--- library_name: transformers license: mit base_model: pyannote/segmentation-3.0 tags: - speaker-diarization - speaker-segmentation - generated_from_trainer datasets: - talkbank/callhome model-index: - name: callhome_finetuned_v1 results: [] --- # callhome_finetuned_v1 This model is a fine-tuned version of [pyannote/segmentation-3.0](https://huggingface.co/pyannote/segmentation-3.0) on the talkbank/callhome eng dataset. It achieves the following results on the evaluation set: - Loss: 0.4727 - Model Preparation Time: 0.004 - Der: 0.1798 - False Alarm: 0.0603 - Missed Detection: 0.0699 - Confusion: 0.0496 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.001 - train_batch_size: 32 - eval_batch_size: 32 - seed: 42 - optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: cosine - num_epochs: 10.0 ### Training results | Training Loss | Epoch | Step | Validation Loss | Model Preparation Time | Der | False Alarm | Missed Detection | Confusion | |:-------------:|:-----:|:----:|:---------------:|:----------------------:|:------:|:-----------:|:----------------:|:---------:| | 0.4176 | 1.0 | 362 | 0.4821 | 0.004 | 0.1938 | 0.0608 | 0.0745 | 0.0584 | | 0.3931 | 2.0 | 724 | 0.4564 | 0.004 | 0.1853 | 0.0552 | 0.0760 | 0.0541 | | 0.3662 | 3.0 | 1086 | 0.4535 | 0.004 | 0.1812 | 0.0521 | 0.0765 | 0.0526 | | 0.3575 | 4.0 | 1448 | 0.4660 | 0.004 | 0.1815 | 0.0590 | 0.0699 | 0.0526 | | 0.3449 | 5.0 | 1810 | 0.4605 | 0.004 | 0.1802 | 0.0629 | 0.0670 | 0.0503 | | 0.3288 | 6.0 | 2172 | 0.4659 | 0.004 | 0.1794 | 0.0573 | 0.0717 | 0.0504 | | 0.3215 | 7.0 | 2534 | 0.4676 | 0.004 | 0.1803 | 0.0593 | 0.0709 | 0.0501 | | 0.3261 | 8.0 | 2896 | 0.4667 | 0.004 | 0.1786 | 0.0597 | 0.0702 | 0.0488 | | 0.3193 | 9.0 | 3258 | 0.4696 | 0.004 | 0.1796 | 0.0597 | 0.0705 | 0.0494 | | 0.3203 | 10.0 | 3620 | 0.4727 | 0.004 | 0.1798 | 0.0603 | 0.0699 | 0.0496 | ### Framework versions - Transformers 4.49.0 - Pytorch 2.7.0+cu126 - Datasets 3.5.0 - Tokenizers 0.21.0