Model save
Browse files- README.md +79 -0
- intent_report_test.txt +75 -0
- model.safetensors +1 -1
- model_predict_test.csv +0 -0
- slot_report_test.txt +59 -0
README.md
ADDED
|
@@ -0,0 +1,79 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
---
|
| 2 |
+
library_name: transformers
|
| 3 |
+
license: apache-2.0
|
| 4 |
+
base_model: answerdotai/ModernBERT-large
|
| 5 |
+
tags:
|
| 6 |
+
- generated_from_trainer
|
| 7 |
+
model-index:
|
| 8 |
+
- name: ModernBERT-large_massive_modernbert_large_crf_v1
|
| 9 |
+
results: []
|
| 10 |
+
---
|
| 11 |
+
|
| 12 |
+
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
|
| 13 |
+
should probably proofread and complete it, then remove this comment. -->
|
| 14 |
+
|
| 15 |
+
# ModernBERT-large_massive_modernbert_large_crf_v1
|
| 16 |
+
|
| 17 |
+
This model is a fine-tuned version of [answerdotai/ModernBERT-large](https://huggingface.co/answerdotai/ModernBERT-large) on an unknown dataset.
|
| 18 |
+
It achieves the following results on the evaluation set:
|
| 19 |
+
- Loss: 15.5718
|
| 20 |
+
- Slot P: 0.5398
|
| 21 |
+
- Slot R: 0.6408
|
| 22 |
+
- Slot F1: 0.5860
|
| 23 |
+
- Slot Exact Match: 0.6001
|
| 24 |
+
- Intent Acc: 0.7831
|
| 25 |
+
|
| 26 |
+
## Model description
|
| 27 |
+
|
| 28 |
+
More information needed
|
| 29 |
+
|
| 30 |
+
## Intended uses & limitations
|
| 31 |
+
|
| 32 |
+
More information needed
|
| 33 |
+
|
| 34 |
+
## Training and evaluation data
|
| 35 |
+
|
| 36 |
+
More information needed
|
| 37 |
+
|
| 38 |
+
## Training procedure
|
| 39 |
+
|
| 40 |
+
### Training hyperparameters
|
| 41 |
+
|
| 42 |
+
The following hyperparameters were used during training:
|
| 43 |
+
- learning_rate: 5e-05
|
| 44 |
+
- train_batch_size: 128
|
| 45 |
+
- eval_batch_size: 128
|
| 46 |
+
- seed: 42
|
| 47 |
+
- gradient_accumulation_steps: 2
|
| 48 |
+
- total_train_batch_size: 256
|
| 49 |
+
- optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
|
| 50 |
+
- lr_scheduler_type: cosine
|
| 51 |
+
- lr_scheduler_warmup_ratio: 0.06
|
| 52 |
+
- num_epochs: 30
|
| 53 |
+
- mixed_precision_training: Native AMP
|
| 54 |
+
|
| 55 |
+
### Training results
|
| 56 |
+
|
| 57 |
+
| Training Loss | Epoch | Step | Validation Loss | Slot P | Slot R | Slot F1 | Slot Exact Match | Intent Acc |
|
| 58 |
+
|:-------------:|:-----:|:----:|:---------------:|:------:|:------:|:-------:|:----------------:|:----------:|
|
| 59 |
+
| No log | 1.0 | 45 | 43.3614 | 0.0 | 0.0 | 0.0 | 0.3178 | 0.0821 |
|
| 60 |
+
| 160.2669 | 2.0 | 90 | 27.2292 | 0.3143 | 0.2269 | 0.2635 | 0.3586 | 0.2548 |
|
| 61 |
+
| 66.654 | 3.0 | 135 | 19.2474 | 0.4379 | 0.4 | 0.4181 | 0.4481 | 0.4575 |
|
| 62 |
+
| 38.629 | 4.0 | 180 | 15.3625 | 0.4023 | 0.5408 | 0.4614 | 0.4801 | 0.5903 |
|
| 63 |
+
| 23.3498 | 5.0 | 225 | 12.4194 | 0.4446 | 0.5706 | 0.4998 | 0.5411 | 0.6695 |
|
| 64 |
+
| 12.7922 | 6.0 | 270 | 12.3227 | 0.5013 | 0.5980 | 0.5454 | 0.5691 | 0.6990 |
|
| 65 |
+
| 7.8613 | 7.0 | 315 | 12.8060 | 0.4926 | 0.6 | 0.5410 | 0.5642 | 0.7324 |
|
| 66 |
+
| 5.4037 | 8.0 | 360 | 12.9247 | 0.5086 | 0.6294 | 0.5626 | 0.5809 | 0.7388 |
|
| 67 |
+
| 3.6892 | 9.0 | 405 | 13.9871 | 0.5260 | 0.6343 | 0.5751 | 0.5986 | 0.7605 |
|
| 68 |
+
| 2.6797 | 10.0 | 450 | 14.0965 | 0.5562 | 0.6204 | 0.5865 | 0.6011 | 0.7742 |
|
| 69 |
+
| 2.6797 | 11.0 | 495 | 13.8520 | 0.5105 | 0.6398 | 0.5679 | 0.5775 | 0.7698 |
|
| 70 |
+
| 2.0031 | 12.0 | 540 | 15.0858 | 0.5491 | 0.6289 | 0.5863 | 0.6080 | 0.7698 |
|
| 71 |
+
| 1.3894 | 13.0 | 585 | 15.5718 | 0.5398 | 0.6408 | 0.5860 | 0.6001 | 0.7831 |
|
| 72 |
+
|
| 73 |
+
|
| 74 |
+
### Framework versions
|
| 75 |
+
|
| 76 |
+
- Transformers 4.55.0
|
| 77 |
+
- Pytorch 2.7.0+cu126
|
| 78 |
+
- Datasets 3.6.0
|
| 79 |
+
- Tokenizers 0.21.4
|
intent_report_test.txt
ADDED
|
@@ -0,0 +1,75 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
precision recall f1-score support
|
| 2 |
+
|
| 3 |
+
0 0.88 0.88 0.88 88
|
| 4 |
+
1 0.81 0.81 0.81 36
|
| 5 |
+
2 0.97 0.86 0.91 35
|
| 6 |
+
3 0.82 0.77 0.79 35
|
| 7 |
+
4 0.96 0.85 0.90 26
|
| 8 |
+
5 0.00 0.00 0.00 1
|
| 9 |
+
6 0.62 0.60 0.61 43
|
| 10 |
+
7 0.00 0.00 0.00 4
|
| 11 |
+
8 1.00 0.78 0.88 18
|
| 12 |
+
9 0.83 0.74 0.78 72
|
| 13 |
+
10 0.94 0.82 0.88 39
|
| 14 |
+
11 0.68 1.00 0.81 15
|
| 15 |
+
12 0.39 0.56 0.46 169
|
| 16 |
+
13 0.91 0.89 0.90 156
|
| 17 |
+
14 0.48 0.77 0.59 13
|
| 18 |
+
15 0.62 0.67 0.64 12
|
| 19 |
+
16 0.68 0.77 0.72 22
|
| 20 |
+
17 0.73 0.62 0.67 26
|
| 21 |
+
18 0.59 0.89 0.71 27
|
| 22 |
+
19 0.78 0.68 0.72 31
|
| 23 |
+
20 0.78 0.71 0.74 41
|
| 24 |
+
21 0.82 0.82 0.82 39
|
| 25 |
+
22 0.73 0.79 0.76 124
|
| 26 |
+
23 0.87 0.79 0.83 34
|
| 27 |
+
24 1.00 0.80 0.89 10
|
| 28 |
+
25 0.88 0.79 0.83 19
|
| 29 |
+
26 0.94 0.77 0.85 57
|
| 30 |
+
27 0.80 0.64 0.71 25
|
| 31 |
+
28 0.00 0.00 0.00 6
|
| 32 |
+
29 1.00 0.17 0.29 6
|
| 33 |
+
30 0.76 0.91 0.83 67
|
| 34 |
+
31 0.82 0.43 0.56 21
|
| 35 |
+
32 0.66 0.65 0.65 126
|
| 36 |
+
33 0.93 0.89 0.91 114
|
| 37 |
+
34 0.95 0.77 0.85 26
|
| 38 |
+
35 0.82 0.82 0.82 11
|
| 39 |
+
36 0.82 0.78 0.80 72
|
| 40 |
+
37 0.00 0.00 0.00 0
|
| 41 |
+
38 0.82 0.60 0.69 15
|
| 42 |
+
39 0.88 0.60 0.71 25
|
| 43 |
+
40 1.00 0.84 0.91 43
|
| 44 |
+
41 0.00 0.00 0.00 3
|
| 45 |
+
42 0.81 0.59 0.68 51
|
| 46 |
+
43 0.60 0.50 0.55 36
|
| 47 |
+
44 0.96 0.84 0.90 119
|
| 48 |
+
45 0.79 0.88 0.83 176
|
| 49 |
+
46 0.60 0.84 0.70 32
|
| 50 |
+
47 0.91 0.78 0.84 81
|
| 51 |
+
48 0.87 0.80 0.84 41
|
| 52 |
+
49 0.68 0.56 0.61 141
|
| 53 |
+
50 0.75 0.88 0.81 209
|
| 54 |
+
51 0.77 0.77 0.77 35
|
| 55 |
+
52 0.83 0.90 0.86 21
|
| 56 |
+
53 0.83 0.85 0.84 52
|
| 57 |
+
54 0.76 0.96 0.85 23
|
| 58 |
+
55 0.65 0.55 0.59 20
|
| 59 |
+
56 1.00 0.94 0.97 36
|
| 60 |
+
57 0.77 0.77 0.77 35
|
| 61 |
+
58 0.81 0.87 0.84 63
|
| 62 |
+
59 0.84 0.71 0.77 51
|
| 63 |
+
|
| 64 |
+
accuracy 0.77 2974
|
| 65 |
+
macro avg 0.74 0.69 0.70 2974
|
| 66 |
+
weighted avg 0.78 0.77 0.77 2974
|
| 67 |
+
|
| 68 |
+
Confusion matrix:
|
| 69 |
+
[[77 0 0 ... 0 0 0]
|
| 70 |
+
[ 0 29 0 ... 0 0 0]
|
| 71 |
+
[ 0 0 30 ... 0 0 0]
|
| 72 |
+
...
|
| 73 |
+
[ 0 0 0 ... 27 0 0]
|
| 74 |
+
[ 0 0 0 ... 0 55 0]
|
| 75 |
+
[ 0 0 1 ... 0 0 36]]
|
model.safetensors
CHANGED
|
@@ -1,3 +1,3 @@
|
|
| 1 |
version https://git-lfs.github.com/spec/v1
|
| 2 |
-
oid sha256:
|
| 3 |
size 1579896944
|
|
|
|
| 1 |
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:5405b4ac523b1a3fdfb6883905472c126086750b196ed444289ea8103ffcb920
|
| 3 |
size 1579896944
|
model_predict_test.csv
ADDED
|
The diff for this file is too large to render.
See raw diff
|
|
|
slot_report_test.txt
ADDED
|
@@ -0,0 +1,59 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
precision recall f1-score support
|
| 2 |
+
|
| 3 |
+
alarm_type 0.00 0.00 0.00 2
|
| 4 |
+
app_name 0.18 0.40 0.25 5
|
| 5 |
+
artist_name 0.49 0.64 0.55 61
|
| 6 |
+
audiobook_author 1.00 0.40 0.57 5
|
| 7 |
+
audiobook_name 0.65 0.57 0.60 23
|
| 8 |
+
business_name 0.56 0.64 0.60 92
|
| 9 |
+
business_type 0.27 0.35 0.31 31
|
| 10 |
+
change_amount 0.25 0.22 0.24 9
|
| 11 |
+
coffee_type 0.20 0.25 0.22 4
|
| 12 |
+
color_type 0.55 0.62 0.58 26
|
| 13 |
+
cooking_type 0.00 0.00 0.00 8
|
| 14 |
+
currency_name 0.62 0.74 0.67 50
|
| 15 |
+
date 0.71 0.85 0.78 415
|
| 16 |
+
definition_word 0.53 0.49 0.51 51
|
| 17 |
+
device_type 0.66 0.68 0.67 57
|
| 18 |
+
drink_type 0.00 0.00 0.00 1
|
| 19 |
+
email_address 0.60 0.67 0.63 9
|
| 20 |
+
email_folder 0.43 0.60 0.50 5
|
| 21 |
+
event_name 0.50 0.59 0.54 260
|
| 22 |
+
food_type 0.33 0.51 0.40 72
|
| 23 |
+
game_name 0.68 0.50 0.58 26
|
| 24 |
+
general_frequency 0.56 0.50 0.53 20
|
| 25 |
+
house_place 0.63 0.67 0.65 58
|
| 26 |
+
ingredient 0.00 0.00 0.00 6
|
| 27 |
+
joke_type 0.25 0.18 0.21 11
|
| 28 |
+
list_name 0.54 0.62 0.58 61
|
| 29 |
+
meal_type 0.39 0.72 0.51 18
|
| 30 |
+
media_type 0.64 0.80 0.71 128
|
| 31 |
+
movie_name 0.00 0.00 0.00 2
|
| 32 |
+
movie_type 0.00 0.00 0.00 3
|
| 33 |
+
music_album 0.00 0.00 0.00 1
|
| 34 |
+
music_descriptor 0.00 0.00 0.00 7
|
| 35 |
+
music_genre 0.67 0.76 0.71 50
|
| 36 |
+
news_topic 0.36 0.48 0.41 52
|
| 37 |
+
order_type 0.61 0.85 0.71 20
|
| 38 |
+
person 0.56 0.62 0.59 216
|
| 39 |
+
personal_info 0.31 0.57 0.40 14
|
| 40 |
+
place_name 0.63 0.59 0.61 281
|
| 41 |
+
player_setting 0.34 0.40 0.37 40
|
| 42 |
+
playlist_name 0.19 0.20 0.19 15
|
| 43 |
+
podcast_descriptor 0.37 0.29 0.33 24
|
| 44 |
+
podcast_name 0.25 0.35 0.29 17
|
| 45 |
+
radio_name 0.30 0.36 0.33 33
|
| 46 |
+
relation 0.36 0.44 0.40 59
|
| 47 |
+
song_name 0.15 0.21 0.18 39
|
| 48 |
+
time 0.54 0.61 0.58 191
|
| 49 |
+
time_zone 0.56 0.38 0.45 13
|
| 50 |
+
timeofday 0.67 0.67 0.67 60
|
| 51 |
+
transport_agency 0.80 0.89 0.84 9
|
| 52 |
+
transport_descriptor 0.00 0.00 0.00 2
|
| 53 |
+
transport_name 0.50 0.25 0.33 4
|
| 54 |
+
transport_type 0.73 0.80 0.76 65
|
| 55 |
+
weather_descriptor 0.55 0.52 0.54 82
|
| 56 |
+
|
| 57 |
+
micro avg 0.55 0.62 0.58 2813
|
| 58 |
+
macro avg 0.41 0.44 0.42 2813
|
| 59 |
+
weighted avg 0.55 0.62 0.58 2813
|