Update quantized pipeline artifacts (modules.json, weights, tokenizer, README)
Browse files- 1_Pooling/config.json +2 -2
- README.md +4 -4
1_Pooling/config.json
CHANGED
|
@@ -1,10 +1,10 @@
|
|
| 1 |
{
|
| 2 |
"word_embedding_dimension": 4096,
|
| 3 |
"pooling_mode_cls_token": false,
|
| 4 |
-
"pooling_mode_mean_tokens":
|
| 5 |
"pooling_mode_max_tokens": false,
|
| 6 |
"pooling_mode_mean_sqrt_len_tokens": false,
|
| 7 |
"pooling_mode_weightedmean_tokens": false,
|
| 8 |
-
"pooling_mode_lasttoken":
|
| 9 |
"include_prompt": true
|
| 10 |
}
|
|
|
|
| 1 |
{
|
| 2 |
"word_embedding_dimension": 4096,
|
| 3 |
"pooling_mode_cls_token": false,
|
| 4 |
+
"pooling_mode_mean_tokens": false,
|
| 5 |
"pooling_mode_max_tokens": false,
|
| 6 |
"pooling_mode_mean_sqrt_len_tokens": false,
|
| 7 |
"pooling_mode_weightedmean_tokens": false,
|
| 8 |
+
"pooling_mode_lasttoken": true,
|
| 9 |
"include_prompt": true
|
| 10 |
}
|
README.md
CHANGED
|
@@ -36,7 +36,7 @@ This is a [sentence-transformers](https://www.SBERT.net) model finetuned from [S
|
|
| 36 |
```
|
| 37 |
SentenceTransformer(
|
| 38 |
(0): Transformer({'max_seq_length': 32768, 'do_lower_case': False, 'architecture': 'MistralModel'})
|
| 39 |
-
(1): Pooling({'word_embedding_dimension': 4096, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens':
|
| 40 |
(2): Normalize()
|
| 41 |
)
|
| 42 |
```
|
|
@@ -70,9 +70,9 @@ print(embeddings.shape)
|
|
| 70 |
# Get the similarity scores for the embeddings
|
| 71 |
similarities = model.similarity(embeddings, embeddings)
|
| 72 |
print(similarities)
|
| 73 |
-
# tensor([[1.0000, 0.
|
| 74 |
-
# [0.
|
| 75 |
-
# [0.
|
| 76 |
```
|
| 77 |
|
| 78 |
<!--
|
|
|
|
| 36 |
```
|
| 37 |
SentenceTransformer(
|
| 38 |
(0): Transformer({'max_seq_length': 32768, 'do_lower_case': False, 'architecture': 'MistralModel'})
|
| 39 |
+
(1): Pooling({'word_embedding_dimension': 4096, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': False, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': True, 'include_prompt': True})
|
| 40 |
(2): Normalize()
|
| 41 |
)
|
| 42 |
```
|
|
|
|
| 70 |
# Get the similarity scores for the embeddings
|
| 71 |
similarities = model.similarity(embeddings, embeddings)
|
| 72 |
print(similarities)
|
| 73 |
+
# tensor([[1.0000, 0.7070, 0.5469],
|
| 74 |
+
# [0.7070, 1.0078, 0.5469],
|
| 75 |
+
# [0.5469, 0.5469, 1.0000]], dtype=torch.bfloat16)
|
| 76 |
```
|
| 77 |
|
| 78 |
<!--
|