| # VGen | |
|  | |
| VGen is an open-source video synthesis codebase developed by the Tongyi Lab of Alibaba Group, featuring state-of-the-art video generative models. This repository includes implementations of the following methods: | |
| - [I2VGen-xl: High-quality image-to-video synthesis via cascaded diffusion models](https://i2vgen-xl.github.io/) | |
| - [VideoComposer: Compositional Video Synthesis with Motion Controllability](https://videocomposer.github.io/) | |
| - [Hierarchical Spatio-temporal Decoupling for Text-to-Video Generation](https://higen-t2v.github.io/) | |
| - [A Recipe for Scaling up Text-to-Video Generation with Text-free Videos]() | |
| - [InstructVideo: Instructing Video Diffusion Models with Human Feedback]() | |
| - [DreamVideo: Composing Your Dream Videos with Customized Subject and Motion](https://dreamvideo-t2v.github.io/) | |
| - [VideoLCM: Video Latent Consistency Model](https://arxiv.org/abs/2312.09109) | |
| - [Modelscope text-to-video technical report](https://arxiv.org/abs/2308.06571) | |
| VGen can produce high-quality videos from the input text, images, desired motion, desired subjects, and even the feedback signals provided. It also offers a variety of commonly used video generation tools such as visualization, sampling, training, inference, join training using images and videos, acceleration, and more. | |
| <a href='https://i2vgen-xl.github.io/'><img src='https://img.shields.io/badge/Project-Page-Green'></a> <a href='https://arxiv.org/abs/2311.04145'><img src='https://img.shields.io/badge/Paper-Arxiv-red'></a> [](https://youtu.be/XUi0y7dxqEQ) <a href='https://cloud.video.taobao.com/play/u/null/p/1/e/6/t/1/441039979087.mp4'><img src='source/logo.png'></a> | |
| ## 🔥News!!! | |
| - __[2023.12]__ We release the high-efficiency video generation method [VideoLCM](https://arxiv.org/abs/2312.09109) | |
| - __[2023.12]__ We release the code and model of I2VGen-XL and the ModelScope T2V | |
| - __[2023.12]__ We release the T2V method [HiGen](https://higen-t2v.github.io) and customizing T2V method [DreamVideo](https://dreamvideo-t2v.github.io). | |
| - __[2023.12]__ We write an [introduction docment](doc/introduction.pdf) for VGen and compare I2VGen-XL with SVD. | |
| - __[2023.11]__ We release a high-quality I2VGen-XL model, please refer to the [Webpage](https://i2vgen-xl.github.io) | |
| ## TODO | |
| - [x] Release the technical papers and webpage of [I2VGen-XL](doc/i2vgen-xl.md) | |
| - [x] Release the code and pretrained models that can generate 1280x720 videos | |
| - [ ] Release models optimized specifically for the human body and faces | |
| - [ ] Updated version can fully maintain the ID and capture large and accurate motions simultaneously | |
| - [ ] Release other methods and the corresponding models | |
| ## Preparation | |
| The main features of VGen are as follows: | |
| - Expandability, allowing for easy management of your own experiments. | |
| - Completeness, encompassing all common components for video generation. | |
| - Excellent performance, featuring powerful pre-trained models in multiple tasks. | |
| ### Installation | |
| ``` | |
| conda create -n vgen python=3.8 | |
| conda activate vgen | |
| pip install torch==1.12.0+cu113 torchvision==0.13.0+cu113 torchaudio==0.12.0 --extra-index-url https://download.pytorch.org/whl/cu113 | |
| pip install -r requirements.txt -i https://pypi.tuna.tsinghua.edu.cn/simple | |
| ``` | |
| ### Datasets | |
| We have provided a **demo dataset** that includes images and videos, along with their lists in ``data``. | |
| *Please note that the demo images used here are for testing purposes and were not included in the training.* | |
| ### Clone codeb | |
| ``` | |
| git clone https://github.com/damo-vilab/i2vgen-xl.git | |
| cd i2vgen-xl | |
| ``` | |
| ## Getting Started with VGen | |
| ### (1) Train your text-to-video model | |
| Executing the following command to enable distributed training is as easy as that. | |
| ``` | |
| python train_net.py --cfg configs/t2v_train.yaml | |
| ``` | |
| In the `t2v_train.yaml` configuration file, you can specify the data, adjust the video-to-image ratio using `frame_lens`, and validate your ideas with different Diffusion settings, and so on. | |
| - Before the training, you can download any of our open-source models for initialization. Our codebase supports custom initialization and `grad_scale` settings, all of which are included in the `Pretrain` item in yaml file. | |
| - During the training, you can view the saved models and intermediate inference results in the `workspace/experiments/t2v_train`directory. | |
| After the training is completed, you can perform inference on the model using the following command. | |
| ``` | |
| python inference.py --cfg configs/t2v_infer.yaml | |
| ``` | |
| Then you can find the videos you generated in the `workspace/experiments/test_img_01` directory. For specific configurations such as data, models, seed, etc., please refer to the `t2v_infer.yaml` file. | |
| <!-- <table> | |
| <center> | |
| <tr> | |
| <td ><center> | |
| <video muted="true" autoplay="true" loop="true" height="260" src="https://cloud.video.taobao.com/play/u/null/p/1/e/6/t/1/441754174077.mp4"></video> | |
| </center></td> | |
| <td ><center> | |
| <video muted="true" autoplay="true" loop="true" height="260" src="https://cloud.video.taobao.com/play/u/null/p/1/e/6/t/1/441138824052.mp4"></video> | |
| </center></td> | |
| </tr> | |
| </center> | |
| </table> | |
| </center> --> | |
| <table> | |
| <center> | |
| <tr> | |
| <td ><center> | |
| <image height="260" src="https://img.alicdn.com/imgextra/i4/O1CN01Ya2I5I25utrJwJ9Jf_!!6000000007587-2-tps-1280-720.png"></image> | |
| </center></td> | |
| <td ><center> | |
| <image height="260" src="https://img.alicdn.com/imgextra/i3/O1CN01CrmYaz1zXBetmg3dd_!!6000000006723-2-tps-1280-720.png"></image> | |
| </center></td> | |
| </tr> | |
| <tr> | |
| <td ><center> | |
| <p>Clike <a href="https://cloud.video.taobao.com/play/u/null/p/1/e/6/t/1/441754174077.mp4">HRER</a> to view the generated video.</p> | |
| </center></td> | |
| <td ><center> | |
| <p>Clike <a href="https://cloud.video.taobao.com/play/u/null/p/1/e/6/t/1/441138824052.mp4">HRER</a> to view the generated video.</p> | |
| </center></td> | |
| </tr> | |
| </center> | |
| </table> | |
| </center> | |
| ### (2) Run the I2VGen-XL model | |
| (i) Download model and test data: | |
| ``` | |
| !pip install modelscope | |
| from modelscope.hub.snapshot_download import snapshot_download | |
| model_dir = snapshot_download('damo/I2VGen-XL', cache_dir='models/', revision='v1.0.0') | |
| ``` | |
| (ii) Run the following command: | |
| ``` | |
| python inference.py --cfg configs/i2vgen_xl_infer.yaml | |
| ``` | |
| In a few minutes, you can retrieve the high-definition video you wish to create from the `workspace/experiments/test_img_01` directory. At present, we find that the current model performs inadequately on **anime images** and **images with a black background** due to the lack of relevant training data. We are consistently working to optimize it. | |
| <span style="color:red">Due to the compression of our video quality in GIF format, please click 'HRER' below to view the original video.</span> | |
| <center> | |
| <table> | |
| <center> | |
| <tr> | |
| <td ><center> | |
| <image height="260" src="https://img.alicdn.com/imgextra/i1/O1CN01CCEq7K1ZeLpNQqrWu_!!6000000003219-0-tps-1280-720.jpg"></image> | |
| </center></td> | |
| <td ><center> | |
| <!-- <video muted="true" autoplay="true" loop="true" height="260" src="https://cloud.video.taobao.com/play/u/null/p/1/e/6/t/1/442125067544.mp4"></video> --> | |
| <image height="260" src="https://img.alicdn.com/imgextra/i4/O1CN01hIQcvG1spmQMLqBo0_!!6000000005816-1-tps-1280-704.gif"></image> | |
| </center></td> | |
| </tr> | |
| <tr> | |
| <td ><center> | |
| <p>Input Image</p> | |
| </center></td> | |
| <td ><center> | |
| <p>Clike <a href="https://cloud.video.taobao.com/play/u/null/p/1/e/6/t/1/442125067544.mp4">HRER</a> to view the generated video.</p> | |
| </center></td> | |
| </tr> | |
| <tr> | |
| <td ><center> | |
| <image height="260" src="https://img.alicdn.com/imgextra/i4/O1CN01ZXY7UN23K8q4oQ3uG_!!6000000007236-2-tps-1280-720.png"></image> | |
| </center></td> | |
| <td ><center> | |
| <!-- <video muted="true" autoplay="true" loop="true" height="260" src="https://cloud.video.taobao.com/play/u/null/p/1/e/6/t/1/441385957074.mp4"></video> --> | |
| <image height="260" src="https://img.alicdn.com/imgextra/i1/O1CN01iaSiiv1aJZURUEY53_!!6000000003309-1-tps-1280-704.gif"></image> | |
| </center></td> | |
| </tr> | |
| <tr> | |
| <td ><center> | |
| <p>Input Image</p> | |
| </center></td> | |
| <td ><center> | |
| <p>Clike <a href="https://cloud.video.taobao.com/play/u/null/p/1/e/6/t/1/441385957074.mp4">HRER</a> to view the generated video.</p> | |
| </center></td> | |
| </tr> | |
| <tr> | |
| <td ><center> | |
| <image height="260" src="https://img.alicdn.com/imgextra/i3/O1CN01NHpVGl1oat4H54Hjf_!!6000000005242-2-tps-1280-720.png"></image> | |
| </center></td> | |
| <td ><center> | |
| <!-- <video muted="true" autoplay="true" loop="true" height="260" src="https://cloud.video.taobao.com/play/u/null/p/1/e/6/t/1/442102706767.mp4"></video> --> | |
| <!-- <image muted="true" height="260" src="https://img.alicdn.com/imgextra/i4/O1CN01DgLj1T240jfpzKoaQ_!!6000000007329-1-tps-1280-704.gif"></image> | |
| --> | |
| <image height="260" src="https://img.alicdn.com/imgextra/i4/O1CN01DgLj1T240jfpzKoaQ_!!6000000007329-1-tps-1280-704.gif"></image> | |
| </center></td> | |
| </tr> | |
| <tr> | |
| <td ><center> | |
| <p>Input Image</p> | |
| </center></td> | |
| <td ><center> | |
| <p>Clike <a href="https://cloud.video.taobao.com/play/u/null/p/1/e/6/t/1/442102706767.mp4">HRER</a> to view the generated video.</p> | |
| </center></td> | |
| </tr> | |
| <tr> | |
| <td ><center> | |
| <image height="260" src="https://img.alicdn.com/imgextra/i1/O1CN01odS61s1WW9tXen21S_!!6000000002795-0-tps-1280-720.jpg"></image> | |
| </center></td> | |
| <td ><center> | |
| <!-- <video muted="true" autoplay="true" loop="true" height="260" src="https://cloud.video.taobao.com/play/u/null/p/1/e/6/t/1/442163934688.mp4"></video> --> | |
| <image height="260" src="https://img.alicdn.com/imgextra/i3/O1CN01Jyk1HT28JkZtpAtY6_!!6000000007912-1-tps-1280-704.gif"></image> | |
| </center></td> | |
| </tr> | |
| <tr> | |
| <td ><center> | |
| <p>Input Image</p> | |
| </center></td> | |
| <td ><center> | |
| <p>Clike <a href="https://cloud.video.taobao.com/play/u/null/p/1/e/6/t/1/442163934688.mp4">HRER</a> to view the generated video.</p> | |
| </center></td> | |
| </tr> | |
| </center> | |
| </table> | |
| </center> | |
| ### (3) Other methods | |
| In preparation. | |
| ## Customize your own approach | |
| Our codebase essentially supports all the commonly used components in video generation. You can manage your experiments flexibly by adding corresponding registration classes, including `ENGINE, MODEL, DATASETS, EMBEDDER, AUTO_ENCODER, DISTRIBUTION, VISUAL, DIFFUSION, PRETRAIN`, and can be compatible with all our open-source algorithms according to your own needs. If you have any questions, feel free to give us your feedback at any time. | |
| ## BibTeX | |
| If this repo is useful to you, please cite our corresponding technical paper. | |
| ```bibtex | |
| @article{2023i2vgenxl, | |
| title={I2VGen-XL: High-Quality Image-to-Video Synthesis via Cascaded Diffusion Models}, | |
| author={Zhang, Shiwei and Wang, Jiayu and Zhang, Yingya and Zhao, Kang and Yuan, Hangjie and Qing, Zhiwu and Wang, Xiang and Zhao, Deli and Zhou, Jingren}, | |
| booktitle={arXiv preprint arXiv:2311.04145}, | |
| year={2023} | |
| } | |
| @article{2023videocomposer, | |
| title={VideoComposer: Compositional Video Synthesis with Motion Controllability}, | |
| author={Wang, Xiang and Yuan, Hangjie and Zhang, Shiwei and Chen, Dayou and Wang, Jiuniu, and Zhang, Yingya, and Shen, Yujun, and Zhao, Deli and Zhou, Jingren}, | |
| booktitle={arXiv preprint arXiv:2306.02018}, | |
| year={2023} | |
| } | |
| @article{wang2023modelscope, | |
| title={Modelscope text-to-video technical report}, | |
| author={Wang, Jiuniu and Yuan, Hangjie and Chen, Dayou and Zhang, Yingya and Wang, Xiang and Zhang, Shiwei}, | |
| journal={arXiv preprint arXiv:2308.06571}, | |
| year={2023} | |
| } | |
| @article{dreamvideo, | |
| title={DreamVideo: Composing Your Dream Videos with Customized Subject and Motion}, | |
| author={Wei, Yujie and Zhang, Shiwei and Qing, Zhiwu and Yuan, Hangjie and Liu, Zhiheng and Liu, Yu and Zhang, Yingya and Zhou, Jingren and Shan, Hongming}, | |
| journal={arXiv preprint arXiv:2312.04433}, | |
| year={2023} | |
| } | |
| @article{qing2023higen, | |
| title={Hierarchical Spatio-temporal Decoupling for Text-to-Video Generation}, | |
| author={Qing, Zhiwu and Zhang, Shiwei and Wang, Jiayu and Wang, Xiang and Wei, Yujie and Zhang, Yingya and Gao, Changxin and Sang, Nong }, | |
| journal={arXiv preprint arXiv:2312.04483}, | |
| year={2023} | |
| } | |
| @article{wang2023videolcm, | |
| title={VideoLCM: Video Latent Consistency Model}, | |
| author={Wang, Xiang and Zhang, Shiwei and Zhang, Han and Liu, Yu and Zhang, Yingya and Gao, Changxin and Sang, Nong }, | |
| journal={arXiv preprint arXiv:2312.09109}, | |
| year={2023} | |
| } | |
| ``` | |
| ## Disclaimer | |
| This open-source model is trained with using [WebVid-10M](https://m-bain.github.io/webvid-dataset/) and [LAION-400M](https://laion.ai/blog/laion-400-open-dataset/) datasets and is intended for <strong>RESEARCH/NON-COMMERCIAL USE ONLY</strong>. |