"""Processor class for HuluMed with 3D support.""" import copy import importlib.util import os import os.path as osp import warnings from collections import defaultdict from typing import Any, List, Union, Dict, Optional, Tuple, TypedDict import cv2 import ffmpeg import imageio import json import numpy as np import torch import transformers from decord import VideoReader, cpu from PIL import Image from transformers.feature_extraction_utils import BatchFeature from transformers.image_utils import ImageInput from transformers.processing_utils import ProcessingKwargs, ProcessorMixin, Unpack from transformers.tokenization_utils_base import PreTokenizedInput, TextInput try: import nibabel as nib NIBABEL_AVAILABLE = True except ImportError: NIBABEL_AVAILABLE = False warnings.warn("nibabel is not installed. 3D medical imaging support will be limited. Install with: pip install nibabel") try: from . import image_processing_hulumed from .image_processing_hulumed import ( is_valid_image, is_valid_video, ) except ModuleNotFoundError: spec = importlib.util.spec_from_file_location( "image_processing_hulumed", osp.join(osp.dirname(__file__), "image_processing_hulumed.py"), ) image_processing_hulumed = importlib.util.module_from_spec(spec) spec.loader.exec_module(image_processing_hulumed) is_valid_image = getattr(image_processing_hulumed, "is_valid_image") is_valid_video = getattr(image_processing_hulumed, "is_valid_video") DEFAULT_IMAGE_TOKEN = "" IGNORE_INDEX = -100 Conversation = List[Dict[str, Any]] SingleImage = Union[Image.Image, np.ndarray, torch.Tensor] SingleVideo = Union[List[SingleImage], np.ndarray, torch.Tensor] BatchedImage = List[Union[SingleImage, SingleVideo]] BatchedNamedImage = List[Tuple[str, Union[SingleImage, SingleVideo]]] def _custom_import(class_name: str): try: attribute_class = getattr(transformers, class_name) except AttributeError: attribute_class = getattr(image_processing_hulumed, class_name) return attribute_class def is_named_image(image) -> bool: return isinstance(image, (list, tuple)) and \ len(image) == 2 and \ isinstance(image[0], str) and \ image[0] in ["image", "video", "3d"] and \ (is_valid_image(image[1]) or is_valid_video(image[1])) def make_batched_images(images) -> Tuple[List[str], List[ImageInput]]: if isinstance(images, (list, tuple)) and all(is_named_image(image) for image in images): modals = [image[0] if image[0] != "3d" else "video" for image in images] data = [image[1] for image in images] return modals, data elif isinstance(images, (list, tuple)) and all(is_valid_image(image) or is_valid_video(image) for image in images): batch = [] for image in images: if is_valid_video(image): batch.append(("video", image)) elif is_valid_image(image): batch.append(("image", image)) else: raise ValueError(f"Could not make batched images from {images}") return [x[0] for x in batch], [x[1] for x in batch] elif is_named_image(images): modal = images[0] if images[0] != "3d" else "video" return [modal], [images[1]] elif is_valid_video(images): return ["video"], [images] elif is_valid_image(images): return ["image"], [images] raise ValueError(f"Could not make batched images from {images}") def frame_sample(duration, mode='uniform', num_frames=None, vid_fps=None, fps=None): if mode == 'uniform': assert num_frames is not None, "Number of frames must be provided for uniform sampling." if duration <= num_frames: return np.arange(duration).astype(int) return np.linspace(0, duration-1, num_frames, dtype=int) elif mode == 'fps': assert vid_fps is not None, "FPS must be provided for FPS sampling." assert fps is not None, "FPS must be provided for FPS sampling." segment_len = min(vid_fps // fps, duration) return np.arange(segment_len // 2, duration, segment_len, dtype=int) else: raise ValueError(f'Unsupported frame sampling mode: {mode}') def load_video_from_ids(video_path, s=None, e=None, fps=None, max_frames=128, temporal_factor=1): if s is not None and e is not None: s = s if s >= 0. else 0. e = e if e >= 0. else 0. if s > e: s, e = e, s elif s == e: e = s + 1 if os.path.isdir(video_path): frame_files = sorted(os.listdir(video_path)) vid_fps = 3 num_frames_of_video = len(frame_files) elif video_path.endswith('.gif'): gif_reader = imageio.get_reader(video_path) vid_fps = 25 num_frames_of_video = len(gif_reader) else: vreader = VideoReader(video_path, ctx=cpu(0), num_threads=2) vid_fps = vreader.get_avg_fps() num_frames_of_video = len(vreader) f_start = 0 if s is None else max(int(s * vid_fps) - 1, 0) f_end = num_frames_of_video - 1 if e is None else min(int(e * vid_fps) - 1, num_frames_of_video - 1) frame_indices = list(range(f_start, f_end + 1)) duration = len(frame_indices) if fps is not None and duration / vid_fps < max_frames: sampled_frame_indices = [frame_indices[i] for i in frame_sample(duration, mode='fps', vid_fps=vid_fps, fps=fps)] else: sampled_frame_indices = [frame_indices[i] for i in frame_sample(duration, mode='uniform', num_frames=max_frames)] if os.path.isdir(video_path): frames = np.array([cv2.cvtColor(cv2.imread(os.path.join(video_path, frame_files[frame_idx])), cv2.COLOR_BGR2RGB) for frame_idx in sampled_frame_indices]) elif video_path.endswith('.gif'): frames = np.array([cv2.cvtColor(frame, cv2.COLOR_RGBA2RGB) for idx, frame in enumerate(gif_reader) if idx in sampled_frame_indices]) else: frames = vreader.get_batch(sampled_frame_indices).asnumpy() frames = frames.transpose(0, 3, 1, 2) timestamps = [x / vid_fps for x in sampled_frame_indices] if temporal_factor > 1: pad_length = temporal_factor - len(frames) % temporal_factor frames = np.concatenate([frames, frames[-1:].repeat(pad_length, axis=0)]) [timestamps.append(timestamps[-1] + 1 / fps) for _ in range(pad_length)] frames = [frame for frame in frames] return frames, timestamps class ChatTemplateKwargs(TypedDict, total=False): chat_template: Optional[str] add_system_prompt: Optional[bool] add_generation_prompt: Optional[bool] class HulumedProcessorKwargs(ProcessingKwargs, ChatTemplateKwargs, total=False): chat_template_kwargs: ChatTemplateKwargs = { **ChatTemplateKwargs.__annotations__, } _defaults = { "text_kwargs": { "padding": False, }, "images_kwargs": { }, "chat_template_kwargs": { "chat_template": None, "add_system_prompt": False, "add_generation_prompt": False, }, } class HulumedProcessor(ProcessorMixin): attributes = ["image_processor", "tokenizer"] image_processor_class = "HulumedImageProcessor" tokenizer_class = ("Qwen2Tokenizer", "Qwen2TokenizerFast") valid_kwargs = ["chat_template", "image_merge_size", "video_merge_size", "fps", "max_frames"] def __init__( self, image_processor=None, tokenizer=None, chat_template: str = None, image_merge_size: int = 1, video_merge_size: int = 2, fps: Optional[int] = 1, max_frames: Optional[int] = 128, ): self.image_processor = image_processor self.tokenizer = tokenizer if chat_template is None: chat_template = self.tokenizer.chat_template self.chat_template = chat_template self.image_merge_size = image_merge_size self.video_merge_size = video_merge_size self.fps = fps self.max_frames = max_frames self.generation_prompt = self._infer_generation_prompt() self.generation_prompt_ids = self.tokenizer.encode(self.generation_prompt, return_tensors="pt") self.generation_prompt_length = len(self.generation_prompt_ids[0]) self.image_token_id = self.tokenizer.convert_tokens_to_ids(DEFAULT_IMAGE_TOKEN) self.eos_token_id = self.tokenizer.eos_token_id @classmethod def _get_arguments_from_pretrained(cls, pretrained_model_name_or_path, **kwargs): args = [] for attribute_name in cls.attributes: class_name = getattr(cls, f"{attribute_name}_class") if isinstance(class_name, tuple): classes = tuple(_custom_import(n) if n is not None else None for n in class_name) use_fast = kwargs.get("use_fast", True) if use_fast and classes[1] is not None: attribute_class = classes[1] else: attribute_class = classes[0] else: attribute_class = _custom_import(class_name) args.append(attribute_class.from_pretrained(pretrained_model_name_or_path, **kwargs)) return args def get_generation_prompt(self): return self.generation_prompt def get_generation_prompt_ids(self): return self.generation_prompt_ids def _infer_generation_prompt(self): pseudo_message = [{"role": "user", "content": ""}] instruction = self.apply_chat_template(pseudo_message, tokenize=False, add_generation_prompt=True) conversation = self.apply_chat_template(pseudo_message, tokenize=False, add_generation_prompt=False) return instruction.replace(conversation, "") def _get_downsampled_grid_sizes(self, image_inputs: Dict[str, Any]): grid_sizes = [] for grid_size, merge_size in zip(image_inputs.get("grid_sizes", []), image_inputs.get("merge_sizes", [])): if not torch.all(grid_size[1:] % merge_size == 0): warnings.warn(f"Grid size {grid_size} is not divisible by merge size. Some undesired errors may occur.") if grid_size[0] == 1: grid_sizes.append(grid_size[1:] / merge_size) elif grid_size[0] > 1: grid_sizes.extend([grid_size[1:] / merge_size] * grid_size[0]) return grid_sizes def _get_visual_seq_len(self, grid_size: torch.Tensor): num_tokens = int(grid_size.prod().item()) return num_tokens def load_images(self, image_path: Union[str, List[str], Image.Image, List[Image.Image]]): if isinstance(image_path, str) and os.path.isfile(image_path): images = [Image.open(image_path).convert('RGB')] elif isinstance(image_path, str) and os.path.isdir(image_path): images = [Image.open(os.path.join(image_path, f)).convert('RGB') for f in sorted(os.listdir(image_path))] elif isinstance(image_path, list) and isinstance(image_path[0], str): images = [Image.open(f).convert('RGB') for f in image_path] elif isinstance(image_path, list) and isinstance(image_path[0], Image.Image): images = [np.array(x) for x in image_path] elif isinstance(image_path, Image.Image): images = [np.array(image_path)] else: raise ValueError(f"Unsupported image path type: {type(image_path)}") return images def load_nii( self, nii_path: str, num_slices: Optional[int] = None, axis: int = 2, window_center: Optional[float] = None, window_width: Optional[float] = None, normalize: bool = True, ): if not NIBABEL_AVAILABLE: raise ImportError("nibabel is required for NIfTI support. Install with: pip install nibabel") if not os.path.exists(nii_path): raise FileNotFoundError(f"NIfTI file not found: {nii_path}") nii_img = nib.load(nii_path) volume = nii_img.get_fdata() if axis == 0: slices = [volume[i, :, :] for i in range(volume.shape[0])] elif axis == 1: slices = [volume[:, i, :] for i in range(volume.shape[1])] elif axis == 2: slices = [volume[:, :, i] for i in range(volume.shape[2])] else: raise ValueError(f"Invalid axis: {axis}. Must be 0, 1, or 2.") if num_slices is not None and num_slices < len(slices): indices = np.linspace(0, len(slices) - 1, num_slices, dtype=int) slices = [slices[i] for i in indices] processed_slices = [] for slice_2d in slices: if window_center is not None and window_width is not None: lower = window_center - window_width / 2 upper = window_center + window_width / 2 slice_2d = np.clip(slice_2d, lower, upper) if normalize: slice_min = slice_2d.min() slice_max = slice_2d.max() if slice_max > slice_min: slice_2d = (slice_2d - slice_min) / (slice_max - slice_min) * 255.0 else: slice_2d = np.zeros_like(slice_2d) slice_2d = slice_2d.astype(np.uint8) slice_rgb = np.stack([slice_2d] * 3, axis=0) processed_slices.append(slice_rgb) return processed_slices def load_video( self, video_path: str, start_time: Optional[float] = None, end_time: Optional[float] = None, fps: Optional[float] = None, max_frames: Optional[float] = None, size: Optional[int] = None, size_divisible: int = 1, precise_time: bool = False, verbose: bool = False, temporal_factor: int = 1 ): fps = self.fps if fps is None else fps max_frames = self.max_frames if max_frames is None else max_frames if start_time is not None and end_time is not None and end_time - start_time < 1: return load_video_from_ids(video_path, start_time, end_time, fps=fps, max_frames=max_frames) if os.path.isdir(video_path): return load_video_from_ids(video_path, start_time, end_time, fps=fps, max_frames=max_frames) if video_path.endswith('.gif'): return load_video_from_ids(video_path, start_time, end_time, fps=fps, max_frames=max_frames) probe = ffmpeg.probe(video_path) duration = float(probe['format']['duration']) video_stream = next((stream for stream in probe['streams'] if stream['codec_type'] == 'video'), None) w, h = int(video_stream['width']), int(video_stream['height']) kwargs, input_kwargs, output_kwargs = {}, {}, {} do_trim = start_time is not None or end_time is not None if start_time is not None: new_start_time = max(float(video_stream['start_time']), start_time) duration -= new_start_time - start_time start_time = new_start_time else: start_time = float(video_stream['start_time']) if end_time is not None: duration = min(duration, end_time - start_time) if do_trim: kwargs = {'ss': start_time, 't': duration} if precise_time: output_kwargs.update(kwargs) else: input_kwargs.update(kwargs) if size is not None: scale_factor = size / min(w, h) new_w, new_h = round(w * scale_factor), round(h * scale_factor) else: new_w, new_h = w, h new_w = new_w // size_divisible * size_divisible new_h = new_h // size_divisible * size_divisible stream = ffmpeg.input(video_path, **input_kwargs) if fps is not None: stream = ffmpeg.filter(stream, "fps", fps=fps, round="down") if new_w != w or new_h != h: stream = ffmpeg.filter(stream, 'scale', new_w, new_h) stream = ffmpeg.output(stream, "pipe:", format="rawvideo", pix_fmt="rgb24", **output_kwargs) out, _ = ffmpeg.run(stream, capture_stdout=True, quiet=not verbose) frames = np.frombuffer(out, np.uint8).reshape([-1, new_h, new_w, 3]).transpose([0, 3, 1, 2]) if fps is not None: timestamps = np.arange(start_time, start_time + duration + 1 / fps, 1 / fps)[:len(frames)] else: timestamps = np.linspace(start_time, start_time + duration, len(frames)) if max_frames is not None and len(frames) > max_frames: indices = np.linspace(0, len(frames) - 1, max_frames, dtype=int) frames = frames[indices] timestamps = timestamps[indices] if temporal_factor > 1: pad_length = temporal_factor - len(frames) % temporal_factor frames = np.concatenate([frames, frames[-1:].repeat(pad_length, axis=0)]) timestamps = np.concatenate([timestamps, timestamps[-1:].repeat(pad_length) + np.arange(1, pad_length + 1) / fps]) frames = [frame for frame in frames] timestamps = [timestamp for timestamp in timestamps] return frames, timestamps def _load_multimodal_data(self, conversation: Conversation): multimodal_info = defaultdict(list) new_conversation = [] for message in conversation: new_message = {"role": message["role"]} if not isinstance(message["content"], (list, tuple)): new_message["content"] = message["content"] new_conversation.append(new_message) continue new_contents = [] for content in message["content"]: if not isinstance(content, dict): new_contents.append(content) continue assert "type" in content, "Content must have 'type' field." if content["type"] in ["image", "video", "3d"] and content["type"] in content and isinstance(content[content["type"]], dict): load_args = content[content["type"]] data_id = json.dumps({k: v for k, v in load_args.items() if k not in ["start_time", "end_time"]}) new_content = copy.deepcopy(content) multimodal_info[data_id].append(new_content) new_contents.append(new_content) else: new_contents.append(content) new_message["content"] = new_contents new_conversation.append(new_message) for data_id, contents in multimodal_info.items(): data_type = contents[0]["type"] if data_type == "image": image = self.load_images(contents[0][data_type]["image_path"])[0] for content in contents: content["image"] = [image.copy()] elif data_type == "3d": load_args = contents[0]["3d"] nii_path = load_args["image_path"] num_slices = load_args.get("nii_num_slices", None) axis = load_args.get("nii_axis", 2) window_center = load_args.get("window_center", None) window_width = load_args.get("window_width", None) slices = self.load_nii( nii_path=nii_path, num_slices=num_slices, axis=axis, window_center=window_center, window_width=window_width, ) for content in contents: content["type"] = "video" content["video"] = slices content["num_frames"] = len(slices) content.pop("3d", None) elif data_type == "video": start_times = [content["video"].get("start_time", 0.) for content in contents] end_times = [content["video"].get("end_time", float("inf")) for content in contents] load_args = contents[0][data_type] start_time, end_time = min(start_times), max(end_times) if start_time > 0: load_args["start_time"] = start_time if end_time < float("inf"): load_args["end_time"] = end_time images, timestamps = self.load_video(**load_args) for content, start_time, end_time in zip(contents, start_times, end_times): cur_images, cur_timestamps = [], [] for image, timestamp in zip(images, timestamps): if start_time <= timestamp <= end_time: cur_images.append(image.copy()) cur_timestamps.append(timestamp) content[data_type] = cur_images content["num_frames"] = len(cur_images) content["timestamps"] = cur_timestamps return new_conversation def _gather_multimodal_data(self, conversation: Conversation): images = [] for message in conversation: if not isinstance(message["content"], (list, tuple)): continue for content in message["content"]: if not isinstance(content, dict): continue if content["type"] == "video": video = content["video"] assert is_valid_video(video), f"Invalid video data: {video}." images.append(("video", video)) elif content["type"] == "image": image = content["image"] images.append(("image", image)) images = images if len(images) > 0 else None return images def _process_conversation_with_label( self, conversation: Conversation, image_inputs: Dict[str, Any], **kwargs, ): assert kwargs.pop("return_tensors", "pt") == "pt", "Only PyTorch tensors are supported when return_labels=True." assert "add_generation_prompt" not in kwargs, "'add_generation_prompt' argument is not supported when return_labels=True." output_kwargs = self._merge_kwargs( HulumedProcessorKwargs, tokenizer_init_kwargs=self.tokenizer.init_kwargs, **kwargs, ) output_kwargs["chat_template_kwargs"].pop("add_generation_prompt") grid_sizes = self._get_downsampled_grid_sizes(image_inputs) text_inputs = {"input_ids": [], "labels": []} sample_types_list = [] image_idx = 0 for message_idx, message in enumerate(conversation): prompt = self.apply_chat_template( [message], tokenize=False, add_generation_prompt=False, **output_kwargs["chat_template_kwargs"], ) prompt_chunks = prompt.split(DEFAULT_IMAGE_TOKEN) prompt = [] for chunk_idx in range(len(prompt_chunks) - 1): prompt.append(prompt_chunks[chunk_idx]) num_tokens = self._get_visual_seq_len(grid_sizes[image_idx]) prompt.append(DEFAULT_IMAGE_TOKEN * num_tokens) image_idx += 1 prompt.append(prompt_chunks[-1]) prompt = "".join(prompt) input_ids = self.tokenizer.encode(prompt, return_tensors="pt", **output_kwargs["text_kwargs"])[0] text_inputs["input_ids"].append(input_ids) targets = torch.full_like(input_ids, IGNORE_INDEX) sample_types = torch.full_like(input_ids, IGNORE_INDEX) if message["role"] == "assistant": targets[self.generation_prompt_length:-1] = input_ids[self.generation_prompt_length:-1].clone() elif message["role"] == "stream": diff = torch.diff((input_ids == self.image_token_id).float()) image_end_indices = torch.nonzero(diff < 0)[:, 0] targets[image_end_indices + 1] = input_ids[image_end_indices + 1] sample_types = targets.clone() sample_types[torch.logical_and(sample_types > 0, sample_types != self.eos_token_id)] = 0 targets[-2] = input_ids[-2] if message_idx > 0 and conversation[message_idx - 1]["role"] == "stream": targets[0] = input_ids[0] sample_types[0] = input_ids[0] text_inputs["labels"].append(targets) sample_types_list.append(sample_types) text_inputs = {k: torch.cat(v) for k, v in text_inputs.items()} sample_types = torch.cat(sample_types_list) types, counts = torch.unique(sample_types[sample_types > -1], return_counts=True) if len(types) > 0: target_num_samples = counts.amin() for type_id, type_count in zip(types, counts): if type_count > target_num_samples: indices = torch.nonzero(sample_types == type_id)[:, 0] random_selector = torch.randperm(indices.size(0))[:-target_num_samples] text_inputs["labels"][indices[random_selector]] = IGNORE_INDEX assert len(grid_sizes) == image_idx, "Number of images does not match the number of image tokens in the text." return text_inputs def _process_conversation_without_label( self, conversation: Conversation, image_inputs: Dict[str, Any], **kwargs, ): output_kwargs = self._merge_kwargs( HulumedProcessorKwargs, tokenizer_init_kwargs=self.tokenizer.init_kwargs, **kwargs, ) prompt = self.apply_chat_template( conversation, tokenize=False, **output_kwargs["chat_template_kwargs"], ) return self.process_text(prompt, image_inputs, **output_kwargs["text_kwargs"]) def _process_conversation( self, conversation: Conversation, images: Optional[Union[BatchedImage, BatchedNamedImage]] = None, return_labels: bool = False, **kwargs: Unpack[HulumedProcessorKwargs], ) -> BatchFeature: assert isinstance(conversation, list), "Conversation must be a list of messages." if images is None: conversation = self._load_multimodal_data(conversation) images = self._gather_multimodal_data(conversation) output_kwargs = self._merge_kwargs( HulumedProcessorKwargs, tokenizer_init_kwargs=self.tokenizer.init_kwargs, **kwargs, ) if images is not None: image_inputs = self.process_images(images, **output_kwargs["images_kwargs"]) else: image_inputs = {} if return_labels: text_inputs = self._process_conversation_with_label(conversation, image_inputs, **kwargs) else: text_inputs = self._process_conversation_without_label(conversation, image_inputs, **kwargs) return BatchFeature(data={**text_inputs, **image_inputs}) def _process_plain( self, text: Union[TextInput, PreTokenizedInput] = None, images: Optional[Union[BatchedImage, BatchedNamedImage]] = None, return_labels: bool = False, **kwargs: Unpack[HulumedProcessorKwargs], ) -> BatchFeature: if text is None: raise ValueError("You must provide 'text' or 'conversation'.") if return_labels: raise ValueError("return_labels is not supported for plain text processing.") output_kwargs = self._merge_kwargs( HulumedProcessorKwargs, tokenizer_init_kwargs=self.tokenizer.init_kwargs, **kwargs, ) if images is not None: image_inputs = self.process_images(images, **output_kwargs["images_kwargs"]) else: image_inputs = {} text_inputs = self.process_text(text, image_inputs, **output_kwargs["text_kwargs"]) return BatchFeature(data={**text_inputs, **image_inputs}) def process_images(self, images: Union[BatchedImage, BatchedNamedImage], **kwargs): modals, images = make_batched_images(images) if "merge_size" not in kwargs: kwargs["merge_size"] = [ self.video_merge_size if modal == "video" else self.image_merge_size for modal in modals ] image_inputs = self.image_processor(images=images, **kwargs) image_inputs["modals"] = modals return image_inputs def process_text( self, text: TextInput, image_inputs: Dict[str, Any], **kwargs, ): grid_sizes = self._get_downsampled_grid_sizes(image_inputs) kwargs.pop("padding", None) kwargs.pop("padding_side", None) if len(grid_sizes) > 0: image_idx = 0 while DEFAULT_IMAGE_TOKEN in text: num_tokens = self._get_visual_seq_len(grid_sizes[image_idx]) text = text.replace(DEFAULT_IMAGE_TOKEN, "" * num_tokens, 1) image_idx += 1 text = text.replace("", DEFAULT_IMAGE_TOKEN) assert len(grid_sizes) == image_idx, "Number of images does not match the number of image tokens in the text." text_inputs = self.tokenizer(text, **kwargs) return text_inputs def __call__( self, text: Optional[TextInput] = None, conversation: Optional[Conversation] = None, images: Optional[Union[BatchedImage, BatchedNamedImage]] = None, return_labels: bool = False, **kwargs: Unpack[HulumedProcessorKwargs], ) -> BatchFeature: if conversation is not None: if text is not None: raise ValueError("You cannot provide both 'conversation' and 'text'.") return self._process_conversation(conversation, images, return_labels, **kwargs) return self._process_plain(text, images, return_labels, **kwargs) def batch_decode(self, *args, skip_special_tokens=True, use_think=False, **kwargs): outputs = self.tokenizer.batch_decode(*args, skip_special_tokens=skip_special_tokens, **kwargs) if not use_think: outputs = [self._remove_think_tags(output) for output in outputs] return outputs def decode(self, *args, skip_special_tokens=True, use_think=False, **kwargs): output = self.tokenizer.decode(*args, skip_special_tokens=skip_special_tokens, **kwargs) if not use_think: output = self._remove_think_tags(output) return output def _remove_think_tags(self, text: str) -> str: import re pattern = r'.*?' cleaned = re.sub(pattern, '', text, flags=re.DOTALL) cleaned = re.sub(r'\n\s*\n', '\n\n', cleaned) cleaned = cleaned.strip() return cleaned def apply_chat_template( self, conversation: Conversation, chat_template: Optional[str] = None, tokenize: bool = False, add_system_prompt: bool = False, add_generation_prompt: bool = False, image_token: Optional[str] = DEFAULT_IMAGE_TOKEN, **kwargs, ) -> str: if chat_template is None: if self.chat_template is not None: chat_template = self.chat_template else: raise ValueError( "No chat template is set for this processor. Please either set the `chat_template` attribute, " "or provide a chat template as an argument." ) return self.tokenizer.apply_chat_template( conversation, chat_template=chat_template, tokenize=tokenize, add_system_prompt=add_system_prompt, add_generation_prompt=add_generation_prompt, image_token=image_token, **kwargs ) @property def model_input_names(self): tokenizer_input_names = self.tokenizer.model_input_names image_processor_input_names = self.image_processor.model_input_names return list(dict.fromkeys(tokenizer_input_names + image_processor_input_names)) + ["modals"] def _merge_kwargs( self, ModelProcessorKwargs: ProcessingKwargs, tokenizer_init_kwargs: Optional[Dict] = None, **kwargs, ) -> Dict[str, Dict]: output_kwargs = { "text_kwargs": {}, "images_kwargs": {}, "audio_kwargs": {}, "videos_kwargs": {}, "chat_template_kwargs": {}, "common_kwargs": {}, } default_kwargs = { "text_kwargs": {}, "images_kwargs": {}, "audio_kwargs": {}, "videos_kwargs": {}, "chat_template_kwargs": {}, "common_kwargs": {}, } used_keys = set() for modality in default_kwargs: default_kwargs[modality] = ModelProcessorKwargs._defaults.get(modality, {}).copy() for modality_key in ModelProcessorKwargs.__annotations__[modality].__annotations__.keys(): if modality_key in tokenizer_init_kwargs: value = ( getattr(self.tokenizer, modality_key) if hasattr(self.tokenizer, modality_key) else tokenizer_init_kwargs[modality_key] ) default_kwargs[modality][modality_key] = value output_kwargs.update(default_kwargs) non_modality_kwargs = set(kwargs) - set(output_kwargs) for modality in output_kwargs: for modality_key in ModelProcessorKwargs.__annotations__[modality].__annotations__.keys(): if modality in kwargs: kwarg_value = kwargs[modality].pop(modality_key, "__empty__") if kwarg_value != "__empty__" and modality_key in non_modality_kwargs: raise ValueError( f"Keyword argument {modality_key} was passed twice: " f"in a dictionary for {modality} and as a **kwarg." ) elif modality_key in kwargs: kwarg_value = kwargs.get(modality_key, "__empty__") else: kwarg_value = "__empty__" if kwarg_value != "__empty__": output_kwargs[modality][modality_key] = kwarg_value used_keys.add(modality_key) if any(key in default_kwargs for key in kwargs): for modality, subdict in kwargs.items(): if modality in default_kwargs: for subkey, subvalue in subdict.items(): if subkey not in used_keys: output_kwargs[modality][subkey] = subvalue used_keys.add(subkey) else: for key in kwargs: if key not in used_keys: output_kwargs["common_kwargs"][key] = kwargs[key] for modality in output_kwargs: output_kwargs[modality].update(output_kwargs["common_kwargs"]) return output_kwargs