Feature Extraction
Transformers
Safetensors
vision-encoder-decoder
custom_code
anicolson commited on
Commit
fc8cc82
·
verified ·
1 Parent(s): c1b861c

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +3 -3
README.md CHANGED
@@ -61,7 +61,7 @@ batch = next(iter(dataloader))
61
  output_ids = model.generate(
62
  pixel_values=batch['images'],
63
  max_length=512,
64
- num_beams=4,
65
  bad_words_ids=[[tokenizer.convert_tokens_to_ids('[NF]')], [tokenizer.convert_tokens_to_ids('[NI]')]],
66
  )
67
  findings, impression = model.split_and_decode_sections(output_ids, tokenizer)
@@ -73,7 +73,7 @@ findings, impression = model.split_and_decode_sections(output_ids, tokenizer)
73
  output_ids = model.generate(
74
  pixel_values=batch['images'],
75
  max_length=512,
76
- num_beams=4,
77
  bad_words_ids=[[tokenizer.convert_tokens_to_ids('[NF]')]],
78
  eos_token_id=tokenizer.sep_token_id,
79
  )
@@ -86,7 +86,7 @@ findings, _ = model.split_and_decode_sections(output_ids, tokenizer)
86
  output_ids = model.generate(
87
  pixel_values=batch['images'],
88
  max_length=512,
89
- num_beams=4,
90
  bad_words_ids=[[tokenizer.convert_tokens_to_ids('[NI]')]],
91
  input_ids=torch.tensor([[tokenizer.bos_token_id, tokenizer.convert_tokens_to_ids('[NF]'), tokenizer.sep_token_id]]*mbatch_size, device=device, dtype=torch.long),
92
  )
 
61
  output_ids = model.generate(
62
  pixel_values=batch['images'],
63
  max_length=512,
64
+ num_beams=1,
65
  bad_words_ids=[[tokenizer.convert_tokens_to_ids('[NF]')], [tokenizer.convert_tokens_to_ids('[NI]')]],
66
  )
67
  findings, impression = model.split_and_decode_sections(output_ids, tokenizer)
 
73
  output_ids = model.generate(
74
  pixel_values=batch['images'],
75
  max_length=512,
76
+ num_beams=1,
77
  bad_words_ids=[[tokenizer.convert_tokens_to_ids('[NF]')]],
78
  eos_token_id=tokenizer.sep_token_id,
79
  )
 
86
  output_ids = model.generate(
87
  pixel_values=batch['images'],
88
  max_length=512,
89
+ num_beams=1,
90
  bad_words_ids=[[tokenizer.convert_tokens_to_ids('[NI]')]],
91
  input_ids=torch.tensor([[tokenizer.bos_token_id, tokenizer.convert_tokens_to_ids('[NF]'), tokenizer.sep_token_id]]*mbatch_size, device=device, dtype=torch.long),
92
  )