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Abstract

Reasoning is central to purposeful action, yet most robotic foundation models map perception and
instructions directly to control, which limits adaptability, generalization, and semantic grounding. We
introduce Action Reasoning Models (ARMs), a class of robotic foundation models that integrates
perception, planning, and control through a structured three-stage pipeline. Our model, MolmoAct,
encodes observations and instructions into depth-aware perception tokens, generates mid-level spatial
plans as editable trajectory traces, and predicts precise low-level actions, enabling explainable and
steerable behavior. MolmoAct-7B-D achieves strong performance across simulation and real-world
settings: 70.5% zero-shot accuracy on SimplerEnv Visual Matching tasks, surpassing closed-source
π0 and GR00T N1; 86.6% average success on LIBERO, including a +6.3% gain over ThinkAct on
long-horizon tasks; and in real-world fine-tuning, +10% (single-arm) and +22.7% (bimanual) task
progression over π0-FAST. It also outperforms baselines by +23.3% on out-of-distribution generalization
and achieves top human-preference scores for open-ended instruction following and trajectory steering.
Furthermore, we release, for the first time, the MolmoAct Dataset —a mid-training robot dataset
comprising over 10,000 high-quality robot trajectories across diverse scenarios and tasks. Training
with this dataset yields an average 5.5% improvement in general performance over the base model.
We release all model weights, training code, MolmoAct Dataset and our action reasoning dataset,
establishing MolmoAct as both a state-of-the-art robotics foundation model and an open blueprint
for building ARMs that transform perception into purposeful action through grounded reasoning.

1 Introduction
Thinking is embodied, spatial, and outside your head.
— Barbara Tversky, Emerita Professor of Psychology at Stanford (Tversky, 2025)

Reasoning allows us to act with intention. Before reaching for a cup or moving through a room, we
subconsciously weigh context, goals, and constraints—transforming perception into purpose. This process,
grounded in our physical experience of the world, makes our actions coherent, adaptable, and explainable.
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Figure 1 Overview. MolmoAct is an open action reasoning model that, given a user’s language instruction, reasons
in space and autoregressively predicts three structured reasoning chains: Depth Perception Tokens for sensing and
reconstructing the 3D environment, Visual Reasoning Trace Tokens for representing its planned trajectory in the
scene, and Action Tokens for generating the corresponding robot control commands. Each explainable reasoning
chain can be independently decoded—yielding a depth map of the scene, a 2D trajectory overlay on the image plane,
and executed actions in the physical world—providing explicit, spatially grounded reasoning at every stage.

For robots to operate with the same fluency, they must do more than map images and instructions to robot
control. They must learn to reason.

In contrast to the rapid generalization gains seen in large language and vision models, progress in robotics
has lagged behind (Duan et al., 2022; Xu et al., 2024b; Firoozi et al., 2025). Vision-Language-Action (VLA)
models (Black et al.; Kim et al., 2024; Team et al., 2025; NVIDIA et al., 2025; Yang et al., 2025b) aim to bring
similar capabilities to physical agents, but have yet to reach the same level of flexibility or robustness. Despite
massive efforts in dataset collection and model scaling, today’s VLAs remain brittle and opaque—struggling
to transfer across tasks, scenes, or embodiments, and offering little insight into why a robot chose one action
over another (Liu et al., 2025; Pumacay et al., 2024).

This gap stems not just from limited data, but from a lack of structure. While language and vision tasks benefit
from abundant, loosely labeled web-scale data, robotics demands fine-grained, embodied interaction—data
that is costly, ambiguous, and difficult to scale. Yet in parallel, language models have begun to shift away from
brute-force scaling toward structured learning : building intermediate representations that support reasoning,
abstraction, and control (Wei et al., 2022; Zelikman et al., 2022; Huang et al., 2022). We believe robotics
can—and must—do the same.

We introduce MolmoAct (Multimodal Open Language Model for Action), a family of completely open Action
Reasoning Models (ARM) that integrate perception, planning, and control through a structured reasoning
pipeline. MolmoAct learns to interpret language instructions, sense its environment, generate spatial plans,
and execute them as smooth, goal-directed trajectories. The model first encodes observations and instructions
into structured 2.5D representations via autoregressive prediction of depth-aware perception tokens. These
tokens condition the generation of mid-level planning representations, which, when visualized as visual traces
in image space, guide the prediction of precise, low-level robot actions. This three-stage reasoning architecture
enables MolmoAct to produce explainable and steerable behavior as shown in Figure 1.
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MolmoAct’s structured design delivers both strong performance and high explainability. On standard
benchmarks such as LIBERO and SimplerEnv (Google Robot), MolmoAct consistently outperforms compet-
itive baselines including GR00T N1 (NVIDIA et al., 2025), π0 and π0-FAST (Black et al.), RT-1 (Brohan
et al., 2022), and TraceVLA (Zheng et al., 2024). In arena-style human evaluations for open-ended language
instruction following, MolmoAct is preferred over baselines, achieving significantly higher Elo ratings. The
model adapts to novel tasks more effectively through lightweight fine-tuning, surpassing other strong baselines
in efficiency. Moreover, it generalizes well to diverse environments and task perturbations in both simulation
and real-world settings. Its visual reasoning traces offer an explainable view into the model’s decision-making,
while also enabling direct action steering by editing trajectory lines—an approach we find more reliable than
language commands, which can suffer from ambiguity.

MolmoAct is fully open in every aspect: we release the model weights, training code, and all components of
our action reasoning dataset. We aim for MolmoAct to be more than a high-performing robotics foundation
model that serves as a blueprint for building agents that reason, transforming perception into purposeful
action through reasoning.

2 MolmoAct
MolmoAct is a fully open-source action reasoning model (ARM) for robotic manipulation. It builds on
Molmo (Deitke et al., 2024), reusing its vision–language backbone composed of a vision encoder, a vision–
language connector, and a large language model (LLM). While Molmo supports chain-of-thought reasoning
for language and vision, MolmoAct extends this capability to generate grounded action sequences. The
model is trained on a subset of the Open X-Embodiment (OXE) (O’Neill et al., 2024) mixture consisting
of BC-Z (Jang et al., 2022), BridgeData V2 (Walke et al., 2023), and RT-1 (Brohan et al., 2022), and our
in-house collected MolmoAct Dataset.

In the following sections, we describe the VLM preliminaries (subsection 2.1), our method to adapt VLMs for
action prediction via action tokenization(subsection 2.2), how we transform Molmo into an action reasoning
model (ARM, subsection 2.3), and our approach to steer action by visual reasoning traces (subsection 2.4).

2.1 Vision LanguageModel
To equip an action model with visual and linguistic world knowledge, we build upon vision–language models
(VLMs). Most modern VLMs share a three-component structure: (i) a visual encoder that transforms an
image into patch-level embeddings, (ii) a projection module that maps these visual features into the input
space of a language model, and (iii) a large language model (LLM) backbone. These components are typically
trained with a next-token prediction objective on paired or interleaved image–text data.

Our work builds on Molmo, the Multimodal Open Language Model, which follows this standard design. It
employs a Vision Transformer (ViT) visual encoder, a two-layer MLP connector for projecting vision features
into the language embedding space, and a decoder-only LLM backbone. In our implementation, we use
vision encoders such as OpenAI ViT-L/14 336px CLIP (Radford et al., 2021) and ViT-SO400M/14 384px
SigLIP2 (Tschannen et al., 2025), paired with open LLMs including OLMo2-7B (OLMo et al., 2024) and
Qwen2.5-7B (Qwen et al., 2025). We trained MolmoAct-7B-O with a VLM backbone based on OpenCLIP
and OLMo2-7B, and MolmoAct-7B-D with a backbone based on SigLIP2 and Qwen2.5-7B. For full details
of our model architecture and implementation, please refer to Appendix A.

The degree of openness in the backbone components varies. SigLIP2 and Qwen2.5 do not disclose the full
details of their pre-training, and are presumed to use large-scale Internet-sourced multimodal data. In contrast,
OLMo2 provides open training datasets (e.g., LAION-2B/5B (Schuhmann et al., 2022), Dolma (Soldaini et al.,
2024)), model weights, and complete training code. Although OpenAI CLIP also uses closed training data, it
can be reproduced from scratch, as shown by MetaCLIP (Xu et al., 2024a). We use the model from OpenAI
because it was trained for higher resolution images, and also following the previous choice from Molmo (Deitke
et al., 2024). In MolmoAct, we initialize vision and language components from these open checkpoints
whenever available, and use the pre-training procedure from Molmo (Deitke et al., 2024) to train the VLM on
dense captioning data. Then, after vision-language alignment, we start to fine-tune MolmoAct with a subset
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Figure 2 Training process of MolmoAct. The model training process consists of two stages: Pre-training (left)
and Post-training, Mid-training & Inference (right). During pre-training, the vision–language backbone (Molmo) is
trained on multimodal and robot reasoning data for diverse objectives, including discretized robot control, 2D pointing,
trajectory drawing, open-vocabulary question answering, and perception token prediction. In post-training, the action
reasoning model consumes multi-view camera images and either natural language instructions or visual trajectory
inputs, generating perception tokens, visual reasoning trace tokens, and action tokens for execution.

of Open X-Embodiment (OXE) mixture and the MolmoAct Dataset. This enables full reproducibility and
supports community-driven re-training and ablation studies on data curation and scaling.

2.2 Vision-Language-ActionModel
A standalone VLM—even when expertly prompted—cannot directly control a robot: it lacks a representation
of the robot’s action space and dynamics, and thus can only provide high-level planning over the current
observation. To produce accurate, executable commands, we follow prior work (Brohan et al., 2022; Kim
et al., 2024; Zitkovich et al., 2023) in formulating action prediction as a vision–language sequence modeling
task. For each action dimension, we normalize using dataset quantiles and discretize into 256 uniform-width
bins between the first and ninety-ninth percentiles, which reduces the influence of outliers while preserving
effective granularity. This yields an N -dimensional action represented as N integers in [0, 255]. The model is
trained end-to-end with a next-token prediction objective, and the loss is computed only on the action tokens.

Prior work represents the 256 discretized action bins with 256 distinct language tokens taken from the tail of
the vocabulary. Continuous action bins, however, possess ordinal structure and local correlation, whereas
arbitrary language tokens are effectively unrelated. This mismatch yields a poor initialization for learning
an action codebook. We adopt a simple alternative that better reflects the geometry of the action space.
We first identify the final 256 tokens in the Qwen2 tokenizer and, for each, use its underlying byte-level
BPE symbol. We then assign them monotonically to the 256 bins so that adjacent bins map to adjacent
symbols, and this becomes our action token vocabulary Vaction. We notice that these BPE symbols have a
better initialization for action token embeddings by sharing similar characters between adjacent action bins.
This similarity-preserving initialization offers a smoother starting point for optimization and, in practice,
substantially reduces training time. In contrast to GR00T N1’s (NVIDIA et al., 2025) training time of 50,000
GPU hours, MolmoAct achieves pre-training with only 9,216 GPU hours: over a 5x reduction.

2.3 Action ReasoningModel
Chain-of-Thought (CoT) (Wei et al., 2022) has been shown to significantly improve Language Models’
performance on complex tasks. Likewise, Multimodal Language Models (MLLM) also benefit from multimodal
Chain of Thought (MCoT) (Lai and Nissim, 2024) in processing long multimodal contexts. However, this
"think-before-you-act" paradigm is rarely present in robotic control policies. While some work attempts
to incorporate reasoning to VLAs, they focus on high-level language reasoning (Sun et al., 2024; Zawalski
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et al., 2024; Intelligence et al., 2025) such as decomposing a high-level semantic task into subtasks. While
useful, they ignore two crucial aspects for precise control: depth perception and precise motion planning.
First, most VLMs are trained solely on RGB images and hence lack the ability of depth estimation and
3D understanding, which is critical for robotic manipulation. Moreover, attempting to distill complex 3D
trajectories into linguistic descriptions often results in significant loss of spatial and temporal information.

Contrast to previous approaches, MolmoAct does not incorporate intermediate reasoning through language;
rather, we teach our models to reason in space. Conditioned on images and instructions, the model autogre-
gressively generates a sequence of depth perception tokens, followed by visual reasoning trace of the intended
end-effector motion, before predicting the action tokens.

Depth Perception Tokens Depth estimation is a key aspect for spatial understanding and robot action
prediction. Most conventional VLMs and VLAs condition their outputs solely on the RGB image input and
text instruction. Lacking depth estimation, they fail on tasks that require spatial understanding. Prior work
(Bigverdi et al., 2024) has shown that depth perception tokens are effective in enhancing chain-of-thought
reasoning for visual–spatial tasks. Building on this insight, we leverage depth estimation as a key component
to enable fine-grained robotics control in 3D environments. We now examine how each intermediate step in
the reasoning chain is formulated:

We begin by defining the auxiliary vocabulary that contains depth perception tokens. Let

Vdepth = {⟨DEPTH_START⟩, ⟨DEPTH_END⟩} ∪ {⟨DEPTH_k⟩}Nk=1 (1)

be the discrete token set used to represent depth, with N = 128. For each input image, the target depth
string is defined as

d = (⟨DEPTH_START⟩ ⟨DEPTH_z
depth
1 ⟩ . . . ⟨DEPTH_z

depth
M ⟩ ⟨DEPTH_END⟩) ∈ Vdepth. (2)

with M = 100, and each z
depth
i ∈ {1, . . . , N} indexing a code in a VQVAE (Van Den Oord et al., 2017)

codebook C = {c1, . . . , cN}. The codebook is produced by a pre-trained specialist depth estimator (trained on
depth maps from Depth Anything V2), which quantizes the dense depth map into a fixed-length sequence of
M indices. There is a deterministic one-to-one correspondence between each codebook index and a depth
token in Vdepth (i.e., index k maps to ⟨DEPTH_k⟩), so d is a discrete, explainable summary of the depth
map of the scene. We employ a specialist-to-generalist distillation strategy to ground MolmoAct’s depth
perception tokens prediction: the specialist produces d as the ground-truth depth string, and the VLA is
trained to predict this string autoregressively from the original RGB observation, thereby internalizing depth
in a form that can condition downstream trajectory and action generation.

Visual Reasoning Trace Planning is a crucial component in robotics. Instead of planning through subtask
decomposition in language, we predict intermediate two-dimensional representation to better align visual
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"Load the plate." "Clean the toilet."

"Keep the toy car." "Open the microwave."

Figure 4 Examples and verb distribution in theMolmoAct Dataset. Left: Sample robot manipulation tasks paired
with natural language instructions, spanning diverse household activities such as closing a laptop, loading a plate,
cleaning a toilet, and opening a microwave. Right: Log-scale distribution of the top verbs in the dataset, showing a
long-tail pattern with “put,” “turn,” and “close” as the most frequent actions.

inputs and control outputs across diverse robots and tasks. In particular, we generate the 2D trajectory of
the end-effector and train the model to predict this trajectory alongside the next action command, a strategy
shown to be effective in prior work (Li et al., 2025; Zheng et al., 2024; Gu et al., 2023; Niu et al., 2024). These
predicted waypoints help align each action to precise end-effector locations, enabling the model to focus on
fine-grained localization and thereby improving action-prediction accuracy. To achieve this, we introduce
Visual Reasoning Trace.

Given a certain image observation, we define the end-effector visual reasoning trace on that image as a polyline
with L points, 1≤L≤5 (i.e., 0 to 4 line segments),

τ = (p1, . . . , pL), pi = (ui, vi). (3)

where for every pi = (ui, vi), the coordinates of the point are normalized with respect to the given image
dimension so that ui, vi ∈ {0, ..., 255}.
Note that p1 corresponds to the coordinate where the robot end-effector is located in the given image, and all
other points are the location of the end-effector in later frames. For the full polyline, points are subsampled
evenly from the future horizon of the episode between the current frame and the terminal frame.

Action Reasoning Procedure With depth perception tokens and visual reasoning trace, MolmoAct can
finally perform action reasoning in space with the following procedure: given an RGB image observation I and
a language instruction T (which includes an action CoT prompt), the model autoregressively generates three
token sequences in order: (i) depth perception tokens d; (ii) visual reasoning trace τ ; (iii) action tokens a,
where a = (a1, . . . , aD) ∈ V

D
action with D degree of freedoms. These are produced according to the factorization

p(d, τ ,a ∣ I, T ) =
M+2

∏
i=1

p(di ∣ I, T,d<i) ×
L

∏
j=1

p(τj ∣ I, T,d, τ<j) ×
D

∏
k=1

p(ak ∣ I, T,d, τ ,a<k). (4)

In other words, the depth string d is generated first, then the visual reasoning trace τ , and finally the action
tokens a. By conditioning each stage on the preceding depth and trajectory tokens, we ensure that the final
actions are spatially grounded in both the inferred depth and the planned motion sketch.

2.4 Action Steerability via Visual Reasoning Trace
We define steerability as the ability to guide a policy at test time to perform different behaviors using
user-provided instructions. Most prior VLA systems rely exclusively on language for steering. However,
language-only steering faces three practical challenges: (i) it requires large and diverse corpora of high-quality
language–action pairs to learn a reliable grounding between words and control, (ii) natural language is
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inherently ambiguous about magnitudes, scales, and endpoints, and (iii) post-trained models often exhibit
narrow prompting habits, making them brittle to out-of-distribution phrasing. For manipulation, these issues
translate into imprecise or inconsistent control. We therefore seek a steering modality that is both precise and
scalable. Rather than relying on ambiguous language prompts, we allow the user to draw a visual reasoning
trace τ directly on the camera image to indicate the desired end-effector path. A trace τ = (p1, . . . , pL),
1 ≤ L ≤ 5 (i.e., 0 to 4 line segments), is overlaid onto the RGB image I to form an augmented observation
I
+
= I ⊕ τ . visual reasoning traces are unambiguous, easily edited, and generalize across tasks without large

text–action corpora or brittle language patterns.

At test time, given I, instruction T , and a user-drawn trace τ , we construct I
+
= I ⊕ τ and generate the

next-step action tokens a = (a1, . . . , aD) autoregressively:

p(a ∣ I+, T ) =
D

∏
k=1

p(ak ∣ I+, T,a<k). (5)

By conditioning directly on the overlaid trace, the model executes closed-loop control that follows the user’s
sketch. Repeating this at each timestep yields precise, interactive steering that is both scalable and robust to
out-of-distribution phrasing.

3 Data Curation andGeneration
MolmoAct is trained on a diverse set of datasets. During Pre-training, MolmoAct is trained on Multimodal
Web data, Auxiliary Robot Data as well as Action Reasoning Data. Furthermore, we collected and trained
with the MolmoAct Dataset for the Mid-training stage. Below, we describe each dataset and its collection
process; further details and examples are provided in the Appendix E.

3.1 Action Reasoning Data
As discussed in Section 2.3, MolmoAct frames visuomotor control as an autoregressive sequence modeling
problem augmented with an action chain-of-thought (CoT). This formulation allows us to convert any
conventional robot action dataset into action reasoning data by appending predicted depth perception tokens
and visual reasoning traces to action tokens, conditioned on both language and robot observations. Section 3.1
details the process for generating ground-truth labels for the depth perception tokens and visual reasoning
traces, and explains how these are combined with action labels to train MolmoAct.

A robot episode typically consists of a sequence of timesteps, where each timestep is a tuple (I, T, a)t,
containing an RGB observation image I, a language instruction T , and a ground-truth action a, specified
either in end-effector space or joint space. To convert any robot data into the Action Reasoning data format,
we generate ground-truth Depth Perception Tokens and Visual Reasoning Traces for each timestep in the
episode. We explain the details for generating ground-truth labels for Depth Perception Tokens and Visual
Reasoning Trace below.

Depth Perception Tokens To generate Depth Perception Tokens for each frame of a demonstration, we
first train a VQVAE on 10 million depth maps of tabletop manipulation images collected from the RT-1,
BridgeData V2, and BC-Z datasets. We use DepthAnything-v2 to obtain a depth map for each observation
RGB image. The VQVAE is trained with a standard reconstruction objective to minimize reconstruction
loss between input RGB images and their corresponding depth maps for 20 epochs. Once the VQVAE has
been trained, we encode each observation image with the VQVAE to get their latent embeddings. We then
represent the latent embedding with a learned codebook with 128 dimension based on a one-to-one index to
depth token mapping. Note that all images are resized to 320×320 px during training and inference to enforce
the representation of 100 tokens per image. This allows us to express the depth map of each observation image
as a tokenized string of 100 tokens, which we use for ground truth labeling for our depth perception token.

Visual Reasoning Trace To generate a Visual Reasoning Traces for each frame of a demonstration, we
employ Molmo, a vision-language model trained on diverse 2D pointing datasets, for data generation akin to
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synthetic data generation in NLP. For each timestep t, we extract the pixel coordinates (ut, vt) of the robot’s
gripper, and aggregate these across the episode to obtain a visual reasoning trace. For each observation frame,
we prompt Molmo with the instruction "point to the robot gripper" for single-arm robots or "point
to the robot gripper on the left/right" for bimanual embodiments. Molmo returns a 2D coordinate
(xt, yt) ∈ R2 and (xt, yt) ∈ [0, 100], corresponding to the predicted gripper location in image space. We
rescale the coordinate values so that (ut, vt) ∈ Z2 and (ut, vt) ∈ [0, 255]. We then apply this query at every
timestep in the episode, resulting in one gripper location per frame. Linking these predictions sequentially
yields the full trajectory τ . In the case of bimanual robots, two separate prompts are issued per frame to
obtain τL and τR for the left and right grippers, respectively. At each timestep t, we construct a visual
reasoning trace by selecting a subsequence from t to the episode end e. This includes the current point (ut, vt),
the final point (ue, ve), and up to three intermediate points spaced uniformly between them. If fewer than
three intermediate points are available (i.e., e − t < 4), we include all available points. If t = e, the trace
contains only one point. This yields a visual reasoning trace between 1 to 5 points representing the future
motion of the end effector.

Auxiliary Robot Data To strengthen MolmoAct’s ability to reason in space, we extend the same data
generation pipeline used for depth perception token, visual reasoning trace to curate three auxiliary supervision
dataset: (i) Auxiliary Depth Data—given an RGB observation and language instruction, the model only
predicts the target Depth Perception Token sequence; (ii) Auxiliary Trace Data—given an RGB observation
and language instruction, the model only predicts the corresponding Visual Reasoning Trace; and (iii)
Trajectory-conditioned Action Data—given ot = (I, T, τ )t, where I is the current image, T the instruction,
and τ = (p1, . . . , pL) the ground truth Visual Reasoning Trace, the model predicts the next action by taking
the language T and the trace-overlaid image I

+
= I ⊕ τ . Note that we curate the Trajectory-conditioned

Action Data mainly for enabling the steerability feature of MolmoAct.

Once we generate the ground truth label for each frame, we construct the action reasoning dataset by
sequentailly aligning the ground-truth Depth Perception Tokens, Visual Reasoning Trace, and Action for
instruction tuning. We also use the same data generation approach to obtain auxiliary robot data.

3.2 MolmoAct Dataset
We curated the MolmoAct Dataset to improve the model’s general manipulation performance and spatial
reasoning in real household environments. The dataset contains 10,689 high-quality trajectories of a single-arm
Franka robot performing 93 unique manipulation tasks in both home and tabletop environments as shown in
Figure 4. The average length of each trajectory spans 112 timesteps. Data collection spanned two months
and involved five full-time operators following strict protocols. For further details, see Appendix E. The
MolmoAct Dataset includes manipulation data from two primary settings: home environments and
tabletops.

• Home Environment Data.
To collect diverse home environment data, we mounted a single-arm Franka robot on a lightweight, mobile
platform similar to DROID (Khazatsky et al., 2024), enabling us to transport the robot and capture scenes
across living rooms, kitchens, bathrooms, and bedrooms. Each task was designed to reflect a specific
household chore. For example, the long-horizon task “clean up the dishes” was decomposed into subtasks
such as “put the bowl in the dishwasher,” “put the fork in the sink,” and “cover the pot.” This decomposition
allows the policy to learn individual skill components in isolation before composing them into more complex
behaviors. In total, we collected 7,730 trajectories spanning 73 distinct tasks and 20 verbs across a wide
variety of scenes.

• Tabletop Data.
We also collected 2,959 tabletop trajectories covering 20 atomic tasks, each performed with a diverse set of
objects to promote robustness and generalization. Each task was decomposed into atomic motions and
reinforced in a simplified tabletop environment. For example, the task “put the bowl in the dishwasher”
consists of a sequence of motions such as opening the dishwasher, grasping the bowl, flipping it, and placing
it inside. We isolated and separately collected data for each atomic motion—open, pick, flip, put, and
close—to build a comprehensive set of motion primitives.
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Table 1 SimplerEnv evaluation across different policies onGoogle Robot tasks. The zero-shot and fine-tuning
results denote performance of OXE dataset (O’Neill et al., 2024) pre-trained models and RT-1 dataset (Brohan et al.,
2022) fine-tuned models, respectively.

Model Visual Matching Avg Variant Aggregation Avg
Pick Coke Can Move Near Open/Close Drawer Pick Coke Can Move Near Open/Close Drawer

HPT (Wang et al., 2024a) 56.0% 60.0% 24.0% 46.0% — —
TraceVLA (Zheng et al., 2024) 28.0% 53.7% 57.0% 42.0% 60.0% 56.4% 31.0% 45.0%
RT-1-X (Brohan et al., 2022) 56.7% 31.7% 59.7% 53.4% 49.0% 32.3% 29.4% 39.6%
RT-2-X (Zitkovich et al., 2023) 78.7% 77.9% 25.0% 60.7% 82.3% 79.2% 35.3% 64.3%
Octo-Base (Team et al., 2024b) 17.0% 4.2% 22.7% 16.8% 0.6% 3.1% 1.1% 1.1%
OpenVLA (Kim et al., 2024) 16.3% 46.2% 35.6% 27.7% 54.5% 47.7% 17.7% 39.8%
RoboVLM (zero-shot) (Liu et al., 2025) 72.7% 66.3% 26.8% 56.3% 68.3% 56.0% 8.5% 46.3%
RoboVLM (fine-tuned) 77.3% 61.7% 43.5% 63.4% 75.6% 60.0% 10.6% 51.3%
Emma-X (Sun et al., 2024) 2.3% 3.3% 18.3% 8.0% 5.3% 7.3% 20.5% 11.0%
Magma (Yang et al., 2025b) 56.0% 65.4% 83.7% 68.4% 53.4% 65.7% 68.8% 62.6%
π0 (fine-tuned) (Black et al.) 72.7% 65.3% 38.3% 58.7% 75.2% 63.7% 25.6% 54.8%
π0-FAST (fine-tuned) 75.3% 67.5% 42.9% 61.9% 77.6% 68.2% 31.3% 59.0%
GR00T N1 (fine-tuned) (NVIDIA et al., 2025) 0.7% 1.9% 2.9% 1.8% — —
SpatialVLA (Qu et al., 2025) 81.0% 69.6% 59.3% 70.0% 89.5% 71.7% 36.2% 65.8%
MolmoAct (zero-shot) 71.3% 73.8% 66.5% 70.5% 57.8% 43.8% 76.7% 59.3%
MolmoAct (fine-tuned) 77.7% 77.1% 60.0% 71.6% 76.1% 61.3% 78.8% 72.1%

3.3 MultimodalWebData
Prior works have shown that co-training VLAs with the data mixture from the VLM training leads to more
generalizable policies. These policies are more robust to perturbations such as lighting and background
changes, and can generalize better to unseen environments and objects. We include a mixture of multimodal
web data from Molmo’s Supervised fine-tuning stage involving academic datasets (VQA v2.0 (Goyal et al.,
2017), Text VQA (Singh et al., 2019), OK-VQA (Marino et al., 2019), ChartQA (Masry et al., 2022), DocVQA
(Mathew et al., 2021), Infographic VQA (Mathew et al., 2022), AI2D (Kembhavi et al., 2016), A-OKVQA
(Schwenk et al., 2022), AndroidControl (Li et al., 2024b), ScienceQA (Lu et al., 2022), TabMWP (Lu et al.,
2023), ST-VQA (Biten et al., 2019), TallyQA (Acharya et al., 2019), DVQA (Kafle et al., 2018), FigureQA
(Kahou et al., 2017), and PlotQA (Methani et al., 2020)) for general visual skills and PixMo (Deitke et al.,
2024) for fine-grained understanding and pointing. Furthermore, we include LVIS (Gupta et al., 2019) where
the model is asked to predict the bounding box center of instances of a certain category to ground language
to image regions.

4 Training Recipe
MolmoAct is first pre-trained on action reasoning data curated from a subset of the OXE dataset, along
with the auxiliary robot data and multimodal web data. To further enhance its capabilities, we mid-train the
model on the MolmoAct Dataset before post-training it for specific downstream tasks and embodiments.
In this section, we describe the different data mixtures and training configurations used at each stage of
MolmoAct ’s training (as shown in Figure 2.

4.1 Pre-training
In the first training stage, MolmoAct is pre-trained on a mixture of action reasoning data, auxiliary robot
data, and multimodal web data. For all robot data, we use a subset of OXE comprising RT-1, BridgeData
V2, and BC-Z, totaling 10.5M samples, which we convert into action reasoning data using our reasoning in
space formulation. We also include auxiliary robot data—auxiliary depth data (1.5M), auxiliary trace data
(1.5M), and trajectory-conditioned action data (10.5M), and co-train with 2M samples of multimodal web
data. During pre-training, data is sampled at the following rates: RT-1 (20%), BridgeData V2 (12.5%), BC-Z
(7.5%) for both action reasoning and trajectory-conditioned data, 7.5% from the auxiliary depth and trace
data, and 5% from multimodal web data as shown in Figure 3. The whole data mixture used for pre-training
MolmoAct totals up to 26.3M samples.

To pre-train MolmoAct with the data mixture mentioned above, we use 256 H100s to train the model with
100k gradient steps using a batch size of 512, which takes around 9,728 GPU hours. At each training step, a
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Table2 LIBERObenchmarksuccess rates across four task categories (Spatial, Object, Goal, and Long-horizon) along
with the average performance. MolmoAct achieves the highest overall average success rate of 86.6%, outperforming
all baselines, with strong performance across all categories, particularly in long-horizon tasks.

Baseline Spatial Object Goal Long Avg
TraceVLA (Zheng et al., 2024) 84.6% 85.2% 75.1% 54.1% 74.8%
Octo-Base (Team et al., 2024b) 78.9% 85.7% 84.6% 51.1% 75.1%
OpenVLA (Kim et al., 2024) 84.7% 88.4% 79.2% 53.7% 76.5%
SpatialVLA (Qu et al., 2025) 88.2% 89.9% 78.6% 55.5% 78.1%
CoT-VLA (Zhao et al., 2025) 87.5% 91.6% 87.6% 69.0% 83.9%
NORA-AC (Hung et al., 2025) 85.6% 89.4% 80.0% 63.0% 79.5%
WorldVLA (Cen et al., 2025) 87.6% 96.2% 83.4% 60.0% 79.1%
π0-FAST (Black et al.) 96.4% 96.8% 88.6% 60.2% 85.5%
ThinkAct (Huang et al., 2025) 88.3% 91.4% 87.1% 70.9% 84.4%
MolmoAct-7B-D 87.0% 95.4% 87.6% 77.2% 86.6%

batch of data pairs is drawn randomly from the entire data mixture by their assigned sampling rate defined
above. Hyperparameter details are listed in Appendix B.

4.2 Mid-training
Following the initial pre-training stage, we conduct a second stage of mid-training using high-quality action
reasoning data closely aligned with our target domain of household manipulation. Specifically, we formulate
the MolmoAct Dataset into 1M action reasoning data samples and an additional 1M trajectory-conditioned
action data samples, which we find beneficial for improving overall performance and action steering. To train
on the MolmoAct Dataset, we convert each sample—consisting of two side-mounted camera views and one
wrist camera view, all sharing the same instruction and ground-truth action—into two paired-view training
examples by pairing each side view with the wrist view. For action reasoning data preparation (subsection 3.1),
depth perception tokens and visual reasoning traces are generated only from the side views, while the wrist
view is used solely for providing additional information. We train the model on this modified dataset for 50k
gradient steps with a batch size of 128, using 128 H100 GPUs over around 2,304 GPU hours. Additional
hyperparameters and optimization details are provided in Appendix B.

4.3 Post-training
After mid-training, we conduct the final post-training stage to rapidly adapt the model to new tasks and
embodiments. For new tasks, we collect a small set of 30 to 50 tele-operated demonstrations per task,
then generate perception tokens and visual reasoning trace for each timestep. These demonstrations are
converted into the action reasoning data and trajectory-conditioned action data, following the same process
as mid-training data curation, with one key difference: we apply action chunking (Zhao et al., 2023) during
post-training, formatting action predictions in fixed-length chunks (N = 8). For each action chunk in all
chunks, we tokenize each of them in the same way as we do for single action. After grouping them to a list,
we train the model autoregressively for predicting all action chunks. We adapt MolmoAct to post-train on
single or multi-tasks via parameter-efficient LoRA fine-tuning. In all evaluations, we fix the LoRA rank at 32
and alpha at 16 to preserve the model’s pre-trained capabilities. For simulation benchmarks (e.g., LIBERO),
we use a batch size of 128, and for real-world tasks we use 64. The number of gradient steps we train varies
by task. Our post-training data generally consists of a front- or side-view image paired with a wrist-view
image, although some setups provide multiple wrist views (e.g., bimanual scenarios). In all cases, we apply
the same LoRA and training configuration described above. Additional details are available in Appendix B.

5 Experimental Evaluation
Our experimental evaluation comprises a broad suite of studies that rigorously benchmark MolmoAct
against strong baselines. We assess MolmoAct with MolmoAct-7B-D version in (i) its pre-training,
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"Put the bowl into the sink" "Wipe the table." "Clean the trash into the bin." "Set the table." "Lift up the box." "Fold the towel."

Figure 5 Real-world evaluation of OpenVLA, π0-FAST, and MolmoAct on single-arm (left) and bimanual (right)
Franka tasks. Bar plots report average task progression with standard error across 25 trials per task. MolmoAct
consistently outperforms baselines, particularly on single-arm tasks such as Wipe Table and Table Bussing, and
maintains strong performance on bimanual tasks including Fold Towel and Set Table. Bottom row shows example task
setups with corresponding natural language instructions.

“out-of-the-box” capabilities, (ii) its post-training adaptability across varied tasks, domains, and robotic
embodiments, and (iii) its additional feature of being an interactive and steerable action reasoning model. By
testing the model on a comprehensive range of scenarios both in simulation and real-world, we aim to answer
the following research questions:

1 Howwell doesMolmoAct perform, after pre-training, on tasks drawn from the same distribution as its
training data? We address this question by benchmarking MolmoAct against strong VLA models on
the SimplerEnv simulation benchmark (Li et al., 2024c).

2 Howeffectively doesMolmoAct adapt to novel tasks, domains, and embodiments through lightweight
post-training fine-tuning? We fine-tune MolmoAct with LoRA (Hu et al., 2022) and benchmark
it against strong baselines on the LIBERO simulation suite (Liu et al., 2023a). We then validate its
real-world performance on two hardware setups—a single and a bimanual Franka arm—to demonstrate
adaptability across embodiments.

3 How effectively canMolmoAct generalize beyond its training distribution? We investigate this through
real-world out-of-distribution (OOD) tests and variant-aggregation experiments in SimplerEnv.

4 How does mid-training on the MolmoAct Dataset improve MolmoAct’s generalist performance? We
address this through ablation experiments in the real-world evaluations to compare MolmoAct ’s
performance with and without mid-training on the MolmoAct Dataset.

5 How effectively doesMolmoAct follow language commands? We benchmark MolmoAct against strong
baselines in an open-ended simulation setup where human evaluators provide free-form prompts and
assess each model’s resulting actions.

6 How steerable is MolmoAct, and how can this steerability enhance user interaction? We perform
extensive real-world ablations, guiding MolmoAct by sketching trajectory cues on the interface and
analyzing its responses, then examine the resulting human–robot interaction dynamics.
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5.1 MolmoAct After Pre-training
EvaluationSetupandBaselines. We first evaluated MolmoAct’s zero-shot capability—its ability immediately
after pre-training and before any task-specific fine-tuning. Unlike π0 (Black et al.), GR00T N1 (NVIDIA
et al., 2025), and other proprietary VLA models that rely on large-scale private robot datasets and the
full OXE dataset for pre-training, MolmoAct was trained exclusively on curated action reasoning data
filtered from a subset of OXE (specifically BC-Z (Jang et al., 2022), BridgeData V2 (Walke et al., 2023), and
RT-1 (Brohan et al., 2022)), combined with multimodal web data and auxiliary robot data, as detailed in
subsection 4.1. This amounts to approximately 26.3M samples—an order of magnitude smaller than π0, which
uses at least 903M for pre-training. To evaluate MolmoAct’s out-of-the-box generalization, we used the
SimplerEnv benchmark, which features both visual-matching and variant-aggregation tasks across WidowX
and Google Robot platforms (details in subsection D.1). As MolmoAct ’s pre-training distribution is most
aligned with the Google Robot visual-matching tasks, we focused our evaluation on this suite to best isolate
in-distribution performance and capabilities of pre-training.

We compared MolmoAct-7B-D-Pretrain against a set of generalist policies, including TraceVLA (Zheng
et al., 2024), RT-1X (Brohan et al., 2022), OpenVLA (Kim et al., 2024), RoboVLM (Liu et al., 2025), Emma-x
(Sun et al., 2024), π0 and π0-FAST (Black et al.), Octo (Team et al., 2024b), Magma (Yang et al., 2025b),
HPT (Wang et al., 2024a), SpatialVLA (Qu et al., 2025) and GR00T N1 (NVIDIA et al., 2025). Most
baselines were evaluated in the zero-shot setting, with a subset also tested after fine-tuning. We additionally
fine-tuned MolmoAct-7B-D-Pretrain on the RT-1 subset of OXE to assess its capacity when given more
pre-training data.

Evaluation Results. MolmoAct-7B-D-Pretrain achieved strong zero-shot performance on the SimplerEnv
visual-matching suite, reaching 70.5% success rate and outperforming baselines such as GR00T N1, π0,
π0-FAST, and Magma. With fine-tuning on the same RT-1 subset of OXE, MolmoAct-7B-D improved to
71.6%, exceeding Magma by 3.2% as shown in Table 1. These results indicate that MolmoAct is both an
effective zero-shot generalist and a strong initialization for fine-tuned deployment.

5.2 Fast Adaptation ofMolmoAct in Post-training
EvaluationSetupsandBaselines. We evaluate MolmoAct in both simulation and real-world settings to assess
its fast adaptation after post-training. In simulation, we evaluate on the LIBERO simulation benchmark (Liu
et al. (2023a)), which consists of a Franka Emika Panda arm in simulation with demonstrations containing
front and wrist view camera images (256×256 px), language instructions, and delta end-effector pose actions.
We follow prior works (Kim et al. (2024)) and evaluate on four task suites – LIBERO-Spatial, LIBERO-Object,
LIBERO-Goal, and LIBERO-Long – each with 500 demonstrations across 10 tasks. Following (Kim et al.
(2024)), we trained on a modified dataset that filtered out no-op actions and unsuccessful demonstrations.
Moreover, we set action chunk size to K = 8 for evaluation on each task suite and execute full chunks before
redoing action reasoning. We fine-tune MolmoAct-7B-D using Low-Rank Adaptation (LoRA) and compared
to state-of-the-art generalist autoregressive policies, such as TraceVLA (Zheng et al., 2024), OpenVLA (Kim
et al., 2024), SpatialVLA (Qu et al., 2025), π0-FAST (Black et al.), CoT-VLA (Zhao et al., 2025), WorldVLA
(Cen et al., 2025), ThinkAct (Huang et al., 2025), and NORA-AC (Hung et al., 2025).

In the real world, we evaluate MolmoAct on six tasks across single-arm and bimanual Franka setups. The
single-arm tasks include put_bowl_in_sink, wipe_table, and table_bussing. The bimanual tasks include
set_table, lift_tray, and fold_towel. For each task, we collected 50 human tele-operated demonstrations
and post-trained both MolmoAct-7B-D and baseline models. We evaluate the task progress over 25 trials
per task. We detail the task progress scores in subsection D.3. This setup enables a comprehensive comparison
of adaptation efficiency across tasks and embodiments.

Evaluation Results. On the LIBERO benchmark, MolmoAct-7B-D achieves an average success rate of
86.6%, the highest among all compared methods. It performs particularly well on LIBERO-Long, a challenging
long-horizon suite, where it exceeds the performance of ThinkAct—the second-best method in this setting—by
6.3%. In the real world, MolmoAct demonstrates effective fine-tuning and generalization across different
embodiments. It outperforms π0-FAST by an average of 10% in task progression on single-arm tasks and by
22.7% on bimanual tasks, as shown in Figure 5.
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(a) MolmoAct generalizes beyond training distributions.

(b) MolmoAct Dataset improves task performance.

Figure 6 MolmoAct outperforms baselines across generalization and mid-training settings. (a) Out-of-
distribution generalization: Task progression scores for OpenVLA, π0-FAST, and MolmoAct across in-distribution,
language variation, spatial variation, distractors, and novel object conditions, showing consistent gains for MolmoAct.
(b) Effectiveness of mid-training with the MolmoAct Dataset: Comparison of task progression on real-world
tasks (Close Lid, Rotate Pot, Pour Tea) for MolmoAct with and without the dataset, π0-FAST, and OpenVLA,
demonstrating that mid-training with the dataset improves performance across tasks.

5.3 Effectiveness ofMolmoAct in Out-of-Distribution Generalization
We evaluate MolmoAct in both simulation and real-world settings to assess its ability to generalize beyond the
training data distribution, both in zero-shot and fine-tuned regimes. In simulation, we follow the SimplerEnv
variant-aggregation protocol, which introduces distribution shifts through changes in lighting, textures, and
camera viewpoints. We compare MolmoAct-7B-D-Pretrain and its RT-1 fine-tuned variant against
several state-of-the-art generalist policies—TraceVLA, RT-1X, OpenVLA, RoboVLM, Emma-X, π0-FAST, and
SpatialVLA. For real-world evaluation, we test MolmoAct-7B-D using a single Franka arm on a multi-task
setup involving three objects and two different-colored plates arranged on a tabletop. We collect over 300
tele-operated demonstrations spanning three task types, then post-train MolmoAct-7B-D and baselines in
a multi-task setting. During evaluation, we test generalization in four aspects: (1) Language Variation —
rephrased instructions, (2) Spatial Variation — changes in target object position, (3) Distractors — addition
of irrelevant objects, and (4) Novel Objects — substitution of target objects with unseen ones. We benchmark
MolmoAct-7B-D against π0-FAST and OpenVLA, testing three variants per task and four trials per variant.
Full task details are presented in subsection D.4.
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Figure 7 Line steerability evaluation acrossmodels. Left: Elo ratings show that MolmoAct achieves the highest
performance, surpassing Gemini-2.5-Flash, GPT-4o, and HAMSTER, with error bars indicating 95% confidence interval
(CI). Right: Example qualitative results showing predicted visual traces overlaid on robot camera views.

Evaluation Results. In simulation, fine-tuned MolmoAct-7B-D-Pretrain achieves 72.1% on the variant
aggregation tasks as shown in Table 1, outperforming all baselines and exceeding the second-best model,
RT-2-X, by 7.8%. The performance difference between variant aggregation and visual matching is less than 1%,
highlighting MolmoAct’s robustness to visual and distributional shifts. In the real world, MolmoAct-7B-D
consistently surpasses all baselines across all generalization axes, achieving a 23.3% average improvement in
task progression over π0-FAST as shown in Figure 6a.

5.4 Effect of theMolmoAct Dataset onMolmoAct Performance
Evaluation Setups and Baselines. To assess the effectiveness of mid-training with the MolmoAct Dataset,
we conducted real-world experiments on three curated tasks that go beyond simple pick-and-place: close_-
lid, rotate_pot, and pour_tea. For each task, we collected 50 demonstrations and trained four models:
MolmoAct-7B-D, MolmoAct-7B-D without mid-training, π0-FAST, and OpenVLA. Each model was then
evaluated over 10 trials per task. Task details are shown in subsection D.5.

Evaluation Results. Based on the real-world ablation studies shown in Figure 6b, MolmoAct-7B-D
outperforms its counterpart without mid-training by an average margin of 5.5% across the three tasks,
demonstrating that mid-training on the MolmoAct Dataset yields a consistent performance boost of
around 5%. Even without mid-training, MolmoAct-7B-D-Pretrain surpasses π0-FAST and OpenVLA by
14.8% and 10.9%, respectively.

5.5 Instruction Following ofMolmoAct
We evaluated MolmoAct’s ability to follow natural language instructions in two settings: (i) executing
tasks with open-ended commands in simulation, and (ii) generating visual traces conditioned on language
prompts. For the first one, we curated five manipulation scenarios in the SimplerEnv environment using a
Google Robot, each involving novel out-of-distribution objects. Ten participants provided 29 open-ended
instructions (e.g., “Put the redbull into the bowl."). We compared MolmoAct-7B-D-Pretrain to SpatialVLA
and OpenVLA, both pre-trained on the OXE dataset. For each instruction, the models generated rollouts,
which were evaluated in a head-to-head arena-style web interface. Human annotators (n=100) selected which
rollout best matched the instruction. We collected over 1,500 votes, which were converted into Elo ratings
(see Figure 8). For visual trace generation, 10 participants wrote 87 language prompts for 30 internet-sourced
images depicting tabletop and mobile manipulation scenarios. MolmoAct-7B-D-Pretrain was evaluated
against Gemini-2.5-Flash, GPT-4o, and HAMSTER—a VLM fine-tuned for trace generation. Participants voted
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Figure8 LanguageInstructionEvaluation. Left: Elo ratings for three models based on human votes in a head-to-head
instruction-following evaluation. Right: Qualitative comparison of execution traces for the open-ended instruction
“Put the redbull into the bowl." MolmoAct aligns more closely with the intended instruction than other models.

Figure 9 Steerability evaluationwith open instructions and visual traces. Left: Success rates for different steering
modes, showing that MolmoAct with visual trace steering achieves the highest success rate (0.75), outperforming its
open-instruction variant and π0-FAST. Right: Example of the "Pick up the bowl" task: the model-predicted trajectory
(yellow) is adjusted via a user-provided steering trajectory (cyan), resulting in the corrected task completion.

in a similar blind arena interface, resulting in over 1,000 votes. Details with our curated manipulation scenes
and instructions provided by participants are shown in subsection D.6.

EvaluationResults. MolmoAct-7B-D-Pretrain achieved the highest Elo rating in the simulation instruction-
following task, outperforming SpatialVLA by 109 points and OpenVLA by an even larger margin. Pairwise win
rates also show that MolmoAct-7B-D-Pretrain winning over SpatialVLA in 58% of comparisons and over
OpenVLA in 81%. A sample rollout comparison for the instruction “Put the redbull into the bowl." is shown on
the right in Figure 8. In the visual trace task, MolmoAct-7B-D-Pretrain again outperformed all baselines,
achieving significantly higher Elo scores with non-overlapping 95% confidence intervals, demonstrating strong
language-grounded generalization in both action execution and trace generation as shown in Figure 7.

5.6 Steerability of MolmoAct
Evaluation Setups and Baselines. We aim to evaluate MolmoAct’s ability to steer robot actions, particularly
when initial language instructions are ambiguous. Specifically, we investigate the effectiveness of different
interaction mediums in guiding MolmoAct toward user-intended targets during task execution. For this
purpose, we set up a pick_up_bowl task, post-training MolmoAct-7B-D and the baseline model (π0-FAST)
with 100 collected demonstrations, each annotated with two distinct language instructions: one specifying the
clean bowl and the other the dirty bowl, as depicted in Figure 9. During evaluation, we first provide ambiguous
instructions such as "pick up (the) bowl," prompting MolmoAct-7B-D to predict an initial trajectory
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towards one of the bowls. Subsequently, we test two steering methods: visual trace sketches to visually instruct
the model toward the alternative bowl, and open-ended natural language instructions provided interactively
by participants (N=10) that are different from the ground-truth instruction. For comparison, we also attempt
to steer the actions of π0-FAST by changing language instructions at test-time. Each model is evaluated in 15
trials, and the performance is evaluated according to the progression of the task. For more details about the
setting, please refer to subsection D.7.

Evaluation Results. Based on our experiments, we observed that MolmoAct-7B-D is notably more steerable
via visual trace inputs, achieving a success rate of 75%. Additionally, steering using visual traces significantly
outperforms steering via open-ended natural language instructions by a margin of 33%. Lastly, we demonstrate
that MolmoAct-7B-D exhibits superior instruction-following capabilities compared to the baseline model,
π0-FAST. Specifically, when steering robot actions using open-ended language instructions, MolmoAct
surpasses π0-FAST by a substantial margin of 29%, highlighting its enhanced instruction-following capabilities
to user commands.

6 RelatedWork

6.1 Generalist robotmanipulation policies
Recent advances in robotic manipulation have shifted from training narrow, single-task specialists to learning
from large, diverse datasets spanning many scenes, tasks, and embodiments(Berscheid et al., 2019; Brohan
et al., 2022; Dasari et al., 2019; Ebert et al., 2021; Fang et al., 2023; Jang et al., 2022; Khazatsky et al., 2024;
Mandlekar et al., 2018; Walke et al., 2023; Shafiullah et al., 2023). This shift has enabled policies that not
only excel within their training distribution but also generalize to out-of-distribution scenes, environments,
language instructions, and novel objects (Pumacay et al., 2024; Xie et al., 2024; Lin et al., 2024). Much of
this progress has been fueled by Large Language Models (LLMs) (O’Neill et al., 2024; Achiam et al., 2023;
Groeneveld et al., 2024; Touvron et al., 2023) and Vision-Language Models (VLMs) Team et al. (2024a); Liu
et al. (2023b); Deitke et al. (2024), giving rise to the paradigm of Vision-Language-Action models (VLAs)
(Black et al.; Brohan et al., 2022; Zheng et al., 2024; Zhao et al., 2025; Team et al., 2025; Li et al., 2024a;
Qu et al., 2025; Kim et al., 2024). VLAs pretrain a VLM backbone on large-scale web data to capture
rich semantic world knowledge, then fine-tune it for downstream robot control. While most share similar
backbones, they differ in their action heads—employing flow matching(Wen et al., 2025b), diffusion(Wen
et al., 2025a; Liu et al., 2024c), or advanced action tokenization schemes(Pertsch et al., 2025). While some
adopt hierarchical designs, where a robotics-focused VLM (Bjorck et al., 2025; Li et al., 2025; Shentu et al.,
2024) outputs intermediate representations for pre-trained, task-specific policies to improve generalization.
However, a major bottleneck for these models is their heavy reliance on large amounts of robotics-specific
data, often collected via tele-operation. In contrast, MolmoAct aims to leverage reasoning in space to train
an action reasoning model that achieves competitive or superior performance with only a fraction of the data
required by existing methods.

6.2 Robot reasoning and planningwith language
In recent years, numerous works have demonstrated that augmenting end-to-end robotic policies with high-level
reasoning—either by integrating LLMs or VLMs directly into robotic systems, or by incorporating their
reasoning outputs into policies—can substantially improve performance on long-horizon tasks and enhance
generalization (Ahn et al., 2022; Huang et al., 2023; Bharadhwaj et al., 2024; Fang et al., 2025; Liu et al.,
2024b; Shi et al., 2024; Wang et al., 2024b; Gu et al., 2023). An alternative line of research seeks to decouple
perception and reasoning from low-level control, assigning VLMs the role of performing semantic prediction
or generating intermediate representations such as task plans, scene graphs, or spatial layouts (Duan et al.,
2024b; Liu et al., 2024a; Li et al., 2025; Huang et al., 2024; Liang et al., 2022; Singh et al., 2022; Duan et al.,
2024a). Execution is then handled by a separate low-level policy or control module that interprets these
high-level outputs and converts them into robot actions.

Action prediction from MolmoAct can be steered through both natural language and an interactive visual
reasoning-trace sketch interface. This dual-modality control improves explainability and enables more effective
diagnosis of model behavior. While prior methods such as RT-Trajectory (Gu et al., 2023), HAMSTER (Li

16



et al., 2025), and inference-time policy steering (Wang et al., 2024b) also offer forms of policy steerability,
they differ in important ways. RT-Trajectory and inference-time policy steering are tightly coupled to the
architectural constraints and training regimes of robotics transformers or diffusion models, and therefore
lack the broader semantic generalization provided by pre-training on a VLM backbone. HAMSTER enables
language-conditioned trajectory steering but outputs only 2D trajectories by the high-level VLM, with
execution handled by a low-level policy trained on a fixed set of tasks. In contrast, MolmoAct generalizes its
steering to novel spatial configurations, previously unseen objects, and even ambiguous language instructions
for a diverse set of tasks, offering a more versatile and semantically grounded control interface with users.

6.3 Embodied reasoning for roboticmanipulation
Chain-of-thought (CoT) prompting (Wei et al., 2022) has significantly improved the multi-step reasoning
capabilities of LLMs across domains such as mathematics, programming, and question answering. This
idea has also been extended to the visual domain through multimodal CoT (Bigverdi et al., 2025; Zhang
et al., 2023), where visual information is processed iteratively and reasoned over in conjunction with images.
Motivated by these advances, recent works in robotics have explored extending reasoning capabilities to
embodied tasks within vision-language-action (VLA) models.

ECoT (Zawalski et al., 2024) synthesizes intermediate subgoals via prompting and uses supervised fine-tuning
to teach VLAs to reason before acting. CoT-VLA (Zhao et al., 2025) replaces linguistic CoT with visual
subgoal frames generated prior to action prediction. RAD (Clark et al., 2025) which leverages action-free
human video to curate language-based reasoning to guide low-level actions. ThinkAct (Huang et al., 2025)
leverages action-aligned reinforcement learning and visual latent planning to connect embodied reasoning
with real-world action prediction in VLAs. Most similar to our reasoning-in-space approach are Emma-X
(Sun et al., 2024), which autoregressively fine-tunes OpenVLA with reasoning data formatted as subtasks,
predicted future gripper states in 2D, and 3D spatial movement coordinates or (Yang et al., 2025a), which
focuses on different forms of mid-level representations, including a trajectory trace with depth awareness,
however they only evaluated for diffusion policy on a small data region.

However, unlike ECoT, CoT-VLA, RAD, and ThinkAct—whose reasoning is represented as latent embeddings,
generated sub-goals, or textual descriptions that are difficult to ground in the real world and lack the precision
required for manipulation—MolmoAct grounds every step of its reasoning chain directly in the scene.
Compared to Emma-X, which reasons primarily over predicted gripper positions without leveraging the full 3D
scene context, MolmoAct performs reasoning in space, where each step can be decoded and visualized both
on the image plane and within the 3D environment. This explicit spatial grounding improves explainability
and enhances action prediction within a chain-of-thought prompting framework.

7 Conclusion
We introduced MolmoAct, a family of fully open action reasoning models that integrate perception, planning,
and control by reasoning in space. By combining depth perception tokens, visual reasoning traces, and
action prediction, MolmoAct produces explainable, spatially coherent behaviors. The behaviors can be
executed directly, or steered via trajectory editing. Our evaluations across simulation and real-world settings
demonstrate that MolmoAct consistently outperforms strong vision–language–action baselines, adapts
efficiently to novel tasks and embodiments through lightweight fine-tuning, and generalizes robustly to
out-of-distribution conditions. We release all model weights, code, and data, including the MolmoAct
Dataset, to enable reproducibility and foster community-driven research toward building foundation models
that transform perception into purposeful action through structured reasoning.
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Appendix
The appendix includes the following sections:

• §A - Model Details
• §B - Training Details
• §C - Action Vocabulary
• §D - Evaluation Details
• §E - Data Details
• §F - Dataset Examples
• §G - Limitations and Potential Solutions

A Model Details
This section summarizes the MolmoAct model architecture, which inherits Molmo with slight modification.
The design combines a pre-processor for multi-scale cropping and optionally image padding, a ViT image
encoder, a vision–language connector, and a LLM.

A.1 BackboneOverview
MolmoAct has the following parts:

1. Pre-processor: converts each input image into one low-resolution crop and several high-resolution crops.

2. ViT Image Encoder: encodes each crop independently into per-patch features.

3. Vision–languageConnector: pools and projects patch features into the LLM embedding space.

4. LLM: autoregressively processes vision and text tokens.

From this template MolmoAct instantiates a family of models by selecting a vision encoder and an LLM while
keeping the training recipe mainly consistent. Vision encoders include OpenAI ViT-L/14 336px CLIP and ViT-
SO400M/14 384px SigLIP2. LLM backbones include fully open OLMo-2-1124-7B and open-weight Qwen2.5-7B.
With the combination of ViT-SO400M/14 384px SigLIP2 with Qwen2.5-7B, we have MolmoAct-7B-D, our
best and demo model. With the combination of OpenAI ViT-L/14 336px CLIP with OLMo-2-1124-7B, we
have MolmoAct-7B-O, our most open model. Note that although OpenAI ViT-L/14 336px CLIP uses
closed data, it can be reproduced from scratch, as shown by MetaCLIP (Xu et al., 2024a).

A.2 Image Encoding andCropping
Most ViTs accept square images at a fixed resolution, which is insufficient for fine-grained details. This
mainly applies to the multimodal web data, as much of the robot data is not high-resolution, and there is
also work (Kim et al., 2024) showing that image resolution doesn’t affect much for robot control. To make
MolmoAct more general, it still inherits the way Molmo addresses the high-resolution problem by tiling each
image with multiple square high-resolution crops plus a resized low-resolution full image. Cropping proceeds
as follows.

Grid Selection and Overlap. A rectangular grid (e.g., 2 × 2, 3 × 1) is chosen so each grid cell matches
the ViT input size. The grid squares are then moved closer together to introduce a fixed overlap margin
(default 4 patches, approximately 56 pixels), which supplies border patches with neighbor context. Features
from overlapping pixels are not forwarded to the connector or LLM, so the resulting tokens exactly tile the
high-resolution image. Although overlap slightly reduces the effective tiled resolution, this can be offset by
using more crops, and empirically improves performance.

Resizing and Padding. For OpenAI CLIP vison encoder, we follow the way Molmo (Deitke et al., 2024) does
to resize and pad the image to keep its original aspect ratio before processing. The scheme is the following.
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The image is upscaled to fit the grid while preserving aspect ratio, choosing the scale that minimizes upscaling;
ties are broken by minimizing the overall size. A maximum number of high-resolution crops is enforced. If
covering the image would exceed this limit, the image is downscaled to fit. In all cases, the image is padded
with black borders so each crop is square and aligned to the grid. The low-resolution crop is produced by
resizing and padding the full image to the ViT’s native resolution. Each crop is encoded independently by the
ViT and connector to produce patch features. A learned embedding indicating the crop’s padding status (no
padding, some padding, or all padding) is added to the patch features so the model can distinguish natural
black regions from artificial padding.

Note that for SigLIP2 vision encoder, we use the standard way to resize all image inputs to a square image
without padding, which follows the original transform in SigLIP2 training.

A.3 Vision–languageConnector
After ViT encoding, Molmo aggregates features in two steps:

1. Layer selection and concatenation: features from the third-to-last (OpenAI CLIP) or fourth-to-last
(SigLIP2) and the tenth-from-last ViT layers are concatenated for each patch; this slightly outperforms
using a single layer as shown by Molmo (Deitke et al., 2024).

2. Attention pooling in 2× 2windows: within each 2× 2 patch window, a multi-headed attention layer pools
the four patches to a single vector, using the mean of the patches as the query. This pooling reduces
sequence length while preserving local spatial structure and outperforms naive concatenation as shown
by Molmo (Deitke et al., 2024).

Pooled features are then mapped to the LLM embedding space with a small MLP.

A.4 Arranging Vision Tokens
Pooled patch features (vision tokens) are serialized left-to-right and top-to-bottom. Tokens from the low-
resolution full image appear first, followed by high-resolution crop tokens arranged in row-major order. Special
tokens mark the start and end of both the low- and high-resolution sequences. Row-end tokens are inserted
between rows to indicate row transitions.

A.5 Multi-image Inputs
Molmo (Deitke et al., 2024) itself doesn’t provide the capability to take in multi-image inputs. We implement
this in a straightforward way: we process all the images to vision tokens in the same way as mentioned above,
then we append index tokens at the beginning of the vision tokens of each image, and we finally concatenate
all images together as the input. The index tokens are just text tokens of "Prefix i", where i stands for the
ith image.

A.6 Full Hyperparameters
The full hyperparameters of MolmoAct architecture are shown in Table 3. Note that for LoRA implementa-
tion, adapters are applied to all linear layers in the model.
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B Training Details

B.1 Implementation
Our training implementation mainly follows Molmo. We train in PyTorch using Fully Sharded Data Parallel
(FSDP), and use PyTorch’s Scaled Dot-Product Attention (SDPA) attention implementation. For numeric
precision, we enable Automatic Mixed Precision (AMP) with bfloat16 for most operations. As an exception,
we compute layer normalization and Rotary Position Embeddings (RoPE) in fp32.

With FSDP, each GPU forms a local mini-batch, computes gradients, and then we average the gradients across
devices. When normalizing the loss on each device, we divide the device’s total loss by the global average
number of loss-tokens per example across all devices, rather than by the device-local count. This avoids
a subtle bias that can arise when examples with up-weighting also contain fewer loss-tokens (e.g., shorter
responses) and happen to co-occur on devices with smaller token counts. Using the global average corrects
this mismatch and is especially important when the global batch is much larger than any single device batch.

For parameter-efficient fine-tuning, we do not shard LoRA adapter parameters under FSDP. Instead, each
GPU keeps a full copy of the LoRA parameters, and we register a gradient hook on those tensors to synchronize
their gradients across ranks before the optimizer step. Because LoRA adds only a small fraction of the total
parameters, this replication has negligible memory and communication overhead while simplifying the training
setup and avoiding sharding edge cases for the adapters.

Batches mix examples from multiple tasks. We cap the sequence length at 2304 tokens for both pre-training
and fine-tuning, truncating only when necessary (e.g., heavily annotated synthetic data or rare outliers).
Training is stable under this recipe—without loss spikes or NaNs—which we attribute in part to initializing
from pre-trained models.

To enable the model to learn to understand and output depth perception tokens, we follow the training
scheme of LLaVA-AURORA (Bigverdi et al., 2025) by unfreezing the tokenizer embedding and lm head. For
MolmoAct-7B-D, which uses Qwen2.5-7B, we simply replace the first 130 padding tokens with the depth
perception tokens {⟨DEPTH_START⟩, ⟨DEPTH_END⟩} ∪ {⟨DEPTH_k⟩}128k=1. However, for MolmoAct-
7B-O, which uses Olmo2-7B, since it has less than 130 padding tokens, we first pad the tokenizer and lm
head to its next multiple of 512, then replace the first 130 tokens with our depth perception tokens in the
same way as MolmoAct-7B-D.

All of our collected data used for the mid- and post-training stages is recorded at 640×480 px, which triggers
the high-resolution cropping procedure described in Appendix A. By contrast, the OXE robot data used
for pre-training has lower resolution, so no high-res crop is applied. To match OXE during pre-training, we
downscale our collected images from 640×480 to 320×240 px while preserving the original aspect ratio. This
alignment also reduces the number of vision tokens and accelerates training.

Full training hyperparameters and information are shown in Table 4. Note that for post-training, we train
the model until it fully converges, which is determined by its training loss and evaluation performance.
Therefore, training steps largely vary across different tasks and scenarios. We will show the training details
for post-training in different tasks in later sections.

B.2 GPUCluster
MolmoAct was trained on Jupiter, an Ai2 GPU cluster in Austin, Texas. MolmoAct workloads were
scheduled using Beaker (Guerquin, 2022), a custom workload management system. Jupiter comprises 128
GPU nodes and is operated by Cirrascale Cloud Services1.

Compute Jupiter provides 1,024 NVIDIA H100 GPUs (80GB HBM3, 700W) across 128 servers. Each server
has 2,×,Intel Xeon Platinum8468 CPUs, 2TB DDR5 system memory, and 18 TB local NVMe storage.

1cirrascale.com
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Storage The servers are connected over an 800Gbps local network to a WEKA high-performance storage
cluster2. The storage system provides 1PB of NVMe SSD across 11 storage servers and 5PB of HDD across
12 hosts. Each Jupiter server has two bonded 25Gbps Mellanox Ethernet NICs (50Gbps per host). In
benchmarks, we achieved 761Gbps aggregate read/write throughput using 64 client machines.

Interconnect Cross-node GPU communication uses RDMA over InfiniBand on a two-tier Rail-Optimized,
balanced, full-bisection network (Wang et al., 2023). Each server is equipped with eight 400Gbps InfiniBand
adapters (3.2Tbps peak per host), supporting concurrent distributed jobs without topological scheduling.

Cooling The servers are racked in Dynamic Density Cabinets3. Each cabinet houses five servers with
dedicated cooling and power. Air circulates in a closed loop through an overhead plenum where it is cooled
via heat transfer to water, enabling a datacenter PUE of 1.2. Under heavy utilization, H100 temperatures
peak around 75

◦
C, with typical averages between 60

◦
C and 65

◦
C.

Image Encoder V/L Connector LLM
Parameter 7B-D 7B-O 7B-D 7B-O 7B-D 7B-O

Params 383M 278M 121M 75M 7.6B 7.3B

Dim 1152 1024 — — 3584 4096

MLP Dim 4304 4096 37888 22016 37888 22016

Activation GELU GELU SwiGLU SwiGLU SwiGLU SwiGLU

Heads 16 16 16 16 28 32

KV Heads 16 16 — — 4 32

Layers 27 23 — — 28 32

Image Size 384×384 336×336 — — — —

Patch Size 14 14 — — — —

Pool Size — — 2×2 2×2 — —

Pool Dim — — 1152 1024 — —

Pool Heads — — 16 16 — —

Theta — — — — 1M 0.5M

Dropout 0.0 0.0 0.0 0.0 0.1 0.1

Table 3 MolmoAct’s Architecture Hyperparameters. We specify all hyperparameter information for the different
model architectures for MolmoAct-7B-D and MolmoAct-7B-O.

2weka.io
3cirrascale.com/products-and-services/cabinet-technologies

27

https://www.weka.io/
https://www.cirrascale.com/products-and-services/cabinet-technologies


Pre-train Mid-train Post-train
Parameter 7B-D 7B-O 7B-D 7B-O 7B-D

Warm-up ViT 200 200 200 200 200

Warm-up Conn. 200 200 200 200 200

Warm-up LLM 200 200 200 200 200

LR ViT 1×10−5 1×10−5 5×10−6 5×10−6 5×10−4

LR Conn. 1×10−5 1×10−5 5×10−6 5×10−6 5×10−4

LR LLM 2×10−5 2×10−5 1×10−5 1×10−5 5×10−4

Cosine Decay 10% 10% 10% 10% 10%

Eps. 10
−6

10
−6

10
−6

10
−6

10
−6

Betas 0.9/0.95 0.9/0.95 0.9/0.95 0.9/0.95 0.9/0.95

LoRA Rank — — — — 32

LoRA Alpha — — — — 16

LoRA Dropout — — — — 0

LoRA Bias — — — — None

Multi-image Input No No Yes Yes Yes

Steps 100k 100k 50k 50k Varies

Global Batch Size 512 512 256 256 64 (real) or
128 (sim)

GPUs (H100s) 256 256 128 128 32 (real) or
64 (sim)

Time (Hours) 38 32 18 15 Varies

GPU Hours 9728 8192 2304 1920 Varies

Table 4 MolmoAct’s Training Hyperparameters. We specify all hyperparameter information for different training
schemes for MolmoAct-7B-D and MolmoAct-7B-O. Note that for MolmoAct-7B-D-Pretrain, we train the
model with 150K steps, but it reaches better performance at 100K steps.
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C Action Tokenization
We provide our full action vocabulary in Table 5 and Table 6, which show the mapping from discrete bin
index to its corresponding action token. Note that the string \u00e2\u00bd\u0139 is a sequence of Unicode
escape codes. Each \uXXXX gives one code point in hexadecimal. When decoded, those code points become
the actual characters, concatenated in order.

Table 5 Action token vocabulary: Mapping from discrete bin index (0 to 127) to the actual token string.

Bin | Action Token Bin | Action Token Bin | Action Token Bin | Action Token
0 \u00e2\u00bd\u0139 1 \u00e2\u00ba\u0141 2 \u00e2\u012f\u00a8 3 \u00e1\u0137\u00b7

4 \u00ef\u00a8\u012c 5 \u00e3\u0129\u00bd 6 \u00e3\u0129\u00ba 7 \u00e2\u00bd\u00ba

8 \u00e2\u0134\u0142 9 \u00e3\u012c\u00a5 10 \u00e2\u00bc\u0143 11 \u00e2\u00b0\u00a1

12 \u00e2\u00b0\u0142 13 \u00e2\u00b0\u0141 14 \u00e2\u00b0\u0133 15 \u00e2\u00b0\u0132

16 \u00e2\u00b0\u0130 17 \u00e2\u00b0\u012f 18 \u00e2\u00b0\u0124 19 \u00e2\u0134\u00a1

20 \u00e2\u0134\u0141 21 \u00e2\u0122\u00b4 22 \u00e2\u0136\u00b2 23 \u00f0\u0135\u0131\u00a7

24 \u00ef\u00a8\u00b7 25 \u00e3\u012a\u00bc 26 \u00e2\u0140\u00b6 27 \u00e2\u0138\u00a4

28 \u00e2\u0129\u0140 29 \u00e2\u0128\u00b7 30 \u00e2\u0128\u00a4 31 \u00e1\u00a5\u00a4

32 \u00e1\u00a5\u0136 33 \u00e1\u0127\u00a3 34 \u00e0\u00ba\u0124 35 \u00ef\u00b1\u012c

36 \u00ea\u00a6\u0136 37 \u00e3\u012b\u00ab 38 \u00e3\u0127\u0138 39 \u00e3\u0126\u00a7

40 \u00e3\u0126\u0135 41 \u00e3\u0126\u012f 42 \u00e2\u0141\u00b0 43 \u00e2\u013f\u00ab

44 \u00e2\u013f\u00aa 45 \u00e2\u013d\u0131 46 \u00e2\u013d\u0129 47 \u00e2\u0137\u012c

48 \u00e2\u0136\u00bd 49 \u00e1\u00b8\u012c 50 \u00e1\u00a4\u012c 51 \u00e1\u013d\u0132

52 \u00e1\u013d\u0127 53 \u00e1\u013c\u012e 54 \u00e1\u013b\u00b3 55 \u00e0\u0142\u012e

56 \u00c6\u012a 57 \u00f0\u0141\u0127\u0135 58 \u00f0\u0141\u0127\u0127 59 \u00f0\u013f\u013c\u0131

60 \u00f0\u013f\u013c\u0126 61 \u00f0\u013f\u013b\u00bf 62 \u00f0\u013f\u013b\u00bd 63 \u00f0\u013f\u013b\u00bc

64 \u00f0\u013f\u013b\u00ba 65 \u00f0\u013f\u013b\u00b8 66 \u00f0\u013f\u013b\u00b0 67 \u00f0\u013f\u013b\u00ae

68 \u00f0\u013f\u013a\u013c 69 \u00f0\u013f\u013a\u0132 70 \u00f0\u013f\u013a\u0131 71 \u00f0\u013f\u0138\u0138

72 \u00f0\u013f\u0137\u00b1 73 \u00f0\u013f\u0137\u00a1 74 \u00f0\u013f\u0137\u012f 75 \u00f0\u013f\u0136\u0135

76 \u00f0\u013f\u0135\u00be 77 \u00f0\u013f\u0135\u00b9 78 \u00f0\u013f\u0135\u00ac 79 \u00f0\u013f\u0135\u0137

80 \u00f0\u013f\u0133\u00b3 81 \u00f0\u0138\u00a5\u00a8 82 \u00f0\u0138\u00a5 83 \u00f0\u0132\u00b1\u0127

84 \u00f0\u0132\u0143\u012c 85 \u00ef\u0143\u00b2 86 \u00ef\u00a5\u00b1 87 \u00ef\u00a5\u0142

88 \u00ef\u00a4\u00a6 89 \u00ed\u0135\u00bb 90 \u00ed\u0135\u00b6 91 \u00ed\u0135\u00ae

92 \u00ed\u0135\u00ac 93 \u00ed\u012d\u012f 94 \u00ec\u00bc\u0129 95 \u00ec\u0128\u012c

96 \u00eb\u00a1\u00bc 97 \u00ea\u00b3\u0124 98 \u00ea\u00b2\u00b4 99 \u00ea\u00b2\u013b

100 \u00e4\u00b6\u00b5 101 \u00e3\u012a\u00aa 102 \u00e2\u00b2\u00a2 103 \u00e2\u013c\u00a3

104 \u00e2\u013a\u00b5 105 \u00e2\u0136\u0140 106 \u00e1\u00b8\u00bb 107 \u00e1\u00b8\u0125

108 \u00e1\u00a8\u0123 109 \u00e1\u0142\u0126 110 \u00e1\u0136\u012c 111 \u00e1\u0136\u0127

112 \u00e1\u0134\u012e 113 \u00e1\u0132\u00a7 114 \u00e1\u012e\u0136 115 \u00e1\u012e\u0126

116 \u00e1\u012d\u00a9 117 \u00e1\u012c\u0134 118 \u00e1\u012b\u00a8 119 \u00e1\u0123\u00bc

120 \u00e1\u0122\u0131 121 \u00e0\u00b2\u0141 122 \u00e0\u00b0\u00b5 123 \u00e0\u00b0\u00b3

124 \u00e0\u00ac\u012b 125 \u00e0\u00a5\u00b1 126 \u00e0\u00a4\u0133 127 \u00dd\u00a5
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Table 6 Action token vocabulary: Mapping from discrete bin index (128 to 255) to the actual token string.

Bin | Action Token Bin | Action Token Bin | Action Token Bin | Action Token
128 \u00dd\u0135 129 \u00d4\u0133 130 \u00d4\u012a 131 \u00ca\u00b6

132 \u00c8\u00b2 133 \u00f0\u0141\u0131\u0129 134 \u00f0\u0141\u0127\u00a2 135 \u00f0\u013f\u013c\u0123

136 \u00f0\u013f\u013b\u013e 137 \u00f0\u013f\u0135\u00b0 138 \u00f0\u013f\u0135\u0140 139 \u00f0\u0132\u00b0\u00bc

140 \u00f0\u0132\u0143\u0135 141 \u00f0\u0132\u00a4\u0136 142 \u00ef\u00a8\u0124 143 \u00ef\u00a7\u00a9

144 \u00ef\u00a6\u0125 145 \u00ef\u00a4\u0128 146 \u00ef\u00a4\u0127 147 \u00ed\u013d\u013e

148 \u00ed\u0137\u00b1 149 \u00ed\u0135\u0143 150 \u00ed\u0135\u0138 151 \u00ed\u0125\u013b

152 \u00ed\u0123\u00bb 153 \u00ec\u00bb\u0123 154 \u00ec\u00b3\u0127 155 \u00ec\u013e\u00be

156 \u00ec\u013d\u00a2 157 \u00eb\u00b1\u0132 158 \u00eb\u00b1\u012d 159 \u00eb\u00a7\u0142

160 \u00eb\u00a4\u0124 161 \u00eb\u0138\u00b0 162 \u00e2\u00a4\u00a6 163 \u00e2\u00a1\u00a2

164 \u00e2\u013c\u0139 165 \u00e2\u013c\u0124 166 \u00e2\u013b\u013b 167 \u00e1\u00bf\u013c

168 \u00e1\u00bf\u0132 169 \u00e1\u00be\u0136 170 \u00e1\u00b6\u0131 171 \u00e1\u00a9\u012d

172 \u00e1\u00a8\u00b8 173 \u00e1\u0142\u00ac 174 \u00e1\u0142\u0124 175 \u00e1\u0136\u0143

176 \u00e1\u012e\u00bd 177 \u00e1\u012e\u0125 178 \u00e1\u012b\u0132 179 \u00e1\u012a\u00be

180 \u00e1\u012a\u00a8 181 \u00e1\u012a\u012c 182 \u00e1\u0128\u00ba 183 \u00e0\u00bd\u0127

184 \u00e0\u00b4\u00b4 185 \u00d5\u0125 186 \u00ca\u0135 187 \u00c9\u013a

188 \u00f0\u0141\u0137\u012d 189 \u00f0\u0141\u0128\u0134 190 \u00f0\u0141\u0127\u00b1 191 \u00ef\u00ae\u0131

192 \u00ed\u0137\u00ae 193 \u00ed\u012c\u0143 194 \u00ec\u00a5\u012b 195 \u00ec\u0142\u00b0

196 \u00ec\u0141\u013b 197 \u00ec\u013f\u00bf 198 \u00ec\u013f\u00a9 199 \u00ec\u0139\u00a4

200 \u00ec\u0131\u00b1 201 \u00ec\u012d\u00b2 202 \u00ec\u012b\u00a1 203 \u00ec\u0126\u0132

204 \u00eb\u00bc\u013f 205 \u00eb\u00bb\u0127 206 \u00eb\u00af\u0133 207 \u00eb\u00a1\u0133

208 \u00eb\u0139\u012f 209 \u00eb\u0136\u012b 210 \u00ea\u00b8\u0133 211 \u00ea\u013b\u012d

212 \u00e3\u00b3\u00ac 213 \u00e2\u013d\u00a4 214 \u00e2\u013c\u00a7 215 \u00e2\u0126\u00ac

216 \u00e1\u00bd\u013f 217 \u00e1\u00bc\u00ae 218 \u00e1\u00ba\u0122 219 \u00e1\u00b8\u00b0

220 \u00e1\u00a1\u012e 221 \u00da\u0130 222 \u00d1\u00a8 223 \u00f0\u0141\u0139\u0123

224 \u00f0\u0141\u0138\u00b6 225 \u00f0\u0141\u0138\u0133 226 \u00f0\u0141\u0138\u0129 227 \u00f0\u0141\u0137\u00b3

228 \u00f0\u0141\u0137\u00a2 229 \u00f0\u0141\u0137\u0142 230 \u00f0\u0141\u0137\u0140 231 \u00f0\u0141\u0137\u013f

232 \u00f0\u0141\u0137\u013e 233 \u00f0\u0141\u0137\u013c 234 \u00f0\u0141\u0137\u0138 235 \u00f0\u0141\u0136\u00a9

236 \u00f0\u0141\u0136\u00a4 237 \u00f0\u0141\u0136\u00a2 238 \u00f0\u0141\u0136\u0135 239 \u00f0\u0141\u0136\u0129

240 \u00f0\u0141\u0136\u0125 241 \u00f0\u0141\u0136\u0124 242 \u00f0\u0141\u0136\u0122 243 \u00f0\u0141\u0135\u00bc

244 \u00f0\u0141\u0135\u00aa 245 \u00f0\u0141\u0135\u0141 246 \u00f0\u0141\u0134\u00ba 247 \u00f0\u0141\u0134\u00b9

248 \u00f0\u0141\u0133\u013f 249 \u00f0\u0141\u0132\u0122 250 \u00f0\u0141\u0131\u00af 251 \u00f0\u0141\u0131\u00a9

252 \u00f0\u0141\u0131\u0134 253 \u00f0\u0141\u0131\u0131 254 \u00f0\u0141\u0130\u00bf 255 \u00f0\u0141\u0130\u0133
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D Evaluation Details

D.1 Evaluation on SimplerEnv (Google Robot)
We evaluate on SimplerEnv Li et al. (2024c) simulation to test MolmoAct’s out-of-the-box performance on
the Google Robot setup. The simulation evaluation consists of a Google Robot arm, front-view camera image
(640 x 480 px, resized to 320 x 240 px for our case), task language instructions, and delta end-effector pose
actions. SimplerEnv evaluation consists of two components – Visual Matching and Variant Aggregation.

D.2 Evaluation on LIBERO
We evaluate on the LIBERO simulation benchmark (Liu et al., 2023a), which consists of a Franka Emika
Panda arm in simulation with demonstrations containing front and wrist view camera images (256 x 256px),
tasks language instructions, and delta end-effector pose actions. We follow prior works (Kim et al., 2024) and
evaluate on the four task suites – LIBERO-Spatial, LIBERO-Object, LIBERO-Goal, and LIBERO-Long –
each with 500 expert demonstration across 10 tasks. Following (Kim et al., 2024), we trained on a modified
dataset which filtered out no-ops actions and unsuccessful demonstrations. Moreover, we set action chunk size
to K = 8 for evaluation on each task suites and execute full chunks before replanning. We report details of
our post-training hyperparameters for LIBERO in Table 7.

LIBERO Task Suite
Parameter Spatial Object Goal Long

Steps 50K 50K 40K 80K

Global Batch Size 128

GPUs (H100s) 64

Time (Hours) 23 23 18 36

GPU Hours 1472 1472 1152 2304

Input Images 1 Third-person + 1 Wrist-mounted

Image Size 256×256 px

DoF 7 (3 Translations + 3 Rotations + 1 Gripper State)

Observation History No (Single-step Inputs)

Use Proprioception No

Action Chunk Size 8 Steps (Predict 8; Execute All 8 Open-loop)

# Trainable Params 97 M LoRA adapter

Image Augmentations import torchvision.transforms as T
transform = T.Compose([

T.RandomResizedCrop(size=(height, width), scale=(0.9, 0.9),
ratio=(width/height, width/height)),

T.Resize((height, width)),
T.ColorJitter(

brightness=0.2,
contrast=(0.8, 1.2),
saturation=(0.8, 1.2),
hue=0.05

),
])

Table 7 MolmoAct’s Post-training Hyperparameters for LIBERO. We specify the hyperparameters for MolmoAct
post-training. Note that we conduct all our post-training experiments on MolmoAct-7B-D, with a fixed learning
rate of 5e-4, LoRA rank of 32, LoRA alpha of 16, LoRA dropout of 0, and no LoRA bias. Note that for LIBERO-Goal,
we train the model with 50K steps, but it reaches better performance at 40K steps.

D.3 Evaluation on Real-world Post-training
To evaluate MolmoAct ’s efficiency in fine-tuning, we curated six tasks: three for a single-arm Franka
setup—put bowl in sink, wipe table, and table bussing—and three for a bimanual Franka setup—set
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table, lift tray, and fold towel. We benchmarked against OpenVLA and π0-FAST by training each
model until convergence. In the single-arm setup, the Franka was mounted on a movable platform to allow
relocation across different positions, whereas the bimanual setup was fixed to a tabletop configuration. For
sensing, we employed an Intel RealSense D405 for the wrist-mounted camera and an Intel RealSense D435 for
the front-facing view. In each efficiency fine-tuning task evaluation, we pre-marked the locations of all task
objects in the scene to ensure that the evaluation conditions matched the distribution of the demonstrations
used for fine-tuning. We defined the task, its description, the corresponding language instruction, and the
task progression metric ratings. Refer to the complete results in Table 15 to 20.

1. Task Name: put_bowl_in_sink
Task Description: The robot picks up the orange bowl next to the sink and place it all the way into the
sink.
Language Description: Put the bowl into the sink.
Task Progression ScoreMetrics: grasp bowl (0.25), move into the sink (0.4), open gripper (0.7), drop bowl
at target location (1).

2. Task Name: wipe_table
Task Description: The robot grasp onto the table cloth, and move across the surface in one direction.
Language Description: Wipe the table.
Task Progression ScoreMetrics: Grasp the towel (0.25), Move in the right direction (0.5), Complete the
wipe (1).

3. Task Name: table_bussing
Task Description: The robot grasp onto the green tea can and place it into the purple bin.
Language Description: Clean the trash into the bin
Task Progression ScoreMetrics: Grasp onto the can (0.25), Lift up the can (0.5), Move to above the bin
(0.75), Drop the can into the bin (1).

4. Task Name: set_table
Task Description: The right arm grasp onto the banana and place it onto the plate, and the left arm grasp
onto the teapot to pour.
Language Description: Set the table
Task Progression ScoreMetrics: Put banana on plate (0.25), Grasp onto the teapot (0.75), Pour the tea
(1).

5. Task Name: lift_tray
Task Description: The left and right arm approaches the box and grasp onto it, and lift up the box
together.
Language Description: Lift up the box
Task Progression ScoreMetrics: Left arm grasp onto the tray (0.3), Right arm grasp onto the tray (0.6),
Both arms lift up the tray (1).

6. Task Name: fold_towel
Task Description: The right arm press down on the centre of the towel, while the left arm grasp onto the
towel to fold.
Language Description: Fold the towel
Task Progression Score Metrics: Grasp onto the towel (0.25), Put the towel over the right location for
folding (0.75), Drop the towel so that it is folded (1).

We report details of MolmoAct’s post-training hyperparameters for this evaluation in Table 10 (single-
arm) and Table 11 (bimanual). For all other baseline models, we follow their official model and training
implementation and use their default configurations. We also make sure that they are all fully converged.
Image examples of each task are shown in Figure 10.

D.4 Evaluation onGeneralization in Real-world
We collected a multi-task set that contains the full permutation of the scene: put_green_can_in_yellow_-
plate (put the green can into the yellow plate), put_green_can_in_blue_plate (put the green can into the
blue plate), put_red_cup_in_yellow_plate (put the red cup into the yellow plate), and put_red_cup_in_-
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blue_plate (put the red cup into the blue plate), and put_banana_in_yellow_plate (put the banana into the
yellow plate). put_banana_in_blue_plate (put the banana into the blue plate). And all models are trained
on all tasks under a multi-task setting.

We evaluated generalization across four perturbations and one in-distribution setting on three tasks drawn
from the previous multi-task set: put_green_can_in_yellow_plate (put the green can into the yellow plate),
put_red_cup_in_yellow_plate (put the red cup into the yellow plate), and put_banana_in_blue_plate
(put the banana into the blue plate). The perturbations were: (1) Language variation – modified instructions
to put the green tea into the yellow plate, put the fruit into the blue plate, and put the red cylinder into the
yellow plate; (2) Spatial variation – altered the positions of objects in each task; (3) Distractors – added
unrelated distractor objects to the scene; and (4) Novel objects – replaced the green can with a sponge, the
red cup with a coke can, and the banana with a bowl.

• Task Name: put_<object>_in_(yellow/blue)_plate
Task Description: The robot first pickup the <object>, then put it into the yellow/blue plate.
Language Description: Put the <object> into the yellow/blue plate
Task Progression ScoreMetrics: Move towards the correct <object> (0.25). Pick up the correct <object>
(0.5). Move towards the correct plate (0.75). Put the correct <object> into the correct plate (1).

We report details of MolmoAct’s post-training hyperparameters for this evaluation in Table 12. For all other
baseline models, we follow their official model and training implementation and use their default configurations.
We also make sure that they are all fully converged. The full details of this evaluation are listed in Table 21.

D.5 Evaluation on the Effect of MolmoAct Dataset for MolmoActMid-training
To evaluate the effectiveness of mid-training with the MolmoAct Dataset, we curated three real-world
tasks: close_lid, rotate_pot, and pour_tea. For each task, we collected 50 demonstrations and pre-marked
object locations to ensure repeatability in evaluating MolmoAct, MolmoAct without the MolmoAct
Dataset, OpenVLA, and π0-FAST. We conducted 10 evaluation trials per task for each model. Refer to the
complete results in Table 22

1. Task Name: close_lid
Task Description: The robot goes to the back of the lid, closes its gripper and push the lid to close.
Language Description: Close the lid
Task Progression ScoreMetrics: Move the lid towards the closing direction (0.5). Close the lid (1).

2. Task Name: rotate_pot
Task Description: The robot goes to a target position to the handle, and rotate it by 90 degree.
Language Description: Rotate the pot
Task Progression ScoreMetrics: Go target position of pot handle (0.3). Rotate the pot by 45 degree (0.6).
Close the 90 degree rotation (1).

3. Task Name: pour_tea
Task Description: The robot grasp onto the teapot handle, and lift it up to above the cup to pour.
Language Description: Pour tea into cup
Task Progression ScoreMetrics: Grasp onto the teapot (0.5). Move the teapot on top of cup (0.8). Pour
tea into cup (1).

We report details of MolmoAct’s post-training hyperparameters for this evaluation in Table 13. For all other
baseline models, we follow their official model and training implementation and use their default configurations.
We also make sure that they are all fully converged. Image examples of each task are shown in Figure 11.

D.6 Evaluation ofMolmoAct on Instruction-following
For the evaluation of language-instruction following, we curated five customized scenes using SimplerEnv
(Li et al., 2024c) and asked participants to provide open-ended prompts for each scene. After filtering, we
obtained 29 prompts in total, which were executed by MolmoAct, OpenVLA, and SpatialVLA for 200 steps
to generate robot rollouts. These rollouts were then rated by 100 participants in an arena-style interface.
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Images of different scenes are shown in Figure 12, and language prompts are shown in Table 8.

D.7 Evaluation ofMolmoAct on Action Steerability
We curated the task pick_up_bowl, featuring one dirty and one clean bowl. As shown in Figure 9, we built a
web interface that enables users to modify the language instruction or sketch five points on the image for
visual trace steering at test time, which are then passed to the model to generate actions. We evaluate task
progression for this task based on: correct direction of the target bowel (0.5), grasp onto the correct bowl
(0.85), lift up the bowl (1).

Unlike the usual straightforward way of collecting tele-operated real-world demonstrations, where we control
the robot to directly complete the task, we collected half of the number of demonstrations in the regular way
and the other half exploring alternative paths towards the same target conditioned on the language. Thus, in
total, we have 50 demonstrations picking up the dirty bowl, 50 demonstrations picking up the clean bowl, 50
demonstrations picking up the dirty bowl while exploring other paths, and 50 demonstrations picking up the
clean bowl while exploring other paths. We believe that this helps the model to learn more about how visual
traces correlate with physical actions.

During test time, we collected open-ended instructions from 10 participants to steer the robot through
language. We restrict the variation of the open-ended instructions only to verbs, nouns, or adjectives. The
collected and used instructions are shown in Table 9.

We report details of MolmoAct’s post-training hyperparameters for this evaluation in Table 14. For all other
baseline models, we follow their official model and training implementation and use their default configurations.
We also make sure that they are all fully converged. All results are reported Table 23.

E Data Details

E.1 MolmoAct Dataset
MolmoAct Dataset has two external camera views and a single wrist camera view. In the home environment
data, the camera view configuration may vary between tasks, whereas for the tabletop data it remains the
same for all tasks. For each task, we first rank the two external camera views based on scene clarity (i.e., how
well the robot and objects are visible) and whether the view is occluded by the robot during task execution.
Based on this ranking, we label them as the primary and secondary camera views. All home environment data
is recorded at 15 Hz, while all tabletop data is recorded at 20 Hz. The tabletop data additionally includes
extrinsic and intrinsic camera calibration matrices for both external cameras available on . We list details of
the tasks we collected for MolmoAct Dataset in Table 24 and 25.

F Data Examples
This section include randomly selected examples from MolmoAct’s Action Reasoning Data and Multimodal
web data used in pre-training, as well as MolmoAct Dataset used in mid-training, and demonstrations
collected for post-training. Prompts are shown in bold and Visual Reasoning Trace are annotated with a
yellow line.

• Action Reasoning Data - Figure 13
• Auxiliary Visual Reasoning Trace - Figure 14
• Auxiliary Depth Perception Tokens - Figure 15
• Trajectory-conditioned Action Data - Figure 16
• MultimodalWebData - Figure 17
• MolmoAct Dataset (Home Environment) - Figure 18
• MolmoAct Dataset (Tabletop) - Figure 19
• Post-Training Single Arm Franka - Figure 20
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• Post-Training Bimanual Franka - Figure 21
• Post-Training Rainbow - Figure 22

G Limitations and Potential Solutions
While MolmoAct is all quite capable as a general-purpose action reasoning model, it is not without limitations.
In the following sections, we discuss some of these limitations and potential solutions.

Camera Occlusion of End-effector. During post-training, MolmoAct can process multiple camera views
(e.g., front and wrist cameras), but its spatial reasoning primarily relies on the front camera, which typically
provides a full view of the end-effector. This visibility is crucial for accurate visual reasoning trace prediction.
However, if the end-effector is occluded in the front camera’s view, visual trace prediction—and thus overall
performance—can degrade. A potential solution is to use a wide field-of-view camera (e.g., fisheye lens) and
generate visual traces via SLAM, enabling temporal rather than purely spatial reasoning.

Robustness of Steerability via Visual Traces. Robust action steerability relies on two factors: (i) precise yet
diverse 2D visual traces during pre- and mid-training, and (ii) abundant, high-quality post-training data

• Trace Quality and Diversity. For trajectory-conditioned action data, bounding-box–based detectors (e.g.,
Detectron) are problematic: predicted points collapse toward box centers, reducing spatial variation. They
also require task-specific fine-tuning to localize robot grippers and transfer poorly across embodiments. In
contrast, VLM-based point annotations (e.g., Molmo (Deitke et al., 2024), RoboPoint (Yuan et al., 2024))
yield accurate, non-degenerate traces and markedly improve steerability.

• Coverage of Action Compositions. To achieve steerability in real-world settings, post-training data should
span as many action compositions as possible. Practically, this means inducing the robot to explore motion
variants while still completing tasks, so the model learns rich correspondences between image-space traces
and resulting actions.

MolmoAct only learns to directly predict action simply based on the trace-overlaid image. So when we
steer actions with a 2D visual trace, we are not leveraging the capability of MolmoAct to perform action
reasoning in space. Thus, we observe that this form of action steering still cannot enable the model to follow
more complicated tasks. In particular, because the cue is purely 2D, the model lacks an explicit notion of
depth: it often follows the intended path within the image plane (in-plane motion) but exhibits unintended or
imprecise translation along the camera’s depth axis (out-of-plane). We hypothesize this could be mitigated by
conditioning on—or reusing—the model’s predicted depth-perception tokens to lift the trace into 3D, which
we leave for future exploration. Despite these limitations, our scheme demonstrates the feasibility of action
steerability based on pure visual cues, and offers a simple, practical insight that the robotics community can
build upon.

Speed of Action ReasoningModel prediction. Similar to many existing VLAs, our model exhibits a mismatch
between its control inference frequency and the control frequency used during data collection. This gap
may stem from server-to-robot communication latency and the additional time required to predict a larger
number of reasoning tokens. Future work could explore techniques to reduce inference time, as seen in VLM
optimization, or develop smaller parameter models optimized for efficient execution on edge or local devices.

Precision in Depth Perception Token. For depth perception token prediction, we follow (Bigverdi et al.,
2025) and use a fixed set of 100 tokens to represent depth. However, fine-grained manipulation tasks require
higher-resolution depth estimation. Increasing the number of depth perception tokens could enhance spatial
reasoning and improve performance on such tasks.
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Figure 10 Examples of Single-arm and Bimanual Tasks. We list the observation breakdown to show how the robot
performs each task.
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Figure 11 Examples ofMolmoAct Dataset ablation experiments.

Figure 12 Language instruction following. These are the customized scenes curated for open-ended prompting by
users.
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Scene Prompts

Scene 1
• Pick up the green cube
• Pick up the red cube
• Pick up the blue cube
• Put the green cube on the blue cube
• Put the green cube on the red cube
• Put the blue cube onto the red cube
• Put the blue cube onto the green cube
• Put the red cube onto the green cube
• Put the red cube onto the blue cube
• Put the green cube onto the blue cube and then the red cube onto the green cube
• Move the blue cube next to the green cube

Scene 2
• Pick up the apple
• Pick up the spoon
• Put the apple onto the plate
• Put the spoon onto the plate
• Put the spoon next to the plate
• Move the spoon to the right of the apple
• Put the apple onto the plate and move the spoon nearer to the plate
• Put the blue cube onto the green cube
• Put the red cube onto the green cube
• Put the red cube onto the blue cube
• Put the green cube onto the blue cube and then the red cube onto the green cube

Scene 3
• Put the coke can onto the former president’s image
• Put the coke can on the image of Obama
• Move the coke can to the image of Taylor Swift

Scene 4
• Pick up the cup
• Pick up the marker
• Put the marker into the mug
• Pick up the mug by the handle

Scene 5
• Pick up the bowl
• Pick up the Red Bull
• Put the Red Bull onto the plate
• Put the Red Bull in the red bowl

Table 8 Open-ended prompts provided by users grouped by scene for language instruction following.
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# Instruction

1 pick up the orange bowl

2 lift up the dirty bowl

3 pick up the bowl on the left

4 pick up the empty bowl

5 pick up the dirty container

6 pick up the bowl with object inside

7 pick up the left bowl

8 pick up the bowl that is pink

9 pick up the bowl that is pink

10 pick up the bowl further

11 pick up the bowl nearer to the camera

12 pick up the right bowl

13 pick up the bowl without tissue

14 pick up the bowl with tissue

15 pick up the bowl that is dirty

Table 9 Open-ended Language Instructions. These are the collected open-ended instructions from 10 participants,
where they were only allowed to make changes to verbs, nouns, or adjectives from the ground-truth instructions (i.e,
"<verb> the <adj.> <noun.>").

Task Name
Parameter put_bowl_in_sink wipe_table table_bussing

Steps 9K 7K 5K

Global Batch Size 64

GPUs (H100s) 32

Time (Hours) 5 4 3

GPU Hours 160 128 96

Multi-task Training No

Input Images 1 Third-person + 1 Wrist-mounted

Image Size 640×320 px (Resized to 320×240 px)

DoF 7 (3 Translations + 3 Rotations + 1 Gripper State)

Observation History No (Single-step Inputs)

Use Proprioception No

Action Chunk Size 8 Steps (Naive Action Chunking with Close-loop Prediction)

# Trainable Params 97M LoRA adapter

Image Augmentations import torchvision.transforms as T
transform = T.Compose([

T.RandomResizedCrop(size=(height, width), scale=(0.9,
0.9), ratio=(width/height, width/height)),

T.Resize((height, width)),
T.ColorJitter(

brightness=0.2,
contrast=(0.8, 1.2),
saturation=(0.8, 1.2),
hue=0.05

),
])

Table 10 MolmoAct’s Post-training Hyperparameters for In-distribution Single-arm Tasks. We specify the
hyperparameters for MolmoAct post-training. Note that we conduct all our post-training experiments on MolmoAct-
7B-D, with a fixed learning rate of 5e-4, LoRA rank of 32, LoRA alpha of 16, LoRA dropout of 0, and no LoRA bias.
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Task Name
Parameter set_table lift_tray fold_towel

Steps 9K 6K 7K

Global Batch Size 64

GPUs (H100s) 32

Time (Hours) 5 3 4

GPU Hours 160 96 128

Multi-task Training No

Input Images 1 Third-person + 2 Wrist-mounted

Image Size 640×320 px (Resized to 320×240 px)

DoF 14 (6 Translations + 6 Rotations + 2 Gripper States)

Observation History No (Single-step Inputs)

Use Proprioception No

Action Chunk Size 8 Steps (Naive Action Chunking with Close-loop Prediction)

# Trainable Params 97M LoRA adapter

Image Augmentations import torchvision.transforms as T
transform = T.Compose([

T.RandomResizedCrop(size=(height, width), scale=(0.9,
0.9), ratio=(width/height, width/height)),

T.Resize((height, width)),
T.ColorJitter(

brightness=0.2,
contrast=(0.8, 1.2),
saturation=(0.8, 1.2),
hue=0.05

),
])

Table 11 MolmoAct’s Post-training Hyperparameters for In-distribution Bimanual Tasks. We specify the
hyperparameters for MolmoAct post-training. Note that we conduct all our post-training experiments on MolmoAct-
7B-D, with a fixed learning rate of 5e-4, LoRA rank of 32, LoRA alpha of 16, LoRA dropout of 0, and no LoRA bias.
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Task Name
Parameter put_(green_can/red_cup/banana)_in_(yellow/blue)_plate

Steps 44K

Global Batch Size 64

GPUs (H100s) 32

Time (Hours) 23

GPU Hours 736

Multi-task Training Yes

Input Images 1 Third-person + 1 Wrist-mounted

Image Size 640×320 px (Resized to 320×240 px)

DoF 7 (3 Translations + 3 Rotations + 1 Gripper State)

Observation History No (Single-step Inputs)

Use Proprioception No

Action Chunk Size 8 Steps (Naive Action Chunking with Close-loop Prediction)

# Trainable Params 97M LoRA adapter

Image Augmentations import torchvision.transforms as T
transform = T.Compose([

T.RandomResizedCrop(size=(height, width), scale=(0.9,
0.9), ratio=(width/height, width/height)),

T.Resize((height, width)),
T.ColorJitter(

brightness=0.2,
contrast=(0.8, 1.2),
saturation=(0.8, 1.2),
hue=0.05

),
])

Table 12 MolmoAct’s Post-training Hyperparameters for Out-of-distribution Single-arm Tasks. We specify
the hyperparameters for MolmoAct post-training. Note that we conduct all our post-training experiments on
MolmoAct-7B-D, with a fixed learning rate of 5e-4, LoRA rank of 32, LoRA alpha of 16, LoRA dropout of 0, and
no LoRA bias.

41



Task Name
Parameter close_lip rotate_pot pour_tea

Steps 8K 6K 15K

Global Batch Size 64

GPUs (H100s) 32

Time (Hours) 4 3 8

GPU Hours 128 96 256

Multi-task Training No

Input Images 1 Third-person + 1 Wrist-mounted

Image Size 640×320 px (Resized to 320×240 px)

DoF 7 (3 Translations + 3 Rotations + 1 Gripper State)

Observation History No (Single-step Inputs)

Use Proprioception No

Action Chunk Size 8 Steps (Naive Action Chunking with Close-loop Prediction)

# Trainable Params 97M LoRA adapter

Image Augmentations import torchvision.transforms as T
transform = T.Compose([

T.RandomResizedCrop(size=(height, width), scale=(0.9,
0.9), ratio=(width/height, width/height)),

T.Resize((height, width)),
T.ColorJitter(

brightness=0.2,
contrast=(0.8, 1.2),
saturation=(0.8, 1.2),
hue=0.05

),
])

Table 13 MolmoAct’s Post-training Hyperparameters for Evaluation on MolmoAct Dataset. We specify the
hyperparameters for MolmoAct post-training. Note that we conduct all our post-training experiments on MolmoAct-
7B-D, with a fixed learning rate of 5e-4, LoRA rank of 32, LoRA alpha of 16, LoRA dropout of 0, and no LoRA bias.
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Task Name
Parameter pick_up_bowl

Steps 11K

Global Batch Size 64

GPUs (H100s) 32

Time (Hours) 6

GPU Hours 192

Multi-task Training No

Input Images 1 Third-person + 1 Wrist-mounted

Image Size 640×320 px (Resized to 320×240 px)

DoF 7 (3 Translations + 3 Rotations + 1 Gripper State)

Observation History No (Single-step Inputs)

Use Proprioception No

Action Chunk Size 8 Steps (Naive Action Chunking with Close-loop Prediction)

# Trainable Params 97M LoRA adapter

Image Augmentations import torchvision.transforms as T
transform = T.Compose([

T.RandomResizedCrop(size=(height, width), scale=(0.9,
0.9), ratio=(width/height, width/height)),

T.Resize((height, width)),
T.ColorJitter(

brightness=0.2,
contrast=(0.8, 1.2),
saturation=(0.8, 1.2),
hue=0.05

),
])

Table 14 MolmoAct’s Post-trainingHyperparameters for Steerability Evaluation. We specify the hyperparameters
for MolmoAct post-training. Note that we conduct all our post-training experiments on MolmoAct-7B-D, with a
fixed learning rate of 5e-4, LoRA rank of 32, LoRA alpha of 16, LoRA dropout of 0, and no LoRA bias.
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Task Trial MolmoAct π0-FAST OpenVLA

Fold Towel

0 0.25 0.25 0.25

1 1.00 0.50 0.25

2 1.00 0.25 0.25

3 1.00 1.00 0.50

4 1.00 0.25 0.25

5 1.00 0.25 0.25

6 1.00 0.25 1.00

7 1.00 0.25 0.25

8 0.25 0.25 0.25

9 1.00 1.00 0.25

10 1.00 1.00 0.25

11 1.00 1.00 0.25

12 1.00 1.00 0.25

13 0.75 0.25 0.25

14 0.25 0.25 0.25

15 0.25 0.00 0.25

16 1.00 0.25 0.25

17 1.00 1.00 0.25

18 0.25 0.50 0.25

19 0.75 1.00 0.25

20 0.25 0.25 0.25

21 1.00 0.25 0.25

22 1.00 0.25 0.25

23 1.00 0.75 0.25

24 1.00 1.00 1.00

Average 0.80 0.52 0.32

Table 15 Detailed per-trial performance for Fold Towel for Bimanual tasks. Each row shows the task progress score
for a specific trial.
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Task Trial MolmoAct π0-FAST OpenVLA

Lift Tray

0 1.00 1.00 1.00

1 1.00 0.00 1.00

2 1.00 0.60 1.00

3 1.00 1.00 1.00

4 1.00 0.60 1.00

5 1.00 0.00 1.00

6 1.00 1.00 1.00

7 1.00 1.00 1.00

8 1.00 1.00 1.00

9 1.00 1.00 1.00

10 1.00 1.00 1.00

11 1.00 1.00 1.00

12 1.00 1.00 1.00

13 1.00 1.00 1.00

14 1.00 1.00 1.00

15 1.00 0.00 1.00

16 1.00 1.00 1.00

17 1.00 1.00 1.00

18 1.00 0.00 1.00

19 1.00 1.00 1.00

20 1.00 1.00 1.00

21 1.00 0.00 1.00

22 1.00 0.30 1.00

23 1.00 1.00 1.00

24 1.00 1.00 1.00

Average 1.00 0.74 1.00

Table 16 Detailed per-trial performance for Lift Tray for Bimanual tasks. Each row shows the task progress score for
a specific trial.
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Task Trial MolmoAct π0-FAST OpenVLA

Set up Table

0 1.00 0.50 0.25

1 1.00 0.00 0.25

2 0.25 0.25 0.00

3 1.00 0.50 0.00

4 1.00 0.25 0.25

5 1.00 0.25 0.75

6 1.00 0.00 0.25

7 1.00 0.25 0.25

8 0.75 0.00 0.25

9 0.25 0.00 1.00

10 1.00 0.25 0.25

11 0.75 0.25 0.25

12 1.00 0.75 0.25

13 0.75 0.25 0.25

14 1.00 0.25 0.25

15 0.25 0.50 1.00

16 0.00 0.25 0.25

17 1.00 0.25 0.25

18 1.00 0.00 0.25

19 0.25 0.50 0.25

20 1.00 0.00 0.25

21 1.00 0.50 0.00

22 0.50 0.00 0.25

23 0.50 0.00 0.25

24 1.00 0.25 0.25

Average 0.77 0.24 0.30

Table 17 Detailed per-trial performance for Set up Table for Bimanual tasks. Each row shows the task progress score
for a specific trial.
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Task Trial MolmoAct π0-FAST OpenVLA

Put bowl in the sink

0 1.00 1.00 0.25

1 1.00 1.00 0.25

2 1.00 0.00 0.25

3 0.25 1.00 0.25

4 1.00 1.00 0.25

5 1.00 0.40 0.25

6 1.00 1.00 0.25

7 0.25 0.25 0.25

8 1.00 0.25 0.25

9 0.40 0.40 0.25

10 1.00 1.00 0.25

11 0.25 1.00 0.25

12 1.00 1.00 0.25

13 1.00 0.25 0.25

14 1.00 0.25 0.25

15 1.00 0.75 0.25

16 1.00 1.00 0.25

17 1.00 1.00 0.25

18 0.25 0.40 0.25

19 1.00 0.75 0.25

20 0.25 0.25 0.25

21 1.00 1.00 0.25

22 1.00 1.00 0.25

23 1.00 1.00 0.25

24 1.00 0.75 0.25

Average 0.826 0.708 0.25

Table 18 Detailed per-trial performance for Put bowl in the sink for Single arm tasks. Each row shows the task
progress score for a specific trial.

47



Task Trial MolmoAct π0-FAST OpenVLA

Wipe Table

0 1.00 1.00 0.25

1 1.00 0.50 0.25

2 1.00 1.00 0.25

3 1.00 1.00 0.25

4 1.00 1.00 0.25

5 1.00 1.00 0.25

6 1.00 0.25 0.25

7 1.00 1.00 0.25

8 1.00 1.00 0.25

9 1.00 1.00 0.25

10 1.00 1.00 0.25

11 1.00 1.00 0.25

12 1.00 1.00 0.25

13 1.00 0.50 0.25

14 1.00 1.00 0.25

15 1.00 1.00 0.25

16 1.00 1.00 0.25

17 1.00 1.00 0.25

18 1.00 1.00 0.25

19 1.00 1.00 1.00

20 1.00 1.00 0.25

21 1.00 1.00 0.25

22 1.00 1.00 0.25

23 1.00 1.00 0.25

24 1.00 1.00 0.25

Average 1.000 0.817 0.265

Table 19 Detailed per-trial performance for Wipe Table for Single arm tasks. Each row shows the task progress score
for a specific trial.
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Task Trial MolmoAct π0-FAST OpenVLA

Clean the table

0 1.00 1.00 0.50

1 1.00 1.00 1.00

2 0.50 1.00 0.50

3 1.00 0.25 0.50

4 1.00 0.75 0.00

5 0.50 1.00 0.75

6 1.00 0.75 0.50

7 1.00 0.50 0.50

8 1.00 1.00 0.50

9 1.00 1.00 0.75

10 1.00 1.00 0.50

11 1.00 1.00 0.75

12 0.50 0.25 0.25

13 1.00 1.00 0.50

14 0.50 1.00 1.00

15 0.50 1.00 0.75

16 1.00 0.25 0.75

17 1.00 1.00 0.25

18 1.00 1.00 0.25

19 0.50 0.50 0.25

20 0.50 1.00 0.25

21 1.00 1.00 1.00

22 1.00 1.00 0.25

23 1.00 1.00 0.25

24 0.50 1.00 0.75

Average 0.84 0.85 0.53

Table 20 Detailed per-trial performance for Clean the table for Single arm tasks. Each row shows the task progress
score for a specific trial.

Category Task OpenVLA π0-FAST MolmoAct
In Distribution put the green can into the yellow plate 0.375 0.8125 1.0

In Distribution put the red cup into the yellow plate 0.5 0.5 0.625

In Distribution put the banana into the blue plate 0.25 0.625 0.75

Language Variation put the green tea into the yellow plate 0.375 0.8125 0.625

Language Variatiion put the fruit into the blue plate 0.0 0.0625 0.625

Language Variatiion put the red cylinder into the yellow plate 0.3125 0.0 0.75

Spatial Variation put the green can into the yellow plate 0.4375 0.5625 0.625

Spatial Variation put the red cup into the yellow plate 0.5 0.375 0.4375

Spatial Variation put the banana into the blue plate 0.25 0.4375 0.5625

Distractor (Coke Can, Sponge) put the green can into the yellow plate 0.125 0.875 0.9375

Distractor (Coke Can, Sponge) put the red cup into the yellow plate 0.5 0.3125 0.6875

Distractor (Coke Can, Sponge) put the banana into the blue plate 0.25 0.4375 0.625

Novel Object put the sponge into the yellow plate 0.25 0.0 0.875

Novel Object put the coke can into the yellow plate 0.375 0.5625 0.625

Novel Object put the bowl into the yellow plate 0.25 0.3125 0.4375

Table 21 Detailed results of real-world evaluation. The first column indicates the variation category while the second
column presents the language instruction. For each task, the detailed task progress score used to evaluate each model
are detailed at section D.4
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Task Trial MolmoAct MolmoAct(W/oMol-
moAct Data)

π0-FAST OpenVLA

Pour Tea

0 0.8 0.5 0.5 1.0

1 0.8 0.8 0.0 0.5

2 0.5 0.5 0.0 0.0

3 1.0 1.0 0.0 0.5

4 1.0 1.0 0.8 0.5

5 0.8 0.5 1.0 0.5

6 1.0 1.0 1.0 0.5

7 0.5 0.5 1.0 0.0

8 0.5 1.0 0.0 0.0

9 1.0 0.5 0.0 0.5

10 0.8 0.8 0.0 0.5

Close Lid

0 0.5 0.0 0.5 0.0

1 0.5 0.5 0.0 0.5

2 0.5 0.0 0.5 1.0

3 0.5 0.5 0.5 0.5

4 0.5 0.0 1.0 0.0

5 1.0 0.5 0.5 0.0

6 0.5 0.0 0.0 0.5

7 0.5 1.0 0.0 0.0

8 0.5 1.0 1.0 0.0

9 0.0 1.0 0.5 0.5

10 0.5 0.0 0.5 0.5

Rotate Pot

0 1.0 1.0 0.6 1.0

1 0.6 1.0 1.0 1.0

2 1.0 1.0 0.0 1.0

3 1.0 1.0 1.0 1.0

4 1.0 1.0 0.6 1.0

5 1.0 1.0 1.0 1.0

6 1.0 1.0 0.6 1.0

7 0.6 1.0 1.0 1.0

8 1.0 1.0 1.0 1.0

9 1.0 1.0 1.0 1.0

10 1.0 0.0 0.6 1.0

Table 22 Detailed per-trial performance for three tasks (Pour Tea, Close Lid, and Rotate Pot). Each row shows the
task progress score for a specific trial.
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Task Task Detail Episode Open instruction
(MolmoAct)

Open instruction
(π0-FAST)

Visual Trace
(MolmoAct)

pick up the orange bowl steer from dirty to clean 0 0.00 0.50 1.00

lift up the dirty bowl steer from clean to dirty 1 1.00 0.00 1.00

pick up the bowl on the left steer from clean to dirty 2 0.00 0.00 1.00

pick up the empty bowl steer from dirty to clean 3 0.85 0.50 0.85

pick up the dirty container steer from clean to dirty 4 0.50 0.00 1.00

pick up the bowl with object
inside

steer from clean to dirty 5 0.00 0.00 0.50

pick up the left bowl steer from clean to dirty 6 0.00 0.50 0.50

pick up the bowl that is pink steer from clean to dirty 7 0.00 0.00 0.00

pick up the bowl that is pink steer from clean to dirty 8 0.50 0.00 1.00

pick up the bowl further steer from dirty to clean 9 0.85 0.50 0.85

pick up the bowl nearer to the
camera

steer from dirty to clean 10 0.50 0.00 1.00

pick up the right bowl steer from dirty to clean 11 0.50 0.00 0.50

pick up the bowl without tis-
sue

steer from clean to dirty 12 0.50 0.00 0.50

pick up the bowl with tissue steer from clean to dirty 13 0.00 0.00 0.50

pick up the bowl that is dirty steer from clean to dirty 14 1.00 0.00 1.00

Table 23 Per-episode evaluation results for bowl-picking tasks with different steering conditions. Scores indicate task
progression for each model configuration.
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Scene Task Language Instruction Object(s)
Kitchen put_fork_sink put the fork in the sink Fork (2 types)

Kitchen put_spoon_sink put the spoon in the sink Spoon (2 types)

Kitchen put_bowl_sink put the bowl in the sink Bowl (2 types)

Kitchen clean_spill Clean the spill Sponge

Kitchen wipe_counter Wipe the counter Towels

Kitchen put_plate_in_dishwasher Put the plate in the dishwasher Plate

Kitchen put_fork_in_dishwasher put the fork in the dishwasher Fork

Kitchen put_spoon_in_dishwasher put the spoon in the dishwasher Spoon

Kitchen uncover_food_container Uncover the lid of the food container Large Container

Kitchen uncover_container_lid Uncover the lid of the food container Small Container

Kitchen put tongs in the holder Put the tongs back in the holder Tongs

Kitchen press_toaster Turn on the toaster Toaster

Kitchen close_the_microwave Close the microwave Microwave

Kitchen put_spoon_into_plate Put the spoon on the plate Spoon

Kitchen put_fork_into_plate Put the fork on the plate Fork

Kitchen put_apple_into_container Put apple in the food container Apple(red and green)

Kitchen put_cereal_into_container Put the cereal in the food container Cereal(2 types)

Kitchen put_protein_bar_into_container Put the protein bar in the food container Protein Bar(2-3 types)

Kitchen put_chips_into_container Put the chip bag in the food container chip bag(2-3 types)

Kitchen turn_off_light_kitchen Turn off the light Light switch

Kitchen close_drawer close the drawer Drawer

Kitchen turn_on_faucet Turn on the faucet Faucet

Kitchen close_oven Close the oven Oven

Kitchen open_the_oven Open the oven Oven

Kitchen turn_on_stove Turn on the Stove Stove

Kitchen turn_off_stove Turn off the Stove Stove

Kitchen unload_the_dishwasher_mug Unload the mug from the dish wisher Mugs

Kitchen put_snacks_in_container Put the Snacks in the Containers Snacks

Bedroom hang_the_cap hang cap Cap

Bathroom wipe_sink_bathroom Wipe the sink towels(gray and brown towels)

Bathroom press_hand_sanitizer Press sanitizer sanitizer(high and low)

Bathroom clean_toilet Clean the toilet Toliet brush

Bathroom turn_on_hot_water Turn on hot water Faucet

Bathroom turn_on_cold_water Turn on the cold water Faucet

Bathroom turn_off_hot_water Turn off the hot water Faucet

Bathroom turn_off_cold_water Turn off the cold water Faucet

Bathroom throw_tissue_bathroom_left Throw the tissue Tissue

Bathroom throw_tissue_bathroom_right Throw the tissue Tissue

Bathroom flush_toilet Flush the toliet Toliet brush

Bedroom put_markers_hack_holder Put the markers back in the holder Pen holder 1(shape)

Bedroom put_markers_hack_holder Put the markers back in the holder Pen holder 2(shape)

Bedroom hang_headphone hand the headphone Headphone

Bedroom throw_bottle_bedroom Throw the water bottle in the trash bin Bottle

Bedroom throw_can_bedroom Throw the can in the trash bin Can(2 types)

Bedroom close_laptop_lid_bedroom Close the laptop lid Laptop

Livingroom throw_can_livingroom Throw the can in the trash bin Can(2 types)

Livingroom throw_plastic_bottle_livingroom Throw the plastic bottle in the trash bin Bottle

Livingroom throw_chip_bag_livingroom Throw the chip bag in the trash bin Chip bag(2-3 types)

Livingroom throw_tissue_livingroom Throw the tissue in the trash bin Tissue

Livingroom put_apple_tray_livingroom Put the apple in the tray Apple

Livingroom put_tangerine_livingroom Put the tangerine in the tray Tangerine

Livingroom put_banana_tray_livingroom Put the banana in the tray Banana

Livingroom arrange_pillow Arrange pillows Pillow

Livingroom shelf_book Shelf books Books

Table 24 Tasks details of MolmoAct Dataset Home Environemnt including scene, task name, language instruction
and all objects used for data collection. 52



Scene Task Language Instruction Object(s)
Tabletop stand_water_bottle stand the water bottle Water bottle(2 types)

Tabletop flip_mug flip mug Mug (2 colors)

Tabletop close_top_drawer close the top drawer Drawer

Tabletop close_box close the box Box

Tabletop close_laptop close the laptop Laptop

Tabletop knock_water_bottle Knock water bottle Bottle

Tabletop stand_sanitizer Stand sanitizer Sanitizer

Tabletop knock_sanitizer Knock Sanitizer Sanitizer

Tabletop knock_dish_soap Knock dish soap Dish Soap

Tabletop fold_towel Fold Towel Towel

Tabletop unfold_towel Unfold Towel Towel

Tabletop fold_shorts fold shorts Shorts

Tabletop unfold_shorts Unfold shorts Shorts

Table25 Tasks details of MolmoAct Dataset Tabletop Environemnt including scene, task name, language instruction
and all objects used for data collection.
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Figure 13 Randomly selected examples from Action Reasoning Data used in the pre-training stage.
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Figure 14 Randomly selected examples from Auxiliary Visual Reasoning Trace data used in the pre-training stage.

Figure 15 Randomly selected examples from Auxiliary Depth Perception Tokens data used in the pre-training stage.
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Figure 16 Randomly selected examples from Trajectory-conditioned Action Data used in the pre-training stage.

Figure 17 Randomly selected examples from MultimodalWebData used in the pre-training stage.
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Figure 18 Randomly selected examples from MolmoAct Dataset (Home Environment) used in the mid-training
stage.

57



Figure 19 Randomly selected examples from MolmoAct Dataset (Tabletop Environment) used in the mid-training
stage.
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Figure 20 Randomly selected examples from Single Arm Franka demonstrations used in the post-training stage.
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Figure 21 Randomly selected examples from Bimanual Franka demonstrations used in the post-training stage.
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Figure 22 Randomly selected examples from Rainbow demonstrations used in the post-training stage.
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