Safetensors
regresslm
custom_code
File size: 12,849 Bytes
ee2b58e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
"""Hugging Face wrapper around a T5 Gemma backbone with a numeric decoder."""

from __future__ import annotations

from dataclasses import dataclass
from typing import Optional, Sequence

import torch
import torch.nn.functional as F
from torch import nn
from transformers import T5GemmaConfig, T5GemmaForConditionalGeneration
from transformers.generation.logits_process import LogitsProcessor, LogitsProcessorList
from transformers.modeling_outputs import Seq2SeqLMOutput
from transformers import PreTrainedModel, GenerationMixin

from .configuration_regresslm import RegressLMConfig
from .tokenization_p10 import IEEEFloatTokenizer, P10Tokenizer


@dataclass
class RegressLMOutput(Seq2SeqLMOutput):
    """Extends the default seq2seq output with optional regression logits."""

    regression_logits: Optional[torch.Tensor] = None


class _NumericConstraintHelper:
    """Utility that mirrors the `DecoderVocab` logic for numeric decoding."""

    def __init__(self, tokenizer) -> None:
        self.tokenizer = tokenizer
        self.num_tokens_per_obj = tokenizer.num_tokens_per_obj
        self.pad_token_id = tokenizer.pad_token_id

    def allowed_token_ids(self, prev_token_ids: Sequence[int]) -> list[int]:
        return self.tokenizer.possible_next_token_ids(prev_token_ids)

    def decode(self, token_ids: Sequence[int]) -> list[float]:
        return self.tokenizer.token_ids_to_floats(token_ids)


class _NumericLogitsProcessor(LogitsProcessor):
    """Constrains generation so only valid numeric tokens appear."""

    def __init__(self, helper: _NumericConstraintHelper):
        self.helper = helper

    def __call__(self, input_ids: torch.LongTensor, scores: torch.FloatTensor) -> torch.FloatTensor:  # type: ignore[override]
        batch, _ = input_ids.shape
        updated_scores = scores.clone()
        for row in range(batch):
            prev_ids = input_ids[row].tolist()
            allowed = self.helper.allowed_token_ids(prev_ids)
            vocab = updated_scores.shape[-1]
            if any(i < 0 or i >= vocab for i in allowed):
                raise ValueError(
                    f"Numeric constraint produced out-of-range id(s): "
                    f"max={max(allowed)}, vocab={vocab}. "
                    f"Check tokenizer <-> decoder vocab alignment."
                )
            mask = torch.full_like(updated_scores[row], float("-inf"))
            mask[allowed] = 0.0
            updated_scores[row] = updated_scores[row] + mask
        return updated_scores


class RegressLMForConditionalGeneration(PreTrainedModel, GenerationMixin):
    """Drop-in Hugging Face model that mirrors ``PyTorchModel`` for inference."""

    config_class = RegressLMConfig
    base_model_prefix = "model"

    def __init__(self, config: RegressLMConfig) -> None:
        super().__init__(config)
        backbone_cfg = T5GemmaConfig(**config.backbone_config)
        self.model = T5GemmaForConditionalGeneration(backbone_cfg)

        # Encoder vocabulary: optionally resize the shared embedding.
        if config.encoder_vocab_size is not None:
            cur = self.model.get_input_embeddings().num_embeddings
            if cur != config.encoder_vocab_size:
                self.model.resize_token_embeddings(config.encoder_vocab_size)

        # Decoder vocabulary: always detach from the shared embedding so we can
        # host the numeric tokens.
        if config.decoder_vocab_size is not None:
            self._resize_decoder_vocab(config.decoder_vocab_size)

        hidden_size = getattr(self.model.config.encoder, "d_model", None)
        if hidden_size is None:
            hidden_size = getattr(self.model.config.encoder, "hidden_size")
        if hidden_size is None:
            raise ValueError("Unable to infer hidden size from backbone config.")

        self.use_regression_head = config.use_regression_head
        if self.use_regression_head:
            self.regression_head = nn.Linear(hidden_size, 1)
        else:
            self.regression_head = None

        decoder_spec = getattr(config, "decoder_tokenizer", "P10").upper()
        if decoder_spec.startswith("IEEE"):
            mantissa_digits = getattr(config, "ieee_mantissa_digits", None)
            exponent_digits = getattr(config, "ieee_exponent_digits", None)
            if mantissa_digits is None or exponent_digits is None:
                raise ValueError(
                    "Config missing IEEE tokenizer parameters: `ieee_mantissa_digits` and `ieee_exponent_digits`."
                )
            tokenizer = IEEEFloatTokenizer(
                base=getattr(config, "ieee_base", 10),
                num_mantissa_digits=mantissa_digits,
                num_exponent_digits=exponent_digits,
            )
        else:
            tokenizer = P10Tokenizer(
                num_digits=getattr(config, "num_digits", 6),
                exponent_range=getattr(config, "exponent_range", 10),
            )

        self.constraint_helper = _NumericConstraintHelper(tokenizer)
        # Sanity-check: decoder vocab size must match numeric tokenizer size
        if (config.decoder_vocab_size is not None and
            config.decoder_vocab_size != self.constraint_helper.tokenizer.decoder_vocab_size):
            raise ValueError(
                f"Decoder vocab mismatch: model={config.decoder_vocab_size} "
                f"tokenizer={self.constraint_helper.tokenizer.decoder_vocab_size}. "
                "Make sure the tokenizer does NOT add PAD and preserves training order."
            )
        self.num_tokens_per_obj = config.num_tokens_per_obj
        self.max_num_objs = config.max_num_objs
        self.decoder_start_token_id = config.pad_token_id
        self.post_init()

    # ------------------------------------------------------------------
    # Helpers mirroring PyTorchModel utilities
    # ------------------------------------------------------------------
    def _resize_decoder_vocab(self, vocab_size: int) -> None:
        decoder = self.model.model.decoder.embed_tokens
        if decoder.num_embeddings != vocab_size:
            self.model.model.decoder.embed_tokens = nn.Embedding(
                vocab_size,
                decoder.embedding_dim,
                padding_idx=decoder.padding_idx,
            )
        hidden = getattr(self.model.config.encoder, "d_model", None)
        if hidden is None:
            hidden = getattr(self.model.config.encoder, "hidden_size")
        if hasattr(self.model.lm_head, "out_proj"):
            self.model.lm_head.out_proj = nn.Linear(hidden, vocab_size, bias=False)
        else:
            self.model.lm_head = nn.Linear(hidden, vocab_size, bias=False)
        self.model.register_buffer("final_logits_bias", torch.zeros((1, vocab_size)))
        if hasattr(self.model.config, "tie_word_embeddings"):
            self.model.config.tie_word_embeddings = False

    def _pool_encoder_outputs(self, memory: torch.Tensor, pad_mask: torch.Tensor) -> torch.Tensor:
        mask = (~pad_mask).unsqueeze(-1).type_as(memory)
        denom = mask.sum(dim=1).clamp(min=1.0)
        return (memory * mask).sum(dim=1) / denom

    def get_encoder(self):  # type: ignore[override]
        return self.model.get_encoder()

    def get_decoder(self):  # type: ignore[override]
        return self.model.get_decoder()

    def get_input_embeddings(self):  # type: ignore[override]
        return self.model.get_input_embeddings()

    def set_input_embeddings(self, new_embeddings):  # type: ignore[override]
        self.model.set_input_embeddings(new_embeddings)

    def tie_weights(self):  # type: ignore[override]
        # Word embeddings are intentionally untied once the decoder vocab is replaced.
        pass

    # ------------------------------------------------------------------
    # Forward pass mirroring the training-time behaviour
    # ------------------------------------------------------------------
    def forward(
        self,
        input_ids: Optional[torch.LongTensor] = None,
        attention_mask: Optional[torch.LongTensor] = None,
        decoder_input_ids: Optional[torch.LongTensor] = None,
        labels: Optional[torch.LongTensor] = None,
        regression_targets: Optional[torch.Tensor] = None,
        return_dict: Optional[bool] = None,
        **kwargs,
    ) -> RegressLMOutput:
        return_dict = return_dict if return_dict is not None else self.config.use_return_dict

        if self.use_regression_head:
            if input_ids is None:
                raise ValueError("`input_ids` must be provided for regression inference.")
            if attention_mask is None:
                attention_mask = (input_ids != self.config.pad_token_id).long()
            encoder_out = self.model.get_encoder()(
                input_ids=input_ids,
                attention_mask=attention_mask,
                return_dict=True,
            )
            memory = encoder_out.last_hidden_state
            pad_mask = attention_mask == 0
            pooled = self._pool_encoder_outputs(memory, pad_mask)
            preds = self.regression_head(pooled).squeeze(-1)
            loss = None
            target = regression_targets if regression_targets is not None else labels
            if target is not None:
                loss = F.mse_loss(preds, target.to(preds.dtype))
            if not return_dict:
                return (loss, preds) if loss is not None else (preds,)
            return RegressLMOutput(
                loss=loss,
                logits=None,
                regression_logits=preds,
                encoder_last_hidden_state=memory,
            )

        proc_labels = None
        if labels is not None:
            proc_labels = labels.clone()
            proc_labels[proc_labels == self.config.pad_token_id] = -100
        outputs = self.model(
            input_ids=input_ids,
            attention_mask=attention_mask,
            decoder_input_ids=decoder_input_ids,
            labels=proc_labels,
            return_dict=True,
            **kwargs,
        )
        if not return_dict:
            if outputs.loss is None:
                return (outputs.logits,)
            return (outputs.loss, outputs.logits)
        return RegressLMOutput(
            loss=outputs.loss,
            logits=outputs.logits,
            past_key_values=outputs.past_key_values,
            decoder_hidden_states=outputs.decoder_hidden_states,
            decoder_attentions=outputs.decoder_attentions,
            cross_attentions=outputs.cross_attentions,
            encoder_last_hidden_state=outputs.encoder_last_hidden_state,
        )

    # ------------------------------------------------------------------
    # Generation helpers
    # ------------------------------------------------------------------
    def prepare_inputs_for_generation(self, *args, **kwargs):  # type: ignore[override]
        return self.model.prepare_inputs_for_generation(*args, **kwargs)

    def _get_logits_processor(  # type: ignore[override]
        self,
        generation_config,
        input_ids_seq_length=None,
        encoder_input_ids=None,
        prefix_allowed_tokens_fn=None,
        logits_processor=None,
        device=None,
        model_kwargs=None,
        negative_prompt_ids=None,
        negative_prompt_attention_mask=None,
    ):
        processors = super()._get_logits_processor(
            generation_config=generation_config,
            input_ids_seq_length=input_ids_seq_length,
            encoder_input_ids=encoder_input_ids,
            prefix_allowed_tokens_fn=prefix_allowed_tokens_fn,
            logits_processor=logits_processor,
            device=device,
            model_kwargs=model_kwargs,
            negative_prompt_ids=negative_prompt_ids,
            negative_prompt_attention_mask=negative_prompt_attention_mask,
        )
        processors.append(_NumericLogitsProcessor(self.constraint_helper))
        return processors

    def generate(self, *args, **kwargs):  # type: ignore[override]
        if "decoder_start_token_id" not in kwargs:
            kwargs["decoder_start_token_id"] = self.config.pad_token_id
        if "max_new_tokens" not in kwargs and "max_length" not in kwargs:
            kwargs["max_new_tokens"] = self.config.max_num_objs * self.num_tokens_per_obj
        return super().generate(*args, **kwargs)

    # ------------------------------------------------------------------
    # Convenience helper used after generation
    # ------------------------------------------------------------------
    def decode_to_floats(self, sequences: torch.Tensor | Sequence[Sequence[int]]) -> list[list[float]]:
        if isinstance(sequences, torch.Tensor):
            iterable = sequences.cpu().tolist()
        else:
            iterable = sequences
        return [self.constraint_helper.decode(seq) for seq in iterable]