--- library_name: transformers license: apache-2.0 base_model: uitnlp/CafeBERT tags: - generated_from_trainer model-index: - name: CafeBERT_massive_v3 results: [] --- # CafeBERT_massive_v3 This model is a fine-tuned version of [uitnlp/CafeBERT](https://huggingface.co/uitnlp/CafeBERT) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 5.2297 - Slot P: 0.7256 - Slot R: 0.7801 - Slot F1: 0.7519 - Slot Exact Match: 0.7260 - Intent Acc: 0.8633 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 128 - eval_batch_size: 128 - seed: 42 - gradient_accumulation_steps: 2 - total_train_batch_size: 256 - optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: cosine - lr_scheduler_warmup_ratio: 0.06 - num_epochs: 30 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Slot P | Slot R | Slot F1 | Slot Exact Match | Intent Acc | |:-------------:|:-----:|:----:|:---------------:|:------:|:------:|:-------:|:----------------:|:----------:| | No log | 1.0 | 45 | 16.4744 | 0.2572 | 0.0801 | 0.1222 | 0.3114 | 0.0930 | | 72.336 | 2.0 | 90 | 6.6272 | 0.5583 | 0.6075 | 0.5818 | 0.5268 | 0.6021 | | 20.704 | 3.0 | 135 | 4.4083 | 0.6449 | 0.7338 | 0.6865 | 0.6596 | 0.7885 | | 9.4202 | 4.0 | 180 | 3.7185 | 0.6867 | 0.7493 | 0.7166 | 0.6926 | 0.8367 | | 6.3529 | 5.0 | 225 | 3.6662 | 0.7024 | 0.7726 | 0.7358 | 0.7083 | 0.8647 | | 4.7787 | 6.0 | 270 | 3.8379 | 0.7102 | 0.7657 | 0.7369 | 0.7122 | 0.8667 | | 3.6929 | 7.0 | 315 | 3.7687 | 0.7152 | 0.7796 | 0.7460 | 0.7191 | 0.8652 | | 2.9663 | 8.0 | 360 | 4.1024 | 0.7037 | 0.7905 | 0.7446 | 0.7186 | 0.8677 | | 2.4189 | 9.0 | 405 | 4.2478 | 0.7177 | 0.7856 | 0.7501 | 0.7206 | 0.8692 | | 1.9492 | 10.0 | 450 | 4.4022 | 0.7179 | 0.7801 | 0.7477 | 0.7275 | 0.8697 | | 1.9492 | 11.0 | 495 | 4.6437 | 0.7095 | 0.7751 | 0.7408 | 0.7122 | 0.8706 | | 1.5099 | 12.0 | 540 | 4.7049 | 0.7223 | 0.7881 | 0.7537 | 0.7290 | 0.8706 | | 1.2818 | 13.0 | 585 | 4.9417 | 0.7189 | 0.7811 | 0.7487 | 0.7245 | 0.8677 | | 1.0546 | 14.0 | 630 | 5.0501 | 0.7188 | 0.7781 | 0.7473 | 0.7226 | 0.8667 | | 0.8641 | 15.0 | 675 | 5.2297 | 0.7256 | 0.7801 | 0.7519 | 0.7260 | 0.8633 | ### Framework versions - Transformers 4.55.0 - Pytorch 2.7.0+cu126 - Datasets 3.6.0 - Tokenizers 0.21.4