Upload README.md with huggingface_hub
Browse files
README.md
ADDED
|
@@ -0,0 +1,185 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
---
|
| 2 |
+
license: mit
|
| 3 |
+
tags:
|
| 4 |
+
- ocr
|
| 5 |
+
- document-processing
|
| 6 |
+
- computer-vision
|
| 7 |
+
- deepseek
|
| 8 |
+
- colab
|
| 9 |
+
- jupyter
|
| 10 |
+
- optical-character-recognition
|
| 11 |
+
- text-detection
|
| 12 |
+
- document-to-markdown
|
| 13 |
+
- notebook
|
| 14 |
+
library_name: transformers
|
| 15 |
+
pipeline_tag: image-to-text
|
| 16 |
+
---
|
| 17 |
+
|
| 18 |
+
# DeepSeek-OCR Google Colab Notebook
|
| 19 |
+
|
| 20 |
+
A ready-to-use Google Colab notebook for running DeepSeek-OCR, a state-of-the-art optical character recognition model that converts images and documents to markdown format with high accuracy.
|
| 21 |
+
|
| 22 |
+
## π Quick Start
|
| 23 |
+
|
| 24 |
+
### Open in Google Colab
|
| 25 |
+
|
| 26 |
+
Click the badge below to open the notebook directly in Google Colab:
|
| 27 |
+
|
| 28 |
+
[](https://colab.research.google.com/github/ahczhg/DeepSeek-OCR-Colab/blob/main/DeepSeek_OCR_Colab.ipynb)
|
| 29 |
+
|
| 30 |
+
**Or download the notebook from this repository and upload to Google Colab manually.**
|
| 31 |
+
|
| 32 |
+
### Steps:
|
| 33 |
+
1. Click the "Open in Colab" badge above
|
| 34 |
+
2. Select **Runtime β Change runtime type β GPU** (T4 or better recommended)
|
| 35 |
+
3. Run all cells sequentially
|
| 36 |
+
4. Upload your image when prompted
|
| 37 |
+
5. Get markdown-formatted text output
|
| 38 |
+
|
| 39 |
+
## β¨ Features
|
| 40 |
+
|
| 41 |
+
- **Easy Setup**: One-click deployment on Google Colab
|
| 42 |
+
- **GPU Acceleration**: Optimized for NVIDIA GPUs (T4, L4, A100, V100)
|
| 43 |
+
- **Flexible Processing**: Single image or batch processing support
|
| 44 |
+
- **High Quality OCR**: Converts documents to markdown with text detection and grounding
|
| 45 |
+
- **Multiple Resolution Modes**: Tiny, Small, Base, Large, and Gundam (cropped) modes
|
| 46 |
+
- **Real-time Preview**: View uploaded images before processing
|
| 47 |
+
|
| 48 |
+
## π Requirements
|
| 49 |
+
|
| 50 |
+
### For Google Colab:
|
| 51 |
+
- GPU Runtime (T4 or better recommended)
|
| 52 |
+
- ~15-20 minutes setup time
|
| 53 |
+
- ~23GB GPU memory (L4 or equivalent)
|
| 54 |
+
|
| 55 |
+
### For Local Setup:
|
| 56 |
+
- NVIDIA GPU with CUDA support (12.1+)
|
| 57 |
+
- Python 3.8+
|
| 58 |
+
- PyTorch 2.0+
|
| 59 |
+
- 22GB+ GPU VRAM
|
| 60 |
+
|
| 61 |
+
## π‘ Usage
|
| 62 |
+
|
| 63 |
+
### Single Image Processing
|
| 64 |
+
|
| 65 |
+
1. **Upload your image** in the designated cell
|
| 66 |
+
2. **Run the inference cell** to process the image
|
| 67 |
+
3. **Download results** from the output directory
|
| 68 |
+
|
| 69 |
+
Example prompt:
|
| 70 |
+
```python
|
| 71 |
+
prompt = "<image>\n<|grounding|>Convert the document to markdown."
|
| 72 |
+
```
|
| 73 |
+
|
| 74 |
+
### Batch Processing
|
| 75 |
+
|
| 76 |
+
Process multiple images at once with automatic iteration through uploaded files. Results are saved to the output directory.
|
| 77 |
+
|
| 78 |
+
## βοΈ Model Configuration
|
| 79 |
+
|
| 80 |
+
The notebook supports different processing modes:
|
| 81 |
+
|
| 82 |
+
| Mode | base_size | image_size | crop_mode | Use Case |
|
| 83 |
+
|------|-----------|------------|-----------|----------|
|
| 84 |
+
| Tiny | 512 | 512 | False | Quick processing, lower quality |
|
| 85 |
+
| Small | 640 | 640 | False | Balanced speed/quality |
|
| 86 |
+
| Base | 1024 | 1024 | False | Standard quality |
|
| 87 |
+
| Large | 1280 | 1280 | False | High quality, slower |
|
| 88 |
+
| Gundam | 1024 | 640 | True | Recommended (cropped processing) |
|
| 89 |
+
|
| 90 |
+
**Default Configuration (Recommended):**
|
| 91 |
+
```python
|
| 92 |
+
base_size = 1024
|
| 93 |
+
image_size = 640
|
| 94 |
+
crop_mode = True
|
| 95 |
+
```
|
| 96 |
+
|
| 97 |
+
## π€ Output Format
|
| 98 |
+
|
| 99 |
+
The model outputs:
|
| 100 |
+
- **Markdown formatted text** with proper heading structure
|
| 101 |
+
- **Bounding box coordinates** for detected elements (`<|det|>`)
|
| 102 |
+
- **Element references** (`<|ref|>`) for text, titles, tables, etc.
|
| 103 |
+
- **Tables** converted to markdown format
|
| 104 |
+
- **Compression ratio** metrics for analysis
|
| 105 |
+
|
| 106 |
+
Example output structure:
|
| 107 |
+
```
|
| 108 |
+
<|ref|>text<|/ref|><|det|>[[x1, y1, x2, y2]]<|/det|>
|
| 109 |
+
Extracted text content here...
|
| 110 |
+
|
| 111 |
+
<|ref|>sub_title<|/ref|><|det|>[[x1, y1, x2, y2]]<|/det|>
|
| 112 |
+
## Heading Text
|
| 113 |
+
```
|
| 114 |
+
|
| 115 |
+
## π οΈ Troubleshooting
|
| 116 |
+
|
| 117 |
+
### Out of Memory (OOM)
|
| 118 |
+
- Use a higher-tier GPU (A100, V100)
|
| 119 |
+
- Reduce image resolution before processing
|
| 120 |
+
- Use smaller processing modes (Tiny or Small)
|
| 121 |
+
|
| 122 |
+
### Flash Attention Installation Fails
|
| 123 |
+
- The notebook removes `attn_implementation='flash_attention_2'` by default
|
| 124 |
+
- Standard attention mechanism is used as fallback
|
| 125 |
+
|
| 126 |
+
### Model Download Slow
|
| 127 |
+
- First download takes 10-15 minutes (normal)
|
| 128 |
+
- Model is cached after first download
|
| 129 |
+
- Check your Colab internet connection
|
| 130 |
+
|
| 131 |
+
### Image Format Issues
|
| 132 |
+
```python
|
| 133 |
+
# Ensure RGB format
|
| 134 |
+
from PIL import Image
|
| 135 |
+
img = Image.open('image.png').convert('RGB')
|
| 136 |
+
```
|
| 137 |
+
|
| 138 |
+
## π Performance Tips
|
| 139 |
+
|
| 140 |
+
1. **Image Resolution**: Use native resolutions (512, 640, 1024, 1280) for best results
|
| 141 |
+
2. **Batch Processing**: More efficient for multiple images
|
| 142 |
+
3. **GPU Selection**: L4 or better recommended for faster processing
|
| 143 |
+
4. **Compression**: Enable `test_compress=True` to see compression metrics
|
| 144 |
+
|
| 145 |
+
## π Repository Files
|
| 146 |
+
|
| 147 |
+
- `DeepSeek_OCR_Colab.ipynb` - Main Google Colab notebook
|
| 148 |
+
- `requirements.txt` - Python dependencies
|
| 149 |
+
- `LICENSE` - MIT License
|
| 150 |
+
- `README.md` - This documentation
|
| 151 |
+
|
| 152 |
+
## π Credits
|
| 153 |
+
|
| 154 |
+
Based on the official DeepSeek-OCR repository:
|
| 155 |
+
- **Repository**: [deepseek-ai/DeepSeek-OCR](https://github.com/deepseek-ai/DeepSeek-OCR)
|
| 156 |
+
- **Model**: [deepseek-ai/DeepSeek-OCR on HuggingFace](https://huggingface.co/deepseek-ai/DeepSeek-OCR)
|
| 157 |
+
- **Paper**: DeepSeek-OCR: High-Accuracy Document OCR
|
| 158 |
+
|
| 159 |
+
## π License
|
| 160 |
+
|
| 161 |
+
This project is licensed under the MIT License - see the LICENSE file for details.
|
| 162 |
+
|
| 163 |
+
The DeepSeek-OCR model itself is subject to its own license terms from DeepSeek AI.
|
| 164 |
+
|
| 165 |
+
## π Links
|
| 166 |
+
|
| 167 |
+
- **Hugging Face Model**: [https://huggingface.co/ahczhg/DeepSeek-OCR-Colab](https://huggingface.co/ahczhg/DeepSeek-OCR-Colab)
|
| 168 |
+
- **Hugging Face Space**: [https://huggingface.co/spaces/ahczhg/DeepSeek-OCR-Colab](https://huggingface.co/spaces/ahczhg/DeepSeek-OCR-Colab)
|
| 169 |
+
- **Open in Colab**: [](https://colab.research.google.com/github/ahczhg/DeepSeek-OCR-Colab/blob/main/DeepSeek_OCR_Colab.ipynb)
|
| 170 |
+
|
| 171 |
+
## π Citation
|
| 172 |
+
|
| 173 |
+
If you use this notebook in your research, please cite the original DeepSeek-OCR paper:
|
| 174 |
+
|
| 175 |
+
```bibtex
|
| 176 |
+
@article{deepseek2024ocr,
|
| 177 |
+
title={DeepSeek-OCR: High-Accuracy Document OCR},
|
| 178 |
+
author={DeepSeek AI},
|
| 179 |
+
year={2024}
|
| 180 |
+
}
|
| 181 |
+
```
|
| 182 |
+
|
| 183 |
+
---
|
| 184 |
+
|
| 185 |
+
**Note**: This is a community-contributed notebook wrapper for the DeepSeek-OCR model. For the official model and implementation, please visit the [DeepSeek-OCR repository](https://github.com/deepseek-ai/DeepSeek-OCR).
|