Model save
Browse files- README.md +58 -0
- all_results.json +8 -0
- generation_config.json +14 -0
- train_results.json +8 -0
- trainer_state.json +126 -0
README.md
ADDED
|
@@ -0,0 +1,58 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
---
|
| 2 |
+
base_model: Qwen/Qwen2.5-Coder-3B-Instruct
|
| 3 |
+
library_name: transformers
|
| 4 |
+
model_name: oR1-Qwen-Coder-3B-Agentic-e6-lr5-b8
|
| 5 |
+
tags:
|
| 6 |
+
- generated_from_trainer
|
| 7 |
+
- trl
|
| 8 |
+
- sft
|
| 9 |
+
licence: license
|
| 10 |
+
---
|
| 11 |
+
|
| 12 |
+
# Model Card for oR1-Qwen-Coder-3B-Agentic-e6-lr5-b8
|
| 13 |
+
|
| 14 |
+
This model is a fine-tuned version of [Qwen/Qwen2.5-Coder-3B-Instruct](https://huggingface.co/Qwen/Qwen2.5-Coder-3B-Instruct).
|
| 15 |
+
It has been trained using [TRL](https://github.com/huggingface/trl).
|
| 16 |
+
|
| 17 |
+
## Quick start
|
| 18 |
+
|
| 19 |
+
```python
|
| 20 |
+
from transformers import pipeline
|
| 21 |
+
|
| 22 |
+
question = "If you had a time machine, but could only go to the past or the future once and never return, which would you choose and why?"
|
| 23 |
+
generator = pipeline("text-generation", model="akseljoonas/oR1-Qwen-Coder-3B-Agentic-e6-lr5-b8", device="cuda")
|
| 24 |
+
output = generator([{"role": "user", "content": question}], max_new_tokens=128, return_full_text=False)[0]
|
| 25 |
+
print(output["generated_text"])
|
| 26 |
+
```
|
| 27 |
+
|
| 28 |
+
## Training procedure
|
| 29 |
+
|
| 30 |
+
[<img src="https://raw.githubusercontent.com/wandb/assets/main/wandb-github-badge-28.svg" alt="Visualize in Weights & Biases" width="150" height="24"/>](https://wandb.ai/akseljoonas-university-of-groningen/huggingface/runs/0f2dobsh)
|
| 31 |
+
|
| 32 |
+
|
| 33 |
+
This model was trained with SFT.
|
| 34 |
+
|
| 35 |
+
### Framework versions
|
| 36 |
+
|
| 37 |
+
- TRL: 0.16.0
|
| 38 |
+
- Transformers: 4.50.0
|
| 39 |
+
- Pytorch: 2.6.0
|
| 40 |
+
- Datasets: 3.5.0
|
| 41 |
+
- Tokenizers: 0.21.1
|
| 42 |
+
|
| 43 |
+
## Citations
|
| 44 |
+
|
| 45 |
+
|
| 46 |
+
|
| 47 |
+
Cite TRL as:
|
| 48 |
+
|
| 49 |
+
```bibtex
|
| 50 |
+
@misc{vonwerra2022trl,
|
| 51 |
+
title = {{TRL: Transformer Reinforcement Learning}},
|
| 52 |
+
author = {Leandro von Werra and Younes Belkada and Lewis Tunstall and Edward Beeching and Tristan Thrush and Nathan Lambert and Shengyi Huang and Kashif Rasul and Quentin Gallouédec},
|
| 53 |
+
year = 2020,
|
| 54 |
+
journal = {GitHub repository},
|
| 55 |
+
publisher = {GitHub},
|
| 56 |
+
howpublished = {\url{https://github.com/huggingface/trl}}
|
| 57 |
+
}
|
| 58 |
+
```
|
all_results.json
ADDED
|
@@ -0,0 +1,8 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"total_flos": 34346052091904.0,
|
| 3 |
+
"train_loss": 0.7553561106324196,
|
| 4 |
+
"train_runtime": 288.5449,
|
| 5 |
+
"train_samples": 1928,
|
| 6 |
+
"train_samples_per_second": 11.208,
|
| 7 |
+
"train_steps_per_second": 0.166
|
| 8 |
+
}
|
generation_config.json
ADDED
|
@@ -0,0 +1,14 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"bos_token_id": 151643,
|
| 3 |
+
"do_sample": true,
|
| 4 |
+
"eos_token_id": [
|
| 5 |
+
151645,
|
| 6 |
+
151643
|
| 7 |
+
],
|
| 8 |
+
"pad_token_id": 151643,
|
| 9 |
+
"repetition_penalty": 1.05,
|
| 10 |
+
"temperature": 0.7,
|
| 11 |
+
"top_k": 20,
|
| 12 |
+
"top_p": 0.8,
|
| 13 |
+
"transformers_version": "4.50.0"
|
| 14 |
+
}
|
train_results.json
ADDED
|
@@ -0,0 +1,8 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"total_flos": 34346052091904.0,
|
| 3 |
+
"train_loss": 0.7553561106324196,
|
| 4 |
+
"train_runtime": 288.5449,
|
| 5 |
+
"train_samples": 1928,
|
| 6 |
+
"train_samples_per_second": 11.208,
|
| 7 |
+
"train_steps_per_second": 0.166
|
| 8 |
+
}
|
trainer_state.json
ADDED
|
@@ -0,0 +1,126 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"best_global_step": null,
|
| 3 |
+
"best_metric": null,
|
| 4 |
+
"best_model_checkpoint": null,
|
| 5 |
+
"epoch": 5.352941176470588,
|
| 6 |
+
"eval_steps": 500,
|
| 7 |
+
"global_step": 48,
|
| 8 |
+
"is_hyper_param_search": false,
|
| 9 |
+
"is_local_process_zero": true,
|
| 10 |
+
"is_world_process_zero": true,
|
| 11 |
+
"log_history": [
|
| 12 |
+
{
|
| 13 |
+
"epoch": 0.5882352941176471,
|
| 14 |
+
"grad_norm": 1.615626717799089,
|
| 15 |
+
"learning_rate": 5e-05,
|
| 16 |
+
"loss": 1.171,
|
| 17 |
+
"mean_token_accuracy": 0.7515053629875184,
|
| 18 |
+
"num_tokens": 2505918.0,
|
| 19 |
+
"step": 5
|
| 20 |
+
},
|
| 21 |
+
{
|
| 22 |
+
"epoch": 1.1176470588235294,
|
| 23 |
+
"grad_norm": 0.9501076395039855,
|
| 24 |
+
"learning_rate": 4.418604651162791e-05,
|
| 25 |
+
"loss": 1.0081,
|
| 26 |
+
"mean_token_accuracy": 0.7769864400227865,
|
| 27 |
+
"num_tokens": 4791423.0,
|
| 28 |
+
"step": 10
|
| 29 |
+
},
|
| 30 |
+
{
|
| 31 |
+
"epoch": 1.7058823529411766,
|
| 32 |
+
"grad_norm": 0.4304626663566037,
|
| 33 |
+
"learning_rate": 3.837209302325582e-05,
|
| 34 |
+
"loss": 0.8307,
|
| 35 |
+
"mean_token_accuracy": 0.8090634852647781,
|
| 36 |
+
"num_tokens": 7330272.0,
|
| 37 |
+
"step": 15
|
| 38 |
+
},
|
| 39 |
+
{
|
| 40 |
+
"epoch": 2.235294117647059,
|
| 41 |
+
"grad_norm": 0.32218267013578467,
|
| 42 |
+
"learning_rate": 3.2558139534883724e-05,
|
| 43 |
+
"loss": 0.8111,
|
| 44 |
+
"mean_token_accuracy": 0.8145165310965644,
|
| 45 |
+
"num_tokens": 9618952.0,
|
| 46 |
+
"step": 20
|
| 47 |
+
},
|
| 48 |
+
{
|
| 49 |
+
"epoch": 2.8235294117647056,
|
| 50 |
+
"grad_norm": 0.34521913147387545,
|
| 51 |
+
"learning_rate": 2.674418604651163e-05,
|
| 52 |
+
"loss": 0.6874,
|
| 53 |
+
"mean_token_accuracy": 0.8360600471496582,
|
| 54 |
+
"num_tokens": 12114377.0,
|
| 55 |
+
"step": 25
|
| 56 |
+
},
|
| 57 |
+
{
|
| 58 |
+
"epoch": 3.3529411764705883,
|
| 59 |
+
"grad_norm": 0.2827302276368052,
|
| 60 |
+
"learning_rate": 2.0930232558139536e-05,
|
| 61 |
+
"loss": 0.6715,
|
| 62 |
+
"mean_token_accuracy": 0.8426629536681705,
|
| 63 |
+
"num_tokens": 14409009.0,
|
| 64 |
+
"step": 30
|
| 65 |
+
},
|
| 66 |
+
{
|
| 67 |
+
"epoch": 3.9411764705882355,
|
| 68 |
+
"grad_norm": 0.9916401982672689,
|
| 69 |
+
"learning_rate": 1.5116279069767441e-05,
|
| 70 |
+
"loss": 0.6055,
|
| 71 |
+
"mean_token_accuracy": 0.8535039156675339,
|
| 72 |
+
"num_tokens": 16918082.0,
|
| 73 |
+
"step": 35
|
| 74 |
+
},
|
| 75 |
+
{
|
| 76 |
+
"epoch": 4.470588235294118,
|
| 77 |
+
"grad_norm": 0.4660327419143292,
|
| 78 |
+
"learning_rate": 9.302325581395349e-06,
|
| 79 |
+
"loss": 0.6077,
|
| 80 |
+
"mean_token_accuracy": 0.8566798832681444,
|
| 81 |
+
"num_tokens": 19217454.0,
|
| 82 |
+
"step": 40
|
| 83 |
+
},
|
| 84 |
+
{
|
| 85 |
+
"epoch": 5.0,
|
| 86 |
+
"grad_norm": 0.35285140721947816,
|
| 87 |
+
"learning_rate": 3.488372093023256e-06,
|
| 88 |
+
"loss": 0.5145,
|
| 89 |
+
"mean_token_accuracy": 0.8737427029344771,
|
| 90 |
+
"num_tokens": 21475135.0,
|
| 91 |
+
"step": 45
|
| 92 |
+
},
|
| 93 |
+
{
|
| 94 |
+
"epoch": 5.352941176470588,
|
| 95 |
+
"mean_token_accuracy": 0.8594042261441549,
|
| 96 |
+
"num_tokens": 22979390.0,
|
| 97 |
+
"step": 48,
|
| 98 |
+
"total_flos": 34346052091904.0,
|
| 99 |
+
"train_loss": 0.7553561106324196,
|
| 100 |
+
"train_runtime": 288.5449,
|
| 101 |
+
"train_samples_per_second": 11.208,
|
| 102 |
+
"train_steps_per_second": 0.166
|
| 103 |
+
}
|
| 104 |
+
],
|
| 105 |
+
"logging_steps": 5,
|
| 106 |
+
"max_steps": 48,
|
| 107 |
+
"num_input_tokens_seen": 0,
|
| 108 |
+
"num_train_epochs": 6,
|
| 109 |
+
"save_steps": 500,
|
| 110 |
+
"stateful_callbacks": {
|
| 111 |
+
"TrainerControl": {
|
| 112 |
+
"args": {
|
| 113 |
+
"should_epoch_stop": false,
|
| 114 |
+
"should_evaluate": false,
|
| 115 |
+
"should_log": false,
|
| 116 |
+
"should_save": true,
|
| 117 |
+
"should_training_stop": true
|
| 118 |
+
},
|
| 119 |
+
"attributes": {}
|
| 120 |
+
}
|
| 121 |
+
},
|
| 122 |
+
"total_flos": 34346052091904.0,
|
| 123 |
+
"train_batch_size": 2,
|
| 124 |
+
"trial_name": null,
|
| 125 |
+
"trial_params": null
|
| 126 |
+
}
|