Upload model
Browse files- config.json +2 -2
- modelling_cxrrg.py +554 -0
config.json
CHANGED
|
@@ -1,9 +1,9 @@
|
|
| 1 |
{
|
| 2 |
"architectures": [
|
| 3 |
-
"
|
| 4 |
],
|
| 5 |
"auto_map": {
|
| 6 |
-
"AutoModel": "
|
| 7 |
},
|
| 8 |
"decoder": {
|
| 9 |
"_name_or_path": "",
|
|
|
|
| 1 |
{
|
| 2 |
"architectures": [
|
| 3 |
+
"CXRRGModel"
|
| 4 |
],
|
| 5 |
"auto_map": {
|
| 6 |
+
"AutoModel": "modelling_cxrrg.CXRRGModel"
|
| 7 |
},
|
| 8 |
"decoder": {
|
| 9 |
"_name_or_path": "",
|
modelling_cxrrg.py
ADDED
|
@@ -0,0 +1,554 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import functools
|
| 2 |
+
import os
|
| 3 |
+
from typing import Optional, Tuple, Union
|
| 4 |
+
|
| 5 |
+
import torch
|
| 6 |
+
import transformers
|
| 7 |
+
from modelling_uniformer import MultiUniFormerWithProjectionHead
|
| 8 |
+
from torch.nn import CrossEntropyLoss, Linear
|
| 9 |
+
from transformers import PreTrainedTokenizerFast, VisionEncoderDecoderModel
|
| 10 |
+
from transformers.configuration_utils import PretrainedConfig
|
| 11 |
+
from transformers.modeling_outputs import BaseModelOutput, Seq2SeqLMOutput
|
| 12 |
+
from transformers.modeling_utils import PreTrainedModel
|
| 13 |
+
from transformers.models.vision_encoder_decoder.configuration_vision_encoder_decoder import (
|
| 14 |
+
VisionEncoderDecoderConfig,
|
| 15 |
+
)
|
| 16 |
+
from transformers.utils import logging
|
| 17 |
+
|
| 18 |
+
logger = logging.get_logger(__name__)
|
| 19 |
+
|
| 20 |
+
|
| 21 |
+
class CXRRGModel(VisionEncoderDecoderModel):
|
| 22 |
+
|
| 23 |
+
config_class = VisionEncoderDecoderConfig
|
| 24 |
+
base_model_prefix = "vision_encoder_decoder"
|
| 25 |
+
main_input_name = "pixel_values"
|
| 26 |
+
supports_gradient_checkpointing = True
|
| 27 |
+
|
| 28 |
+
def __init__(
|
| 29 |
+
self,
|
| 30 |
+
config: Optional[PretrainedConfig] = None,
|
| 31 |
+
encoder: Optional[PreTrainedModel] = None,
|
| 32 |
+
decoder: Optional[PreTrainedModel] = None,
|
| 33 |
+
DefaultEncoderClass = MultiUniFormerWithProjectionHead,
|
| 34 |
+
DefaultDecoderClass = transformers.LlamaForCausalLM,
|
| 35 |
+
):
|
| 36 |
+
|
| 37 |
+
if decoder:
|
| 38 |
+
assert not decoder.config.add_cross_attention, '"add_cross_attention" must be False for the given decoder'
|
| 39 |
+
assert decoder.config.is_decoder, '"is_decoder" must be True for the given decoder'
|
| 40 |
+
|
| 41 |
+
if config is None and (encoder is None or decoder is None):
|
| 42 |
+
raise ValueError("Either a configuration or an encoder and a decoder has to be provided.")
|
| 43 |
+
if config is None:
|
| 44 |
+
config = VisionEncoderDecoderConfig.from_encoder_decoder_configs(encoder.config, decoder.config)
|
| 45 |
+
else:
|
| 46 |
+
if not isinstance(config, self.config_class):
|
| 47 |
+
raise ValueError(f"Config: {config} has to be of type {self.config_class}")
|
| 48 |
+
|
| 49 |
+
config.tie_word_embeddings = False
|
| 50 |
+
|
| 51 |
+
# Initialize with config:
|
| 52 |
+
PreTrainedModel.__init__(self, config)
|
| 53 |
+
|
| 54 |
+
# Encoder:
|
| 55 |
+
if encoder is None:
|
| 56 |
+
encoder = DefaultEncoderClass(config=config.encoder)
|
| 57 |
+
|
| 58 |
+
# Decoder:
|
| 59 |
+
if decoder is None:
|
| 60 |
+
assert not config.decoder.add_cross_attention
|
| 61 |
+
decoder = DefaultDecoderClass(config=config.decoder)
|
| 62 |
+
|
| 63 |
+
self.encoder = encoder
|
| 64 |
+
self.decoder = decoder
|
| 65 |
+
|
| 66 |
+
if self.encoder.config.to_dict() != self.config.encoder.to_dict():
|
| 67 |
+
logger.warning(
|
| 68 |
+
f"Config of the encoder: {self.encoder.__class__} is overwritten by shared encoder config:"
|
| 69 |
+
f" {self.config.encoder}"
|
| 70 |
+
)
|
| 71 |
+
if self.decoder.config.to_dict() != self.config.decoder.to_dict():
|
| 72 |
+
logger.warning(
|
| 73 |
+
f"Config of the decoder: {self.decoder.__class__} is overwritten by shared decoder config:"
|
| 74 |
+
f" {self.config.decoder}"
|
| 75 |
+
)
|
| 76 |
+
|
| 77 |
+
self.encoder.config = self.config.encoder
|
| 78 |
+
self.decoder.config = self.config.decoder
|
| 79 |
+
|
| 80 |
+
assert config.decoder.is_decoder
|
| 81 |
+
assert 'img_token_id' in self.decoder.config.__dict__
|
| 82 |
+
assert 'pad_token_id' in self.decoder.config.__dict__
|
| 83 |
+
assert 'token_type_embeddings' in self.decoder.config.__dict__
|
| 84 |
+
|
| 85 |
+
if self.decoder.config.token_type_embeddings == 'add':
|
| 86 |
+
self.token_type_embeddings = torch.nn.Embedding(self.decoder.config.num_token_types, self.decoder.config.hidden_size)
|
| 87 |
+
|
| 88 |
+
def forward(
|
| 89 |
+
self,
|
| 90 |
+
pixel_values: Optional[torch.FloatTensor] = None,
|
| 91 |
+
decoder_input_ids: Optional[torch.LongTensor] = None,
|
| 92 |
+
decoder_attention_mask: Optional[torch.FloatTensor] = None,
|
| 93 |
+
decoder_token_type_ids: Optional[torch.LongTensor] = None,
|
| 94 |
+
encoder_outputs: Optional[Tuple[torch.FloatTensor]] = None,
|
| 95 |
+
past_key_values: Optional[Tuple[Tuple[torch.FloatTensor]]] = None,
|
| 96 |
+
decoder_inputs_embeds: Optional[torch.FloatTensor] = None,
|
| 97 |
+
decoder_position_ids: Optional[torch.LongTensor] = None,
|
| 98 |
+
labels: Optional[torch.LongTensor] = None,
|
| 99 |
+
use_cache: Optional[bool] = None,
|
| 100 |
+
output_attentions: Optional[bool] = None,
|
| 101 |
+
output_hidden_states: Optional[bool] = None,
|
| 102 |
+
return_dict: Optional[bool] = None,
|
| 103 |
+
**kwargs,
|
| 104 |
+
) -> Union[Tuple[torch.FloatTensor], Seq2SeqLMOutput]:
|
| 105 |
+
|
| 106 |
+
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
| 107 |
+
|
| 108 |
+
kwargs_encoder = {argument: value for argument, value in kwargs.items() if not argument.startswith("decoder_")}
|
| 109 |
+
|
| 110 |
+
kwargs_decoder = {
|
| 111 |
+
argument[len("decoder_") :]: value for argument, value in kwargs.items() if argument.startswith("decoder_")
|
| 112 |
+
}
|
| 113 |
+
|
| 114 |
+
if decoder_inputs_embeds is None:
|
| 115 |
+
decoder_inputs_embeds = self.decoder.get_input_embeddings()(decoder_input_ids)
|
| 116 |
+
|
| 117 |
+
if encoder_outputs is None: # Ths is for when generate() is not called; for generation, see prepare_inputs_for_generation():
|
| 118 |
+
if pixel_values is None:
|
| 119 |
+
raise ValueError("You have to specify pixel_values")
|
| 120 |
+
|
| 121 |
+
encoder_outputs = self.encoder(
|
| 122 |
+
pixel_values,
|
| 123 |
+
output_hidden_states=output_hidden_states,
|
| 124 |
+
return_dict=return_dict,
|
| 125 |
+
**kwargs_encoder,
|
| 126 |
+
) # UniFormer does not support output_attentions.
|
| 127 |
+
|
| 128 |
+
assert decoder_inputs_embeds is not None
|
| 129 |
+
decoder_inputs_embeds = torch.cat([encoder_outputs[0], decoder_inputs_embeds], dim=1)
|
| 130 |
+
|
| 131 |
+
# Add image token type identifiers:
|
| 132 |
+
decoder_token_type_ids = torch.cat(
|
| 133 |
+
[
|
| 134 |
+
torch.full(
|
| 135 |
+
encoder_outputs[0].shape[:-1],
|
| 136 |
+
self.decoder.config.img_token_id,
|
| 137 |
+
dtype=decoder_token_type_ids.dtype,
|
| 138 |
+
device=decoder_token_type_ids.device,
|
| 139 |
+
),
|
| 140 |
+
decoder_token_type_ids
|
| 141 |
+
],
|
| 142 |
+
dim=1,
|
| 143 |
+
)
|
| 144 |
+
|
| 145 |
+
# Position identifiers accounting for padding:
|
| 146 |
+
report_position_ids = decoder_attention_mask.cumsum(-1) + encoder_outputs[1].max(dim=1).values[:, None]
|
| 147 |
+
report_position_ids.masked_fill_(decoder_attention_mask == 0, 1)
|
| 148 |
+
decoder_position_ids = torch.cat([encoder_outputs[1], report_position_ids], dim=1)
|
| 149 |
+
|
| 150 |
+
# 4D attention mask:
|
| 151 |
+
decoder_attention_mask = self.create_4d_attention_mask_mixed_causality(encoder_outputs[1], decoder_attention_mask)
|
| 152 |
+
|
| 153 |
+
assert decoder_position_ids is not None
|
| 154 |
+
assert decoder_attention_mask is not None
|
| 155 |
+
assert decoder_token_type_ids is not None
|
| 156 |
+
|
| 157 |
+
if self.decoder.config.token_type_embeddings == 'add':
|
| 158 |
+
decoder_inputs_embeds += self.token_type_embeddings(decoder_token_type_ids)
|
| 159 |
+
elif self.decoder.config.token_type_embeddings == 'inbuilt':
|
| 160 |
+
kwargs_decoder['token_type_ids'] = decoder_token_type_ids
|
| 161 |
+
|
| 162 |
+
# Forward:
|
| 163 |
+
decoder_outputs = self.decoder(
|
| 164 |
+
inputs_embeds=decoder_inputs_embeds,
|
| 165 |
+
attention_mask=decoder_attention_mask,
|
| 166 |
+
position_ids=decoder_position_ids,
|
| 167 |
+
output_attentions=output_attentions,
|
| 168 |
+
output_hidden_states=output_hidden_states,
|
| 169 |
+
use_cache=use_cache,
|
| 170 |
+
past_key_values=past_key_values,
|
| 171 |
+
return_dict=return_dict,
|
| 172 |
+
**kwargs_decoder,
|
| 173 |
+
)
|
| 174 |
+
|
| 175 |
+
# Loss:
|
| 176 |
+
loss = None
|
| 177 |
+
if labels is not None:
|
| 178 |
+
logits = decoder_outputs.logits if return_dict else decoder_outputs[0]
|
| 179 |
+
loss_fct = CrossEntropyLoss()
|
| 180 |
+
loss = loss_fct(logits.reshape(-1, self.decoder.config.vocab_size), labels.reshape(-1))
|
| 181 |
+
|
| 182 |
+
if not return_dict:
|
| 183 |
+
if loss is not None:
|
| 184 |
+
return (loss,) + decoder_outputs + encoder_outputs
|
| 185 |
+
else:
|
| 186 |
+
return decoder_outputs + encoder_outputs
|
| 187 |
+
|
| 188 |
+
encoder_hidden_states = encoder_outputs[0]
|
| 189 |
+
|
| 190 |
+
return Seq2SeqLMOutput(
|
| 191 |
+
loss=loss,
|
| 192 |
+
logits=decoder_outputs.logits,
|
| 193 |
+
past_key_values=decoder_outputs.past_key_values,
|
| 194 |
+
decoder_hidden_states=decoder_outputs.hidden_states,
|
| 195 |
+
decoder_attentions=decoder_outputs.attentions,
|
| 196 |
+
encoder_last_hidden_state=encoder_hidden_states,
|
| 197 |
+
)
|
| 198 |
+
|
| 199 |
+
def prepare_inputs_for_generation(
|
| 200 |
+
self,
|
| 201 |
+
input_ids,
|
| 202 |
+
special_token_ids,
|
| 203 |
+
token_type_id_sections=None,
|
| 204 |
+
past_key_values=None,
|
| 205 |
+
use_cache=None,
|
| 206 |
+
encoder_outputs=None,
|
| 207 |
+
**kwargs,
|
| 208 |
+
):
|
| 209 |
+
"""
|
| 210 |
+
Modification of:
|
| 211 |
+
https://github.com/huggingface/transformers/blob/main/src/transformers/models/encoder_decoder/modeling_encoder_decoder.py#L660
|
| 212 |
+
"""
|
| 213 |
+
|
| 214 |
+
report_attention_mask = (input_ids != self.decoder.config.pad_token_id).long()
|
| 215 |
+
|
| 216 |
+
if past_key_values is None:
|
| 217 |
+
|
| 218 |
+
# 4D attention mask:
|
| 219 |
+
decoder_attention_mask = self.create_4d_attention_mask_mixed_causality(encoder_outputs[1], report_attention_mask)
|
| 220 |
+
|
| 221 |
+
# Position identifiers accounting for padding:
|
| 222 |
+
report_position_ids = report_attention_mask.cumsum(-1) + encoder_outputs[1].max(dim=1).values[:, None]
|
| 223 |
+
report_position_ids.masked_fill_(report_attention_mask == 0, 1)
|
| 224 |
+
decoder_position_ids = torch.cat([encoder_outputs[1], report_position_ids], dim=1)
|
| 225 |
+
|
| 226 |
+
# `inputs_embeds` are only to be used in the 1st generation step:
|
| 227 |
+
inputs_embeds = torch.cat([encoder_outputs[0], self.decoder.get_input_embeddings()(input_ids)], dim=1)
|
| 228 |
+
|
| 229 |
+
decoder_token_type_ids = self.token_ids_to_token_type_ids(input_ids, special_token_ids, token_type_id_sections)
|
| 230 |
+
decoder_token_type_ids = torch.cat(
|
| 231 |
+
[
|
| 232 |
+
torch.full(
|
| 233 |
+
encoder_outputs[0].shape[:-1],
|
| 234 |
+
self.decoder.config.img_token_id,
|
| 235 |
+
dtype=decoder_token_type_ids.dtype,
|
| 236 |
+
device=decoder_token_type_ids.device,
|
| 237 |
+
),
|
| 238 |
+
decoder_token_type_ids,
|
| 239 |
+
],
|
| 240 |
+
dim=1,
|
| 241 |
+
) # Add image token type identifiers.
|
| 242 |
+
|
| 243 |
+
input_dict = {
|
| 244 |
+
'decoder_input_ids': input_ids,
|
| 245 |
+
'decoder_inputs_embeds': inputs_embeds,
|
| 246 |
+
'decoder_token_type_ids': decoder_token_type_ids,
|
| 247 |
+
}
|
| 248 |
+
else:
|
| 249 |
+
|
| 250 |
+
# 4D attention mask:
|
| 251 |
+
decoder_attention_mask = self.create_4d_attention_mask_mixed_causality_past_key_values(encoder_outputs[1], report_attention_mask)
|
| 252 |
+
|
| 253 |
+
# Position identifiers accounting for padding:
|
| 254 |
+
decoder_position_ids = report_attention_mask.cumsum(-1) + encoder_outputs[1].max(dim=1).values[:, None]
|
| 255 |
+
decoder_position_ids.masked_fill_(report_attention_mask == 0, 1)
|
| 256 |
+
|
| 257 |
+
# Always place token_ids_to_token_type_ids_past before input_ids = input_ids[:, remove_prefix_length:]:
|
| 258 |
+
decoder_token_type_ids = self.token_ids_to_token_type_ids_past(input_ids, special_token_ids, token_type_id_sections)
|
| 259 |
+
decoder_position_ids = decoder_position_ids[:, -1:]
|
| 260 |
+
|
| 261 |
+
past_length = past_key_values[0][0].shape[2]
|
| 262 |
+
|
| 263 |
+
# Some generation methods only pass the last input ID:
|
| 264 |
+
if input_ids.shape[1] > past_length:
|
| 265 |
+
remove_prefix_length = past_length
|
| 266 |
+
else:
|
| 267 |
+
# Keep only the final ID:
|
| 268 |
+
remove_prefix_length = input_ids.shape[1] - 1
|
| 269 |
+
|
| 270 |
+
input_ids = input_ids[:, remove_prefix_length:]
|
| 271 |
+
|
| 272 |
+
input_dict = {'decoder_input_ids': input_ids, 'decoder_token_type_ids': decoder_token_type_ids}
|
| 273 |
+
|
| 274 |
+
input_dict.update(
|
| 275 |
+
{
|
| 276 |
+
'decoder_attention_mask': decoder_attention_mask,
|
| 277 |
+
'decoder_position_ids': decoder_position_ids,
|
| 278 |
+
'encoder_outputs': encoder_outputs,
|
| 279 |
+
'past_key_values': past_key_values,
|
| 280 |
+
'use_cache': use_cache,
|
| 281 |
+
}
|
| 282 |
+
)
|
| 283 |
+
return input_dict
|
| 284 |
+
|
| 285 |
+
def token_ids_to_token_type_ids(self, token_ids, special_token_ids, token_type_id_sections=None):
|
| 286 |
+
"""
|
| 287 |
+
Extract token type identifiers from the token identifiers.
|
| 288 |
+
|
| 289 |
+
Argument/s:
|
| 290 |
+
token_ids - token identifiers.
|
| 291 |
+
special_token_ids - special token identifiers that indicate the separation between sections.
|
| 292 |
+
token_type_id_section - token type identifier for each section.
|
| 293 |
+
|
| 294 |
+
Returns:
|
| 295 |
+
token_type_ids - token type identifiers.
|
| 296 |
+
"""
|
| 297 |
+
|
| 298 |
+
token_type_id_sections = token_type_id_sections if token_type_id_sections is not None else list(range(len(special_token_ids) + 1))
|
| 299 |
+
|
| 300 |
+
mbatch_size, seq_len = token_ids.shape
|
| 301 |
+
token_type_ids = torch.full_like(token_ids, token_type_id_sections[0], dtype=torch.long, device=token_ids.device)
|
| 302 |
+
|
| 303 |
+
for i, j in enumerate(special_token_ids):
|
| 304 |
+
# Find first occurrence of special tokens that indicate the boundary between sections:
|
| 305 |
+
cols = (token_ids == j).int().argmax(dim=1)
|
| 306 |
+
rows = torch.arange(mbatch_size, device=token_ids.device)
|
| 307 |
+
|
| 308 |
+
# https://huggingface.co/docs/transformers/model_doc/bert#transformers.BertTokenizer.create_token_type_ids_from_sequences.example
|
| 309 |
+
cols += 1
|
| 310 |
+
|
| 311 |
+
# Ensure that the column index is not out of bounds. If 0, then token_id not present.
|
| 312 |
+
# This is safe as index 0 is always a special token (now equal to 1 due to +1):
|
| 313 |
+
rows = rows[torch.logical_and(cols != 1, cols < seq_len)]
|
| 314 |
+
cols = cols[torch.logical_and(cols != 1, cols < seq_len)]
|
| 315 |
+
|
| 316 |
+
# Indices to that correspond to the second sequence:
|
| 317 |
+
if rows.nelement() != 0:
|
| 318 |
+
ids = torch.stack([
|
| 319 |
+
torch.stack([x, z]) for (x, y) in zip(rows, cols) for z in torch.arange(
|
| 320 |
+
y, seq_len, device=token_ids.device,
|
| 321 |
+
)
|
| 322 |
+
])
|
| 323 |
+
|
| 324 |
+
token_type_ids[ids[:, 0], ids[:, 1]] = token_type_id_sections[i + 1]
|
| 325 |
+
|
| 326 |
+
return token_type_ids
|
| 327 |
+
|
| 328 |
+
def token_ids_to_token_type_ids_past(self, token_ids, special_token_ids, token_type_id_sections=None):
|
| 329 |
+
"""
|
| 330 |
+
Extract token type identifiers from the token identifiers if past != None. Make sure to input all the
|
| 331 |
+
token_ids (e.g., do not input input_ids = input_ids[:, remove_prefix_length:] from prepare_inputs_for_generation).
|
| 332 |
+
|
| 333 |
+
Argument/s:
|
| 334 |
+
token_ids - token identifiers.
|
| 335 |
+
special_token_ids - special token identifiers that indicate the separation between sections.
|
| 336 |
+
|
| 337 |
+
Returns:
|
| 338 |
+
token_type_ids - token type identifiers.
|
| 339 |
+
"""
|
| 340 |
+
|
| 341 |
+
token_type_id_sections = token_type_id_sections if token_type_id_sections is not None else list(range(len(special_token_ids) + 1))
|
| 342 |
+
token_type_ids = torch.full([token_ids.shape[0], 1], token_type_id_sections[0], dtype=torch.long, device=token_ids.device)
|
| 343 |
+
|
| 344 |
+
# https://huggingface.co/docs/transformers/model_doc/bert#transformers.BertTokenizer.create_token_type_ids_from_sequences.example
|
| 345 |
+
token_ids = token_ids[:, :-1]
|
| 346 |
+
|
| 347 |
+
for i, j in enumerate(special_token_ids):
|
| 348 |
+
|
| 349 |
+
# Find first occurrence of special token, which indicates the boundary between sections:
|
| 350 |
+
exists = torch.any(token_ids == j, dim=1, keepdim=True)
|
| 351 |
+
token_type_ids[exists] = token_type_id_sections[i + 1]
|
| 352 |
+
|
| 353 |
+
return token_type_ids
|
| 354 |
+
|
| 355 |
+
def tokenize_report_teacher_forcing(self, findings: str, impression: str, tokenizer: PreTrainedTokenizerFast, max_len: int):
|
| 356 |
+
"""
|
| 357 |
+
Tokenize the reports and creates the inputs and targets for teacher forcing.
|
| 358 |
+
|
| 359 |
+
Argument/s:
|
| 360 |
+
findings - findings sections.
|
| 361 |
+
impression - impression sections.
|
| 362 |
+
return_token_type_ids - return the token type identifiers.
|
| 363 |
+
tokenizer - Hugging Face tokenizer.
|
| 364 |
+
max_len - maximum number of tokens.
|
| 365 |
+
|
| 366 |
+
Returns:
|
| 367 |
+
decoder_input_ids - the token identifiers for the input of the decoder.
|
| 368 |
+
decoder_attention_mask - the attention mask for the decoder_input_ids.
|
| 369 |
+
label_ids - the label token identifiers for the decoder.
|
| 370 |
+
"""
|
| 371 |
+
|
| 372 |
+
# Prepare the sections for the tokenizer by placing special tokens between each section:
|
| 373 |
+
reports = [f'{tokenizer.bos_token}{i}{tokenizer.sep_token}{j}{tokenizer.eos_token}' for i, j in
|
| 374 |
+
zip(findings, impression)]
|
| 375 |
+
|
| 376 |
+
# Tokenize the report:
|
| 377 |
+
tokenized = tokenizer(
|
| 378 |
+
reports,
|
| 379 |
+
padding='longest',
|
| 380 |
+
truncation=True,
|
| 381 |
+
max_length=max_len + 1, # +1 to account for the bias between input and target.
|
| 382 |
+
return_tensors='pt',
|
| 383 |
+
return_token_type_ids=False,
|
| 384 |
+
add_special_tokens=False,
|
| 385 |
+
).to(self.device)
|
| 386 |
+
|
| 387 |
+
# Modify for language modelling:
|
| 388 |
+
batch_dict = {
|
| 389 |
+
|
| 390 |
+
# Labels for the decoder (shifted right by one for autoregression):
|
| 391 |
+
'label_ids': tokenized['input_ids'][:, 1:].detach().clone(),
|
| 392 |
+
|
| 393 |
+
# Remove last token identifier to match the sequence length of the labels:
|
| 394 |
+
'decoder_input_ids': tokenized['input_ids'][:, :-1],
|
| 395 |
+
|
| 396 |
+
# Attention mask for the decoder_input_ids (remove first token so that the eos_token_id is not considered):
|
| 397 |
+
'decoder_attention_mask': tokenized['attention_mask'][:, 1:],
|
| 398 |
+
}
|
| 399 |
+
|
| 400 |
+
return batch_dict
|
| 401 |
+
|
| 402 |
+
def tokenize_report_teacher_forcing_rev_a(self, tokenizer: PreTrainedTokenizerFast, max_len: int, findings: Optional[str] = None, impression: Optional[str] = None, reports: Optional[str] = None):
|
| 403 |
+
"""
|
| 404 |
+
Tokenize the reports and creates the inputs and targets for teacher forcing.
|
| 405 |
+
|
| 406 |
+
Argument/s:
|
| 407 |
+
tokenizer - Hugging Face tokenizer.
|
| 408 |
+
max_len - maximum number of tokens.
|
| 409 |
+
findings - findings sections.
|
| 410 |
+
impression - impression sections.
|
| 411 |
+
reports - prepared reports, with special tokens and report sections.
|
| 412 |
+
|
| 413 |
+
Returns:
|
| 414 |
+
decoder_input_ids - the token identifiers for the input of the decoder.
|
| 415 |
+
decoder_attention_mask - the attention mask for the decoder_input_ids.
|
| 416 |
+
label_ids - the label token identifiers for the decoder.
|
| 417 |
+
"""
|
| 418 |
+
|
| 419 |
+
# Prepare the sections for the tokenizer by placing special tokens between each section:
|
| 420 |
+
if reports is None:
|
| 421 |
+
assert findings and impression, "If 'reports' is not defined, 'findings' and 'impression' need to be defined."
|
| 422 |
+
reports = [f'{tokenizer.bos_token}{i}{tokenizer.sep_token}{j}{tokenizer.eos_token}' for i, j in
|
| 423 |
+
zip(findings, impression)]
|
| 424 |
+
|
| 425 |
+
# Tokenize the report:
|
| 426 |
+
tokenized = tokenizer(
|
| 427 |
+
reports,
|
| 428 |
+
padding='longest',
|
| 429 |
+
truncation=True,
|
| 430 |
+
max_length=max_len + 1, # +1 to account for the bias between input and target.
|
| 431 |
+
return_tensors='pt',
|
| 432 |
+
return_token_type_ids=False,
|
| 433 |
+
add_special_tokens=False,
|
| 434 |
+
).to(self.device)
|
| 435 |
+
|
| 436 |
+
# Modify for language modelling:
|
| 437 |
+
batch_dict = {
|
| 438 |
+
|
| 439 |
+
# Labels for the decoder (shifted right by one for autoregression):
|
| 440 |
+
'label_ids': tokenized['input_ids'][:, 1:].detach().clone(),
|
| 441 |
+
|
| 442 |
+
# Remove last token identifier to match the sequence length of the labels:
|
| 443 |
+
'decoder_input_ids': tokenized['input_ids'][:, :-1],
|
| 444 |
+
|
| 445 |
+
# Attention mask for the decoder_input_ids (remove first token so that the eos_token_id is not considered):
|
| 446 |
+
'decoder_attention_mask': tokenized['attention_mask'][:, 1:],
|
| 447 |
+
}
|
| 448 |
+
|
| 449 |
+
return batch_dict
|
| 450 |
+
|
| 451 |
+
def split_and_decode_sections(self, token_ids, special_token_ids, tokenizer: PreTrainedTokenizerFast):
|
| 452 |
+
"""
|
| 453 |
+
Split the token identifiers into sections, then convert the token identifiers into strings.
|
| 454 |
+
|
| 455 |
+
Argument/s:
|
| 456 |
+
token_ids - token identifiers.
|
| 457 |
+
special_token_ids - special token identifiers that indicate the end of each section.
|
| 458 |
+
tokenizer - Hugging Face tokenizer.
|
| 459 |
+
|
| 460 |
+
Returns:
|
| 461 |
+
token_type_ids - token type identifiers.
|
| 462 |
+
"""
|
| 463 |
+
|
| 464 |
+
_, seq_len = token_ids.shape
|
| 465 |
+
|
| 466 |
+
# The number of sections is the same as the number of special_token_ids:
|
| 467 |
+
num_sections = len(special_token_ids)
|
| 468 |
+
|
| 469 |
+
sections = {k: [] for k in range(num_sections)}
|
| 470 |
+
|
| 471 |
+
for i in token_ids:
|
| 472 |
+
prev_col = 0
|
| 473 |
+
for j, k in enumerate(special_token_ids):
|
| 474 |
+
|
| 475 |
+
# The maximum sequence length was exceeded, thus no more tokens:
|
| 476 |
+
if prev_col >= seq_len:
|
| 477 |
+
sections[j].append('')
|
| 478 |
+
continue
|
| 479 |
+
|
| 480 |
+
# Find first occurrence of special tokens that indicate the boundary between sections:
|
| 481 |
+
col = (i == k).int().argmax().item()
|
| 482 |
+
|
| 483 |
+
# If equal to 0, token was not found, set the column to the sequence length (as the decoder exceeded
|
| 484 |
+
# the maximum sequence length):
|
| 485 |
+
if col == 0:
|
| 486 |
+
col = seq_len
|
| 487 |
+
|
| 488 |
+
# Extract section token identifiers:
|
| 489 |
+
section_token_ids = i[prev_col:col]
|
| 490 |
+
prev_col = col
|
| 491 |
+
section_string = tokenizer.decode(section_token_ids, skip_special_tokens=True)
|
| 492 |
+
|
| 493 |
+
sections[j].append(section_string)
|
| 494 |
+
|
| 495 |
+
return tuple(sections.values())
|
| 496 |
+
|
| 497 |
+
@staticmethod
|
| 498 |
+
def create_4d_attention_mask_mixed_causality(non_causal_2d_attention_mask, causal_2d_attention_mask):
|
| 499 |
+
|
| 500 |
+
prompt_seq_len = non_causal_2d_attention_mask.shape[-1]
|
| 501 |
+
report_seq_len = causal_2d_attention_mask.shape[-1]
|
| 502 |
+
|
| 503 |
+
non_causal_2d_attention_mask = non_causal_2d_attention_mask[:, None, None, :]
|
| 504 |
+
causal_2d_attention_mask = causal_2d_attention_mask[:, None, None, :]
|
| 505 |
+
|
| 506 |
+
# Upper left of attention matrix:
|
| 507 |
+
upper_left = non_causal_2d_attention_mask.expand(-1, -1, prompt_seq_len, -1)
|
| 508 |
+
upper_left = upper_left * non_causal_2d_attention_mask
|
| 509 |
+
upper_left = upper_left * non_causal_2d_attention_mask.permute(0, 1, 3, 2)
|
| 510 |
+
|
| 511 |
+
causal_mask = torch.tril(
|
| 512 |
+
torch.ones(
|
| 513 |
+
(
|
| 514 |
+
report_seq_len,
|
| 515 |
+
report_seq_len,
|
| 516 |
+
),
|
| 517 |
+
dtype=torch.long,
|
| 518 |
+
device=causal_2d_attention_mask.device,
|
| 519 |
+
),
|
| 520 |
+
)
|
| 521 |
+
|
| 522 |
+
# Lower right of attention matrix:
|
| 523 |
+
lower_right = causal_2d_attention_mask.expand(-1, -1, report_seq_len, -1)
|
| 524 |
+
lower_right = lower_right * causal_2d_attention_mask.permute(0, 1, 3, 2)
|
| 525 |
+
lower_right = lower_right * causal_mask
|
| 526 |
+
|
| 527 |
+
# Upper right of attention matrix:
|
| 528 |
+
upper_right = torch.zeros(
|
| 529 |
+
causal_2d_attention_mask.shape[0],
|
| 530 |
+
1,
|
| 531 |
+
prompt_seq_len,
|
| 532 |
+
report_seq_len,
|
| 533 |
+
dtype=torch.long,
|
| 534 |
+
device=causal_2d_attention_mask.device,
|
| 535 |
+
)
|
| 536 |
+
|
| 537 |
+
# Lower left of attention matrix:
|
| 538 |
+
lower_left = non_causal_2d_attention_mask.expand(-1, -1, report_seq_len, -1)
|
| 539 |
+
lower_left = lower_left * causal_2d_attention_mask.permute(0, 1, 3, 2)
|
| 540 |
+
|
| 541 |
+
left = torch.cat((upper_left, lower_left), dim=2)
|
| 542 |
+
right = torch.cat((upper_right, lower_right), dim=2)
|
| 543 |
+
|
| 544 |
+
mixed_causality_4d_attention_mask = torch.cat((left, right), dim=-1)
|
| 545 |
+
return mixed_causality_4d_attention_mask
|
| 546 |
+
|
| 547 |
+
@staticmethod
|
| 548 |
+
def create_4d_attention_mask_mixed_causality_past_key_values(non_causal_2d_attention_mask, causal_2d_attention_mask):
|
| 549 |
+
|
| 550 |
+
non_causal_2d_attention_mask = non_causal_2d_attention_mask[:, None, None, :]
|
| 551 |
+
causal_2d_attention_mask = causal_2d_attention_mask[:, None, None, :]
|
| 552 |
+
|
| 553 |
+
mixed_causality_4d_attention_mask = torch.cat((non_causal_2d_attention_mask, causal_2d_attention_mask), dim=-1)
|
| 554 |
+
return mixed_causality_4d_attention_mask
|