aghatage commited on
Commit
a22269b
·
verified ·
1 Parent(s): 1fb0d9b

Update quantized pipeline artifacts (modules.json, weights, tokenizer, README)

Browse files
Files changed (2) hide show
  1. 1_Pooling/config.json +2 -2
  2. README.md +4 -4
1_Pooling/config.json CHANGED
@@ -1,10 +1,10 @@
1
  {
2
  "word_embedding_dimension": 4096,
3
  "pooling_mode_cls_token": false,
4
- "pooling_mode_mean_tokens": true,
5
  "pooling_mode_max_tokens": false,
6
  "pooling_mode_mean_sqrt_len_tokens": false,
7
  "pooling_mode_weightedmean_tokens": false,
8
- "pooling_mode_lasttoken": false,
9
  "include_prompt": true
10
  }
 
1
  {
2
  "word_embedding_dimension": 4096,
3
  "pooling_mode_cls_token": false,
4
+ "pooling_mode_mean_tokens": false,
5
  "pooling_mode_max_tokens": false,
6
  "pooling_mode_mean_sqrt_len_tokens": false,
7
  "pooling_mode_weightedmean_tokens": false,
8
+ "pooling_mode_lasttoken": true,
9
  "include_prompt": true
10
  }
README.md CHANGED
@@ -36,7 +36,7 @@ This is a [sentence-transformers](https://www.SBERT.net) model finetuned from [S
36
  ```
37
  SentenceTransformer(
38
  (0): Transformer({'max_seq_length': 32768, 'do_lower_case': False, 'architecture': 'MistralModel'})
39
- (1): Pooling({'word_embedding_dimension': 4096, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
40
  (2): Normalize()
41
  )
42
  ```
@@ -70,9 +70,9 @@ print(embeddings.shape)
70
  # Get the similarity scores for the embeddings
71
  similarities = model.similarity(embeddings, embeddings)
72
  print(similarities)
73
- # tensor([[1.0000, 0.7891, 0.6680],
74
- # [0.7891, 1.0078, 0.6523],
75
- # [0.6680, 0.6523, 1.0078]], dtype=torch.bfloat16)
76
  ```
77
 
78
  <!--
 
36
  ```
37
  SentenceTransformer(
38
  (0): Transformer({'max_seq_length': 32768, 'do_lower_case': False, 'architecture': 'MistralModel'})
39
+ (1): Pooling({'word_embedding_dimension': 4096, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': False, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': True, 'include_prompt': True})
40
  (2): Normalize()
41
  )
42
  ```
 
70
  # Get the similarity scores for the embeddings
71
  similarities = model.similarity(embeddings, embeddings)
72
  print(similarities)
73
+ # tensor([[1.0000, 0.7070, 0.5469],
74
+ # [0.7070, 1.0078, 0.5469],
75
+ # [0.5469, 0.5469, 1.0000]], dtype=torch.bfloat16)
76
  ```
77
 
78
  <!--