# Modifications Copyright (c) 2025 Advanced Micro Devices, Inc. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from typing import Any, Dict, List, Optional, Tuple, Union import torch import torch.nn as nn from diffusers.configuration_utils import register_to_config from diffusers.models.attention import JointTransformerBlock from diffusers.models.embeddings import PatchEmbed, TimestepEmbedding, Timesteps from diffusers.models.modeling_outputs import Transformer2DModelOutput from diffusers.models.normalization import AdaLayerNormContinuous from diffusers.models.transformers import SD3Transformer2DModel from diffusers.utils import is_torch_version def random_masking(x, mask_ratio): """ Perform per-sample random masking by per-sample shuffling. Per-sample shuffling is done by argsort random noise. x: [N, L, D], sequence """ N, L, D = x.shape # batch, length, dim len_keep = int(L * (1 - mask_ratio)) noise = torch.rand(N, L, device=x.device) # noise in [0, 1] ids_keep = torch.argsort(noise, dim=1)[:, :len_keep] ids_keep, _ = torch.sort(ids_keep, dim=1) x_masked = torch.gather(x, dim=1, index=ids_keep.unsqueeze(-1).repeat(1, 1, D)) return x_masked, ids_keep, len_keep def build_projector(hidden_size, projector_dim, z_dim): return nn.Sequential( nn.Linear(hidden_size, projector_dim), nn.SiLU(), nn.Linear(projector_dim, projector_dim), nn.SiLU(), nn.Linear(projector_dim, z_dim), ) # Source: https://github.com/NVlabs/Sana/blob/70459f414474c10c509e8b58f3f9442738f85577/diffusion/model/norms.py#L183 class RMSNorm(torch.nn.Module): def __init__(self, dim: int, scale_factor=1.0, eps: float = 1e-6): """ Initialize the RMSNorm normalization layer. Args: dim (int): The dimension of the input tensor. eps (float, optional): A small value added to the denominator for numerical stability. Default is 1e-6. Attributes: eps (float): A small value added to the denominator for numerical stability. weight (nn.Parameter): Learnable scaling parameter. """ super().__init__() self.eps = eps self.weight = torch.nn.Parameter(torch.ones(dim) * scale_factor) def _norm(self, x): """ Apply the RMSNorm normalization to the input tensor. Args: x (torch.Tensor): The input tensor. Returns: torch.Tensor: The normalized tensor. """ return x * torch.rsqrt(x.pow(2).mean(-1, keepdim=True) + self.eps) def forward(self, x): """ Forward pass through the RMSNorm layer. Args: x (torch.Tensor): The input tensor. Returns: torch.Tensor: The output tensor after applying RMSNorm. """ return (self.weight * self._norm(x.float())).type_as(x) class TimestepEmbeddings(nn.Module): def __init__(self, embedding_dim): super().__init__() self.time_proj = Timesteps(num_channels=256, flip_sin_to_cos=True, downscale_freq_shift=0) self.timestep_embedder = TimestepEmbedding(in_channels=256, time_embed_dim=embedding_dim) def forward(self, timestep, dtype): timesteps_proj = self.time_proj(timestep) timesteps_emb = self.timestep_embedder(timesteps_proj.to(dtype=dtype)) # (N, D) return timesteps_emb class EspressoMMDiTModel(SD3Transformer2DModel): _supports_gradient_checkpointing = True @register_to_config def __init__( self, sample_size: int = 128, patch_size: int = 2, in_channels: int = 16, num_layers: int = 24, attention_head_dim: int = 64, num_attention_heads: int = 18, caption_channels: int = 4096, caption_projection_dim: int = 1152, out_channels: int = 16, interpolation_scale: int = 1, pos_embed_max_size: int = 96, dual_attention_layers: Tuple[ int, ... ] = (), # () for sd3.0; (0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12) for sd3.5 qk_norm: Optional[str] = None, repa_depth=-1, projector_dim=2048, z_dims=[768], ): super().__init__( sample_size=sample_size, patch_size=patch_size, in_channels=in_channels, num_layers=num_layers, attention_head_dim=attention_head_dim, num_attention_heads=num_attention_heads, caption_projection_dim=caption_projection_dim, out_channels=out_channels, pos_embed_max_size=pos_embed_max_size, dual_attention_layers=dual_attention_layers, qk_norm=qk_norm, ) self.patch_mixer_depth = None # initially no masking applied self.mask_ratio = 0 default_out_channels = in_channels self.out_channels = out_channels if out_channels is not None else default_out_channels self.inner_dim = self.config.num_attention_heads * self.config.attention_head_dim if repa_depth != -1: self.projectors = nn.ModuleList([build_projector(self.inner_dim, projector_dim, z_dim) for z_dim in z_dims]) assert repa_depth >= 0 and repa_depth < num_layers self.repa_depth = repa_depth self.pos_embed = PatchEmbed( height=self.config.sample_size, width=self.config.sample_size, patch_size=self.config.patch_size, in_channels=self.config.in_channels, embed_dim=self.inner_dim, interpolation_scale=self.config.interpolation_scale, ) self.time_text_embed = TimestepEmbeddings(embedding_dim=self.inner_dim) self.context_embedder = nn.Linear(self.config.caption_channels, self.config.caption_projection_dim) self.text_embedding_norm = RMSNorm(self.inner_dim, scale_factor=0.01, eps=1e-5) # `attention_head_dim` is doubled to account for the mixing. # It needs to crafted when we get the actual checkpoints. self.transformer_blocks = nn.ModuleList( [ JointTransformerBlock( dim=self.inner_dim, num_attention_heads=self.config.num_attention_heads, attention_head_dim=self.config.attention_head_dim, context_pre_only=i == num_layers - 1, qk_norm=qk_norm, use_dual_attention=True if i in dual_attention_layers else False, ) for i in range(self.config.num_layers) ] ) self.norm_out = AdaLayerNormContinuous(self.inner_dim, self.inner_dim, elementwise_affine=False, eps=1e-6) self.proj_out = nn.Linear(self.inner_dim, patch_size * patch_size * self.out_channels, bias=True) self.gradient_checkpointing = False def _set_gradient_checkpointing(self, module, value=False): if hasattr(module, "gradient_checkpointing"): module.gradient_checkpointing = value def forward( self, hidden_states: torch.FloatTensor, encoder_hidden_states: torch.FloatTensor = None, timestep: torch.LongTensor = None, block_controlnet_hidden_states: List = None, joint_attention_kwargs: Optional[Dict[str, Any]] = None, return_dict: bool = True, **kwargs, ) -> Union[torch.FloatTensor, Transformer2DModelOutput]: """ Args: hidden_states (`torch.FloatTensor` of shape `(batch size, channel, height, width)`): Input `hidden_states`. encoder_hidden_states (`torch.FloatTensor` of shape `(batch size, sequence_len, embed_dims)`): Conditional embeddings (embeddings computed from the input conditions such as prompts) to use. timestep (`torch.LongTensor`): Used to indicate denoising step. block_controlnet_hidden_states (`list` of `torch.Tensor`): A list of tensors that if specified are added to the residuals of transformer blocks. joint_attention_kwargs (`dict`, *optional*): A kwargs dictionary that if specified is passed along to the `AttentionProcessor` as defined under `self.processor` in [diffusers.models.attention_processor](https://github.com/huggingface/diffusers/blob/main/src/diffusers/models/attention_processor.py). return_dict (`bool`, *optional*, defaults to `True`): Whether or not to return a [`~models.transformer_2d.Transformer2DModelOutput`] instead of a plain tuple. Returns: If `return_dict` is True, an [`~models.transformer_2d.Transformer2DModelOutput`] is returned, otherwise a `tuple` where the first element is the sample tensor. """ height, width = hidden_states.shape[-2:] hidden_states = self.pos_embed(hidden_states) # takes care of adding positional embeddings too. temb = self.time_text_embed(timestep, dtype=encoder_hidden_states.dtype) encoder_hidden_states = self.context_embedder(encoder_hidden_states) encoder_hidden_states = self.text_embedding_norm(encoder_hidden_states) ids_keep = None len_keep = hidden_states.shape[1] zs = None for index_block, block in enumerate(self.transformer_blocks): if torch.is_grad_enabled() and self.gradient_checkpointing and block.gradient_checkpointing: def create_custom_forward(module, return_dict=None): def custom_forward(*inputs): if return_dict is not None: return module(*inputs, return_dict=return_dict) else: return module(*inputs) return custom_forward ckpt_kwargs: Dict[str, Any] = {"use_reentrant": False} if is_torch_version(">=", "1.11.0") else {} encoder_hidden_states, hidden_states = torch.utils.checkpoint.checkpoint( create_custom_forward(block), hidden_states, encoder_hidden_states, temb, joint_attention_kwargs, **ckpt_kwargs, ) else: encoder_hidden_states, hidden_states = block( hidden_states=hidden_states, encoder_hidden_states=encoder_hidden_states, temb=temb, joint_attention_kwargs=joint_attention_kwargs, ) # controlnet residual if block_controlnet_hidden_states is not None and block.context_pre_only is False: interval_control = len(self.transformer_blocks) / len(block_controlnet_hidden_states) hidden_states = hidden_states + block_controlnet_hidden_states[int(index_block / interval_control)] # patch masking if self.training and (self.patch_mixer_depth != -1) and (self.patch_mixer_depth == index_block): hidden_states, ids_keep, len_keep = random_masking(hidden_states, self.mask_ratio) # REPA if self.training and (self.repa_depth != -1) and (self.repa_depth == index_block): N, T, D = hidden_states.shape zs = [projector(hidden_states.reshape(-1, D)).reshape(N, len_keep, -1) for projector in self.projectors] hidden_states = self.norm_out(hidden_states, temb) hidden_states = self.proj_out(hidden_states) # if inference, return the unpatchified output as usual # if training, return the patch sequence if not self.training: patch_size = self.config.patch_size height = height // patch_size width = width // patch_size hidden_states = hidden_states.reshape( shape=( hidden_states.shape[0], height, width, patch_size, patch_size, self.out_channels, ) ) hidden_states = torch.einsum("nhwpqc->nchpwq", hidden_states) output = hidden_states.reshape( shape=( hidden_states.shape[0], self.out_channels, height * patch_size, width * patch_size, ) ) if not return_dict: return (output,) return Transformer2DModelOutput(sample=output) else: return hidden_states, ids_keep, zs def enable_masking(self, depth, mask_ratio): # depth: apply masking after block_[depth]. should be [0, nblks-1] assert depth >= 0 and depth < len(self.transformer_blocks) self.patch_mixer_depth = depth assert mask_ratio >= 0 and mask_ratio <= 1 self.mask_ratio = mask_ratio def disable_masking(self): self.patch_mixer_depth = None def enable_gradient_checkpointing(self, nblocks_to_apply_grad_checkpointing): N = len(self.transformer_blocks) if nblocks_to_apply_grad_checkpointing == -1: nblocks_to_apply_grad_checkpointing = N nblocks_to_apply_grad_checkpointing = min(N, nblocks_to_apply_grad_checkpointing) # Apply to blocks evenly spaced out step = N / nblocks_to_apply_grad_checkpointing if nblocks_to_apply_grad_checkpointing > 0 else 0 indices = [int((i + 0.5) * step) for i in range(nblocks_to_apply_grad_checkpointing)] self.gradient_checkpointing = True for blk_ind, block in enumerate(self.transformer_blocks): block.gradient_checkpointing = blk_ind in indices print(f"Block {blk_ind} grad checkpointing set to {block.gradient_checkpointing}")