amaye15
commited on
Commit
·
25a8604
1
Parent(s):
f4f3a3e
Handler Updated - Text Embeddings - Added
Browse files- handler.py +149 -30
handler.py
CHANGED
|
@@ -1,3 +1,95 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
import torch
|
| 2 |
from typing import Dict, Any, List
|
| 3 |
from PIL import Image
|
|
@@ -7,13 +99,13 @@ from io import BytesIO
|
|
| 7 |
|
| 8 |
class EndpointHandler:
|
| 9 |
"""
|
| 10 |
-
A handler class for processing image data, generating embeddings using a specified model and processor.
|
| 11 |
|
| 12 |
Attributes:
|
| 13 |
model: The pre-trained model used for generating embeddings.
|
| 14 |
-
processor: The pre-trained processor used to process images before model inference.
|
| 15 |
device: The device (CPU or CUDA) used to run model inference.
|
| 16 |
-
default_batch_size: The default batch size for processing images in batches.
|
| 17 |
"""
|
| 18 |
|
| 19 |
def __init__(self, path: str = "", default_batch_size: int = 4):
|
|
@@ -22,13 +114,16 @@ class EndpointHandler:
|
|
| 22 |
|
| 23 |
Args:
|
| 24 |
path (str): Path to the pre-trained model and processor.
|
| 25 |
-
default_batch_size (int): Default batch size for
|
| 26 |
"""
|
| 27 |
from colpali_engine.models import ColQwen2, ColQwen2Processor
|
| 28 |
|
| 29 |
self.model = ColQwen2.from_pretrained(
|
| 30 |
path,
|
| 31 |
torch_dtype=torch.bfloat16,
|
|
|
|
|
|
|
|
|
|
| 32 |
).eval()
|
| 33 |
self.processor = ColQwen2Processor.from_pretrained(path)
|
| 34 |
|
|
@@ -36,7 +131,7 @@ class EndpointHandler:
|
|
| 36 |
self.model.to(self.device)
|
| 37 |
self.default_batch_size = default_batch_size
|
| 38 |
|
| 39 |
-
def
|
| 40 |
"""
|
| 41 |
Processes a batch of images and generates embeddings.
|
| 42 |
|
|
@@ -46,46 +141,70 @@ class EndpointHandler:
|
|
| 46 |
Returns:
|
| 47 |
List[List[float]]: List of embeddings for each image.
|
| 48 |
"""
|
| 49 |
-
batch_images = self.processor.process_images(images)
|
| 50 |
-
batch_images = {k: v.to(self.device) for k, v in batch_images.items()}
|
| 51 |
|
| 52 |
with torch.no_grad():
|
| 53 |
image_embeddings = self.model(**batch_images)
|
| 54 |
|
| 55 |
return image_embeddings.cpu().tolist()
|
| 56 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 57 |
def __call__(self, data: Dict[str, Any]) -> Dict[str, Any]:
|
| 58 |
"""
|
| 59 |
-
Processes input data containing base64-encoded images, decodes them, and generates embeddings.
|
| 60 |
|
| 61 |
Args:
|
| 62 |
-
data (Dict[str, Any]): Dictionary containing input images and optional batch size.
|
| 63 |
|
| 64 |
Returns:
|
| 65 |
-
Dict[str, Any]: Dictionary containing generated embeddings or error messages.
|
| 66 |
"""
|
| 67 |
-
images_data = data.get("
|
|
|
|
| 68 |
batch_size = data.get("batch_size", self.default_batch_size)
|
| 69 |
|
| 70 |
-
|
| 71 |
-
return {"error": "No images provided in 'inputs'."}
|
| 72 |
-
|
| 73 |
images = []
|
| 74 |
-
|
| 75 |
-
|
| 76 |
-
|
| 77 |
-
|
| 78 |
-
|
| 79 |
-
|
| 80 |
-
|
| 81 |
-
|
| 82 |
-
|
| 83 |
-
|
| 84 |
-
|
| 85 |
-
|
|
|
|
| 86 |
for i in range(0, len(images), batch_size):
|
| 87 |
batch_images = images[i : i + batch_size]
|
| 88 |
-
batch_embeddings = self.
|
| 89 |
-
|
| 90 |
-
|
| 91 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
# import torch
|
| 2 |
+
# from typing import Dict, Any, List
|
| 3 |
+
# from PIL import Image
|
| 4 |
+
# import base64
|
| 5 |
+
# from io import BytesIO
|
| 6 |
+
|
| 7 |
+
|
| 8 |
+
# class EndpointHandler:
|
| 9 |
+
# """
|
| 10 |
+
# A handler class for processing image data, generating embeddings using a specified model and processor.
|
| 11 |
+
|
| 12 |
+
# Attributes:
|
| 13 |
+
# model: The pre-trained model used for generating embeddings.
|
| 14 |
+
# processor: The pre-trained processor used to process images before model inference.
|
| 15 |
+
# device: The device (CPU or CUDA) used to run model inference.
|
| 16 |
+
# default_batch_size: The default batch size for processing images in batches.
|
| 17 |
+
# """
|
| 18 |
+
|
| 19 |
+
# def __init__(self, path: str = "", default_batch_size: int = 4):
|
| 20 |
+
# """
|
| 21 |
+
# Initializes the EndpointHandler with a specified model path and default batch size.
|
| 22 |
+
|
| 23 |
+
# Args:
|
| 24 |
+
# path (str): Path to the pre-trained model and processor.
|
| 25 |
+
# default_batch_size (int): Default batch size for image processing.
|
| 26 |
+
# """
|
| 27 |
+
# from colpali_engine.models import ColQwen2, ColQwen2Processor
|
| 28 |
+
|
| 29 |
+
# self.model = ColQwen2.from_pretrained(
|
| 30 |
+
# path,
|
| 31 |
+
# torch_dtype=torch.bfloat16,
|
| 32 |
+
# ).eval()
|
| 33 |
+
# self.processor = ColQwen2Processor.from_pretrained(path)
|
| 34 |
+
|
| 35 |
+
# self.device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
| 36 |
+
# self.model.to(self.device)
|
| 37 |
+
# self.default_batch_size = default_batch_size
|
| 38 |
+
|
| 39 |
+
# def _process_batch(self, images: List[Image.Image]) -> List[List[float]]:
|
| 40 |
+
# """
|
| 41 |
+
# Processes a batch of images and generates embeddings.
|
| 42 |
+
|
| 43 |
+
# Args:
|
| 44 |
+
# images (List[Image.Image]): List of images to process.
|
| 45 |
+
|
| 46 |
+
# Returns:
|
| 47 |
+
# List[List[float]]: List of embeddings for each image.
|
| 48 |
+
# """
|
| 49 |
+
# batch_images = self.processor.process_images(images)
|
| 50 |
+
# batch_images = {k: v.to(self.device) for k, v in batch_images.items()}
|
| 51 |
+
|
| 52 |
+
# with torch.no_grad():
|
| 53 |
+
# image_embeddings = self.model(**batch_images)
|
| 54 |
+
|
| 55 |
+
# return image_embeddings.cpu().tolist()
|
| 56 |
+
|
| 57 |
+
# def __call__(self, data: Dict[str, Any]) -> Dict[str, Any]:
|
| 58 |
+
# """
|
| 59 |
+
# Processes input data containing base64-encoded images, decodes them, and generates embeddings.
|
| 60 |
+
|
| 61 |
+
# Args:
|
| 62 |
+
# data (Dict[str, Any]): Dictionary containing input images and optional batch size.
|
| 63 |
+
|
| 64 |
+
# Returns:
|
| 65 |
+
# Dict[str, Any]: Dictionary containing generated embeddings or error messages.
|
| 66 |
+
# """
|
| 67 |
+
# images_data = data.get("inputs", [])
|
| 68 |
+
# batch_size = data.get("batch_size", self.default_batch_size)
|
| 69 |
+
|
| 70 |
+
# if not images_data:
|
| 71 |
+
# return {"error": "No images provided in 'inputs'."}
|
| 72 |
+
|
| 73 |
+
# images = []
|
| 74 |
+
# for img_data in images_data:
|
| 75 |
+
# if isinstance(img_data, str):
|
| 76 |
+
# try:
|
| 77 |
+
# image_bytes = base64.b64decode(img_data)
|
| 78 |
+
# image = Image.open(BytesIO(image_bytes)).convert("RGB")
|
| 79 |
+
# images.append(image)
|
| 80 |
+
# except Exception as e:
|
| 81 |
+
# return {"error": f"Invalid image data: {e}"}
|
| 82 |
+
# else:
|
| 83 |
+
# return {"error": "Images should be base64-encoded strings."}
|
| 84 |
+
|
| 85 |
+
# embeddings = []
|
| 86 |
+
# for i in range(0, len(images), batch_size):
|
| 87 |
+
# batch_images = images[i : i + batch_size]
|
| 88 |
+
# batch_embeddings = self._process_batch(batch_images)
|
| 89 |
+
# embeddings.extend(batch_embeddings)
|
| 90 |
+
|
| 91 |
+
# return {"embeddings": embeddings}
|
| 92 |
+
|
| 93 |
import torch
|
| 94 |
from typing import Dict, Any, List
|
| 95 |
from PIL import Image
|
|
|
|
| 99 |
|
| 100 |
class EndpointHandler:
|
| 101 |
"""
|
| 102 |
+
A handler class for processing image and text data, generating embeddings using a specified model and processor.
|
| 103 |
|
| 104 |
Attributes:
|
| 105 |
model: The pre-trained model used for generating embeddings.
|
| 106 |
+
processor: The pre-trained processor used to process images and text before model inference.
|
| 107 |
device: The device (CPU or CUDA) used to run model inference.
|
| 108 |
+
default_batch_size: The default batch size for processing images and text in batches.
|
| 109 |
"""
|
| 110 |
|
| 111 |
def __init__(self, path: str = "", default_batch_size: int = 4):
|
|
|
|
| 114 |
|
| 115 |
Args:
|
| 116 |
path (str): Path to the pre-trained model and processor.
|
| 117 |
+
default_batch_size (int): Default batch size for processing images and text data.
|
| 118 |
"""
|
| 119 |
from colpali_engine.models import ColQwen2, ColQwen2Processor
|
| 120 |
|
| 121 |
self.model = ColQwen2.from_pretrained(
|
| 122 |
path,
|
| 123 |
torch_dtype=torch.bfloat16,
|
| 124 |
+
device_map=(
|
| 125 |
+
"cuda:0" if torch.cuda.is_available() else "cpu"
|
| 126 |
+
), # Set device map based on availability
|
| 127 |
).eval()
|
| 128 |
self.processor = ColQwen2Processor.from_pretrained(path)
|
| 129 |
|
|
|
|
| 131 |
self.model.to(self.device)
|
| 132 |
self.default_batch_size = default_batch_size
|
| 133 |
|
| 134 |
+
def _process_image_batch(self, images: List[Image.Image]) -> List[List[float]]:
|
| 135 |
"""
|
| 136 |
Processes a batch of images and generates embeddings.
|
| 137 |
|
|
|
|
| 141 |
Returns:
|
| 142 |
List[List[float]]: List of embeddings for each image.
|
| 143 |
"""
|
| 144 |
+
batch_images = self.processor.process_images(images).to(self.device)
|
|
|
|
| 145 |
|
| 146 |
with torch.no_grad():
|
| 147 |
image_embeddings = self.model(**batch_images)
|
| 148 |
|
| 149 |
return image_embeddings.cpu().tolist()
|
| 150 |
|
| 151 |
+
def _process_text_batch(self, texts: List[str]) -> List[List[float]]:
|
| 152 |
+
"""
|
| 153 |
+
Processes a batch of text queries and generates embeddings.
|
| 154 |
+
|
| 155 |
+
Args:
|
| 156 |
+
texts (List[str]): List of text queries to process.
|
| 157 |
+
|
| 158 |
+
Returns:
|
| 159 |
+
List[List[float]]: List of embeddings for each text query.
|
| 160 |
+
"""
|
| 161 |
+
batch_queries = self.processor.process_queries(texts).to(self.device)
|
| 162 |
+
|
| 163 |
+
with torch.no_grad():
|
| 164 |
+
query_embeddings = self.model(**batch_queries)
|
| 165 |
+
|
| 166 |
+
return query_embeddings.cpu().tolist()
|
| 167 |
+
|
| 168 |
def __call__(self, data: Dict[str, Any]) -> Dict[str, Any]:
|
| 169 |
"""
|
| 170 |
+
Processes input data containing base64-encoded images and text queries, decodes them, and generates embeddings.
|
| 171 |
|
| 172 |
Args:
|
| 173 |
+
data (Dict[str, Any]): Dictionary containing input images, text queries, and optional batch size.
|
| 174 |
|
| 175 |
Returns:
|
| 176 |
+
Dict[str, Any]: Dictionary containing generated embeddings for images and text or error messages.
|
| 177 |
"""
|
| 178 |
+
images_data = data.get("image", [])
|
| 179 |
+
text_data = data.get("text", [])
|
| 180 |
batch_size = data.get("batch_size", self.default_batch_size)
|
| 181 |
|
| 182 |
+
# Decode and process images
|
|
|
|
|
|
|
| 183 |
images = []
|
| 184 |
+
if images_data:
|
| 185 |
+
for img_data in images_data:
|
| 186 |
+
if isinstance(img_data, str):
|
| 187 |
+
try:
|
| 188 |
+
image_bytes = base64.b64decode(img_data)
|
| 189 |
+
image = Image.open(BytesIO(image_bytes)).convert("RGB")
|
| 190 |
+
images.append(image)
|
| 191 |
+
except Exception as e:
|
| 192 |
+
return {"error": f"Invalid image data: {e}"}
|
| 193 |
+
else:
|
| 194 |
+
return {"error": "Images should be base64-encoded strings."}
|
| 195 |
+
|
| 196 |
+
image_embeddings = []
|
| 197 |
for i in range(0, len(images), batch_size):
|
| 198 |
batch_images = images[i : i + batch_size]
|
| 199 |
+
batch_embeddings = self._process_image_batch(batch_images)
|
| 200 |
+
image_embeddings.extend(batch_embeddings)
|
| 201 |
+
|
| 202 |
+
# Process text data
|
| 203 |
+
text_embeddings = []
|
| 204 |
+
if text_data:
|
| 205 |
+
for i in range(0, len(text_data), batch_size):
|
| 206 |
+
batch_texts = text_data[i : i + batch_size]
|
| 207 |
+
batch_text_embeddings = self._process_text_batch(batch_texts)
|
| 208 |
+
text_embeddings.extend(batch_text_embeddings)
|
| 209 |
+
|
| 210 |
+
return {"image": image_embeddings, "text": text_embeddings}
|