dragon-3b-annealing-384000 / configuration_dragon.py
alexandretl's picture
Upload folder using huggingface_hub
b65aabe verified
# coding=utf-8
"""Dragon model configuration"""
import re
from transformers.configuration_utils import PretrainedConfig
from transformers.utils import logging
logger = logging.get_logger(__name__)
#@register_for_auto_class("AutoConfig")
class DragonConfig(PretrainedConfig):
r"""
This is the configuration class to store the configuration of a [`DragonModel`]. It is used to instantiate a
Dragon model according to the specified arguments, defining the model architecture.
Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the
documentation from [`PretrainedConfig`] for more information.
Args:
vocab_size (`int`, *optional*, defaults to 151936):
Vocabulary size of the Dragon model. Defines the number of different tokens that can be represented by the
`inputs_ids` passed when calling [`DragonModel`]
tie_word_embeddings (`bool`, *optional*, defaults to `False`):
Whether the model's input and output word embeddings should be tied. Note that this is only relevant if the
model has a output word embedding layer.
hidden_size (`int`, *optional*, defaults to 2048):
Dimension of the hidden representations.
intermediate_size (`int`, *optional*, defaults to 8192):
Dimension of the MLP representations.
num_attention_heads (`int`, *optional*, defaults to 32):
Number of attention heads for each attention layer in the Transformer encoder.
num_key_value_heads (`int`, *optional*, defaults to 8):
This is the number of key_value heads that should be used to implement Grouped Query Attention. If
`num_key_value_heads=num_attention_heads`, the model will use Multi Head Attention (MHA), if
`num_key_value_heads=1` the model will use Multi Query Attention (MQA) otherwise GQA is used.
mlp_hidden_act (`str`, *optional*, defaults to "relu2"):
The non-linear activation function in the MLP layers.
attention_bias (`bool`, *optional*, defaults to `False`):
Whether to use bias in attention layers.
mlp_bias (`bool`, *optional*, defaults to `False`):
Whether to use bias in MLP layers.
use_bias (`bool`, *optional*, defaults to `False`):
Whether to use bias in the model.
initializer_range (`float`, *optional*, defaults to 0.006):
The standard deviation of the truncated_normal_initializer for initializing all weight matrices.
norm_epsilon (`float`, *optional*, defaults to 1e-5):
The epsilon used by the layer normalization layers.
residual_in_fp32 (`bool`, *optional*, defaults to `False`):
Whether or not residuals should be in `float32`. If set to `False` residuals will keep the same `dtype` as the rest of the model.
use_cache (`bool`, *optional*, defaults to `True`):
Whether or not the model should return the last key/values attentions (not used by all models). Only
relevant if `config.is_decoder=True`.
num_logits_to_keep (`int` or `None`, *optional*, defaults to 1):
Number of prompt logits to calculate during generation. If `None`, all logits will be calculated. If an
integer value, only last `num_logits_to_keep` logits will be calculated.
pad_token_id (`int`, *optional*, defaults to 0):
The id of the padding token.
bos_token_id (`int`, *optional*, defaults to 1):
The id of the "beginning-of-sequence" token.
eos_token_id (`int`, *optional*, defaults to 2):
The id of the "end-of-sequence" token.
sliding_window_size (`int`, *optional*, defaults to 1024):
Sliding window attention window size.
max_position_embeddings (`int`, *optional*, defaults to 4096):
The maximum sequence length that this model might ever be used with.
attention_dropout (`float`, *optional*, defaults to 0.0):
The dropout ratio for the attention probabilities.
hidden_dropout (`float`, *optional*, defaults to 0.0):
The dropout ratio for the hidden states.
use_mamba_kernels (`bool`, *optional*, defaults to `True`):
Flag indicating whether or not to use the fast mamba kernels. These are available only if `mamba-ssm` and
`causal-conv1d` are installed, and the mamba modules are running on a CUDA device.
mamba_d_conv (`int`, *optional*, defaults to 4):
The size of the mamba convolution kernel.
mamba_expand (`int`, *optional*, defaults to 2):
Expanding factor used to determine the mamba intermediate size.
mamba_hidden_act (`str`, *optional*, defaults to "silu"):
The non-linear activation function in the Mamba layers.
mamba_dt_min (`float`, *optional*, defaults to 0.001):
Minimum value for the time step in Mamba.
mamba_dt_max (`float`, *optional*, defaults to 0.1):
Maximum value for the time step in Mamba.
mamba_dt_limit (`tuple`, *optional*, defaults to (0.0, float("inf"))):
Limits for the time step in Mamba.
mamba_dt_init_floor (`float`, *optional*, defaults to 1e-4):
Floor value for time step initialization in Mamba.
"""
model_type = "dragon"
keys_to_ignore_at_inference = ["past_key_values"]
def __init__(
self,
vocab_size=151936,
tie_word_embeddings=False,
max_position_embeddings=8192,
use_uscaling=True,
hidden_size=2048,
intermediate_size=8192,
expand_factor=2,
layers_config=4*"lrdlr",
num_attention_heads=32,
num_key_value_heads=8,
mlp_hidden_act="relu2",
attention_bias=False,
mlp_bias=False,
use_bias=False,
initializer_range=0.006,
softcap_local_attn=0.0,
softcap_global_attn=150.0,
norm_epsilon=1e-6,
residual_in_fp32=False,
use_cache=True,
num_logits_to_keep=1,
pad_token_id=0,
bos_token_id=1,
eos_token_id=2,
sliding_window_size=1024,
slw_wsize=-1,
rope_theta_local=163.,
uscaling_tau=0.2,
attention_dropout=0.,
hidden_dropout=0.,
gdn_d_conv=4,
gdn_dt_min=0.001,
gdn_dt_max=0.1,
gdn_dt_init_floor=1e-4,
gdn_A_init_range=(1, 16),
old_lns=False,
**kwargs,
):
self.rope_theta = rope_theta_local
self.qk_norm = True
self.softcap_local_attn=softcap_local_attn
self.softcap_global_attn=softcap_global_attn
self.use_uscaling = use_uscaling
self.uscaling_tau = uscaling_tau
self.scalable_softmax = True
self.vocab_size = vocab_size
self.tie_word_embeddings = tie_word_embeddings
self.hidden_size = hidden_size
self.intermediate_size = intermediate_size
self.expand_factor = expand_factor
self.layers_config = layers_config
self.num_hidden_layers = len(layers_config)
self.num_attention_heads = num_attention_heads
self.sliding_window_size = sliding_window_size
self.slw_wsize = slw_wsize
self.attention_dropout = attention_dropout
self.hidden_dropout = hidden_dropout
self.max_position_embeddings = max_position_embeddings
if num_key_value_heads is None:
num_key_value_heads = num_attention_heads
self.num_key_value_heads = num_key_value_heads
self.mlp_hidden_act = mlp_hidden_act
self.attention_bias = attention_bias
self.mlp_bias = mlp_bias
self.use_bias = use_bias
self.initializer_range = initializer_range
self.norm_epsilon = norm_epsilon
self.residual_in_fp32 = residual_in_fp32
self.use_cache = use_cache
self.num_logits_to_keep = num_logits_to_keep
self.conv_kernel = gdn_d_conv
self.time_step_min = gdn_dt_min
self.time_step_max = gdn_dt_max
self.time_step_floor = gdn_dt_init_floor
self.A_init_range = gdn_A_init_range
self.old_lns = old_lns
assert self.hidden_size % self.num_attention_heads == 0
assert self.num_attention_heads % self.num_key_value_heads == 0
assert self.num_attention_heads % 2 == 0, "Number of attention heads must be even for differential attention."
assert self.num_key_value_heads % 2 == 0, "Number of kv heads must be even for differential attention."
super().__init__(
pad_token_id=pad_token_id,
bos_token_id=bos_token_id,
eos_token_id=eos_token_id,
tie_word_embeddings=tie_word_embeddings,
**kwargs,
)
# TODO: better way to handle those?
self.auto_map = dict(getattr(self, "auto_map", {}))
self.auto_map.setdefault("AutoConfig", "configuration_dragon.DragonConfig")
self.auto_map.setdefault("AutoModel", "modeling_dragon.DragonModel")
self.auto_map.setdefault("AutoModelForCausalLM", "modeling_dragon.DragonForCausalLM")
DragonConfig.register_for_auto_class("AutoConfig")
__all__ = ["DragonConfig"]
# todo : update docstrings