| {"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7bb899b5b920>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7bb899b5b9c0>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7bb899b5ba60>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7bb899b5bb00>", "_build": "<function ActorCriticPolicy._build at 0x7bb899b5bba0>", "forward": "<function ActorCriticPolicy.forward at 0x7bb899b5bc40>", "extract_features": "<function ActorCriticPolicy.extract_features at 0x7bb899b5bce0>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7bb899b5bd80>", "_predict": "<function ActorCriticPolicy._predict at 0x7bb899b5be20>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7bb899b5bec0>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7bb899b5bf60>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7bb899b5c040>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x7bb899ef5d80>"}, "verbose": 1, "policy_kwargs": {}, "num_timesteps": 1015808, "_total_timesteps": 1000000.0, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1742089795548883402, "learning_rate": 0.0003, "tensorboard_log": "runs/lunarlander", "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAGYRnrz2LDe6wv42OiJZzjVMFgc65q1TuQAAgD8AAIA/JqGdPYyQlj6oy8m9W3F1vsDWBrxrg6q9AAAAAAAAAADN2r49e9iXujF9QjwBUvc1lkkDOw5I6jQAAAAAAACAP5obSDx7O8M9NpL/PBePOb6QnzI8DOuPuwAAAAAAAAAAAKLCPRT+iDkYaog7muvKtYDtI7wdL6a6AACAPwAAgD8zgB09SOmavICQtrxJbIO9oxHTvA/tsr0AAIA/AACAP7Melj0ptEG6llOJO7neZ7X1AhW7k55TtAAAgD8AAIA/mucNPAi0pj+lp8Q6wIi8vsN7Trx6FpI8AAAAAAAAAAAmNAU+H8POOoYXfTjcgV81YtGAPK+Wn7cAAIA/AACAP2YzQz1cYyG6mtLcuYWLWrWV9846eq7+OAAAgD8AAIA/ZrkpvcPdM7oXBcG6bKcCtkeqNjtoYN85AACAPwAAgD+muea9j85NuitJaDl61Ck0kDFEunmRiLgAAIA/AAAAAIDxOj2kUGm5rmtWu+bMdrWXoB27sm5+OgAAgD8AAIA/MyqhPMPNCrru5MM5A8liNjuPLDt4xOq4AACAPwAAgD9NLac9hWPwuRbL5jrp1NY1UC5HO2mjCroAAIA/AAAAAA2AzT1pthQ/jflmPDbdvr6Sk6E98jCgvQAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.015808000000000044, "_stats_window_size": 100, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVOQwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQEZ4AXl8w6CMAWyUS+6MAXSUR0CWvaIfbKzSdX2UKGgGR0BmuO78Nx2jaAdN6ANoCEdAlr2fQKKHf3V9lChoBkdAYHjj/dZaFGgHTegDaAhHQJbIocsDnvF1fZQoaAZHQGUIwg9vCMxoB03oA2gIR0CWzffdhy80dX2UKGgGR0BiXMFyJbdKaAdN6ANoCEdAltK6LXL/0nV9lChoBkdAYc2J0nw5N2gHTegDaAhHQJbfAOEug6F1fZQoaAZHQGO86GYa5wxoB03oA2gIR0CW4iRCx/utdX2UKGgGR0Bhv2elKsdUaAdN6ANoCEdAluTJJoTPB3V9lChoBkdAZjnzNliBoWgHTegDaAhHQJblzOfNA1N1fZQoaAZHQGHPqVpsXSBoB03oA2gIR0CXAvof0VafdX2UKGgGR0BfeBppN9H+aAdN6ANoCEdAlwMpDiOvMnV9lChoBkdAXvtOFg2If2gHTegDaAhHQJcFiPmxMWZ1fZQoaAZHQDg7ZHuqm0poB0vgaAhHQJcLMjqv/zd1fZQoaAZHQGMvva+N96VoB03oA2gIR0CXC8sEaESNdX2UKGgGR0BIHZeRgZ0kaAdL4mgIR0CXGiCtzS1FdX2UKGgGR0Bj2WNkvsZ6aAdN6ANoCEdAlyGxwAEMb3V9lChoBkdAYTkvQF9roGgHTegDaAhHQJcnNQBPsRh1fZQoaAZHQGKkbeMyaeBoB03oA2gIR0CXLUF5fMOgdX2UKGgGR0BhYTOE/SpjaAdN6ANoCEdAlzA8YqG1yHV9lChoBkdAZKiYqoZQ52gHTegDaAhHQJcwKNdZ7ol1fZQoaAZHQGIK3f642CNoB03oA2gIR0CXOqGXokiVdX2UKGgGR0Bjtft2LYPHaAdN6ANoCEdAl0DdRrJr+HV9lChoBkdAZHgODJ2dNGgHTegDaAhHQJdGfwmVqvh1fZQoaAZHQGPKD1wo9cNoB03oA2gIR0CXTpAbhm5EdX2UKGgGR0Birh28qWkaaAdN6ANoCEdAl1OrTH80lHV9lChoBkdAWrNfrrxAjmgHTegDaAhHQJdUh3pwCKd1fZQoaAZHQFFPHqeK8+RoB0vsaAhHQJdU5Gc4HX51fZQoaAZHQHBhXmzSkTJoB01jA2gIR0CXWCuFpPAPdX2UKGgGR0Bkn1II4VASaAdN6ANoCEdAl1tRMrVe8nV9lChoBkdAY0M5zYEns2gHTegDaAhHQJdzrnKW9lF1fZQoaAZHQGBA9u5z5oJoB03oA2gIR0CXeTGrCFbndX2UKGgGR0BNgx9w3o9taAdLrmgIR0CXgNS9/SYxdX2UKGgGR0Bj2Kd1+y7gaAdN6ANoCEdAl4KfoRqXW3V9lChoBkdAZi0+CbtqpWgHTegDaAhHQJeJdVENOM51fZQoaAZHQGVWAwGnn+1oB03oA2gIR0CXjonv2GqQdX2UKGgGR0BAPOYx+KCQaAdL5mgIR0CXkyCQtBfKdX2UKGgGR0BiZEsvqTr3aAdN6ANoCEdAl5QL4Ju2qnV9lChoBkdAZjL59mYjS2gHTegDaAhHQJeW6SW7e2x1fZQoaAZHQGHNcCPp6hRoB03oA2gIR0CXls/jsD4hdX2UKGgGR0Bjs2m3vx6OaAdN6ANoCEdAl6Cp0GNaQnV9lChoBkdAYftdRiw0O2gHTegDaAhHQJetR/FzdUN1fZQoaAZHQGTi78vVVghoB03oA2gIR0CXtmvt+kP+dX2UKGgGR0BnAT7O3UhFaAdN6ANoCEdAl7w31FpfyHV9lChoBkdAX16MXJo0ymgHTegDaAhHQJe9MD1XeWR1fZQoaAZHQGI9It16mfpoB03oA2gIR0CXvZ17Y02tdX2UKGgGR0BmruxfOUt7aAdN6ANoCEdAl8D8clw97nV9lChoBkdAZQ6PI4lyBGgHTegDaAhHQJfEgWAPNFB1fZQoaAZHQGF0h1Tzd1xoB03oA2gIR0CX5Bv3rUsndX2UKGgGR0BkoN8stkFwaAdN6ANoCEdAl+75BHCoCXV9lChoBkdAZLoYEW69TWgHTegDaAhHQJf20pKBd2R1fZQoaAZHQGbMKUFB6a9oB03oA2gIR0CX/L9pAUtadX2UKGgGR0BmJEbLlmvoaAdN6ANoCEdAmAIRtYSxq3V9lChoBkdAYZal0o0ALmgHTegDaAhHQJgDECIUJv51fZQoaAZHQGLq22oegctoB03oA2gIR0CYBiJhOP/8dX2UKGgGR0BnOzc6/7BPaAdN6ANoCEdAmAYOcQRPGnV9lChoBkdAZwJBgNPP9mgHTegDaAhHQJgTJ59mYjV1fZQoaAZHQGYkp/PPcBVoB03oA2gIR0CYHGX3xnWbdX2UKGgGR0Bf8ocvM8oyaAdN6ANoCEdAmCUMJtzjm3V9lChoBkdAY95Lr5ZbIWgHTegDaAhHQJgqa6MBIWh1fZQoaAZHQGZ0lgMMI/toB03oA2gIR0CYK041xbSrdX2UKGgGR0Bh27PGACnxaAdN6ANoCEdAmCuqzzErG3V9lChoBkdAW6keii7Ci2gHTegDaAhHQJguwU34sVd1fZQoaAZHQGDX7Ak9lmRoB03oA2gIR0CYMdDtgKF7dX2UKGgGR0BiviqhlDneaAdN6ANoCEdAmFBnCGetjnV9lChoBkdARZ/SF49ovmgHS9doCEdAmFF/tx+8XnV9lChoBkdAZZ/uKGcnV2gHTegDaAhHQJhaZrl/6O51fZQoaAZHQF8LrDqGDcxoB03oA2gIR0CYYXoCMglodX2UKGgGR0BmsNTDO1OTaAdN6ANoCEdAmGazlgc94nV9lChoBkdAYCKSX+l0o2gHTegDaAhHQJhreJsO5J91fZQoaAZHQGExJnpSrHVoB03oA2gIR0CYbGTQE6kqdX2UKGgGR0BhvBR8+iaiaAdN6ANoCEdAmG8lMEidKHV9lChoBkdAZZLzK9wm3WgHTegDaAhHQJhvDLjghr51fZQoaAZHQGb+iJ40Mw1oB03oA2gIR0CYe6P69CeFdX2UKGgGR0AuK0WM0gr6aAdL42gIR0CYgBtF8XvZdX2UKGgGR0BjjFUjs2NvaAdN6ANoCEdAmIQtcfNiY3V9lChoBkdAY0GfXf642GgHTegDaAhHQJiMES13MZB1fZQoaAZHQGBa0mUnogVoB03oA2gIR0CYkc85jpcHdX2UKGgGR0Bn4dJBgNPQaAdN6ANoCEdAmJIp+H8CP3V9lChoBkdAZWuoMrmQsGgHTegDaAhHQJiVM29+PR11fZQoaAZHQGRMlWXC0nhoB03oA2gIR0CYmFOs1baAdX2UKGgGR0BjtE8/2TPjaAdN6ANoCEdAmJ8C8WbgCXV9lChoBkdAZCWW1twaSGgHTegDaAhHQJi4j5vcafl1fZQoaAZHQGEu4Zl4C6poB03oA2gIR0CYwX7CSA6NdX2UKGgGR0Bl1Anx8UmEaAdN6ANoCEdAmMhAGB4D93V9lChoBkdAQVjB9Cu2Z2gHS+FoCEdAmMnr6xgRb3V9lChoBkdAZwEnZ00WM2gHTegDaAhHQJjNSjQAuI11fZQoaAZHQGKaiBXjlxRoB03oA2gIR0CY0dO7xusLdX2UKGgGR0Bl0iflIVdpaAdN6ANoCEdAmNU8XaakRHV9lChoBkdAZ1NfAsTWXmgHTegDaAhHQJjVNDCxeLN1fZQoaAZHQHJS7Hp8neBoB0vyaAhHQJjbuTHKfWd1fZQoaAZHQGPcYCIUJv5oB03oA2gIR0CY4W0fYBeYdX2UKGgGR0BmjbASFoL5aAdN6ANoCEdAmOaNorWiDnV9lChoBkdAZMoy0rsjV2gHTegDaAhHQJjqi4TbnHN1fZQoaAZHQGSvocJdB0JoB03oA2gIR0CY8ftXPqs2dX2UKGgGR0BFoP/JeVs2aAdL42gIR0CY8txKxs2vdX2UKGgGR0Bh768jAzpHaAdN6ANoCEdAmPeEK3NLUXV9lChoBkdAXWWSJTER8WgHTegDaAhHQJj303zcynF1fZQoaAZHQGI/Eit7rs1oB03oA2gIR0CY+tsjVx0ddX2UKGgGR0BlI16PbO/taAdN6ANoCEdAmP3RfrrxAnV9lChoBkdAaCfkK/mDDmgHTegDaAhHQJkEDIHTqjd1ZS4="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 248, "observation_space": {":type:": "<class 'gymnasium.spaces.box.Box'>", ":serialized:": "gAWVdgIAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWCAAAAAAAAAABAQEBAQEBAZRoCIwCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksIhZSMAUOUdJRSlIwNYm91bmRlZF9hYm92ZZRoESiWCAAAAAAAAAABAQEBAQEBAZRoFUsIhZRoGXSUUpSMBl9zaGFwZZRLCIWUjANsb3eUaBEoliAAAAAAAAAAAAC0wgAAtMIAAKDAAACgwNsPScAAAKDAAAAAgAAAAICUaAtLCIWUaBl0lFKUjARoaWdolGgRKJYgAAAAAAAAAAAAtEIAALRCAACgQAAAoEDbD0lAAACgQAAAgD8AAIA/lGgLSwiFlGgZdJRSlIwIbG93X3JlcHKUjFtbLTkwLiAgICAgICAgLTkwLiAgICAgICAgIC01LiAgICAgICAgIC01LiAgICAgICAgIC0zLjE0MTU5MjcgIC01LgogIC0wLiAgICAgICAgIC0wLiAgICAgICBdlIwJaGlnaF9yZXBylIxTWzkwLiAgICAgICAgOTAuICAgICAgICAgNS4gICAgICAgICA1LiAgICAgICAgIDMuMTQxNTkyNyAgNS4KICAxLiAgICAgICAgIDEuICAgICAgIF2UjApfbnBfcmFuZG9tlE51Yi4=", "dtype": "float32", "bounded_below": "[ True True True True True True True True]", "bounded_above": "[ True True True True True True True True]", "_shape": [8], "low": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "low_repr": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high_repr": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "_np_random": null}, "action_space": {":type:": "<class 'gymnasium.spaces.discrete.Discrete'>", ":serialized:": "gAWV2wAAAAAAAACMGWd5bW5hc2l1bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIBAAAAAAAAACUhpRSlIwFc3RhcnSUaAhoDkMIAAAAAAAAAACUhpRSlIwGX3NoYXBllCmMBWR0eXBllGgOjApfbnBfcmFuZG9tlE51Yi4=", "n": "4", "start": "0", "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 16, "n_steps": 1024, "gamma": 0.999, "gae_lambda": 0.98, "ent_coef": 0.01, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 4, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWV1gIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwiVAZcAiQFTAJROhZQpjAFflIWUjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjExL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUS4RDCPiAANgPEogKlEMAlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTEvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUdU5OaACMEF9tYWtlX2VtcHR5X2NlbGyUk5QpUpSFlHSUUpRoAIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaCF9lH2UKGgYjARmdW5jlIwMX19xdWFsbmFtZV9flIwZY29uc3RhbnRfZm4uPGxvY2Fscz4uZnVuY5SMD19fYW5ub3RhdGlvbnNfX5R9lIwOX19rd2RlZmF1bHRzX1+UTowMX19kZWZhdWx0c19flE6MCl9fbW9kdWxlX1+UaBmMB19fZG9jX1+UTowLX19jbG9zdXJlX1+UaACMCl9tYWtlX2NlbGyUk5RHP8mZmZmZmZqFlFKUhZSMF19jbG91ZHBpY2tsZV9zdWJtb2R1bGVzlF2UjAtfX2dsb2JhbHNfX5R9lHWGlIZSMC4="}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWV1gIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwiVAZcAiQFTAJROhZQpjAFflIWUjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjExL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUS4RDCPiAANgPEogKlEMAlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTEvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUdU5OaACMEF9tYWtlX2VtcHR5X2NlbGyUk5QpUpSFlHSUUpRoAIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaCF9lH2UKGgYjARmdW5jlIwMX19xdWFsbmFtZV9flIwZY29uc3RhbnRfZm4uPGxvY2Fscz4uZnVuY5SMD19fYW5ub3RhdGlvbnNfX5R9lIwOX19rd2RlZmF1bHRzX1+UTowMX19kZWZhdWx0c19flE6MCl9fbW9kdWxlX1+UaBmMB19fZG9jX1+UTowLX19jbG9zdXJlX1+UaACMCl9tYWtlX2NlbGyUk5RHPzOpKjBVMmGFlFKUhZSMF19jbG91ZHBpY2tsZV9zdWJtb2R1bGVzlF2UjAtfX2dsb2JhbHNfX5R9lHWGlIZSMC4="}, "system_info": {"OS": "Linux-6.1.85+-x86_64-with-glibc2.35 # 1 SMP PREEMPT_DYNAMIC Thu Jun 27 21:05:47 UTC 2024", "Python": "3.11.11", "Stable-Baselines3": "2.0.0a5", "PyTorch": "2.6.0+cu124", "GPU Enabled": "False", "Numpy": "1.26.4", "Cloudpickle": "3.1.1", "Gymnasium": "0.28.1", "OpenAI Gym": "0.25.2"}} |