akseljoonas HF Staff commited on
Commit
589b00a
·
verified ·
1 Parent(s): 6a9b616

Model save

Browse files
README.md ADDED
@@ -0,0 +1,58 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ base_model: Qwen/Qwen2.5-3B-Instruct
3
+ library_name: transformers
4
+ model_name: Agentic-Qwen-3B-e7-lr4-b128
5
+ tags:
6
+ - generated_from_trainer
7
+ - trl
8
+ - sft
9
+ licence: license
10
+ ---
11
+
12
+ # Model Card for Agentic-Qwen-3B-e7-lr4-b128
13
+
14
+ This model is a fine-tuned version of [Qwen/Qwen2.5-3B-Instruct](https://huggingface.co/Qwen/Qwen2.5-3B-Instruct).
15
+ It has been trained using [TRL](https://github.com/huggingface/trl).
16
+
17
+ ## Quick start
18
+
19
+ ```python
20
+ from transformers import pipeline
21
+
22
+ question = "If you had a time machine, but could only go to the past or the future once and never return, which would you choose and why?"
23
+ generator = pipeline("text-generation", model="akseljoonas/Agentic-Qwen-3B-e7-lr4-b128", device="cuda")
24
+ output = generator([{"role": "user", "content": question}], max_new_tokens=128, return_full_text=False)[0]
25
+ print(output["generated_text"])
26
+ ```
27
+
28
+ ## Training procedure
29
+
30
+ [<img src="https://raw.githubusercontent.com/wandb/assets/main/wandb-github-badge-28.svg" alt="Visualize in Weights & Biases" width="150" height="24"/>](https://wandb.ai/akseljoonas-university-of-groningen/huggingface/runs/txqwvl96)
31
+
32
+
33
+ This model was trained with SFT.
34
+
35
+ ### Framework versions
36
+
37
+ - TRL: 0.16.0
38
+ - Transformers: 4.52.4
39
+ - Pytorch: 2.6.0
40
+ - Datasets: 3.6.0
41
+ - Tokenizers: 0.21.1
42
+
43
+ ## Citations
44
+
45
+
46
+
47
+ Cite TRL as:
48
+
49
+ ```bibtex
50
+ @misc{vonwerra2022trl,
51
+ title = {{TRL: Transformer Reinforcement Learning}},
52
+ author = {Leandro von Werra and Younes Belkada and Lewis Tunstall and Edward Beeching and Tristan Thrush and Nathan Lambert and Shengyi Huang and Kashif Rasul and Quentin Gallouédec},
53
+ year = 2020,
54
+ journal = {GitHub repository},
55
+ publisher = {GitHub},
56
+ howpublished = {\url{https://github.com/huggingface/trl}}
57
+ }
58
+ ```
all_results.json ADDED
@@ -0,0 +1,8 @@
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "total_flos": 100971315986432.0,
3
+ "train_loss": 0.47861221517835345,
4
+ "train_runtime": 2363.9669,
5
+ "train_samples": 1845,
6
+ "train_samples_per_second": 5.463,
7
+ "train_steps_per_second": 0.044
8
+ }
generation_config.json ADDED
@@ -0,0 +1,14 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "bos_token_id": 151643,
3
+ "do_sample": true,
4
+ "eos_token_id": [
5
+ 151645,
6
+ 151643
7
+ ],
8
+ "pad_token_id": 151643,
9
+ "repetition_penalty": 1.05,
10
+ "temperature": 0.7,
11
+ "top_k": 20,
12
+ "top_p": 0.8,
13
+ "transformers_version": "4.52.4"
14
+ }
train_results.json ADDED
@@ -0,0 +1,8 @@
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "total_flos": 100971315986432.0,
3
+ "train_loss": 0.47861221517835345,
4
+ "train_runtime": 2363.9669,
5
+ "train_samples": 1845,
6
+ "train_samples_per_second": 5.463,
7
+ "train_steps_per_second": 0.044
8
+ }
trainer_state.json ADDED
@@ -0,0 +1,232 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "best_global_step": null,
3
+ "best_metric": null,
4
+ "best_model_checkpoint": null,
5
+ "epoch": 7.0,
6
+ "eval_steps": 500,
7
+ "global_step": 105,
8
+ "is_hyper_param_search": false,
9
+ "is_local_process_zero": true,
10
+ "is_world_process_zero": true,
11
+ "log_history": [
12
+ {
13
+ "epoch": 0.3463203463203463,
14
+ "grad_norm": 3.5412505406821593,
15
+ "learning_rate": 1.4545454545454546e-05,
16
+ "loss": 1.6988,
17
+ "mean_token_accuracy": 0.6793770335614682,
18
+ "num_tokens": 3541090.0,
19
+ "step": 5
20
+ },
21
+ {
22
+ "epoch": 0.6926406926406926,
23
+ "grad_norm": 1.3307634909087853,
24
+ "learning_rate": 3.272727272727273e-05,
25
+ "loss": 0.943,
26
+ "mean_token_accuracy": 0.7835122548043728,
27
+ "num_tokens": 6936595.0,
28
+ "step": 10
29
+ },
30
+ {
31
+ "epoch": 1.0,
32
+ "grad_norm": 0.6973636912379508,
33
+ "learning_rate": 3.989955630177008e-05,
34
+ "loss": 0.5573,
35
+ "mean_token_accuracy": 0.8710439750846003,
36
+ "num_tokens": 9820463.0,
37
+ "step": 15
38
+ },
39
+ {
40
+ "epoch": 1.3463203463203464,
41
+ "grad_norm": 0.26836269461744894,
42
+ "learning_rate": 3.928938350108754e-05,
43
+ "loss": 0.5205,
44
+ "mean_token_accuracy": 0.8797588124871254,
45
+ "num_tokens": 13203490.0,
46
+ "step": 20
47
+ },
48
+ {
49
+ "epoch": 1.6926406926406927,
50
+ "grad_norm": 0.20332810797148027,
51
+ "learning_rate": 3.814181827468682e-05,
52
+ "loss": 0.4801,
53
+ "mean_token_accuracy": 0.891349820047617,
54
+ "num_tokens": 16677343.0,
55
+ "step": 25
56
+ },
57
+ {
58
+ "epoch": 2.0,
59
+ "grad_norm": 0.2671590064688769,
60
+ "learning_rate": 3.648883120683521e-05,
61
+ "loss": 0.5284,
62
+ "mean_token_accuracy": 0.8828430629112352,
63
+ "num_tokens": 19657455.0,
64
+ "step": 30
65
+ },
66
+ {
67
+ "epoch": 2.346320346320346,
68
+ "grad_norm": 0.20693955449412132,
69
+ "learning_rate": 3.437647367755859e-05,
70
+ "loss": 0.4191,
71
+ "mean_token_accuracy": 0.8993200801312924,
72
+ "num_tokens": 23134171.0,
73
+ "step": 35
74
+ },
75
+ {
76
+ "epoch": 2.6926406926406927,
77
+ "grad_norm": 0.1774648188329361,
78
+ "learning_rate": 3.1863594894587106e-05,
79
+ "loss": 0.4496,
80
+ "mean_token_accuracy": 0.8985331632196903,
81
+ "num_tokens": 26513134.0,
82
+ "step": 40
83
+ },
84
+ {
85
+ "epoch": 3.0,
86
+ "grad_norm": 0.4177218279068929,
87
+ "learning_rate": 2.902020238432204e-05,
88
+ "loss": 0.4549,
89
+ "mean_token_accuracy": 0.8981883928809368,
90
+ "num_tokens": 29483157.0,
91
+ "step": 45
92
+ },
93
+ {
94
+ "epoch": 3.346320346320346,
95
+ "grad_norm": 0.21114702956816003,
96
+ "learning_rate": 2.5925511617712683e-05,
97
+ "loss": 0.3901,
98
+ "mean_token_accuracy": 0.9125820614397526,
99
+ "num_tokens": 32726053.0,
100
+ "step": 50
101
+ },
102
+ {
103
+ "epoch": 3.6926406926406927,
104
+ "grad_norm": 0.18992294735744386,
105
+ "learning_rate": 2.266573910747558e-05,
106
+ "loss": 0.3934,
107
+ "mean_token_accuracy": 0.9065288573503494,
108
+ "num_tokens": 36258177.0,
109
+ "step": 55
110
+ },
111
+ {
112
+ "epoch": 4.0,
113
+ "grad_norm": 0.16760209696806955,
114
+ "learning_rate": 1.9331700459846516e-05,
115
+ "loss": 0.3554,
116
+ "mean_token_accuracy": 0.9131698499263172,
117
+ "num_tokens": 39301701.0,
118
+ "step": 60
119
+ },
120
+ {
121
+ "epoch": 4.346320346320346,
122
+ "grad_norm": 0.19869452464088533,
123
+ "learning_rate": 1.6016280297923283e-05,
124
+ "loss": 0.3988,
125
+ "mean_token_accuracy": 0.9091347955167294,
126
+ "num_tokens": 42943792.0,
127
+ "step": 65
128
+ },
129
+ {
130
+ "epoch": 4.692640692640692,
131
+ "grad_norm": 0.19890119756001573,
132
+ "learning_rate": 1.2811844543249748e-05,
133
+ "loss": 0.3305,
134
+ "mean_token_accuracy": 0.9202901668846607,
135
+ "num_tokens": 46472250.0,
136
+ "step": 70
137
+ },
138
+ {
139
+ "epoch": 5.0,
140
+ "grad_norm": 0.3010000943274728,
141
+ "learning_rate": 9.80766714816165e-06,
142
+ "loss": 0.2949,
143
+ "mean_token_accuracy": 0.9255985239861717,
144
+ "num_tokens": 49176637.0,
145
+ "step": 75
146
+ },
147
+ {
148
+ "epoch": 5.346320346320346,
149
+ "grad_norm": 0.3034635853239827,
150
+ "learning_rate": 7.087442968823952e-06,
151
+ "loss": 0.3285,
152
+ "mean_token_accuracy": 0.9233969308435916,
153
+ "num_tokens": 52544587.0,
154
+ "step": 80
155
+ },
156
+ {
157
+ "epoch": 5.692640692640692,
158
+ "grad_norm": 0.17030309711200806,
159
+ "learning_rate": 4.726956069053361e-06,
160
+ "loss": 0.3071,
161
+ "mean_token_accuracy": 0.9270207457244396,
162
+ "num_tokens": 56073263.0,
163
+ "step": 85
164
+ },
165
+ {
166
+ "epoch": 6.0,
167
+ "grad_norm": 0.2087495566049106,
168
+ "learning_rate": 2.791968414797217e-06,
169
+ "loss": 0.2977,
170
+ "mean_token_accuracy": 0.9275510193596423,
171
+ "num_tokens": 59025335.0,
172
+ "step": 90
173
+ },
174
+ {
175
+ "epoch": 6.346320346320346,
176
+ "grad_norm": 0.18514339957848594,
177
+ "learning_rate": 1.3363877791679491e-06,
178
+ "loss": 0.3248,
179
+ "mean_token_accuracy": 0.923822020739317,
180
+ "num_tokens": 62643177.0,
181
+ "step": 95
182
+ },
183
+ {
184
+ "epoch": 6.692640692640692,
185
+ "grad_norm": 0.1707814026740192,
186
+ "learning_rate": 4.0076589926826503e-07,
187
+ "loss": 0.2949,
188
+ "mean_token_accuracy": 0.9302002415060997,
189
+ "num_tokens": 66032974.0,
190
+ "step": 100
191
+ },
192
+ {
193
+ "epoch": 7.0,
194
+ "grad_norm": 0.2929642273801856,
195
+ "learning_rate": 1.1168725394907764e-08,
196
+ "loss": 0.283,
197
+ "mean_token_accuracy": 0.9316781381486168,
198
+ "num_tokens": 68862598.0,
199
+ "step": 105
200
+ },
201
+ {
202
+ "epoch": 7.0,
203
+ "step": 105,
204
+ "total_flos": 100971315986432.0,
205
+ "train_loss": 0.47861221517835345,
206
+ "train_runtime": 2363.9669,
207
+ "train_samples_per_second": 5.463,
208
+ "train_steps_per_second": 0.044
209
+ }
210
+ ],
211
+ "logging_steps": 5,
212
+ "max_steps": 105,
213
+ "num_input_tokens_seen": 0,
214
+ "num_train_epochs": 7,
215
+ "save_steps": 500,
216
+ "stateful_callbacks": {
217
+ "TrainerControl": {
218
+ "args": {
219
+ "should_epoch_stop": false,
220
+ "should_evaluate": false,
221
+ "should_log": false,
222
+ "should_save": true,
223
+ "should_training_stop": true
224
+ },
225
+ "attributes": {}
226
+ }
227
+ },
228
+ "total_flos": 100971315986432.0,
229
+ "train_batch_size": 1,
230
+ "trial_name": null,
231
+ "trial_params": null
232
+ }