverse CDF for the normal distribution.
|
| 74 |
+
# Get upper and lower cdf values
|
| 75 |
+
l = norm_cdf((a - mean) / std)
|
| 76 |
+
u = norm_cdf((b - mean) / std)
|
| 77 |
+
|
| 78 |
+
# Uniformly fill tensor with values from [l, u], then translate to
|
| 79 |
+
# [2l-1, 2u-1].
|
| 80 |
+
tensor.uniform_(2 * l - 1, 2 * u - 1)
|
| 81 |
+
|
| 82 |
+
# Use inverse cdf transform for normal distribution to get truncated
|
| 83 |
+
# standard normal
|
| 84 |
+
tensor.erfinv_()
|
| 85 |
+
|
| 86 |
+
# Transform to proper mean, std
|
| 87 |
+
tensor.mul_(std * math.sqrt(2.0))
|
| 88 |
+
tensor.add_(mean)
|
| 89 |
+
|
| 90 |
+
# Clamp to ensure it's in the proper range
|
| 91 |
+
tensor.clamp_(min=a, max=b)
|
| 92 |
+
|
| 93 |
+
|
| 94 |
+
def trunc_normal_tf_(
|
| 95 |
+
tensor: torch.Tensor, mean: float = 0.0, std: float = 1.0, a: float = -2.0, b: float = 2.0
|
| 96 |
+
) -> torch.Tensor:
|
| 97 |
+
"""Fills the input Tensor with values drawn from a truncated
|
| 98 |
+
normal distribution. The values are effectively drawn from the
|
| 99 |
+
normal distribution :math:`\\mathcal{N}(\text{mean}, \text{std}^2)`
|
| 100 |
+
with values outside :math:`[a, b]` redrawn until they are within
|
| 101 |
+
the bounds. The method used for generating the random values works
|
| 102 |
+
best when :math:`a \\leq \text{mean} \\leq b`.
|
| 103 |
+
|
| 104 |
+
NOTE: this 'tf' variant behaves closer to Tensorflow / JAX impl where the
|
| 105 |
+
bounds [a, b] are applied when sampling the normal distribution with mean=0, std=1.0
|
| 106 |
+
and the result is subsequently scaled and shifted by the mean and std args.
|
| 107 |
+
|
| 108 |
+
Args:
|
| 109 |
+
tensor: an n-dimensional `torch.Tensor`
|
| 110 |
+
mean: the mean of the normal distribution
|
| 111 |
+
std: the standard deviation of the normal distribution
|
| 112 |
+
a: the minimum cutoff value
|
| 113 |
+
b: the maximum cutoff value
|
| 114 |
+
"""
|
| 115 |
+
with torch.no_grad():
|
| 116 |
+
_trunc_normal_(tensor, 0, 1.0, a, b)
|
| 117 |
+
tensor.mul_(std).add_(mean)
|
| 118 |
+
|
| 119 |
+
|
| 120 |
+
def variance_scaling_(tensor, scale=1.0, mode="fan_in", distribution="normal"):
|
| 121 |
+
fan_in, fan_out = _calculate_fan_in_and_fan_out(tensor)
|
| 122 |
+
if mode == "fan_in":
|
| 123 |
+
denom = fan_in
|
| 124 |
+
elif mode == "fan_out":
|
| 125 |
+
denom = fan_out
|
| 126 |
+
elif mode == "fan_avg":
|
| 127 |
+
denom = (fan_in + fan_out) / 2
|
| 128 |
+
|
| 129 |
+
variance = scale / denom
|
| 130 |
+
|
| 131 |
+
if distribution == "truncated_normal":
|
| 132 |
+
# constant is stddev of standard normal truncated to (-2, 2)
|
| 133 |
+
trunc_normal_tf_(tensor, std=math.sqrt(variance) / 0.87962566103423978)
|
| 134 |
+
elif distribution == "normal":
|
| 135 |
+
with torch.no_grad():
|
| 136 |
+
tensor.normal_(std=math.sqrt(variance))
|
| 137 |
+
elif distribution == "uniform":
|
| 138 |
+
bound = math.sqrt(3 * variance)
|
| 139 |
+
with torch.no_grad():
|
| 140 |
+
tensor.uniform_(-bound, bound)
|
| 141 |
+
else:
|
| 142 |
+
raise ValueError(f"invalid distribution {distribution}")
|
| 143 |
+
|
| 144 |
+
|
| 145 |
+
def lecun_normal_(tensor):
|
| 146 |
+
variance_scaling_(tensor, mode="fan_in", distribution="truncated_normal")
|
| 147 |
+
|
| 148 |
+
|
| 149 |
+
def default_flax_embed_init(tensor):
|
| 150 |
+
variance_scaling_(tensor, mode="fan_in", distribution="normal")
|
| 151 |
+
|
| 152 |
+
|
| 153 |
+
# Copied from transformers.models.llama.modeling_llama.rotate_half
|
| 154 |
+
def rotate_half(x):
|
| 155 |
+
"""Rotates half the hidden dims of the input."""
|
| 156 |
+
x1 = x[..., : x.shape[-1] // 2]
|
| 157 |
+
x2 = x[..., x.shape[-1] // 2 :]
|
| 158 |
+
return torch.cat((-x2, x1), dim=-1)
|
| 159 |
+
|
| 160 |
+
|
| 161 |
+
def apply_rotary_pos_emb_vision(tensor: torch.Tensor, freqs: torch.Tensor) -> torch.Tensor:
|
| 162 |
+
orig_dtype = tensor.dtype
|
| 163 |
+
tensor = tensor.float()
|
| 164 |
+
cos = freqs.cos()
|
| 165 |
+
sin = freqs.sin()
|
| 166 |
+
cos = cos.unsqueeze(1).repeat(1, 1, 2).unsqueeze(0).float()
|
| 167 |
+
sin = sin.unsqueeze(1).repeat(1, 1, 2).unsqueeze(0).float()
|
| 168 |
+
output = (tensor * cos) + (rotate_half(tensor) * sin)
|
| 169 |
+
output = output.to(orig_dtype)
|
| 170 |
+
return output
|
| 171 |
+
|
| 172 |
+
|
| 173 |
+
class VisionRotaryEmbedding(nn.Module):
|
| 174 |
+
|
| 175 |
+
def __init__(self, dim: int, theta: float = 10000.0) -> None:
|
| 176 |
+
super().__init__()
|
| 177 |
+
inv_freq = 1.0 / (theta ** (torch.arange(0, dim, 2, dtype=torch.float) / dim))
|
| 178 |
+
self.register_buffer("inv_freq", inv_freq, persistent=False)
|
| 179 |
+
|
| 180 |
+
def forward(self, seqlen: int) -> torch.Tensor:
|
| 181 |
+
seq = torch.arange(seqlen, device=self.inv_freq.device, dtype=self.inv_freq.dtype)
|
| 182 |
+
freqs = torch.outer(seq, self.inv_freq)
|
| 183 |
+
return freqs
|
| 184 |
+
|
| 185 |
+
|
| 186 |
+
class HulumedVisionEmbeddings(nn.Module):
|
| 187 |
+
|
| 188 |
+
def __init__(self, config: HulumedVisionEncoderConfig):
|
| 189 |
+
super().__init__()
|
| 190 |
+
self.config = config
|
| 191 |
+
self.embed_dim = config.hidden_size
|
| 192 |
+
self.patch_size = config.patch_size
|
| 193 |
+
|
| 194 |
+
self.patch_embedding = nn.Conv2d(
|
| 195 |
+
in_channels=config.num_channels,
|
| 196 |
+
out_channels=self.embed_dim,
|
| 197 |
+
kernel_size=self.patch_size,
|
| 198 |
+
stride=self.patch_size,
|
| 199 |
+
padding="valid",
|
| 200 |
+
)
|
| 201 |
+
|
| 202 |
+
def forward(self, hidden_states: torch.Tensor) -> torch.Tensor:
|
| 203 |
+
hidden_states = hidden_states.view(
|
| 204 |
+
-1, self.config.num_channels, self.patch_size, self.patch_size
|
| 205 |
+
)
|
| 206 |
+
patch_embeds = self.patch_embedding(hidden_states) # shape = [*, width, grid, grid]
|
| 207 |
+
# embeddings = patch_embeds.flatten(2).transpose(1, 2)
|
| 208 |
+
embeddings = patch_embeds.view(-1, self.embed_dim)
|
| 209 |
+
|
| 210 |
+
return embeddings
|
| 211 |
+
|
| 212 |
+
|
| 213 |
+
class VisionAttention(nn.Module):
|
| 214 |
+
"""Multi-headed attention from 'Attention Is All You Need' paper"""
|
| 215 |
+
|
| 216 |
+
# Copied from transformers.models.clip.modeling_clip.CLIPAttention.__init__
|
| 217 |
+
def __init__(self, config):
|
| 218 |
+
super().__init__()
|
| 219 |
+
self.config = config
|
| 220 |
+
self.embed_dim = config.hidden_size
|
| 221 |
+
self.num_heads = config.num_attention_heads
|
| 222 |
+
self.head_dim = self.embed_dim // self.num_heads
|
| 223 |
+
if self.head_dim * self.num_heads != self.embed_dim:
|
| 224 |
+
raise ValueError(
|
| 225 |
+
f"embed_dim must be divisible by num_heads (got `embed_dim`: {self.embed_dim} and `num_heads`:"
|
| 226 |
+
f" {self.num_heads})."
|
| 227 |
+
)
|
| 228 |
+
self.scale = self.head_dim**-0.5
|
| 229 |
+
self.dropout = config.attention_dropout
|
| 230 |
+
|
| 231 |
+
self.k_proj = nn.Linear(self.embed_dim, self.embed_dim)
|
| 232 |
+
self.v_proj = nn.Linear(self.embed_dim, self.embed_dim)
|
| 233 |
+
self.q_proj = nn.Linear(self.embed_dim, self.embed_dim)
|
| 234 |
+
self.out_proj = nn.Linear(self.embed_dim, self.embed_dim)
|
| 235 |
+
|
| 236 |
+
def forward(
|
| 237 |
+
self,
|
| 238 |
+
hidden_states: torch.Tensor,
|
| 239 |
+
cu_seqlens: torch.Tensor,
|
| 240 |
+
rotary_pos_emb: torch.Tensor = None,
|
| 241 |
+
) -> torch.Tensor:
|
| 242 |
+
"""Input shape: Time x Channel"""
|
| 243 |
+
|
| 244 |
+
q_len, _ = hidden_states.size()
|
| 245 |
+
|
| 246 |
+
query_states = self.q_proj(hidden_states)
|
| 247 |
+
key_states = self.k_proj(hidden_states)
|
| 248 |
+
value_states = self.v_proj(hidden_states)
|
| 249 |
+
|
| 250 |
+
query_states = query_states.view(q_len, self.num_heads, self.head_dim)
|
| 251 |
+
key_states = key_states.view(q_len, self.num_heads, self.head_dim)
|
| 252 |
+
value_states = value_states.view(q_len, self.num_heads, self.head_dim)
|
| 253 |
+
|
| 254 |
+
query_states = apply_rotary_pos_emb_vision(query_states.unsqueeze(0), rotary_pos_emb).squeeze(0)
|
| 255 |
+
key_states = apply_rotary_pos_emb_vision(key_states.unsqueeze(0), rotary_pos_emb).squeeze(0)
|
| 256 |
+
|
| 257 |
+
attention_mask = torch.zeros([1, q_len, q_len], device=query_states.device, dtype=torch.bool)
|
| 258 |
+
for i in range(1, len(cu_seqlens)):
|
| 259 |
+
attention_mask[..., cu_seqlens[i - 1] : cu_seqlens[i], cu_seqlens[i - 1] : cu_seqlens[i]] = True
|
| 260 |
+
|
| 261 |
+
query_states = query_states.transpose(0, 1)
|
| 262 |
+
key_states = key_states.transpose(0, 1)
|
| 263 |
+
value_states = value_states.transpose(0, 1)
|
| 264 |
+
|
| 265 |
+
attn_weights = torch.matmul(query_states, key_states.transpose(1, 2)) / math.sqrt(self.head_dim)
|
| 266 |
+
attn_weights = attn_weights + attention_mask
|
| 267 |
+
|
| 268 |
+
# upcast attention to fp32
|
| 269 |
+
attn_weights = nn.functional.softmax(attn_weights, dim=-1, dtype=torch.float32).to(query_states.dtype)
|
| 270 |
+
attn_weights = nn.functional.dropout(attn_weights, p=self.dropout, training=self.training)
|
| 271 |
+
attn_output = torch.matmul(attn_weights, value_states)
|
| 272 |
+
|
| 273 |
+
attn_output = attn_output.transpose(0, 1)
|
| 274 |
+
attn_output = attn_output.reshape(q_len, -1)
|
| 275 |
+
attn_output = self.out_proj(attn_output)
|
| 276 |
+
|
| 277 |
+
return attn_output
|
| 278 |
+
|
| 279 |
+
|
| 280 |
+
class VisionFlashAttention2(VisionAttention):
|
| 281 |
+
|
| 282 |
+
def __init__(self, *args, **kwargs):
|
| 283 |
+
super().__init__(*args, **kwargs)
|
| 284 |
+
|
| 285 |
+
# Adapted from transformers.models.llama.modeling_llama.LlamaFlashAttention2.forward
|
| 286 |
+
def forward(
|
| 287 |
+
self,
|
| 288 |
+
hidden_states: torch.Tensor,
|
| 289 |
+
cu_seqlens: torch.Tensor,
|
| 290 |
+
rotary_pos_emb: torch.Tensor = None,
|
| 291 |
+
) -> torch.Tensor:
|
| 292 |
+
q_len, _ = hidden_states.size()
|
| 293 |
+
|
| 294 |
+
query_states = self.q_proj(hidden_states)
|
| 295 |
+
key_states = self.k_proj(hidden_states)
|
| 296 |
+
value_states = self.v_proj(hidden_states)
|
| 297 |
+
|
| 298 |
+
# Flash attention requires the input to have the shape
|
| 299 |
+
# batch_size x seq_length x head_dim x hidden_dim
|
| 300 |
+
# therefore we just need to keep the original shape
|
| 301 |
+
query_states = query_states.view(q_len, self.num_heads, self.head_dim)
|
| 302 |
+
key_states = key_states.view(q_len, self.num_heads, self.head_dim)
|
| 303 |
+
value_states = value_states.view(q_len, self.num_heads, self.head_dim)
|
| 304 |
+
query_states = apply_rotary_pos_emb_vision(query_states.unsqueeze(0), rotary_pos_emb).squeeze(0)
|
| 305 |
+
key_states = apply_rotary_pos_emb_vision(key_states.unsqueeze(0), rotary_pos_emb).squeeze(0)
|
| 306 |
+
|
| 307 |
+
max_seqlen = (cu_seqlens[1:] - cu_seqlens[:-1]).max().item()
|
| 308 |
+
attn_output = flash_attn_varlen_func(query_states, key_states, value_states, cu_seqlens, cu_seqlens, max_seqlen, max_seqlen).reshape(
|
| 309 |
+
q_len, -1
|
| 310 |
+
)
|
| 311 |
+
attn_output = self.out_proj(attn_output)
|
| 312 |
+
|
| 313 |
+
return attn_output
|
| 314 |
+
|
| 315 |
+
|
| 316 |
+
class VisionSdpaAttention(VisionAttention):
|
| 317 |
+
|
| 318 |
+
def forward(
|
| 319 |
+
self,
|
| 320 |
+
hidden_states: torch.Tensor,
|
| 321 |
+
cu_seqlens: torch.Tensor,
|
| 322 |
+
rotary_pos_emb: torch.Tensor = None,
|
| 323 |
+
) -> torch.Tensor:
|
| 324 |
+
seq_length = hidden_states.shape[0]
|
| 325 |
+
query_states = self.q_proj(hidden_states)
|
| 326 |
+
key_states = self.k_proj(hidden_states)
|
| 327 |
+
value_states = self.v_proj(hidden_states)
|
| 328 |
+
|
| 329 |
+
query_states = query_states.view(seq_length, self.num_heads, self.head_dim)
|
| 330 |
+
key_states = key_states.view(seq_length, self.num_heads, self.head_dim)
|
| 331 |
+
value_states = value_states.view(seq_length, self.num_heads, self.head_dim)
|
| 332 |
+
|
| 333 |
+
query_states = apply_rotary_pos_emb_vision(query_states.unsqueeze(0), rotary_pos_emb).squeeze(0)
|
| 334 |
+
key_states = apply_rotary_pos_emb_vision(key_states.unsqueeze(0), rotary_pos_emb).squeeze(0)
|
| 335 |
+
|
| 336 |
+
attention_mask = torch.zeros([1, seq_length, seq_length], device=query_states.device, dtype=torch.bool)
|
| 337 |
+
for i in range(1, len(cu_seqlens)):
|
| 338 |
+
attention_mask[..., cu_seqlens[i - 1] : cu_seqlens[i], cu_seqlens[i - 1] : cu_seqlens[i]] = True
|
| 339 |
+
|
| 340 |
+
query_states = query_states.transpose(0, 1)
|
| 341 |
+
key_states = key_states.transpose(0, 1)
|
| 342 |
+
value_states = value_states.transpose(0, 1)
|
| 343 |
+
attn_output = F.scaled_dot_product_attention(query_states, key_states, value_states, attention_mask, dropout_p=0.0)
|
| 344 |
+
attn_output = attn_output.transpose(0, 1)
|
| 345 |
+
attn_output = attn_output.reshape(seq_length, -1)
|
| 346 |
+
attn_output = self.out_proj(attn_output)
|
| 347 |
+
return attn_output
|
| 348 |
+
|
| 349 |
+
|
| 350 |
+
VISION_ATTENTION_CLASSES = {
|
| 351 |
+
"eager": VisionAttention,
|
| 352 |
+
"flash_attention_2": VisionFlashAttention2,
|
| 353 |
+
"sdpa": VisionSdpaAttention,
|
| 354 |
+
}
|
| 355 |
+
|
| 356 |
+
|
| 357 |
+
# Copied from transformers.models.clip.modeling_clip.CLIPMLP with CLIP->Hulumed
|
| 358 |
+
class HulumedVisionMLP(nn.Module):
|
| 359 |
+
|
| 360 |
+
def __init__(self, config):
|
| 361 |
+
super().__init__()
|
| 362 |
+
self.config = config
|
| 363 |
+
self.activation_fn = ACT2FN[config.hidden_act]
|
| 364 |
+
self.fc1 = nn.Linear(config.hidden_size, config.intermediate_size)
|
| 365 |
+
self.fc2 = nn.Linear(config.intermediate_size, config.hidden_size)
|
| 366 |
+
|
| 367 |
+
def forward(self, hidden_states: torch.Tensor) -> torch.Tensor:
|
| 368 |
+
hidden_states = self.fc1(hidden_states)
|
| 369 |
+
hidden_states = self.activation_fn(hidden_states)
|
| 370 |
+
hidden_states = self.fc2(hidden_states)
|
| 371 |
+
return hidden_states
|
| 372 |
+
|
| 373 |
+
|
| 374 |
+
class HulumedVisionEncoderLayer(nn.Module):
|
| 375 |
+
|
| 376 |
+
def __init__(self, config: HulumedVisionEncoderConfig):
|
| 377 |
+
super().__init__()
|
| 378 |
+
self.embed_dim = config.hidden_size
|
| 379 |
+
self.self_attn = VISION_ATTENTION_CLASSES[config._attn_implementation](config=config)
|
| 380 |
+
self.layer_norm1 = nn.LayerNorm(self.embed_dim, eps=config.layer_norm_eps)
|
| 381 |
+
self.mlp = HulumedVisionMLP(config)
|
| 382 |
+
self.layer_norm2 = nn.LayerNorm(self.embed_dim, eps=config.layer_norm_eps)
|
| 383 |
+
|
| 384 |
+
# Ignore copy
|
| 385 |
+
def forward(self, hidden_states, cu_seqlens, rotary_pos_emb) -> torch.Tensor:
|
| 386 |
+
hidden_states = hidden_states + self.self_attn(
|
| 387 |
+
self.layer_norm1(hidden_states), cu_seqlens=cu_seqlens, rotary_pos_emb=rotary_pos_emb
|
| 388 |
+
)
|
| 389 |
+
hidden_states = hidden_states + self.mlp(self.layer_norm2(hidden_states))
|
| 390 |
+
return hidden_states
|
| 391 |
+
|
| 392 |
+
|
| 393 |
+
class HulumedVisionTransformerEncoder(nn.Module):
|
| 394 |
+
|
| 395 |
+
def __init__(self, config: HulumedVisionEncoderConfig):
|
| 396 |
+
super().__init__()
|
| 397 |
+
self.config = config
|
| 398 |
+
head_dim = config.hidden_size // config.num_attention_heads
|
| 399 |
+
self.rotary_pos_emb = VisionRotaryEmbedding(head_dim // 2)
|
| 400 |
+
self.layers = nn.ModuleList([HulumedVisionEncoderLayer(config) for _ in range(config.num_hidden_layers)])
|
| 401 |
+
self.gradient_checkpointing = False
|
| 402 |
+
|
| 403 |
+
def rot_pos_emb(self, grid_sizes, merge_sizes):
|
| 404 |
+
pos_ids = []
|
| 405 |
+
for (t, h, w), merge_size in zip(grid_sizes, merge_sizes):
|
| 406 |
+
hpos_ids = torch.arange(h).unsqueeze(1).expand(-1, w)
|
| 407 |
+
hpos_ids = hpos_ids.reshape(
|
| 408 |
+
h // merge_size,
|
| 409 |
+
merge_size,
|
| 410 |
+
w // merge_size,
|
| 411 |
+
merge_size,
|
| 412 |
+
)
|
| 413 |
+
hpos_ids = hpos_ids.permute(0, 2, 1, 3)
|
| 414 |
+
hpos_ids = hpos_ids.flatten()
|
| 415 |
+
|
| 416 |
+
wpos_ids = torch.arange(w).unsqueeze(0).expand(h, -1)
|
| 417 |
+
wpos_ids = wpos_ids.reshape(
|
| 418 |
+
h // merge_size,
|
| 419 |
+
merge_size,
|
| 420 |
+
w // merge_size,
|
| 421 |
+
merge_size,
|
| 422 |
+
)
|
| 423 |
+
wpos_ids = wpos_ids.permute(0, 2, 1, 3)
|
| 424 |
+
wpos_ids = wpos_ids.flatten()
|
| 425 |
+
pos_ids.append(torch.stack([hpos_ids, wpos_ids], dim=-1).repeat(t, 1))
|
| 426 |
+
|
| 427 |
+
pos_ids = torch.cat(pos_ids, dim=0)
|
| 428 |
+
max_grid_size = grid_sizes[:, 1:].max()
|
| 429 |
+
rotary_pos_emb_full = self.rotary_pos_emb(max_grid_size)
|
| 430 |
+
rotary_pos_emb = rotary_pos_emb_full[pos_ids].flatten(1)
|
| 431 |
+
|
| 432 |
+
return rotary_pos_emb
|
| 433 |
+
|
| 434 |
+
def forward(self, hidden_states, grid_sizes, merge_sizes) -> torch.Tensor:
|
| 435 |
+
rotary_pos_emb = self.rot_pos_emb(grid_sizes, merge_sizes)
|
| 436 |
+
|
| 437 |
+
cu_seqlens = torch.repeat_interleave(grid_sizes[:, 1] * grid_sizes[:, 2], grid_sizes[:, 0]).cumsum(dim=0, dtype=torch.int32)
|
| 438 |
+
cu_seqlens = F.pad(cu_seqlens, (1, 0), value=0)
|
| 439 |
+
|
| 440 |
+
for blk in self.layers:
|
| 441 |
+
if self.gradient_checkpointing and self.training:
|
| 442 |
+
hidden_states = self._gradient_checkpointing_func(
|
| 443 |
+
blk.__call__,
|
| 444 |
+
hidden_states,
|
| 445 |
+
cu_seqlens,
|
| 446 |
+
rotary_pos_emb
|
| 447 |
+
)
|
| 448 |
+
else:
|
| 449 |
+
hidden_states = blk(hidden_states, cu_seqlens=cu_seqlens, rotary_pos_emb=rotary_pos_emb)
|
| 450 |
+
|
| 451 |
+
return hidden_states
|
| 452 |
+
|
| 453 |
+
|
| 454 |
+
class HulumedVisionEncoderModel(PreTrainedModel):
|
| 455 |
+
|
| 456 |
+
config_class = HulumedVisionEncoderConfig
|
| 457 |
+
base_model_prefix = "hulumed"
|
| 458 |
+
main_input_name = "pixel_values"
|
| 459 |
+
supports_gradient_checkpointing = True
|
| 460 |
+
_no_split_modules = [
|
| 461 |
+
"HulumedVisionEncoderLayer",
|
| 462 |
+
"HulumedVisionEmbeddings",
|
| 463 |
+
]
|
| 464 |
+
_supports_flash_attn_2 = True
|
| 465 |
+
_supports_sdpa = True
|
| 466 |
+
|
| 467 |
+
def __init__(self, config: HulumedVisionEncoderConfig):
|
| 468 |
+
super().__init__(config=config)
|
| 469 |
+
embed_dim = config.hidden_size
|
| 470 |
+
|
| 471 |
+
self.embeddings = HulumedVisionEmbeddings(config)
|
| 472 |
+
self.encoder = HulumedVisionTransformerEncoder(config)
|
| 473 |
+
self.post_layernorm = nn.LayerNorm(embed_dim, eps=config.layer_norm_eps)
|
| 474 |
+
|
| 475 |
+
self.post_init()
|
| 476 |
+
|
| 477 |
+
def forward(self, pixel_values, grid_sizes, merge_sizes=None) -> torch.Tensor:
|
| 478 |
+
hidden_states = self.embeddings(pixel_values)
|
| 479 |
+
hidden_states = self.encoder(hidden_states, grid_sizes, merge_sizes)
|
| 480 |
+
hidden_states = self.post_layernorm(hidden_states)
|
| 481 |
+
|
| 482 |
+
hidden_states_chunks = hidden_states.split(grid_sizes.prod(dim=1).tolist(), dim=0)
|
| 483 |
+
outputs = []
|
| 484 |
+
|
| 485 |
+
for hidden_states, grid_size, merge_size in zip(hidden_states_chunks, grid_sizes, merge_sizes):
|
| 486 |
+
# NOTE: previous implementation, which supports downsampling with any factor
|
| 487 |
+
c = hidden_states.shape[-1]
|
| 488 |
+
hidden_states = hidden_states.view(
|
| 489 |
+
grid_size[0], grid_size[1] // merge_size, grid_size[2] // merge_size, merge_size, merge_size, c
|
| 490 |
+
).permute(0, 1, 3, 2, 4, 5)
|
| 491 |
+
hidden_states = hidden_states.reshape(
|
| 492 |
+
grid_size[0], grid_size[1], grid_size[2], c
|
| 493 |
+
).permute(0, 3, 1, 2)
|
| 494 |
+
hidden_states = torch.nn.functional.interpolate(
|
| 495 |
+
hidden_states,
|
| 496 |
+
size=(grid_size[1] // merge_size, grid_size[2] // merge_size),
|
| 497 |
+
mode='bilinear'
|
| 498 |
+
)
|
| 499 |
+
hidden_states = hidden_states.permute(0, 2, 3, 1).view(-1, c)
|
| 500 |
+
|
| 501 |
+
# NOTE: simplified implementation, which only supports downsampling with integer factor
|
| 502 |
+
# NOTE: this implementation is mathematically equivalent to the previous one when merge_size is 1 or 2 but may cause slightly different results
|
| 503 |
+
# hidden_states = hidden_states.view(-1, merge_size * merge_size, hidden_states.size(-1))
|
| 504 |
+
# hidden_states = hidden_states.mean(dim=1)
|
| 505 |
+
|
| 506 |
+
outputs.append(hidden_states)
|
| 507 |
+
|
| 508 |
+
return torch.cat(outputs, dim=0)
|
| 509 |
+
|
| 510 |
+
def _init_weights(self, module):
|
| 511 |
+
"""Initialize the weights"""
|
| 512 |
+
if isinstance(module, nn.Embedding):
|
| 513 |
+
default_flax_embed_init(module.weight)
|
| 514 |
+
elif isinstance(module, VisionAttention):
|
| 515 |
+
nn.init.xavier_uniform_(module.q_proj.weight)
|
| 516 |
+
nn.init.xavier_uniform_(module.k_proj.weight)
|
| 517 |
+
nn.init.xavier_uniform_(module.v_proj.weight)
|
| 518 |
+
nn.init.xavier_uniform_(module.out_proj.weight)
|
| 519 |
+
nn.init.zeros_(module.q_proj.bias)
|
| 520 |
+
nn.init.zeros_(module.k_proj.bias)
|
| 521 |
+
nn.init.zeros_(module.v_proj.bias)
|
| 522 |
+
nn.init.zeros_(module.out_proj.bias)
|
| 523 |
+
elif isinstance(module, HulumedVisionMLP):
|
| 524 |
+
nn.init.xavier_uniform_(module.fc1.weight)
|
| 525 |
+
nn.init.xavier_uniform_(module.fc2.weight)
|
| 526 |
+
nn.init.normal_(module.fc1.bias, std=1e-6)
|
| 527 |
+
nn.init.normal_(module.fc2.bias, std=1e-6)
|
| 528 |
+
elif isinstance(module, (nn.Linear, nn.Conv2d)):
|
| 529 |
+
lecun_normal_(module.weight)
|
| 530 |
+
if module.bias is not None:
|
| 531 |
+
nn.init.zeros_(module.bias)
|
| 532 |
+
elif isinstance(module, nn.LayerNorm):
|
| 533 |
+
module.bias.data.zero_()
|
| 534 |
+
module.weight.data.fill_(1.0)
|
modeling_hulumed_qwen3.py
ADDED
|
@@ -0,0 +1,524 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
# Adopted from https://github.com/haotian-liu/LLaVA. Below is the original copyright:
|
| 2 |
+
# Copyright 2023 Haotian Liu
|
| 3 |
+
#
|
| 4 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
| 5 |
+
# you may not use this file except in compliance with the License.
|
| 6 |
+
# You may obtain a copy of the License at
|
| 7 |
+
#
|
| 8 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
| 9 |
+
#
|
| 10 |
+
# Unless required by applicable law or agreed to in writing, software
|
| 11 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
| 12 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
| 13 |
+
# See the License for the specific language governing permissions and
|
| 14 |
+
# limitations under the License.
|
| 15 |
+
"""PyTorch HuluMed model."""
|
| 16 |
+
|
| 17 |
+
import importlib.util
|
| 18 |
+
import os.path as osp
|
| 19 |
+
import re
|
| 20 |
+
from abc import ABC, abstractmethod
|
| 21 |
+
from typing import List, Optional, Tuple, Union
|
| 22 |
+
|
| 23 |
+
import torch
|
| 24 |
+
import torch.nn as nn
|
| 25 |
+
import torch.utils.checkpoint
|
| 26 |
+
from transformers import (AutoConfig, AutoModelForCausalLM, Qwen3Config,AutoModel,
|
| 27 |
+
Qwen3ForCausalLM, Qwen3Model)
|
| 28 |
+
from transformers.generation.utils import GenerateOutput
|
| 29 |
+
from transformers.modeling_outputs import CausalLMOutputWithPast
|
| 30 |
+
|
| 31 |
+
CONTROLLER_HEART_BEAT_EXPIRATION = 30
|
| 32 |
+
WORKER_HEART_BEAT_INTERVAL = 15
|
| 33 |
+
|
| 34 |
+
LOGDIR = "."
|
| 35 |
+
|
| 36 |
+
# Model Constants
|
| 37 |
+
IGNORE_INDEX = -100
|
| 38 |
+
|
| 39 |
+
# Image arguments
|
| 40 |
+
IMAGE_TOKEN_INDEX = -200
|
| 41 |
+
DEFAULT_IMAGE_TOKEN = "<image>"
|
| 42 |
+
DEFAULT_IMAGE_PATCH_TOKEN = "<im_patch>"
|
| 43 |
+
DEFAULT_IM_START_TOKEN = "<im_start>"
|
| 44 |
+
DEFAULT_IM_END_TOKEN = "<im_end>"
|
| 45 |
+
IMAGE_PLACEHOLDER = "<image-placeholder>"
|
| 46 |
+
|
| 47 |
+
# Video arguments
|
| 48 |
+
VIDEO_TOKEN_INDEX = -201
|
| 49 |
+
DEFAULT_VIDEO_TOKEN = "<video>"
|
| 50 |
+
NUM_FRAMES = 128
|
| 51 |
+
MAX_FRAMES = 768
|
| 52 |
+
NUM_FRAMES_PER_SECOND = 1
|
| 53 |
+
|
| 54 |
+
# Audio arguments
|
| 55 |
+
AUDIO_TOKEN_INDEX = -202
|
| 56 |
+
DEFAULT_AUDIO_TOKEN = "<audio>"
|
| 57 |
+
|
| 58 |
+
# Stream arguments
|
| 59 |
+
STREAM_START_TOKEN = "<|stream_start|>"
|
| 60 |
+
STREAM_END_TOKEN = "<|stream_end|>"
|
| 61 |
+
STREAM_MAX_FRAMES = 400
|
| 62 |
+
|
| 63 |
+
MODAL_INDEX_MAP = {
|
| 64 |
+
"<image>": -200,
|
| 65 |
+
"<video>": -201,
|
| 66 |
+
"<audio>": -202,
|
| 67 |
+
}
|
| 68 |
+
|
| 69 |
+
subimage_token_num=196
|
| 70 |
+
try:
|
| 71 |
+
from .configuration_hulumed_qwen3 import HulumedQwen3Config
|
| 72 |
+
except ModuleNotFoundError:
|
| 73 |
+
spec = importlib.util.spec_from_file_location(
|
| 74 |
+
"configuration_hulumed_qwen3",
|
| 75 |
+
osp.join(osp.dirname(__file__), "configuration_hulumed_qwen3.py"),
|
| 76 |
+
)
|
| 77 |
+
configuration_hulumed_qwen3 = importlib.util.module_from_spec(spec)
|
| 78 |
+
spec.loader.exec_module(configuration_hulumed_qwen3)
|
| 79 |
+
HulumedQwen3Config = getattr(
|
| 80 |
+
configuration_hulumed_qwen3,
|
| 81 |
+
"HulumedQwen3Config",
|
| 82 |
+
)
|
| 83 |
+
|
| 84 |
+
|
| 85 |
+
def build_mlp(depth, hidden_size, output_hidden_size):
|
| 86 |
+
"""Build MLP layers for projection."""
|
| 87 |
+
modules = [nn.Linear(hidden_size, output_hidden_size)]
|
| 88 |
+
for _ in range(1, depth):
|
| 89 |
+
modules.append(nn.GELU())
|
| 90 |
+
modules.append(nn.Linear(output_hidden_size, output_hidden_size))
|
| 91 |
+
return nn.Sequential(*modules)
|
| 92 |
+
|
| 93 |
+
|
| 94 |
+
def build_vision_projector(config, delay_load=False, **kwargs):
|
| 95 |
+
"""Build vision projector based on config."""
|
| 96 |
+
projector_type = getattr(config, 'mm_projector_type', 'linear')
|
| 97 |
+
|
| 98 |
+
if projector_type == "linear":
|
| 99 |
+
return nn.Linear(config.vision_encoder_config.hidden_size, config.hidden_size)
|
| 100 |
+
elif projector_type.startswith("mlp"):
|
| 101 |
+
return MlpGeluProjector(config, projector_type)
|
| 102 |
+
else:
|
| 103 |
+
raise ValueError(f'Unknown projector type: {projector_type}')
|
| 104 |
+
|
| 105 |
+
|
| 106 |
+
class MlpGeluProjector(nn.Module):
|
| 107 |
+
"""MLP projector with GELU activation."""
|
| 108 |
+
|
| 109 |
+
def __init__(self, config, projector_type):
|
| 110 |
+
super().__init__()
|
| 111 |
+
|
| 112 |
+
mlp_gelu_match = re.match(r"^mlp(\d+)x_gelu$", projector_type)
|
| 113 |
+
if mlp_gelu_match is None:
|
| 114 |
+
raise ValueError(f"Invalid projector type format: {projector_type}")
|
| 115 |
+
mlp_depth = int(mlp_gelu_match.group(1))
|
| 116 |
+
|
| 117 |
+
self.readout = build_mlp(
|
| 118 |
+
mlp_depth,
|
| 119 |
+
config.vision_encoder_config.hidden_size,
|
| 120 |
+
config.hidden_size
|
| 121 |
+
)
|
| 122 |
+
|
| 123 |
+
def forward(self, x):
|
| 124 |
+
return self.readout(x)
|
| 125 |
+
|
| 126 |
+
|
| 127 |
+
class HulumedMetaModel:
|
| 128 |
+
"""Meta model for HuluMed that handles vision encoder initialization."""
|
| 129 |
+
|
| 130 |
+
def __init__(self, config):
|
| 131 |
+
super(HulumedMetaModel, self).__init__(config)
|
| 132 |
+
print('config.vision_encoder',config.vision_encoder)
|
| 133 |
+
if config.vision_encoder is not None:
|
| 134 |
+
# Load from pretrained path
|
| 135 |
+
print('Load from pretrained path')
|
| 136 |
+
self.vision_encoder = AutoModel.from_pretrained(
|
| 137 |
+
config.vision_encoder,
|
| 138 |
+
attn_implementation=self.config._attn_implementation,
|
| 139 |
+
torch_dtype=self.dtype,
|
| 140 |
+
)
|
| 141 |
+
self.config.vision_encoder_config = self.vision_encoder.config
|
| 142 |
+
self.config.vision_encoder = None
|
| 143 |
+
elif config.vision_encoder_config is not None:
|
| 144 |
+
# Build from config
|
| 145 |
+
print('Build from config')
|
| 146 |
+
self.vision_encoder = AutoModel.from_config(
|
| 147 |
+
self.config.vision_encoder_config,
|
| 148 |
+
attn_implementation=self.config._attn_implementation,
|
| 149 |
+
torch_dtype=self.dtype,
|
| 150 |
+
)
|
| 151 |
+
else:
|
| 152 |
+
raise ValueError("Vision encoder is not provided in config")
|
| 153 |
+
|
| 154 |
+
self.mm_projector = build_vision_projector(config)
|
| 155 |
+
|
| 156 |
+
def get_vision_encoder(self):
|
| 157 |
+
return self.vision_encoder
|
| 158 |
+
|
| 159 |
+
def get_mm_projector(self):
|
| 160 |
+
return self.mm_projector
|
| 161 |
+
|
| 162 |
+
|
| 163 |
+
class HulumedQwen3Model(HulumedMetaModel, Qwen3Model):
|
| 164 |
+
|
| 165 |
+
config_class = HulumedQwen3Config
|
| 166 |
+
|
| 167 |
+
def __init__(self, config: HulumedQwen3Config):
|
| 168 |
+
super(HulumedQwen3Model, self).__init__(config)
|
| 169 |
+
|
| 170 |
+
|
| 171 |
+
class HulumedMetaForCausalLM(ABC):
|
| 172 |
+
"""Meta class for HuluMed Causal LM with multimodal support."""
|
| 173 |
+
|
| 174 |
+
@abstractmethod
|
| 175 |
+
def get_model(self):
|
| 176 |
+
pass
|
| 177 |
+
|
| 178 |
+
def get_vision_encoder(self):
|
| 179 |
+
return self.get_model().get_vision_encoder()
|
| 180 |
+
|
| 181 |
+
def get_mm_projector(self):
|
| 182 |
+
return self.get_model().get_mm_projector()
|
| 183 |
+
|
| 184 |
+
def encode_images(
|
| 185 |
+
self,
|
| 186 |
+
pixel_values: torch.FloatTensor,
|
| 187 |
+
grid_sizes: torch.LongTensor,
|
| 188 |
+
merge_sizes: torch.LongTensor,
|
| 189 |
+
) -> torch.FloatTensor:
|
| 190 |
+
"""Encode images using vision encoder and projector."""
|
| 191 |
+
mm_features = self.get_model().get_vision_encoder()(
|
| 192 |
+
pixel_values=pixel_values,
|
| 193 |
+
grid_sizes=grid_sizes,
|
| 194 |
+
merge_sizes=merge_sizes,
|
| 195 |
+
)
|
| 196 |
+
mm_features = self.get_model().mm_projector(mm_features)
|
| 197 |
+
return mm_features
|
| 198 |
+
|
| 199 |
+
def _get_valid_visual_tokens(
|
| 200 |
+
self,
|
| 201 |
+
mm_features: torch.FloatTensor,
|
| 202 |
+
batched_num_patches: torch.LongTensor,
|
| 203 |
+
modals: List[str],
|
| 204 |
+
):
|
| 205 |
+
"""Filter out text-only samples and keep only valid visual tokens."""
|
| 206 |
+
valid_masks = []
|
| 207 |
+
for num_patches, modal in zip(batched_num_patches, modals):
|
| 208 |
+
valid_mask = torch.full(
|
| 209 |
+
(num_patches,),
|
| 210 |
+
modal != "text",
|
| 211 |
+
dtype=torch.bool,
|
| 212 |
+
device=mm_features.device
|
| 213 |
+
)
|
| 214 |
+
valid_masks.append(valid_mask)
|
| 215 |
+
mm_features = mm_features[torch.cat(valid_masks)]
|
| 216 |
+
return mm_features
|
| 217 |
+
|
| 218 |
+
def _maybe_truncate_visual_tokens(
|
| 219 |
+
self,
|
| 220 |
+
mm_features: torch.FloatTensor,
|
| 221 |
+
compression_mask: torch.BoolTensor,
|
| 222 |
+
batched_num_patches: torch.LongTensor,
|
| 223 |
+
modals: List[str],
|
| 224 |
+
input_ids: torch.LongTensor,
|
| 225 |
+
position_ids: Optional[torch.LongTensor] = None,
|
| 226 |
+
):
|
| 227 |
+
"""Truncate visual tokens if necessary based on position_ids."""
|
| 228 |
+
if position_ids is None or mm_features.shape[0] == input_ids.eq(self.config.image_token_index).sum():
|
| 229 |
+
return mm_features, compression_mask
|
| 230 |
+
|
| 231 |
+
truncation_mask = []
|
| 232 |
+
for num_patches, modal in zip(batched_num_patches, modals):
|
| 233 |
+
if modal == "text":
|
| 234 |
+
truncation_mask.append(torch.ones((0,), dtype=torch.bool, device=input_ids.device))
|
| 235 |
+
else:
|
| 236 |
+
truncation_mask.append(torch.ones((num_patches,), dtype=torch.bool, device=input_ids.device))
|
| 237 |
+
|
| 238 |
+
seq_end_indices = torch.nonzero(position_ids == 0)[:, 0]
|
| 239 |
+
seq_end_indices = seq_end_indices[seq_end_indices > 0].tolist() + [len(input_ids)]
|
| 240 |
+
seq_start_indices = [0] + seq_end_indices[:-1]
|
| 241 |
+
num_visual_tokens = [
|
| 242 |
+
input_ids[start:end].eq(self.config.image_token_index).sum()
|
| 243 |
+
for start, end in zip(seq_start_indices, seq_end_indices)
|
| 244 |
+
]
|
| 245 |
+
|
| 246 |
+
for n, mask in zip(num_visual_tokens, truncation_mask):
|
| 247 |
+
if len(mask) > 0:
|
| 248 |
+
mask[n:] = False
|
| 249 |
+
truncation_mask = torch.cat(truncation_mask)
|
| 250 |
+
|
| 251 |
+
return mm_features[truncation_mask], compression_mask[truncation_mask]
|
| 252 |
+
|
| 253 |
+
def _get_compression_mask(
|
| 254 |
+
self,
|
| 255 |
+
pixel_values: torch.FloatTensor,
|
| 256 |
+
batched_num_patches: torch.LongTensor,
|
| 257 |
+
grid_sizes: torch.LongTensor,
|
| 258 |
+
merge_sizes: torch.LongTensor,
|
| 259 |
+
modals: List[str],
|
| 260 |
+
threshold: float = 0.1,
|
| 261 |
+
min_tokens: int = 1,
|
| 262 |
+
) -> torch.BoolTensor:
|
| 263 |
+
"""Get compression mask for video tokens based on frame differences."""
|
| 264 |
+
batched_images = pixel_values.split(grid_sizes.prod(dim=1).tolist(), dim=0)
|
| 265 |
+
compression_masks = []
|
| 266 |
+
|
| 267 |
+
for images, num_patches, grid_size, merge_size, modal in zip(
|
| 268 |
+
batched_images, batched_num_patches, grid_sizes, merge_sizes, modals
|
| 269 |
+
):
|
| 270 |
+
t, h, w = grid_size
|
| 271 |
+
if modal == "image" or (modal == "video" and t == 1):
|
| 272 |
+
compression_masks.append(torch.ones((num_patches,), dtype=torch.bool, device=images.device))
|
| 273 |
+
|
| 274 |
+
elif modal == "video":
|
| 275 |
+
# Video token compression based on pixel differences
|
| 276 |
+
images = images.view(t, (h // merge_size) * (w // merge_size), -1)
|
| 277 |
+
|
| 278 |
+
pixel_diff = images[1:] - images[:-1]
|
| 279 |
+
pixel_diff = torch.abs(pixel_diff).mean(dim=-1) * 255
|
| 280 |
+
pixel_diff = torch.cat([torch.full_like(pixel_diff[0:1], threshold + 1), pixel_diff], dim=0)
|
| 281 |
+
mask = (pixel_diff / 255.0) > threshold
|
| 282 |
+
padding_ids = torch.nonzero(mask.sum(dim=1) < min_tokens)[:, 0]
|
| 283 |
+
mask[padding_ids, :min_tokens] = 1
|
| 284 |
+
compression_masks.append(mask.flatten())
|
| 285 |
+
|
| 286 |
+
else:
|
| 287 |
+
# Pseudo image case
|
| 288 |
+
compression_masks.append(torch.ones((0,), dtype=torch.bool, device=images.device))
|
| 289 |
+
|
| 290 |
+
return torch.cat(compression_masks)
|
| 291 |
+
|
| 292 |
+
def _compress_visual_tokens(
|
| 293 |
+
self,
|
| 294 |
+
compression_mask: torch.BoolTensor,
|
| 295 |
+
mm_features: torch.FloatTensor,
|
| 296 |
+
input_ids: torch.LongTensor,
|
| 297 |
+
attention_mask: Optional[torch.Tensor] = None,
|
| 298 |
+
position_ids: Optional[torch.LongTensor] = None,
|
| 299 |
+
labels: Optional[torch.LongTensor] = None,
|
| 300 |
+
):
|
| 301 |
+
"""Compress visual tokens based on compression mask."""
|
| 302 |
+
mm_features = mm_features[compression_mask]
|
| 303 |
+
image_selected = (input_ids == self.config.image_token_index)
|
| 304 |
+
|
| 305 |
+
text_masks = torch.logical_not(image_selected)
|
| 306 |
+
text_masks[image_selected] = compression_mask
|
| 307 |
+
input_ids = input_ids[text_masks]
|
| 308 |
+
|
| 309 |
+
if attention_mask is not None:
|
| 310 |
+
attention_mask = attention_mask[text_masks]
|
| 311 |
+
if labels is not None:
|
| 312 |
+
labels = labels[text_masks]
|
| 313 |
+
if position_ids is not None:
|
| 314 |
+
position_ids = position_ids[text_masks]
|
| 315 |
+
pos_start = [0] + torch.nonzero(position_ids == 0)[:, 0].tolist()
|
| 316 |
+
pos_end = pos_start[1:] + [len(input_ids)]
|
| 317 |
+
position_ids = torch.cat([
|
| 318 |
+
torch.arange(end - start, device=input_ids.device)
|
| 319 |
+
for start, end in zip(pos_start, pos_end)
|
| 320 |
+
])
|
| 321 |
+
|
| 322 |
+
return mm_features, input_ids, attention_mask, position_ids, labels
|
| 323 |
+
|
| 324 |
+
def prepare_inputs_labels_for_multimodal(
|
| 325 |
+
self,
|
| 326 |
+
input_ids: torch.LongTensor = None,
|
| 327 |
+
attention_mask: Optional[torch.Tensor] = None,
|
| 328 |
+
position_ids: Optional[torch.LongTensor] = None,
|
| 329 |
+
past_key_values: Optional[List[torch.FloatTensor]] = None,
|
| 330 |
+
labels: Optional[torch.LongTensor] = None,
|
| 331 |
+
pixel_values: Optional[torch.FloatTensor] = None,
|
| 332 |
+
grid_sizes: Optional[torch.LongTensor] = None,
|
| 333 |
+
merge_sizes: Optional[torch.LongTensor] = None,
|
| 334 |
+
modals: Optional[List[str]] = None,
|
| 335 |
+
):
|
| 336 |
+
"""Prepare inputs and labels for multimodal training/inference."""
|
| 337 |
+
vision_encoder = self.get_vision_encoder()
|
| 338 |
+
|
| 339 |
+
# Text-only situation
|
| 340 |
+
if vision_encoder is None or pixel_values is None or input_ids.shape[1] == 1:
|
| 341 |
+
return input_ids, attention_mask, position_ids, past_key_values, None, labels
|
| 342 |
+
|
| 343 |
+
# 1. Flatten text inputs
|
| 344 |
+
B, N = input_ids.shape
|
| 345 |
+
input_ids = input_ids.view(B * N)
|
| 346 |
+
if attention_mask is not None:
|
| 347 |
+
attention_mask = attention_mask.view(B * N)
|
| 348 |
+
if position_ids is not None:
|
| 349 |
+
position_ids = position_ids.view(B * N)
|
| 350 |
+
if labels is not None:
|
| 351 |
+
labels = labels.view(B * N)
|
| 352 |
+
|
| 353 |
+
# 2. Embed visual tokens
|
| 354 |
+
batched_num_patches = grid_sizes.prod(dim=1).div(merge_sizes ** 2).long()
|
| 355 |
+
mm_features = self.encode_images(pixel_values, grid_sizes, merge_sizes).to(input_ids.device)
|
| 356 |
+
mm_features = self._get_valid_visual_tokens(mm_features, batched_num_patches, modals)
|
| 357 |
+
|
| 358 |
+
compression_mask = self._get_compression_mask(
|
| 359 |
+
pixel_values, batched_num_patches, grid_sizes, merge_sizes, modals
|
| 360 |
+
)
|
| 361 |
+
mm_features, compression_mask = self._maybe_truncate_visual_tokens(
|
| 362 |
+
mm_features, compression_mask, batched_num_patches, modals, input_ids, position_ids
|
| 363 |
+
)
|
| 364 |
+
|
| 365 |
+
# 3. Compress visual tokens if enabled
|
| 366 |
+
if self.config.use_token_compression:
|
| 367 |
+
assert B == 1, "Token compression is only supported for batch_size=1"
|
| 368 |
+
mm_features, input_ids, attention_mask, position_ids, labels = self._compress_visual_tokens(
|
| 369 |
+
compression_mask, mm_features, input_ids, attention_mask, position_ids, labels
|
| 370 |
+
)
|
| 371 |
+
|
| 372 |
+
# 4. Embed text tokens
|
| 373 |
+
inputs_embeds = self.get_model().embed_tokens(input_ids).clone()
|
| 374 |
+
|
| 375 |
+
# 5. Replace multimodal tokens with features
|
| 376 |
+
image_selected = (input_ids == self.config.image_token_index)
|
| 377 |
+
inputs_embeds[image_selected] = inputs_embeds[image_selected] * 0.0 + mm_features
|
| 378 |
+
|
| 379 |
+
# 6. Reshape back to batched format
|
| 380 |
+
C = inputs_embeds.shape[-1]
|
| 381 |
+
inputs_embeds = inputs_embeds.reshape(B, -1, C)
|
| 382 |
+
if attention_mask is not None:
|
| 383 |
+
attention_mask = attention_mask.view(B, -1)
|
| 384 |
+
if labels is not None:
|
| 385 |
+
labels = labels.view(B, -1)
|
| 386 |
+
if position_ids is not None:
|
| 387 |
+
position_ids = position_ids.view(B, -1)
|
| 388 |
+
|
| 389 |
+
return None, attention_mask, position_ids, past_key_values, inputs_embeds, labels
|
| 390 |
+
|
| 391 |
+
|
| 392 |
+
class HulumedQwen3ForCausalLM(Qwen3ForCausalLM, HulumedMetaForCausalLM):
|
| 393 |
+
|
| 394 |
+
config_class = HulumedQwen3Config
|
| 395 |
+
|
| 396 |
+
def __init__(self, config, **kwargs):
|
| 397 |
+
super(Qwen3ForCausalLM, self).__init__(config)
|
| 398 |
+
self.model = HulumedQwen3Model(config)
|
| 399 |
+
self.vocab_size = config.vocab_size
|
| 400 |
+
self.lm_head = nn.Linear(config.hidden_size, config.vocab_size, bias=False)
|
| 401 |
+
|
| 402 |
+
# Initialize weights and apply final processing
|
| 403 |
+
self.post_init()
|
| 404 |
+
|
| 405 |
+
def get_model(self):
|
| 406 |
+
return self.model
|
| 407 |
+
|
| 408 |
+
def forward(
|
| 409 |
+
self,
|
| 410 |
+
input_ids: torch.LongTensor = None,
|
| 411 |
+
attention_mask: Optional[torch.Tensor] = None,
|
| 412 |
+
position_ids: Optional[torch.LongTensor] = None,
|
| 413 |
+
past_key_values: Optional[List[torch.FloatTensor]] = None,
|
| 414 |
+
inputs_embeds: Optional[torch.FloatTensor] = None,
|
| 415 |
+
labels: Optional[torch.LongTensor] = None,
|
| 416 |
+
use_cache: Optional[bool] = None,
|
| 417 |
+
output_attentions: Optional[bool] = None,
|
| 418 |
+
output_hidden_states: Optional[bool] = None,
|
| 419 |
+
return_dict: Optional[bool] = None,
|
| 420 |
+
cache_position: Optional[torch.LongTensor] = None,
|
| 421 |
+
num_logits_to_keep: int = 0,
|
| 422 |
+
# Multimodal inputs
|
| 423 |
+
pixel_values: Optional[torch.FloatTensor] = None,
|
| 424 |
+
grid_sizes: Optional[torch.LongTensor] = None,
|
| 425 |
+
merge_sizes: Optional[torch.LongTensor] = None,
|
| 426 |
+
modals: Optional[List[str]] = None,
|
| 427 |
+
**loss_kwargs,
|
| 428 |
+
) -> Union[Tuple, CausalLMOutputWithPast]:
|
| 429 |
+
"""Forward pass with multimodal support."""
|
| 430 |
+
if inputs_embeds is None:
|
| 431 |
+
(
|
| 432 |
+
input_ids,
|
| 433 |
+
attention_mask,
|
| 434 |
+
position_ids,
|
| 435 |
+
past_key_values,
|
| 436 |
+
inputs_embeds,
|
| 437 |
+
labels,
|
| 438 |
+
) = self.prepare_inputs_labels_for_multimodal(
|
| 439 |
+
input_ids=input_ids,
|
| 440 |
+
attention_mask=attention_mask,
|
| 441 |
+
position_ids=position_ids,
|
| 442 |
+
past_key_values=past_key_values,
|
| 443 |
+
labels=labels,
|
| 444 |
+
pixel_values=pixel_values,
|
| 445 |
+
grid_sizes=grid_sizes,
|
| 446 |
+
merge_sizes=merge_sizes,
|
| 447 |
+
modals=modals,
|
| 448 |
+
)
|
| 449 |
+
|
| 450 |
+
return super().forward(
|
| 451 |
+
input_ids=input_ids,
|
| 452 |
+
attention_mask=attention_mask,
|
| 453 |
+
position_ids=position_ids,
|
| 454 |
+
past_key_values=past_key_values,
|
| 455 |
+
inputs_embeds=inputs_embeds,
|
| 456 |
+
labels=labels,
|
| 457 |
+
use_cache=use_cache,
|
| 458 |
+
output_attentions=output_attentions,
|
| 459 |
+
output_hidden_states=output_hidden_states,
|
| 460 |
+
return_dict=return_dict,
|
| 461 |
+
cache_position=cache_position,
|
| 462 |
+
num_logits_to_keep=num_logits_to_keep,
|
| 463 |
+
**loss_kwargs,
|
| 464 |
+
)
|
| 465 |
+
|
| 466 |
+
@torch.no_grad()
|
| 467 |
+
def generate(
|
| 468 |
+
self,
|
| 469 |
+
# Multimodal inputs
|
| 470 |
+
pixel_values: Optional[torch.FloatTensor] = None,
|
| 471 |
+
grid_sizes: Optional[torch.LongTensor] = None,
|
| 472 |
+
merge_sizes: Optional[torch.LongTensor] = None,
|
| 473 |
+
modals: Optional[List[str]] = None,
|
| 474 |
+
**kwargs,
|
| 475 |
+
) -> Union[GenerateOutput, torch.LongTensor]:
|
| 476 |
+
"""Generate with multimodal support."""
|
| 477 |
+
input_ids = kwargs.pop("input_ids", None)
|
| 478 |
+
attention_mask = kwargs.pop("attention_mask", None)
|
| 479 |
+
position_ids = kwargs.pop("position_ids", None)
|
| 480 |
+
past_key_values = kwargs.pop("past_key_values", None)
|
| 481 |
+
|
| 482 |
+
if "inputs_embeds" in kwargs:
|
| 483 |
+
raise NotImplementedError("`inputs_embeds` is not supported")
|
| 484 |
+
|
| 485 |
+
if pixel_values is not None:
|
| 486 |
+
(
|
| 487 |
+
input_ids,
|
| 488 |
+
attention_mask,
|
| 489 |
+
position_ids,
|
| 490 |
+
past_key_values,
|
| 491 |
+
inputs_embeds,
|
| 492 |
+
labels,
|
| 493 |
+
) = self.prepare_inputs_labels_for_multimodal(
|
| 494 |
+
input_ids=input_ids,
|
| 495 |
+
attention_mask=attention_mask,
|
| 496 |
+
position_ids=position_ids,
|
| 497 |
+
past_key_values=past_key_values,
|
| 498 |
+
labels=None,
|
| 499 |
+
pixel_values=pixel_values,
|
| 500 |
+
grid_sizes=grid_sizes,
|
| 501 |
+
merge_sizes=merge_sizes,
|
| 502 |
+
modals=modals,
|
| 503 |
+
)
|
| 504 |
+
else:
|
| 505 |
+
inputs_embeds = self.get_model().embed_tokens(input_ids)
|
| 506 |
+
|
| 507 |
+
return super().generate(
|
| 508 |
+
position_ids=position_ids,
|
| 509 |
+
attention_mask=attention_mask,
|
| 510 |
+
inputs_embeds=inputs_embeds,
|
| 511 |
+
**kwargs
|
| 512 |
+
)
|
| 513 |
+
|
| 514 |
+
def prepare_inputs_for_generation(
|
| 515 |
+
self, input_ids, past_key_values=None, inputs_embeds=None, **kwargs
|
| 516 |
+
):
|
| 517 |
+
"""Prepare inputs for generation."""
|
| 518 |
+
images = kwargs.pop("images", None)
|
| 519 |
+
_inputs = super().prepare_inputs_for_generation(
|
| 520 |
+
input_ids, past_key_values=past_key_values, inputs_embeds=inputs_embeds, **kwargs
|
| 521 |
+
)
|
| 522 |
+
if images is not None:
|
| 523 |
+
_inputs['images'] = images
|
| 524 |
+
return _inputs
|
preprocessor_config.json
ADDED
|
@@ -0,0 +1,27 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"auto_map": {
|
| 3 |
+
"AutoImageProcessor": "image_processing_hulumed.HulumedImageProcessor",
|
| 4 |
+
"AutoProcessor": "processing_hulumed.HulumedProcessor"
|
| 5 |
+
},
|
| 6 |
+
"do_convert_rgb": true,
|
| 7 |
+
"do_normalize": true,
|
| 8 |
+
"do_rescale": true,
|
| 9 |
+
"do_resize": true,
|
| 10 |
+
"image_mean": [
|
| 11 |
+
0.5,
|
| 12 |
+
0.5,
|
| 13 |
+
0.5
|
| 14 |
+
],
|
| 15 |
+
"image_processor_type": "HulumedImageProcessor",
|
| 16 |
+
"image_std": [
|
| 17 |
+
0.5,
|
| 18 |
+
0.5,
|
| 19 |
+
0.5
|
| 20 |
+
],
|
| 21 |
+
"max_tokens": 16384,
|
| 22 |
+
"min_tokens": 16,
|
| 23 |
+
"patch_size": 14,
|
| 24 |
+
"processor_class": "HulumedProcessor",
|
| 25 |
+
"resample": 3,
|
| 26 |
+
"rescale_factor": 0.00392156862745098
|
| 27 |
+
}
|
processing_hulumed.py
ADDED
|
@@ -0,0 +1,856 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
"""Processor class for HuluMed with 3D support."""
|
| 2 |
+
|
| 3 |
+
import copy
|
| 4 |
+
import importlib.util
|
| 5 |
+
import os
|
| 6 |
+
import os.path as osp
|
| 7 |
+
import warnings
|
| 8 |
+
from collections import defaultdict
|
| 9 |
+
from typing import Any, List, Union, Dict, Optional, Tuple, TypedDict
|
| 10 |
+
|
| 11 |
+
import cv2
|
| 12 |
+
import ffmpeg
|
| 13 |
+
import imageio
|
| 14 |
+
import json
|
| 15 |
+
import numpy as np
|
| 16 |
+
import torch
|
| 17 |
+
import transformers
|
| 18 |
+
from decord import VideoReader, cpu
|
| 19 |
+
from PIL import Image
|
| 20 |
+
from transformers.feature_extraction_utils import BatchFeature
|
| 21 |
+
from transformers.image_utils import ImageInput
|
| 22 |
+
from transformers.processing_utils import ProcessingKwargs, ProcessorMixin, Unpack
|
| 23 |
+
from transformers.tokenization_utils_base import PreTokenizedInput, TextInput
|
| 24 |
+
|
| 25 |
+
try:
|
| 26 |
+
import nibabel as nib
|
| 27 |
+
NIBABEL_AVAILABLE = True
|
| 28 |
+
except ImportError:
|
| 29 |
+
NIBABEL_AVAILABLE = False
|
| 30 |
+
warnings.warn("nibabel is not installed. 3D medical imaging support will be limited. Install with: pip install nibabel")
|
| 31 |
+
|
| 32 |
+
try:
|
| 33 |
+
from . import image_processing_hulumed
|
| 34 |
+
from .image_processing_hulumed import (
|
| 35 |
+
is_valid_image, is_valid_video,
|
| 36 |
+
)
|
| 37 |
+
except ModuleNotFoundError:
|
| 38 |
+
spec = importlib.util.spec_from_file_location(
|
| 39 |
+
"image_processing_hulumed",
|
| 40 |
+
osp.join(osp.dirname(__file__), "image_processing_hulumed.py"),
|
| 41 |
+
)
|
| 42 |
+
image_processing_hulumed = importlib.util.module_from_spec(spec)
|
| 43 |
+
spec.loader.exec_module(image_processing_hulumed)
|
| 44 |
+
is_valid_image = getattr(image_processing_hulumed, "is_valid_image")
|
| 45 |
+
is_valid_video = getattr(image_processing_hulumed, "is_valid_video")
|
| 46 |
+
|
| 47 |
+
DEFAULT_IMAGE_TOKEN = "<image>"
|
| 48 |
+
IGNORE_INDEX = -100
|
| 49 |
+
|
| 50 |
+
Conversation = List[Dict[str, Any]]
|
| 51 |
+
SingleImage = Union[Image.Image, np.ndarray, torch.Tensor]
|
| 52 |
+
SingleVideo = Union[List[SingleImage], np.ndarray, torch.Tensor]
|
| 53 |
+
BatchedImage = List[Union[SingleImage, SingleVideo]]
|
| 54 |
+
BatchedNamedImage = List[Tuple[str, Union[SingleImage, SingleVideo]]]
|
| 55 |
+
|
| 56 |
+
|
| 57 |
+
def _custom_import(class_name: str):
|
| 58 |
+
try:
|
| 59 |
+
attribute_class = getattr(transformers, class_name)
|
| 60 |
+
except AttributeError:
|
| 61 |
+
attribute_class = getattr(image_processing_hulumed, class_name)
|
| 62 |
+
return attribute_class
|
| 63 |
+
|
| 64 |
+
|
| 65 |
+
def is_named_image(image) -> bool:
|
| 66 |
+
return isinstance(image, (list, tuple)) and \
|
| 67 |
+
len(image) == 2 and \
|
| 68 |
+
isinstance(image[0], str) and \
|
| 69 |
+
image[0] in ["image", "video", "3d"] and \
|
| 70 |
+
(is_valid_image(image[1]) or is_valid_video(image[1]))
|
| 71 |
+
|
| 72 |
+
|
| 73 |
+
def make_batched_images(images) -> Tuple[List[str], List[ImageInput]]:
|
| 74 |
+
if isinstance(images, (list, tuple)) and all(is_named_image(image) for image in images):
|
| 75 |
+
modals = [image[0] if image[0] != "3d" else "video" for image in images]
|
| 76 |
+
data = [image[1] for image in images]
|
| 77 |
+
return modals, data
|
| 78 |
+
elif isinstance(images, (list, tuple)) and all(is_valid_image(image) or is_valid_video(image) for image in images):
|
| 79 |
+
batch = []
|
| 80 |
+
for image in images:
|
| 81 |
+
if is_valid_video(image):
|
| 82 |
+
batch.append(("video", image))
|
| 83 |
+
elif is_valid_image(image):
|
| 84 |
+
batch.append(("image", image))
|
| 85 |
+
else:
|
| 86 |
+
raise ValueError(f"Could not make batched images from {images}")
|
| 87 |
+
return [x[0] for x in batch], [x[1] for x in batch]
|
| 88 |
+
elif is_named_image(images):
|
| 89 |
+
modal = images[0] if images[0] != "3d" else "video"
|
| 90 |
+
return [modal], [images[1]]
|
| 91 |
+
elif is_valid_video(images):
|
| 92 |
+
return ["video"], [images]
|
| 93 |
+
elif is_valid_image(images):
|
| 94 |
+
return ["image"], [images]
|
| 95 |
+
|
| 96 |
+
raise ValueError(f"Could not make batched images from {images}")
|
| 97 |
+
|
| 98 |
+
|
| 99 |
+
def frame_sample(duration, mode='uniform', num_frames=None, vid_fps=None, fps=None):
|
| 100 |
+
if mode == 'uniform':
|
| 101 |
+
assert num_frames is not None, "Number of frames must be provided for uniform sampling."
|
| 102 |
+
if duration <= num_frames:
|
| 103 |
+
return np.arange(duration).astype(int)
|
| 104 |
+
return np.linspace(0, duration-1, num_frames, dtype=int)
|
| 105 |
+
elif mode == 'fps':
|
| 106 |
+
assert vid_fps is not None, "FPS must be provided for FPS sampling."
|
| 107 |
+
assert fps is not None, "FPS must be provided for FPS sampling."
|
| 108 |
+
segment_len = min(vid_fps // fps, duration)
|
| 109 |
+
return np.arange(segment_len // 2, duration, segment_len, dtype=int)
|
| 110 |
+
else:
|
| 111 |
+
raise ValueError(f'Unsupported frame sampling mode: {mode}')
|
| 112 |
+
|
| 113 |
+
|
| 114 |
+
def load_video_from_ids(video_path, s=None, e=None, fps=None, max_frames=128, temporal_factor=1):
|
| 115 |
+
if s is not None and e is not None:
|
| 116 |
+
s = s if s >= 0. else 0.
|
| 117 |
+
e = e if e >= 0. else 0.
|
| 118 |
+
if s > e:
|
| 119 |
+
s, e = e, s
|
| 120 |
+
elif s == e:
|
| 121 |
+
e = s + 1
|
| 122 |
+
|
| 123 |
+
if os.path.isdir(video_path):
|
| 124 |
+
frame_files = sorted(os.listdir(video_path))
|
| 125 |
+
vid_fps = 3
|
| 126 |
+
num_frames_of_video = len(frame_files)
|
| 127 |
+
elif video_path.endswith('.gif'):
|
| 128 |
+
gif_reader = imageio.get_reader(video_path)
|
| 129 |
+
vid_fps = 25
|
| 130 |
+
num_frames_of_video = len(gif_reader)
|
| 131 |
+
else:
|
| 132 |
+
vreader = VideoReader(video_path, ctx=cpu(0), num_threads=2)
|
| 133 |
+
vid_fps = vreader.get_avg_fps()
|
| 134 |
+
num_frames_of_video = len(vreader)
|
| 135 |
+
|
| 136 |
+
f_start = 0 if s is None else max(int(s * vid_fps) - 1, 0)
|
| 137 |
+
f_end = num_frames_of_video - 1 if e is None else min(int(e * vid_fps) - 1, num_frames_of_video - 1)
|
| 138 |
+
frame_indices = list(range(f_start, f_end + 1))
|
| 139 |
+
|
| 140 |
+
duration = len(frame_indices)
|
| 141 |
+
if fps is not None and duration / vid_fps < max_frames:
|
| 142 |
+
sampled_frame_indices = [frame_indices[i] for i in frame_sample(duration, mode='fps', vid_fps=vid_fps, fps=fps)]
|
| 143 |
+
else:
|
| 144 |
+
sampled_frame_indices = [frame_indices[i] for i in frame_sample(duration, mode='uniform', num_frames=max_frames)]
|
| 145 |
+
|
| 146 |
+
if os.path.isdir(video_path):
|
| 147 |
+
frames = np.array([cv2.cvtColor(cv2.imread(os.path.join(video_path, frame_files[frame_idx])), cv2.COLOR_BGR2RGB) for frame_idx in sampled_frame_indices])
|
| 148 |
+
elif video_path.endswith('.gif'):
|
| 149 |
+
frames = np.array([cv2.cvtColor(frame, cv2.COLOR_RGBA2RGB) for idx, frame in enumerate(gif_reader) if idx in sampled_frame_indices])
|
| 150 |
+
else:
|
| 151 |
+
frames = vreader.get_batch(sampled_frame_indices).asnumpy()
|
| 152 |
+
|
| 153 |
+
frames = frames.transpose(0, 3, 1, 2)
|
| 154 |
+
timestamps = [x / vid_fps for x in sampled_frame_indices]
|
| 155 |
+
|
| 156 |
+
if temporal_factor > 1:
|
| 157 |
+
pad_length = temporal_factor - len(frames) % temporal_factor
|
| 158 |
+
frames = np.concatenate([frames, frames[-1:].repeat(pad_length, axis=0)])
|
| 159 |
+
[timestamps.append(timestamps[-1] + 1 / fps) for _ in range(pad_length)]
|
| 160 |
+
|
| 161 |
+
frames = [frame for frame in frames]
|
| 162 |
+
|
| 163 |
+
return frames, timestamps
|
| 164 |
+
|
| 165 |
+
|
| 166 |
+
class ChatTemplateKwargs(TypedDict, total=False):
|
| 167 |
+
chat_template: Optional[str]
|
| 168 |
+
add_system_prompt: Optional[bool]
|
| 169 |
+
add_generation_prompt: Optional[bool]
|
| 170 |
+
|
| 171 |
+
|
| 172 |
+
class HulumedProcessorKwargs(ProcessingKwargs, ChatTemplateKwargs, total=False):
|
| 173 |
+
chat_template_kwargs: ChatTemplateKwargs = {
|
| 174 |
+
**ChatTemplateKwargs.__annotations__,
|
| 175 |
+
}
|
| 176 |
+
|
| 177 |
+
_defaults = {
|
| 178 |
+
"text_kwargs": {
|
| 179 |
+
"padding": False,
|
| 180 |
+
},
|
| 181 |
+
"images_kwargs": {
|
| 182 |
+
|
| 183 |
+
},
|
| 184 |
+
"chat_template_kwargs": {
|
| 185 |
+
"chat_template": None,
|
| 186 |
+
"add_system_prompt": False,
|
| 187 |
+
"add_generation_prompt": False,
|
| 188 |
+
},
|
| 189 |
+
}
|
| 190 |
+
|
| 191 |
+
|
| 192 |
+
class HulumedProcessor(ProcessorMixin):
|
| 193 |
+
attributes = ["image_processor", "tokenizer"]
|
| 194 |
+
image_processor_class = "HulumedImageProcessor"
|
| 195 |
+
tokenizer_class = ("Qwen2Tokenizer", "Qwen2TokenizerFast")
|
| 196 |
+
valid_kwargs = ["chat_template", "image_merge_size", "video_merge_size", "fps", "max_frames"]
|
| 197 |
+
|
| 198 |
+
def __init__(
|
| 199 |
+
self,
|
| 200 |
+
image_processor=None,
|
| 201 |
+
tokenizer=None,
|
| 202 |
+
chat_template: str = None,
|
| 203 |
+
image_merge_size: int = 1,
|
| 204 |
+
video_merge_size: int = 2,
|
| 205 |
+
fps: Optional[int] = 1,
|
| 206 |
+
max_frames: Optional[int] = 128,
|
| 207 |
+
):
|
| 208 |
+
self.image_processor = image_processor
|
| 209 |
+
self.tokenizer = tokenizer
|
| 210 |
+
if chat_template is None:
|
| 211 |
+
chat_template = self.tokenizer.chat_template
|
| 212 |
+
self.chat_template = chat_template
|
| 213 |
+
|
| 214 |
+
self.image_merge_size = image_merge_size
|
| 215 |
+
self.video_merge_size = video_merge_size
|
| 216 |
+
self.fps = fps
|
| 217 |
+
self.max_frames = max_frames
|
| 218 |
+
|
| 219 |
+
self.generation_prompt = self._infer_generation_prompt()
|
| 220 |
+
self.generation_prompt_ids = self.tokenizer.encode(self.generation_prompt, return_tensors="pt")
|
| 221 |
+
self.generation_prompt_length = len(self.generation_prompt_ids[0])
|
| 222 |
+
self.image_token_id = self.tokenizer.convert_tokens_to_ids(DEFAULT_IMAGE_TOKEN)
|
| 223 |
+
self.eos_token_id = self.tokenizer.eos_token_id
|
| 224 |
+
|
| 225 |
+
@classmethod
|
| 226 |
+
def _get_arguments_from_pretrained(cls, pretrained_model_name_or_path, **kwargs):
|
| 227 |
+
args = []
|
| 228 |
+
for attribute_name in cls.attributes:
|
| 229 |
+
class_name = getattr(cls, f"{attribute_name}_class")
|
| 230 |
+
if isinstance(class_name, tuple):
|
| 231 |
+
classes = tuple(_custom_import(n) if n is not None else None for n in class_name)
|
| 232 |
+
use_fast = kwargs.get("use_fast", True)
|
| 233 |
+
if use_fast and classes[1] is not None:
|
| 234 |
+
attribute_class = classes[1]
|
| 235 |
+
else:
|
| 236 |
+
attribute_class = classes[0]
|
| 237 |
+
else:
|
| 238 |
+
attribute_class = _custom_import(class_name)
|
| 239 |
+
|
| 240 |
+
args.append(attribute_class.from_pretrained(pretrained_model_name_or_path, **kwargs))
|
| 241 |
+
return args
|
| 242 |
+
|
| 243 |
+
def get_generation_prompt(self):
|
| 244 |
+
return self.generation_prompt
|
| 245 |
+
|
| 246 |
+
def get_generation_prompt_ids(self):
|
| 247 |
+
return self.generation_prompt_ids
|
| 248 |
+
|
| 249 |
+
def _infer_generation_prompt(self):
|
| 250 |
+
pseudo_message = [{"role": "user", "content": ""}]
|
| 251 |
+
instruction = self.apply_chat_template(pseudo_message, tokenize=False, add_generation_prompt=True)
|
| 252 |
+
conversation = self.apply_chat_template(pseudo_message, tokenize=False, add_generation_prompt=False)
|
| 253 |
+
return instruction.replace(conversation, "")
|
| 254 |
+
|
| 255 |
+
def _get_downsampled_grid_sizes(self, image_inputs: Dict[str, Any]):
|
| 256 |
+
grid_sizes = []
|
| 257 |
+
for grid_size, merge_size in zip(image_inputs.get("grid_sizes", []), image_inputs.get("merge_sizes", [])):
|
| 258 |
+
if not torch.all(grid_size[1:] % merge_size == 0):
|
| 259 |
+
warnings.warn(f"Grid size {grid_size} is not divisible by merge size. Some undesired errors may occur.")
|
| 260 |
+
if grid_size[0] == 1:
|
| 261 |
+
grid_sizes.append(grid_size[1:] / merge_size)
|
| 262 |
+
elif grid_size[0] > 1:
|
| 263 |
+
grid_sizes.extend([grid_size[1:] / merge_size] * grid_size[0])
|
| 264 |
+
return grid_sizes
|
| 265 |
+
|
| 266 |
+
def _get_visual_seq_len(self, grid_size: torch.Tensor):
|
| 267 |
+
num_tokens = int(grid_size.prod().item())
|
| 268 |
+
return num_tokens
|
| 269 |
+
|
| 270 |
+
def load_images(self, image_path: Union[str, List[str], Image.Image, List[Image.Image]]):
|
| 271 |
+
if isinstance(image_path, str) and os.path.isfile(image_path):
|
| 272 |
+
images = [Image.open(image_path).convert('RGB')]
|
| 273 |
+
elif isinstance(image_path, str) and os.path.isdir(image_path):
|
| 274 |
+
images = [Image.open(os.path.join(image_path, f)).convert('RGB') for f in sorted(os.listdir(image_path))]
|
| 275 |
+
elif isinstance(image_path, list) and isinstance(image_path[0], str):
|
| 276 |
+
images = [Image.open(f).convert('RGB') for f in image_path]
|
| 277 |
+
elif isinstance(image_path, list) and isinstance(image_path[0], Image.Image):
|
| 278 |
+
images = [np.array(x) for x in image_path]
|
| 279 |
+
elif isinstance(image_path, Image.Image):
|
| 280 |
+
images = [np.array(image_path)]
|
| 281 |
+
else:
|
| 282 |
+
raise ValueError(f"Unsupported image path type: {type(image_path)}")
|
| 283 |
+
return images
|
| 284 |
+
|
| 285 |
+
def load_nii(
|
| 286 |
+
self,
|
| 287 |
+
nii_path: str,
|
| 288 |
+
num_slices: Optional[int] = None,
|
| 289 |
+
axis: int = 2,
|
| 290 |
+
window_center: Optional[float] = None,
|
| 291 |
+
window_width: Optional[float] = None,
|
| 292 |
+
normalize: bool = True,
|
| 293 |
+
):
|
| 294 |
+
if not NIBABEL_AVAILABLE:
|
| 295 |
+
raise ImportError("nibabel is required for NIfTI support. Install with: pip install nibabel")
|
| 296 |
+
|
| 297 |
+
if not os.path.exists(nii_path):
|
| 298 |
+
raise FileNotFoundError(f"NIfTI file not found: {nii_path}")
|
| 299 |
+
|
| 300 |
+
nii_img = nib.load(nii_path)
|
| 301 |
+
volume = nii_img.get_fdata()
|
| 302 |
+
|
| 303 |
+
if axis == 0:
|
| 304 |
+
slices = [volume[i, :, :] for i in range(volume.shape[0])]
|
| 305 |
+
elif axis == 1:
|
| 306 |
+
slices = [volume[:, i, :] for i in range(volume.shape[1])]
|
| 307 |
+
elif axis == 2:
|
| 308 |
+
slices = [volume[:, :, i] for i in range(volume.shape[2])]
|
| 309 |
+
else:
|
| 310 |
+
raise ValueError(f"Invalid axis: {axis}. Must be 0, 1, or 2.")
|
| 311 |
+
|
| 312 |
+
if num_slices is not None and num_slices < len(slices):
|
| 313 |
+
indices = np.linspace(0, len(slices) - 1, num_slices, dtype=int)
|
| 314 |
+
slices = [slices[i] for i in indices]
|
| 315 |
+
|
| 316 |
+
processed_slices = []
|
| 317 |
+
for slice_2d in slices:
|
| 318 |
+
if window_center is not None and window_width is not None:
|
| 319 |
+
lower = window_center - window_width / 2
|
| 320 |
+
upper = window_center + window_width / 2
|
| 321 |
+
slice_2d = np.clip(slice_2d, lower, upper)
|
| 322 |
+
|
| 323 |
+
if normalize:
|
| 324 |
+
slice_min = slice_2d.min()
|
| 325 |
+
slice_max = slice_2d.max()
|
| 326 |
+
if slice_max > slice_min:
|
| 327 |
+
slice_2d = (slice_2d - slice_min) / (slice_max - slice_min) * 255.0
|
| 328 |
+
else:
|
| 329 |
+
slice_2d = np.zeros_like(slice_2d)
|
| 330 |
+
|
| 331 |
+
slice_2d = slice_2d.astype(np.uint8)
|
| 332 |
+
slice_rgb = np.stack([slice_2d] * 3, axis=0)
|
| 333 |
+
|
| 334 |
+
processed_slices.append(slice_rgb)
|
| 335 |
+
|
| 336 |
+
return processed_slices
|
| 337 |
+
|
| 338 |
+
def load_video(
|
| 339 |
+
self,
|
| 340 |
+
video_path: str,
|
| 341 |
+
start_time: Optional[float] = None,
|
| 342 |
+
end_time: Optional[float] = None,
|
| 343 |
+
fps: Optional[float] = None,
|
| 344 |
+
max_frames: Optional[float] = None,
|
| 345 |
+
size: Optional[int] = None,
|
| 346 |
+
size_divisible: int = 1,
|
| 347 |
+
precise_time: bool = False,
|
| 348 |
+
verbose: bool = False,
|
| 349 |
+
temporal_factor: int = 1
|
| 350 |
+
):
|
| 351 |
+
fps = self.fps if fps is None else fps
|
| 352 |
+
max_frames = self.max_frames if max_frames is None else max_frames
|
| 353 |
+
|
| 354 |
+
if start_time is not None and end_time is not None and end_time - start_time < 1:
|
| 355 |
+
return load_video_from_ids(video_path, start_time, end_time, fps=fps, max_frames=max_frames)
|
| 356 |
+
if os.path.isdir(video_path):
|
| 357 |
+
return load_video_from_ids(video_path, start_time, end_time, fps=fps, max_frames=max_frames)
|
| 358 |
+
if video_path.endswith('.gif'):
|
| 359 |
+
return load_video_from_ids(video_path, start_time, end_time, fps=fps, max_frames=max_frames)
|
| 360 |
+
|
| 361 |
+
probe = ffmpeg.probe(video_path)
|
| 362 |
+
duration = float(probe['format']['duration'])
|
| 363 |
+
video_stream = next((stream for stream in probe['streams'] if stream['codec_type'] == 'video'), None)
|
| 364 |
+
w, h = int(video_stream['width']), int(video_stream['height'])
|
| 365 |
+
|
| 366 |
+
kwargs, input_kwargs, output_kwargs = {}, {}, {}
|
| 367 |
+
do_trim = start_time is not None or end_time is not None
|
| 368 |
+
if start_time is not None:
|
| 369 |
+
new_start_time = max(float(video_stream['start_time']), start_time)
|
| 370 |
+
duration -= new_start_time - start_time
|
| 371 |
+
start_time = new_start_time
|
| 372 |
+
else:
|
| 373 |
+
start_time = float(video_stream['start_time'])
|
| 374 |
+
if end_time is not None:
|
| 375 |
+
duration = min(duration, end_time - start_time)
|
| 376 |
+
if do_trim:
|
| 377 |
+
kwargs = {'ss': start_time, 't': duration}
|
| 378 |
+
if precise_time:
|
| 379 |
+
output_kwargs.update(kwargs)
|
| 380 |
+
else:
|
| 381 |
+
input_kwargs.update(kwargs)
|
| 382 |
+
|
| 383 |
+
if size is not None:
|
| 384 |
+
scale_factor = size / min(w, h)
|
| 385 |
+
new_w, new_h = round(w * scale_factor), round(h * scale_factor)
|
| 386 |
+
else:
|
| 387 |
+
new_w, new_h = w, h
|
| 388 |
+
new_w = new_w // size_divisible * size_divisible
|
| 389 |
+
new_h = new_h // size_divisible * size_divisible
|
| 390 |
+
|
| 391 |
+
stream = ffmpeg.input(video_path, **input_kwargs)
|
| 392 |
+
if fps is not None:
|
| 393 |
+
stream = ffmpeg.filter(stream, "fps", fps=fps, round="down")
|
| 394 |
+
if new_w != w or new_h != h:
|
| 395 |
+
stream = ffmpeg.filter(stream, 'scale', new_w, new_h)
|
| 396 |
+
stream = ffmpeg.output(stream, "pipe:", format="rawvideo", pix_fmt="rgb24", **output_kwargs)
|
| 397 |
+
out, _ = ffmpeg.run(stream, capture_stdout=True, quiet=not verbose)
|
| 398 |
+
|
| 399 |
+
frames = np.frombuffer(out, np.uint8).reshape([-1, new_h, new_w, 3]).transpose([0, 3, 1, 2])
|
| 400 |
+
|
| 401 |
+
if fps is not None:
|
| 402 |
+
timestamps = np.arange(start_time, start_time + duration + 1 / fps, 1 / fps)[:len(frames)]
|
| 403 |
+
else:
|
| 404 |
+
timestamps = np.linspace(start_time, start_time + duration, len(frames))
|
| 405 |
+
|
| 406 |
+
if max_frames is not None and len(frames) > max_frames:
|
| 407 |
+
indices = np.linspace(0, len(frames) - 1, max_frames, dtype=int)
|
| 408 |
+
frames = frames[indices]
|
| 409 |
+
timestamps = timestamps[indices]
|
| 410 |
+
|
| 411 |
+
if temporal_factor > 1:
|
| 412 |
+
pad_length = temporal_factor - len(frames) % temporal_factor
|
| 413 |
+
frames = np.concatenate([frames, frames[-1:].repeat(pad_length, axis=0)])
|
| 414 |
+
timestamps = np.concatenate([timestamps, timestamps[-1:].repeat(pad_length) + np.arange(1, pad_length + 1) / fps])
|
| 415 |
+
|
| 416 |
+
frames = [frame for frame in frames]
|
| 417 |
+
timestamps = [timestamp for timestamp in timestamps]
|
| 418 |
+
|
| 419 |
+
return frames, timestamps
|
| 420 |
+
|
| 421 |
+
def _load_multimodal_data(self, conversation: Conversation):
|
| 422 |
+
multimodal_info = defaultdict(list)
|
| 423 |
+
new_conversation = []
|
| 424 |
+
for message in conversation:
|
| 425 |
+
new_message = {"role": message["role"]}
|
| 426 |
+
if not isinstance(message["content"], (list, tuple)):
|
| 427 |
+
new_message["content"] = message["content"]
|
| 428 |
+
new_conversation.append(new_message)
|
| 429 |
+
continue
|
| 430 |
+
|
| 431 |
+
new_contents = []
|
| 432 |
+
for content in message["content"]:
|
| 433 |
+
if not isinstance(content, dict):
|
| 434 |
+
new_contents.append(content)
|
| 435 |
+
continue
|
| 436 |
+
assert "type" in content, "Content must have 'type' field."
|
| 437 |
+
|
| 438 |
+
if content["type"] in ["image", "video", "3d"] and content["type"] in content and isinstance(content[content["type"]], dict):
|
| 439 |
+
load_args = content[content["type"]]
|
| 440 |
+
data_id = json.dumps({k: v for k, v in load_args.items() if k not in ["start_time", "end_time"]})
|
| 441 |
+
new_content = copy.deepcopy(content)
|
| 442 |
+
multimodal_info[data_id].append(new_content)
|
| 443 |
+
new_contents.append(new_content)
|
| 444 |
+
else:
|
| 445 |
+
new_contents.append(content)
|
| 446 |
+
|
| 447 |
+
new_message["content"] = new_contents
|
| 448 |
+
new_conversation.append(new_message)
|
| 449 |
+
|
| 450 |
+
for data_id, contents in multimodal_info.items():
|
| 451 |
+
data_type = contents[0]["type"]
|
| 452 |
+
|
| 453 |
+
if data_type == "image":
|
| 454 |
+
image = self.load_images(contents[0][data_type]["image_path"])[0]
|
| 455 |
+
for content in contents:
|
| 456 |
+
content["image"] = [image.copy()]
|
| 457 |
+
|
| 458 |
+
elif data_type == "3d":
|
| 459 |
+
load_args = contents[0]["3d"]
|
| 460 |
+
nii_path = load_args["image_path"]
|
| 461 |
+
num_slices = load_args.get("nii_num_slices", None)
|
| 462 |
+
axis = load_args.get("nii_axis", 2)
|
| 463 |
+
window_center = load_args.get("window_center", None)
|
| 464 |
+
window_width = load_args.get("window_width", None)
|
| 465 |
+
|
| 466 |
+
slices = self.load_nii(
|
| 467 |
+
nii_path=nii_path,
|
| 468 |
+
num_slices=num_slices,
|
| 469 |
+
axis=axis,
|
| 470 |
+
window_center=window_center,
|
| 471 |
+
window_width=window_width,
|
| 472 |
+
)
|
| 473 |
+
|
| 474 |
+
for content in contents:
|
| 475 |
+
content["type"] = "video"
|
| 476 |
+
content["video"] = slices
|
| 477 |
+
content["num_frames"] = len(slices)
|
| 478 |
+
content.pop("3d", None)
|
| 479 |
+
|
| 480 |
+
elif data_type == "video":
|
| 481 |
+
start_times = [content["video"].get("start_time", 0.) for content in contents]
|
| 482 |
+
end_times = [content["video"].get("end_time", float("inf")) for content in contents]
|
| 483 |
+
|
| 484 |
+
load_args = contents[0][data_type]
|
| 485 |
+
start_time, end_time = min(start_times), max(end_times)
|
| 486 |
+
if start_time > 0:
|
| 487 |
+
load_args["start_time"] = start_time
|
| 488 |
+
if end_time < float("inf"):
|
| 489 |
+
load_args["end_time"] = end_time
|
| 490 |
+
images, timestamps = self.load_video(**load_args)
|
| 491 |
+
|
| 492 |
+
for content, start_time, end_time in zip(contents, start_times, end_times):
|
| 493 |
+
cur_images, cur_timestamps = [], []
|
| 494 |
+
for image, timestamp in zip(images, timestamps):
|
| 495 |
+
if start_time <= timestamp <= end_time:
|
| 496 |
+
cur_images.append(image.copy())
|
| 497 |
+
cur_timestamps.append(timestamp)
|
| 498 |
+
|
| 499 |
+
content[data_type] = cur_images
|
| 500 |
+
content["num_frames"] = len(cur_images)
|
| 501 |
+
content["timestamps"] = cur_timestamps
|
| 502 |
+
|
| 503 |
+
return new_conversation
|
| 504 |
+
|
| 505 |
+
def _gather_multimodal_data(self, conversation: Conversation):
|
| 506 |
+
images = []
|
| 507 |
+
for message in conversation:
|
| 508 |
+
if not isinstance(message["content"], (list, tuple)):
|
| 509 |
+
continue
|
| 510 |
+
for content in message["content"]:
|
| 511 |
+
if not isinstance(content, dict):
|
| 512 |
+
continue
|
| 513 |
+
if content["type"] == "video":
|
| 514 |
+
video = content["video"]
|
| 515 |
+
assert is_valid_video(video), f"Invalid video data: {video}."
|
| 516 |
+
images.append(("video", video))
|
| 517 |
+
elif content["type"] == "image":
|
| 518 |
+
image = content["image"]
|
| 519 |
+
images.append(("image", image))
|
| 520 |
+
images = images if len(images) > 0 else None
|
| 521 |
+
return images
|
| 522 |
+
|
| 523 |
+
def _process_conversation_with_label(
|
| 524 |
+
self,
|
| 525 |
+
conversation: Conversation,
|
| 526 |
+
image_inputs: Dict[str, Any],
|
| 527 |
+
**kwargs,
|
| 528 |
+
):
|
| 529 |
+
assert kwargs.pop("return_tensors", "pt") == "pt", "Only PyTorch tensors are supported when return_labels=True."
|
| 530 |
+
assert "add_generation_prompt" not in kwargs, "'add_generation_prompt' argument is not supported when return_labels=True."
|
| 531 |
+
|
| 532 |
+
output_kwargs = self._merge_kwargs(
|
| 533 |
+
HulumedProcessorKwargs,
|
| 534 |
+
tokenizer_init_kwargs=self.tokenizer.init_kwargs,
|
| 535 |
+
**kwargs,
|
| 536 |
+
)
|
| 537 |
+
output_kwargs["chat_template_kwargs"].pop("add_generation_prompt")
|
| 538 |
+
|
| 539 |
+
grid_sizes = self._get_downsampled_grid_sizes(image_inputs)
|
| 540 |
+
text_inputs = {"input_ids": [], "labels": []}
|
| 541 |
+
sample_types_list = []
|
| 542 |
+
image_idx = 0
|
| 543 |
+
|
| 544 |
+
for message_idx, message in enumerate(conversation):
|
| 545 |
+
prompt = self.apply_chat_template(
|
| 546 |
+
[message],
|
| 547 |
+
tokenize=False,
|
| 548 |
+
add_generation_prompt=False,
|
| 549 |
+
**output_kwargs["chat_template_kwargs"],
|
| 550 |
+
)
|
| 551 |
+
prompt_chunks = prompt.split(DEFAULT_IMAGE_TOKEN)
|
| 552 |
+
prompt = []
|
| 553 |
+
for chunk_idx in range(len(prompt_chunks) - 1):
|
| 554 |
+
prompt.append(prompt_chunks[chunk_idx])
|
| 555 |
+
num_tokens = self._get_visual_seq_len(grid_sizes[image_idx])
|
| 556 |
+
prompt.append(DEFAULT_IMAGE_TOKEN * num_tokens)
|
| 557 |
+
image_idx += 1
|
| 558 |
+
prompt.append(prompt_chunks[-1])
|
| 559 |
+
prompt = "".join(prompt)
|
| 560 |
+
|
| 561 |
+
input_ids = self.tokenizer.encode(prompt, return_tensors="pt", **output_kwargs["text_kwargs"])[0]
|
| 562 |
+
text_inputs["input_ids"].append(input_ids)
|
| 563 |
+
|
| 564 |
+
targets = torch.full_like(input_ids, IGNORE_INDEX)
|
| 565 |
+
sample_types = torch.full_like(input_ids, IGNORE_INDEX)
|
| 566 |
+
if message["role"] == "assistant":
|
| 567 |
+
targets[self.generation_prompt_length:-1] = input_ids[self.generation_prompt_length:-1].clone()
|
| 568 |
+
elif message["role"] == "stream":
|
| 569 |
+
diff = torch.diff((input_ids == self.image_token_id).float())
|
| 570 |
+
image_end_indices = torch.nonzero(diff < 0)[:, 0]
|
| 571 |
+
targets[image_end_indices + 1] = input_ids[image_end_indices + 1]
|
| 572 |
+
sample_types = targets.clone()
|
| 573 |
+
sample_types[torch.logical_and(sample_types > 0, sample_types != self.eos_token_id)] = 0
|
| 574 |
+
targets[-2] = input_ids[-2]
|
| 575 |
+
|
| 576 |
+
if message_idx > 0 and conversation[message_idx - 1]["role"] == "stream":
|
| 577 |
+
targets[0] = input_ids[0]
|
| 578 |
+
sample_types[0] = input_ids[0]
|
| 579 |
+
|
| 580 |
+
text_inputs["labels"].append(targets)
|
| 581 |
+
sample_types_list.append(sample_types)
|
| 582 |
+
|
| 583 |
+
text_inputs = {k: torch.cat(v) for k, v in text_inputs.items()}
|
| 584 |
+
sample_types = torch.cat(sample_types_list)
|
| 585 |
+
types, counts = torch.unique(sample_types[sample_types > -1], return_counts=True)
|
| 586 |
+
|
| 587 |
+
if len(types) > 0:
|
| 588 |
+
target_num_samples = counts.amin()
|
| 589 |
+
for type_id, type_count in zip(types, counts):
|
| 590 |
+
if type_count > target_num_samples:
|
| 591 |
+
indices = torch.nonzero(sample_types == type_id)[:, 0]
|
| 592 |
+
random_selector = torch.randperm(indices.size(0))[:-target_num_samples]
|
| 593 |
+
text_inputs["labels"][indices[random_selector]] = IGNORE_INDEX
|
| 594 |
+
|
| 595 |
+
assert len(grid_sizes) == image_idx, "Number of images does not match the number of image tokens in the text."
|
| 596 |
+
|
| 597 |
+
return text_inputs
|
| 598 |
+
|
| 599 |
+
def _process_conversation_without_label(
|
| 600 |
+
self,
|
| 601 |
+
conversation: Conversation,
|
| 602 |
+
image_inputs: Dict[str, Any],
|
| 603 |
+
**kwargs,
|
| 604 |
+
):
|
| 605 |
+
output_kwargs = self._merge_kwargs(
|
| 606 |
+
HulumedProcessorKwargs,
|
| 607 |
+
tokenizer_init_kwargs=self.tokenizer.init_kwargs,
|
| 608 |
+
**kwargs,
|
| 609 |
+
)
|
| 610 |
+
prompt = self.apply_chat_template(
|
| 611 |
+
conversation,
|
| 612 |
+
tokenize=False,
|
| 613 |
+
**output_kwargs["chat_template_kwargs"],
|
| 614 |
+
)
|
| 615 |
+
return self.process_text(prompt, image_inputs, **output_kwargs["text_kwargs"])
|
| 616 |
+
|
| 617 |
+
def _process_conversation(
|
| 618 |
+
self,
|
| 619 |
+
conversation: Conversation,
|
| 620 |
+
images: Optional[Union[BatchedImage, BatchedNamedImage]] = None,
|
| 621 |
+
return_labels: bool = False,
|
| 622 |
+
**kwargs: Unpack[HulumedProcessorKwargs],
|
| 623 |
+
) -> BatchFeature:
|
| 624 |
+
assert isinstance(conversation, list), "Conversation must be a list of messages."
|
| 625 |
+
|
| 626 |
+
if images is None:
|
| 627 |
+
conversation = self._load_multimodal_data(conversation)
|
| 628 |
+
images = self._gather_multimodal_data(conversation)
|
| 629 |
+
|
| 630 |
+
output_kwargs = self._merge_kwargs(
|
| 631 |
+
HulumedProcessorKwargs,
|
| 632 |
+
tokenizer_init_kwargs=self.tokenizer.init_kwargs,
|
| 633 |
+
**kwargs,
|
| 634 |
+
)
|
| 635 |
+
|
| 636 |
+
if images is not None:
|
| 637 |
+
image_inputs = self.process_images(images, **output_kwargs["images_kwargs"])
|
| 638 |
+
else:
|
| 639 |
+
image_inputs = {}
|
| 640 |
+
|
| 641 |
+
if return_labels:
|
| 642 |
+
text_inputs = self._process_conversation_with_label(conversation, image_inputs, **kwargs)
|
| 643 |
+
else:
|
| 644 |
+
text_inputs = self._process_conversation_without_label(conversation, image_inputs, **kwargs)
|
| 645 |
+
|
| 646 |
+
return BatchFeature(data={**text_inputs, **image_inputs})
|
| 647 |
+
|
| 648 |
+
def _process_plain(
|
| 649 |
+
self,
|
| 650 |
+
text: Union[TextInput, PreTokenizedInput] = None,
|
| 651 |
+
images: Optional[Union[BatchedImage, BatchedNamedImage]] = None,
|
| 652 |
+
return_labels: bool = False,
|
| 653 |
+
**kwargs: Unpack[HulumedProcessorKwargs],
|
| 654 |
+
) -> BatchFeature:
|
| 655 |
+
if text is None:
|
| 656 |
+
raise ValueError("You must provide 'text' or 'conversation'.")
|
| 657 |
+
if return_labels:
|
| 658 |
+
raise ValueError("return_labels is not supported for plain text processing.")
|
| 659 |
+
|
| 660 |
+
output_kwargs = self._merge_kwargs(
|
| 661 |
+
HulumedProcessorKwargs,
|
| 662 |
+
tokenizer_init_kwargs=self.tokenizer.init_kwargs,
|
| 663 |
+
**kwargs,
|
| 664 |
+
)
|
| 665 |
+
|
| 666 |
+
if images is not None:
|
| 667 |
+
image_inputs = self.process_images(images, **output_kwargs["images_kwargs"])
|
| 668 |
+
else:
|
| 669 |
+
image_inputs = {}
|
| 670 |
+
|
| 671 |
+
text_inputs = self.process_text(text, image_inputs, **output_kwargs["text_kwargs"])
|
| 672 |
+
|
| 673 |
+
return BatchFeature(data={**text_inputs, **image_inputs})
|
| 674 |
+
|
| 675 |
+
def process_images(self, images: Union[BatchedImage, BatchedNamedImage], **kwargs):
|
| 676 |
+
modals, images = make_batched_images(images)
|
| 677 |
+
|
| 678 |
+
if "merge_size" not in kwargs:
|
| 679 |
+
kwargs["merge_size"] = [
|
| 680 |
+
self.video_merge_size if modal == "video" else self.image_merge_size
|
| 681 |
+
for modal in modals
|
| 682 |
+
]
|
| 683 |
+
|
| 684 |
+
image_inputs = self.image_processor(images=images, **kwargs)
|
| 685 |
+
image_inputs["modals"] = modals
|
| 686 |
+
return image_inputs
|
| 687 |
+
|
| 688 |
+
def process_text(
|
| 689 |
+
self,
|
| 690 |
+
text: TextInput,
|
| 691 |
+
image_inputs: Dict[str, Any],
|
| 692 |
+
**kwargs,
|
| 693 |
+
):
|
| 694 |
+
grid_sizes = self._get_downsampled_grid_sizes(image_inputs)
|
| 695 |
+
|
| 696 |
+
kwargs.pop("padding", None)
|
| 697 |
+
kwargs.pop("padding_side", None)
|
| 698 |
+
|
| 699 |
+
if len(grid_sizes) > 0:
|
| 700 |
+
image_idx = 0
|
| 701 |
+
while DEFAULT_IMAGE_TOKEN in text:
|
| 702 |
+
num_tokens = self._get_visual_seq_len(grid_sizes[image_idx])
|
| 703 |
+
text = text.replace(DEFAULT_IMAGE_TOKEN, "<placeholder>" * num_tokens, 1)
|
| 704 |
+
image_idx += 1
|
| 705 |
+
text = text.replace("<placeholder>", DEFAULT_IMAGE_TOKEN)
|
| 706 |
+
|
| 707 |
+
assert len(grid_sizes) == image_idx, "Number of images does not match the number of image tokens in the text."
|
| 708 |
+
|
| 709 |
+
text_inputs = self.tokenizer(text, **kwargs)
|
| 710 |
+
return text_inputs
|
| 711 |
+
|
| 712 |
+
def __call__(
|
| 713 |
+
self,
|
| 714 |
+
text: Optional[TextInput] = None,
|
| 715 |
+
conversation: Optional[Conversation] = None,
|
| 716 |
+
images: Optional[Union[BatchedImage, BatchedNamedImage]] = None,
|
| 717 |
+
return_labels: bool = False,
|
| 718 |
+
**kwargs: Unpack[HulumedProcessorKwargs],
|
| 719 |
+
) -> BatchFeature:
|
| 720 |
+
if conversation is not None:
|
| 721 |
+
if text is not None:
|
| 722 |
+
raise ValueError("You cannot provide both 'conversation' and 'text'.")
|
| 723 |
+
return self._process_conversation(conversation, images, return_labels, **kwargs)
|
| 724 |
+
return self._process_plain(text, images, return_labels, **kwargs)
|
| 725 |
+
|
| 726 |
+
def batch_decode(self, *args, skip_special_tokens=True, use_think=False, **kwargs):
|
| 727 |
+
outputs = self.tokenizer.batch_decode(*args, skip_special_tokens=skip_special_tokens, **kwargs)
|
| 728 |
+
|
| 729 |
+
if not use_think:
|
| 730 |
+
outputs = [self._remove_think_tags(output) for output in outputs]
|
| 731 |
+
|
| 732 |
+
return outputs
|
| 733 |
+
|
| 734 |
+
def decode(self, *args, skip_special_tokens=True, use_think=False, **kwargs):
|
| 735 |
+
output = self.tokenizer.decode(*args, skip_special_tokens=skip_special_tokens, **kwargs)
|
| 736 |
+
|
| 737 |
+
if not use_think:
|
| 738 |
+
output = self._remove_think_tags(output)
|
| 739 |
+
|
| 740 |
+
return output
|
| 741 |
+
|
| 742 |
+
def _remove_think_tags(self, text: str) -> str:
|
| 743 |
+
import re
|
| 744 |
+
pattern = r'<think>.*?</think>'
|
| 745 |
+
cleaned = re.sub(pattern, '', text, flags=re.DOTALL)
|
| 746 |
+
cleaned = re.sub(r'\n\s*\n', '\n\n', cleaned)
|
| 747 |
+
cleaned = cleaned.strip()
|
| 748 |
+
return cleaned
|
| 749 |
+
|
| 750 |
+
def apply_chat_template(
|
| 751 |
+
self,
|
| 752 |
+
conversation: Conversation,
|
| 753 |
+
chat_template: Optional[str] = None,
|
| 754 |
+
tokenize: bool = False,
|
| 755 |
+
add_system_prompt: bool = False,
|
| 756 |
+
add_generation_prompt: bool = False,
|
| 757 |
+
image_token: Optional[str] = DEFAULT_IMAGE_TOKEN,
|
| 758 |
+
**kwargs,
|
| 759 |
+
) -> str:
|
| 760 |
+
if chat_template is None:
|
| 761 |
+
if self.chat_template is not None:
|
| 762 |
+
chat_template = self.chat_template
|
| 763 |
+
else:
|
| 764 |
+
raise ValueError(
|
| 765 |
+
"No chat template is set for this processor. Please either set the `chat_template` attribute, "
|
| 766 |
+
"or provide a chat template as an argument."
|
| 767 |
+
)
|
| 768 |
+
return self.tokenizer.apply_chat_template(
|
| 769 |
+
conversation,
|
| 770 |
+
chat_template=chat_template,
|
| 771 |
+
tokenize=tokenize,
|
| 772 |
+
add_system_prompt=add_system_prompt,
|
| 773 |
+
add_generation_prompt=add_generation_prompt,
|
| 774 |
+
image_token=image_token,
|
| 775 |
+
**kwargs
|
| 776 |
+
)
|
| 777 |
+
|
| 778 |
+
@property
|
| 779 |
+
def model_input_names(self):
|
| 780 |
+
tokenizer_input_names = self.tokenizer.model_input_names
|
| 781 |
+
image_processor_input_names = self.image_processor.model_input_names
|
| 782 |
+
return list(dict.fromkeys(tokenizer_input_names + image_processor_input_names)) + ["modals"]
|
| 783 |
+
|
| 784 |
+
def _merge_kwargs(
|
| 785 |
+
self,
|
| 786 |
+
ModelProcessorKwargs: ProcessingKwargs,
|
| 787 |
+
tokenizer_init_kwargs: Optional[Dict] = None,
|
| 788 |
+
**kwargs,
|
| 789 |
+
) -> Dict[str, Dict]:
|
| 790 |
+
output_kwargs = {
|
| 791 |
+
"text_kwargs": {},
|
| 792 |
+
"images_kwargs": {},
|
| 793 |
+
"audio_kwargs": {},
|
| 794 |
+
"videos_kwargs": {},
|
| 795 |
+
"chat_template_kwargs": {},
|
| 796 |
+
"common_kwargs": {},
|
| 797 |
+
}
|
| 798 |
+
|
| 799 |
+
default_kwargs = {
|
| 800 |
+
"text_kwargs": {},
|
| 801 |
+
"images_kwargs": {},
|
| 802 |
+
"audio_kwargs": {},
|
| 803 |
+
"videos_kwargs": {},
|
| 804 |
+
"chat_template_kwargs": {},
|
| 805 |
+
"common_kwargs": {},
|
| 806 |
+
}
|
| 807 |
+
|
| 808 |
+
used_keys = set()
|
| 809 |
+
|
| 810 |
+
for modality in default_kwargs:
|
| 811 |
+
default_kwargs[modality] = ModelProcessorKwargs._defaults.get(modality, {}).copy()
|
| 812 |
+
for modality_key in ModelProcessorKwargs.__annotations__[modality].__annotations__.keys():
|
| 813 |
+
if modality_key in tokenizer_init_kwargs:
|
| 814 |
+
value = (
|
| 815 |
+
getattr(self.tokenizer, modality_key)
|
| 816 |
+
if hasattr(self.tokenizer, modality_key)
|
| 817 |
+
else tokenizer_init_kwargs[modality_key]
|
| 818 |
+
)
|
| 819 |
+
default_kwargs[modality][modality_key] = value
|
| 820 |
+
|
| 821 |
+
output_kwargs.update(default_kwargs)
|
| 822 |
+
|
| 823 |
+
non_modality_kwargs = set(kwargs) - set(output_kwargs)
|
| 824 |
+
for modality in output_kwargs:
|
| 825 |
+
for modality_key in ModelProcessorKwargs.__annotations__[modality].__annotations__.keys():
|
| 826 |
+
if modality in kwargs:
|
| 827 |
+
kwarg_value = kwargs[modality].pop(modality_key, "__empty__")
|
| 828 |
+
if kwarg_value != "__empty__" and modality_key in non_modality_kwargs:
|
| 829 |
+
raise ValueError(
|
| 830 |
+
f"Keyword argument {modality_key} was passed twice: "
|
| 831 |
+
f"in a dictionary for {modality} and as a **kwarg."
|
| 832 |
+
)
|
| 833 |
+
elif modality_key in kwargs:
|
| 834 |
+
kwarg_value = kwargs.get(modality_key, "__empty__")
|
| 835 |
+
else:
|
| 836 |
+
kwarg_value = "__empty__"
|
| 837 |
+
if kwarg_value != "__empty__":
|
| 838 |
+
output_kwargs[modality][modality_key] = kwarg_value
|
| 839 |
+
used_keys.add(modality_key)
|
| 840 |
+
|
| 841 |
+
if any(key in default_kwargs for key in kwargs):
|
| 842 |
+
for modality, subdict in kwargs.items():
|
| 843 |
+
if modality in default_kwargs:
|
| 844 |
+
for subkey, subvalue in subdict.items():
|
| 845 |
+
if subkey not in used_keys:
|
| 846 |
+
output_kwargs[modality][subkey] = subvalue
|
| 847 |
+
used_keys.add(subkey)
|
| 848 |
+
else:
|
| 849 |
+
for key in kwargs:
|
| 850 |
+
if key not in used_keys:
|
| 851 |
+
output_kwargs["common_kwargs"][key] = kwargs[key]
|
| 852 |
+
|
| 853 |
+
for modality in output_kwargs:
|
| 854 |
+
output_kwargs[modality].update(output_kwargs["common_kwargs"])
|
| 855 |
+
|
| 856 |
+
return output_kwargs
|
processor_config.json
ADDED
|
@@ -0,0 +1,10 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"auto_map": {
|
| 3 |
+
"AutoProcessor": "processing_hulumed.HulumedProcessor"
|
| 4 |
+
},
|
| 5 |
+
"fps": 1,
|
| 6 |
+
"image_merge_size": 1,
|
| 7 |
+
"max_frames": 128,
|
| 8 |
+
"processor_class": "HulumedProcessor",
|
| 9 |
+
"video_merge_size": 2
|
| 10 |
+
}
|
tokenizer.json
DELETED
|
@@ -1,3 +0,0 @@
|
|
| 1 |
-
version https://git-lfs.github.com/spec/v1
|
| 2 |
-
oid sha256:c569fae330e56901f76e6da36771c6febaefd461368057efdba32696f69381de
|
| 3 |
-
size 11423222
|
|
|
|
|
|
|
|
|
|
|
|
tokenizer_config.json
CHANGED
|
@@ -251,7 +251,7 @@
|
|
| 251 |
"<|video_pad|>"
|
| 252 |
],
|
| 253 |
"bos_token": null,
|
| 254 |
-
"chat_template": "\n{%- set identifier = 'im' %}\n{% for message in messages %}\n {% if message['role'] == 'stream' %}\n {% set identifier = 'stream' %}\n {% else %}\n {% set identifier = 'im' %}\n {% endif %}\n {{- '<|' + identifier + '_start|>' + message['role'] + '\n' -}}\n {% if message['content'] is string %}\n {{- message['content'] + '<|' + identifier + '_end|>\n' -}}\n {% else %}\n {% for content in message['content'] %}\n {% if content['type'] == 'image' or 'image' in content or 'image_url' in content %}\n\n {{- '<image>\n' -}}\n\n {% elif content['type'] == 'video' or 'video' in content or 'video_url' in content %}\n {% for i in range(content['num_frames']) %}\n {% if i < content['num_frames'] - 1 %}\n\n {{- '<image>,' -}}\n\n {% else %}\n\n {{- '<image>\n' -}}\n\n {% endif %}\n {% endfor %}\n {% elif content['type'] == 'text' or 'text' in content %}\n {{- content['text'] -}}\n {% endif %}\n {% endfor %}\n {{- '<|' + identifier + '_end|>\n' -}}\n {% endif %}\n{% endfor %}\n{% if add_generation_prompt %}\n {{- '<|im_start|>assistant\n' -}}\n{% endif %}\n",
|
| 255 |
"clean_up_tokenization_spaces": false,
|
| 256 |
"eos_token": "<|im_end|>",
|
| 257 |
"errors": "replace",
|
|
|
|
| 251 |
"<|video_pad|>"
|
| 252 |
],
|
| 253 |
"bos_token": null,
|
| 254 |
+
"chat_template": "\n{%- set identifier = 'im' %}\n{% for message in messages %}\n {% if message['role'] == 'stream' %}\n {% set identifier = 'stream' %}\n {% else %}\n {% set identifier = 'im' %}\n {% endif %}\n {{- '<|' + identifier + '_start|>' + message['role'] + '\n' -}}\n {% if message['content'] is string %}\n {{- message['content'] + '<|' + identifier + '_end|>\n' -}}\n {% else %}\n {% for content in message['content'] %}\n {% if content['type'] == 'image' or 'image' in content or 'image_url' in content %}\n {% if 'time' in content %}\n {{- 'Time ' + content['time'] | round(1) | string + 's: ' -}}\n {% endif %}\n\n {{- '<image>\n' -}}\n\n {% elif content['type'] == 'video' or 'video' in content or 'video_url' in content %}\n {% for i in range(content['num_frames']) %}\n {% if 'timestamps' in content %}\n {{- 'Time ' + content['timestamps'][i] | round(1) | string + 's:' -}}\n {% endif %}\n {% if i < content['num_frames'] - 1 %}\n\n {{- '<image>,' -}}\n\n {% else %}\n\n {{- '<image>\n' -}}\n\n {% endif %}\n {% endfor %}\n {% elif content['type'] == 'text' or 'text' in content %}\n {{- content['text'] -}}\n {% endif %}\n {% endfor %}\n {{- '<|' + identifier + '_end|>\n' -}}\n {% endif %}\n{% endfor %}\n{% if add_generation_prompt %}\n {{- '<|im_start|>assistant\n' -}}\n{% endif %}\n",
|
| 255 |
"clean_up_tokenization_spaces": false,
|
| 256 |
"eos_token": "<|im_end|>",
|
| 257 |
"errors": "replace",
|
vocab.json
CHANGED
|
The diff for this file is too large to render.
See raw diff
|
|
|