Update README.md
Browse files
README.md
CHANGED
|
@@ -9,4 +9,104 @@ License for Lumina-Next-T2I 2B checkpoints is Apache-2.
|
|
| 9 |
In this repo, you will find FP32 (original, un-changed), BF16 and FP16 PTH and FP32, BF16, FP16 safetensor files for Lumina T2I 2B text-to-image model. You will also find the same for EMA variant.
|
| 10 |
BF16 pth file works fine, I plan to check the rest later. There could be some code missing in safetensors files due to it being removed during conversion, I don't know. If you try to run any of the files, let me know how they work.
|
| 11 |
|
| 12 |
-
You can also find un-gated files for Gamma 2B 4-bit (bnb) and 16-bit. Both are simply copies of those files from unsloth/aplindale repos.
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 9 |
In this repo, you will find FP32 (original, un-changed), BF16 and FP16 PTH and FP32, BF16, FP16 safetensor files for Lumina T2I 2B text-to-image model. You will also find the same for EMA variant.
|
| 10 |
BF16 pth file works fine, I plan to check the rest later. There could be some code missing in safetensors files due to it being removed during conversion, I don't know. If you try to run any of the files, let me know how they work.
|
| 11 |
|
| 12 |
+
You can also find un-gated files for Gamma 2B 4-bit (bnb) and 16-bit. Both are simply copies of those files from unsloth/aplindale repos.
|
| 13 |
+
|
| 14 |
+
Script used for converting non-EMA checkpoints.
|
| 15 |
+
|
| 16 |
+
```
|
| 17 |
+
import torch
|
| 18 |
+
from safetensors.torch import save_file, load_file
|
| 19 |
+
|
| 20 |
+
# Load the FP32 model
|
| 21 |
+
fp32_model_path = "consolidated.00-of-01.pth"
|
| 22 |
+
fp32_model = torch.load(fp32_model_path, map_location='cpu')
|
| 23 |
+
|
| 24 |
+
# Convert the model to BF16
|
| 25 |
+
bf16_model = {}
|
| 26 |
+
for key, value in fp32_model.items():
|
| 27 |
+
if isinstance(value, torch.Tensor):
|
| 28 |
+
bf16_model[key] = value.to(torch.bfloat16)
|
| 29 |
+
elif isinstance(value, dict):
|
| 30 |
+
bf16_model[key] = {k: v.to(torch.bfloat16) if isinstance(v, torch.Tensor) else v for k, v in value.items()}
|
| 31 |
+
else:
|
| 32 |
+
bf16_model[key] = value
|
| 33 |
+
|
| 34 |
+
# Convert the model to FP16
|
| 35 |
+
fp16_model = {}
|
| 36 |
+
for key, value in fp32_model.items():
|
| 37 |
+
if isinstance(value, torch.Tensor):
|
| 38 |
+
fp16_model[key] = value.half()
|
| 39 |
+
elif isinstance(value, dict):
|
| 40 |
+
fp16_model[key] = {k: v.half() if isinstance(v, torch.Tensor) else v for k, v in value.items()}
|
| 41 |
+
else:
|
| 42 |
+
fp16_model[key] = value
|
| 43 |
+
|
| 44 |
+
# Save the FP32 model in safetensors format
|
| 45 |
+
fp32_safetensors_path = "consolidated.00-of-01_fp32.safetensors"
|
| 46 |
+
save_file(fp32_model, fp32_safetensors_path)
|
| 47 |
+
|
| 48 |
+
# Save the BF16 model in safetensors format
|
| 49 |
+
bf16_safetensors_path = "consolidated.00-of-01_bf16.safetensors"
|
| 50 |
+
save_file(bf16_model, bf16_safetensors_path)
|
| 51 |
+
|
| 52 |
+
# Save the FP16 model in safetensors format
|
| 53 |
+
fp16_safetensors_path = "consolidated.00-of-01_fp16.safetensors"
|
| 54 |
+
save_file(fp16_model, fp16_safetensors_path)
|
| 55 |
+
|
| 56 |
+
# Save the BF16 model in .pth format
|
| 57 |
+
bf16_model_path = "consolidated.00-of-01_bf16.pth"
|
| 58 |
+
torch.save(bf16_model, bf16_model_path)
|
| 59 |
+
|
| 60 |
+
fp16_model_path = "consolidated.00-of-01_fp16.pth"
|
| 61 |
+
torch.save(fp16_model, fp16_model_path)
|
| 62 |
+
```
|
| 63 |
+
|
| 64 |
+
Script used for converting EMA checkpoints.
|
| 65 |
+
|
| 66 |
+
```
|
| 67 |
+
import torch
|
| 68 |
+
from safetensors.torch import save_file, load_file
|
| 69 |
+
|
| 70 |
+
# Load the FP32 model
|
| 71 |
+
fp32_model_path = "consolidated_ema.00-of-01.pth"
|
| 72 |
+
fp32_model = torch.load(fp32_model_path, map_location='cpu')
|
| 73 |
+
|
| 74 |
+
# Convert the model to BF16
|
| 75 |
+
bf16_model = {}
|
| 76 |
+
for key, value in fp32_model.items():
|
| 77 |
+
if isinstance(value, torch.Tensor):
|
| 78 |
+
bf16_model[key] = value.to(torch.bfloat16)
|
| 79 |
+
elif isinstance(value, dict):
|
| 80 |
+
bf16_model[key] = {k: v.to(torch.bfloat16) if isinstance(v, torch.Tensor) else v for k, v in value.items()}
|
| 81 |
+
else:
|
| 82 |
+
bf16_model[key] = value
|
| 83 |
+
|
| 84 |
+
# Convert the model to FP16
|
| 85 |
+
fp16_model = {}
|
| 86 |
+
for key, value in fp32_model.items():
|
| 87 |
+
if isinstance(value, torch.Tensor):
|
| 88 |
+
fp16_model[key] = value.half()
|
| 89 |
+
elif isinstance(value, dict):
|
| 90 |
+
fp16_model[key] = {k: v.half() if isinstance(v, torch.Tensor) else v for k, v in value.items()}
|
| 91 |
+
else:
|
| 92 |
+
fp16_model[key] = value
|
| 93 |
+
|
| 94 |
+
# Save the FP32 model in safetensors format
|
| 95 |
+
fp32_safetensors_path = "consolidated_ema.00-of-01_fp32.safetensors"
|
| 96 |
+
save_file(fp32_model, fp32_safetensors_path)
|
| 97 |
+
|
| 98 |
+
# Save the BF16 model in safetensors format
|
| 99 |
+
bf16_safetensors_path = "consolidated_ema.00-of-01_bf16.safetensors"
|
| 100 |
+
save_file(bf16_model, bf16_safetensors_path)
|
| 101 |
+
|
| 102 |
+
# Save the FP16 model in safetensors format
|
| 103 |
+
fp16_safetensors_path = "consolidated_ema.00-of-01_fp16.safetensors"
|
| 104 |
+
save_file(fp16_model, fp16_safetensors_path)
|
| 105 |
+
|
| 106 |
+
# Save the BF16 model in .pth format
|
| 107 |
+
bf16_model_path = "consolidated_ema.00-of-01_bf16.pth"
|
| 108 |
+
torch.save(bf16_model, bf16_model_path)
|
| 109 |
+
|
| 110 |
+
fp16_model_path = "consolidated_ema.00-of-01_fp16.pth"
|
| 111 |
+
torch.save(fp16_model, fp16_model_path)
|
| 112 |
+
```
|