amd
/

Safetensors
llama
alignment-handbook
Generated from Trainer
Mingyuyang-1 commited on
Commit
9d83a2a
·
1 Parent(s): 8ff0cdc

Upload folder using huggingface_hub

Browse files
MLA_config.json ADDED
@@ -0,0 +1,30 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "d_model": 4096,
3
+ "rms_norm_eps": 1e-05,
4
+ "vocab_size": null,
5
+ "d_inner": 4096,
6
+ "d_xb": 1024,
7
+ "intermediate_size": 14336,
8
+ "hidden_act": "silu",
9
+ "n_layer": 32,
10
+ "mla_to_mha": false,
11
+ "first_mha": false,
12
+ "attn_layers": [
13
+ 1,
14
+ 3,
15
+ 5,
16
+ 7,
17
+ 9,
18
+ 11,
19
+ 13,
20
+ 15,
21
+ 17,
22
+ 19,
23
+ 21,
24
+ 23,
25
+ 25,
26
+ 27,
27
+ 29,
28
+ 31
29
+ ]
30
+ }
README.md ADDED
@@ -0,0 +1,68 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ base_model: meta-llama/Llama-3.1-8B-Instruct
3
+ datasets:
4
+ - JunxiongWang/sftdatasetv3
5
+ model-index:
6
+ - name: hybrid_8B_mla16_mamba16_Fix160_qr2048_qh64_stage2_data11B
7
+ results: []
8
+ tags:
9
+ - alignment-handbook
10
+ - generated_from_trainer
11
+
12
+ ---
13
+
14
+ <!-- This model card has been generated automatically according to the information the Trainer had access to. You
15
+ should probably proofread and complete it, then remove this comment. -->
16
+
17
+ [<img src="https://raw.githubusercontent.com/wandb/assets/main/wandb-github-badge-28.svg" alt="Visualize in Weights & Biases" width="200" height="32"/>](https://wandb.ai/mrgzadeh/huggingface/runs/y5dnnyl6)
18
+ # hybrid_8B_mla16_mamba16_Fix160_qr2048_qh64_stage2_data11B
19
+
20
+ This model is a fine-tuned version of [/workspace/amd-mla/llama3.1_8b-instruct](https://huggingface.co//workspace/amd-mla/llama3.1_8b-instruct) on the JunxiongWang/sftdatasetv3 dataset.
21
+ It achieves the following results on the evaluation set:
22
+ - Loss: 111.6995
23
+
24
+ ## Model description
25
+
26
+ More information needed
27
+
28
+ ## Intended uses & limitations
29
+
30
+ More information needed
31
+
32
+ ## Training and evaluation data
33
+
34
+ More information needed
35
+
36
+ ## Training procedure
37
+
38
+ ### Training hyperparameters
39
+
40
+ The following hyperparameters were used during training:
41
+ - learning_rate: 2e-05
42
+ - train_batch_size: 4
43
+ - eval_batch_size: 2
44
+ - seed: 42
45
+ - distributed_type: multi-GPU
46
+ - num_devices: 8
47
+ - gradient_accumulation_steps: 2
48
+ - total_train_batch_size: 64
49
+ - total_eval_batch_size: 16
50
+ - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
51
+ - lr_scheduler_type: cosine
52
+ - lr_scheduler_warmup_ratio: 0.01
53
+ - num_epochs: 1.4
54
+
55
+ ### Training results
56
+
57
+ | Training Loss | Epoch | Step | Validation Loss |
58
+ |:-------------:|:-----:|:-----:|:---------------:|
59
+ | 110.5648 | 1.0 | 51995 | 124.3641 |
60
+ | 89.2123 | 1.4 | 72793 | 111.6995 |
61
+
62
+
63
+ ### Framework versions
64
+
65
+ - Transformers 4.43.1
66
+ - Pytorch 2.7.0a0+git6374332
67
+ - Datasets 2.20.0
68
+ - Tokenizers 0.19.1
all_results.json ADDED
@@ -0,0 +1,14 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "epoch": 1.4,
3
+ "eval_loss": 111.6994857788086,
4
+ "eval_runtime": 17.6372,
5
+ "eval_samples": 4096,
6
+ "eval_samples_per_second": 39.462,
7
+ "eval_steps_per_second": 2.495,
8
+ "total_flos": 4.721862248497152e+16,
9
+ "train_loss": 149.02320945810703,
10
+ "train_runtime": 264406.7938,
11
+ "train_samples": 19473081,
12
+ "train_samples_per_second": 17.62,
13
+ "train_steps_per_second": 0.275
14
+ }
config.json ADDED
@@ -0,0 +1,40 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "_name_or_path": "meta-llama/Llama-3.1-8B-Instruct",
3
+ "architectures": [
4
+ "LlamaForCausalLM"
5
+ ],
6
+ "attention_bias": false,
7
+ "attention_dropout": 0.0,
8
+ "bos_token_id": 128000,
9
+ "eos_token_id": [
10
+ 128001,
11
+ 128008,
12
+ 128009
13
+ ],
14
+ "head_dim": 128,
15
+ "hidden_act": "silu",
16
+ "hidden_size": 4096,
17
+ "initializer_range": 0.02,
18
+ "intermediate_size": 14336,
19
+ "max_position_embeddings": 131072,
20
+ "mlp_bias": false,
21
+ "model_type": "llama",
22
+ "num_attention_heads": 32,
23
+ "num_hidden_layers": 32,
24
+ "num_key_value_heads": 8,
25
+ "pretraining_tp": 1,
26
+ "rms_norm_eps": 1e-05,
27
+ "rope_scaling": {
28
+ "factor": 8.0,
29
+ "high_freq_factor": 4.0,
30
+ "low_freq_factor": 1.0,
31
+ "original_max_position_embeddings": 8192,
32
+ "rope_type": "llama3"
33
+ },
34
+ "rope_theta": 500000.0,
35
+ "tie_word_embeddings": false,
36
+ "torch_dtype": "bfloat16",
37
+ "transformers_version": "4.43.1",
38
+ "use_cache": true,
39
+ "vocab_size": 128256
40
+ }
eval_results.json ADDED
@@ -0,0 +1,8 @@
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "epoch": 1.4,
3
+ "eval_loss": 111.6994857788086,
4
+ "eval_runtime": 17.6372,
5
+ "eval_samples": 4096,
6
+ "eval_samples_per_second": 39.462,
7
+ "eval_steps_per_second": 2.495
8
+ }
generation_config.json ADDED
@@ -0,0 +1,12 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "bos_token_id": 128000,
3
+ "do_sample": true,
4
+ "eos_token_id": [
5
+ 128001,
6
+ 128008,
7
+ 128009
8
+ ],
9
+ "temperature": 0.6,
10
+ "top_p": 0.9,
11
+ "transformers_version": "4.43.1"
12
+ }
hybrid_8B_mla16_mamba16_Fix160_qr2048_qh64_stage2_data11B.yaml ADDED
@@ -0,0 +1,76 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # Model arguments
2
+ model_name_or_path: /workspace/amd-mla/llama3.1_8b-instruct
3
+ teacher_model_name_or_path: /workspace/amd-mla/llama3.1_8b-instruct
4
+ mamba_model_path: /workspace/amd-mla/HybridInLlama_mla0_mamba100_8B_stage1
5
+ mla_model_path: /workspace/amd-mla/HybridInLlama_mla100_mamba0_8B_kv160_q2048_np64_rp64_stage1
6
+ with_distill: false
7
+ # mla_layers: [0,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15]
8
+ # mla_layers: [0,2,4,6,8,10,12,14]
9
+ # mla_layers: [0,2,4,6,8,14]
10
+ # mla_layers: [0,2,4,6,8,10,12,14,16,18,20,22,24,26,28,31]
11
+ mla_layers: [0,2,4,6,8,10,12,14,16,18,20,22,24,26,28,30]
12
+ # mla_layers: []
13
+ init_with_svd: false
14
+ init_with_kqvo: false
15
+ decontaminate: true
16
+ torch_dtype: bfloat16
17
+ use_flash_attention_2: true
18
+ mla_to_mha: false
19
+ mamba_to_mha: false
20
+ first_mha: false
21
+
22
+ # Data training arguments
23
+ data_ratio: 0
24
+ chat_template: "{% set loop_messages = messages %}{% for message in loop_messages %}{% set content = '<|start_header_id|>' + message['role'] + '<|end_header_id|>\n\n'+ message['content'] | trim + '<|eot_id|>' %}{% if loop.index0 == 0 %}{% set content = bos_token + content %}{% endif %}{{ content }}{% endfor %}{% if add_generation_prompt %}{{ '<|start_header_id|>assistant<|end_header_id|>\n\n' }}{% endif %}"
25
+ dataset_mixer:
26
+ # /home/data/datasets/sftdatasetv3: 1.0
27
+ JunxiongWang/sftdatasetv3: 1.0
28
+ dataset_splits:
29
+ - train
30
+ - test
31
+ preprocessing_num_workers: 128
32
+
33
+ # SFT trainer config
34
+ bf16: true
35
+ do_eval: true
36
+ evaluation_strategy: epoch
37
+ gradient_accumulation_steps: 2
38
+ gradient_checkpointing: false
39
+ gradient_checkpointing_kwargs:
40
+ use_reentrant: False
41
+ learning_rate: 2.0e-05
42
+ log_level: info
43
+ logging_steps: 10
44
+ logging_strategy: steps
45
+ lr_scheduler_type: cosine
46
+ max_seq_length: 2048
47
+ max_steps: -1
48
+ max_grad_norm: 1.0
49
+ num_train_epochs: 1.4
50
+ output_dir: hybrid_8B_mla16_mamba16_Fix160_qr2048_qh64_stage2_data11B
51
+ # output_dir: /home/mingyyan/checkpoints/debug
52
+ overwrite_output_dir: true
53
+ per_device_eval_batch_size: 2
54
+ per_device_train_batch_size: 4
55
+ push_to_hub: false
56
+ remove_unused_columns: true
57
+ report_to:
58
+ - wandb
59
+ save_strategy: "steps"
60
+ save_steps: 2000
61
+ save_total_limit: 1
62
+ seed: 42
63
+ warmup_ratio: 0.01
64
+ kl_weight: 1.0
65
+ ce_weight: 0.0
66
+ kl_hidden_weight: 0.0
67
+
68
+ # MLA configs
69
+ q_lora_rank: 2048
70
+ qk_rope_head_dim: 64
71
+ kv_lora_rank: 160
72
+ v_head_dim: 128
73
+ qk_nope_head_dim: 64
74
+ freeze_non_mla: false
75
+ use_lora_layer_norm: false
76
+ use_full_kv_head: false
hybrid_config.json ADDED
@@ -0,0 +1,60 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "hidden_size": 4096,
3
+ "intermediate_size": 14336,
4
+ "hidden_act": "silu",
5
+ "n_layer": 32,
6
+ "mla_layers": [
7
+ 0,
8
+ 2,
9
+ 4,
10
+ 6,
11
+ 8,
12
+ 10,
13
+ 12,
14
+ 14,
15
+ 16,
16
+ 18,
17
+ 20,
18
+ 22,
19
+ 24,
20
+ 26,
21
+ 28,
22
+ 30
23
+ ],
24
+ "rms_norm_eps": 1e-05,
25
+ "num_attention_heads": 32,
26
+ "num_key_value_heads": 8,
27
+ "kv_lora_rank": 160,
28
+ "q_lora_rank": 2048,
29
+ "use_lora_layer_norm": false,
30
+ "use_fixed_rank_for_first_and_last_block": true,
31
+ "use_full_kv_head": false,
32
+ "layer_rank_list": {},
33
+ "qk_rope_head_dim": 64,
34
+ "v_head_dim": 128,
35
+ "qk_nope_head_dim": 64,
36
+ "q_energy_ratio": null,
37
+ "kv_energy_ratio": null,
38
+ "qkv_rank_divisor": 8,
39
+ "max_position_embeddings": 131072,
40
+ "rope_theta": 500000.0,
41
+ "rope_scaling": {
42
+ "factor": 8.0,
43
+ "high_freq_factor": 4.0,
44
+ "low_freq_factor": 1.0,
45
+ "original_max_position_embeddings": 8192,
46
+ "rope_type": "llama3"
47
+ },
48
+ "attention_bias": false,
49
+ "attention_dropout": 0.0,
50
+ "rope_type": "yarn",
51
+ "d_model": 4096,
52
+ "ssm_cfg": {
53
+ "expand": 1,
54
+ "ngroups": 32,
55
+ "d_state": 128,
56
+ "repeat_kv_before_conv": false
57
+ },
58
+ "d_inner": 4096,
59
+ "d_xb": 1024
60
+ }
latest ADDED
@@ -0,0 +1 @@
 
 
1
+ global_step72793
lm_harness_eval.txt ADDED
@@ -0,0 +1,38 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ 2025-06-12:13:21:08,578 INFO [utils.py:146] Note: detected 96 virtual cores but NumExpr set to maximum of 64, check "NUMEXPR_MAX_THREADS" environment variable.
2
+ 2025-06-12:13:21:08,578 INFO [utils.py:149] Note: NumExpr detected 96 cores but "NUMEXPR_MAX_THREADS" not set, so enforcing safe limit of 16.
3
+ 2025-06-12:13:21:08,578 INFO [utils.py:162] NumExpr defaulting to 16 threads.
4
+ 2025-06-12:13:21:08,721 INFO [config.py:58] PyTorch version 2.7.0a0+git6374332 available.
5
+
6
+ 2025-06-12:13:21:18,795 INFO [__main__.py:132] Verbosity set to INFO
7
+ 2025-06-12:13:21:23,277 INFO [__main__.py:205] Selected Tasks: ['arc_challenge', 'arc_easy', 'hellaswag', 'mmlu', 'openbookqa', 'piqa', 'pubmedqa', 'race', 'winogrande']
8
+ 2025-06-12:13:21:23,282 WARNING [evaluator.py:93] generation_kwargs specified through cli, these settings will be used over set parameters in yaml tasks.
9
+ You are attempting to use Flash Attention 2.0 with a model not initialized on GPU. Make sure to move the model to GPU after initializing it on CPU with `model.to('cuda')`.
10
+ Some weights of the model checkpoint at ./hybrid_8B_mla16_mamba16_Fix160_qr2048_qh64_stage2_data11B were not used when initializing LlamaForCausalLM: ['model.layers.0.mla.kv_a_proj_with_mqa.weight', 'model.layers.0.mla.kv_b_proj.weight', 'model.layers.0.mla.out_proj.weight', 'model.layers.0.mla.q_a_proj.weight', 'model.layers.0.mla.q_b_proj.weight', 'model.layers.1.mamba.A_log', 'model.layers.1.mamba.D', 'model.layers.1.mamba.conv1d.bias', 'model.layers.1.mamba.conv1d.weight', 'model.layers.1.mamba.dt_bias', 'model.layers.1.mamba.in_proj.weight', 'model.layers.1.mamba.norm.weight', 'model.layers.1.mamba.out_proj.weight', 'model.layers.10.mla.kv_a_proj_with_mqa.weight', 'model.layers.10.mla.kv_b_proj.weight', 'model.layers.10.mla.out_proj.weight', 'model.layers.10.mla.q_a_proj.weight', 'model.layers.10.mla.q_b_proj.weight', 'model.layers.11.mamba.A_log', 'model.layers.11.mamba.D', 'model.layers.11.mamba.conv1d.bias', 'model.layers.11.mamba.conv1d.weight', 'model.layers.11.mamba.dt_bias', 'model.layers.11.mamba.in_proj.weight', 'model.layers.11.mamba.norm.weight', 'model.layers.11.mamba.out_proj.weight', 'model.layers.12.mla.kv_a_proj_with_mqa.weight', 'model.layers.12.mla.kv_b_proj.weight', 'model.layers.12.mla.out_proj.weight', 'model.layers.12.mla.q_a_proj.weight', 'model.layers.12.mla.q_b_proj.weight', 'model.layers.13.mamba.A_log', 'model.layers.13.mamba.D', 'model.layers.13.mamba.conv1d.bias', 'model.layers.13.mamba.conv1d.weight', 'model.layers.13.mamba.dt_bias', 'model.layers.13.mamba.in_proj.weight', 'model.layers.13.mamba.norm.weight', 'model.layers.13.mamba.out_proj.weight', 'model.layers.14.mla.kv_a_proj_with_mqa.weight', 'model.layers.14.mla.kv_b_proj.weight', 'model.layers.14.mla.out_proj.weight', 'model.layers.14.mla.q_a_proj.weight', 'model.layers.14.mla.q_b_proj.weight', 'model.layers.15.mamba.A_log', 'model.layers.15.mamba.D', 'model.layers.15.mamba.conv1d.bias', 'model.layers.15.mamba.conv1d.weight', 'model.layers.15.mamba.dt_bias', 'model.layers.15.mamba.in_proj.weight', 'model.layers.15.mamba.norm.weight', 'model.layers.15.mamba.out_proj.weight', 'model.layers.16.mla.kv_a_proj_with_mqa.weight', 'model.layers.16.mla.kv_b_proj.weight', 'model.layers.16.mla.out_proj.weight', 'model.layers.16.mla.q_a_proj.weight', 'model.layers.16.mla.q_b_proj.weight', 'model.layers.17.mamba.A_log', 'model.layers.17.mamba.D', 'model.layers.17.mamba.conv1d.bias', 'model.layers.17.mamba.conv1d.weight', 'model.layers.17.mamba.dt_bias', 'model.layers.17.mamba.in_proj.weight', 'model.layers.17.mamba.norm.weight', 'model.layers.17.mamba.out_proj.weight', 'model.layers.18.mla.kv_a_proj_with_mqa.weight', 'model.layers.18.mla.kv_b_proj.weight', 'model.layers.18.mla.out_proj.weight', 'model.layers.18.mla.q_a_proj.weight', 'model.layers.18.mla.q_b_proj.weight', 'model.layers.19.mamba.A_log', 'model.layers.19.mamba.D', 'model.layers.19.mamba.conv1d.bias', 'model.layers.19.mamba.conv1d.weight', 'model.layers.19.mamba.dt_bias', 'model.layers.19.mamba.in_proj.weight', 'model.layers.19.mamba.norm.weight', 'model.layers.19.mamba.out_proj.weight', 'model.layers.2.mla.kv_a_proj_with_mqa.weight', 'model.layers.2.mla.kv_b_proj.weight', 'model.layers.2.mla.out_proj.weight', 'model.layers.2.mla.q_a_proj.weight', 'model.layers.2.mla.q_b_proj.weight', 'model.layers.20.mla.kv_a_proj_with_mqa.weight', 'model.layers.20.mla.kv_b_proj.weight', 'model.layers.20.mla.out_proj.weight', 'model.layers.20.mla.q_a_proj.weight', 'model.layers.20.mla.q_b_proj.weight', 'model.layers.21.mamba.A_log', 'model.layers.21.mamba.D', 'model.layers.21.mamba.conv1d.bias', 'model.layers.21.mamba.conv1d.weight', 'model.layers.21.mamba.dt_bias', 'model.layers.21.mamba.in_proj.weight', 'model.layers.21.mamba.norm.weight', 'model.layers.21.mamba.out_proj.weight', 'model.layers.22.mla.kv_a_proj_with_mqa.weight', 'model.layers.22.mla.kv_b_proj.weight', 'model.layers.22.mla.out_proj.weight', 'model.layers.22.mla.q_a_proj.weight', 'model.layers.22.mla.q_b_proj.weight', 'model.layers.23.mamba.A_log', 'model.layers.23.mamba.D', 'model.layers.23.mamba.conv1d.bias', 'model.layers.23.mamba.conv1d.weight', 'model.layers.23.mamba.dt_bias', 'model.layers.23.mamba.in_proj.weight', 'model.layers.23.mamba.norm.weight', 'model.layers.23.mamba.out_proj.weight', 'model.layers.24.mla.kv_a_proj_with_mqa.weight', 'model.layers.24.mla.kv_b_proj.weight', 'model.layers.24.mla.out_proj.weight', 'model.layers.24.mla.q_a_proj.weight', 'model.layers.24.mla.q_b_proj.weight', 'model.layers.25.mamba.A_log', 'model.layers.25.mamba.D', 'model.layers.25.mamba.conv1d.bias', 'model.layers.25.mamba.conv1d.weight', 'model.layers.25.mamba.dt_bias', 'model.layers.25.mamba.in_proj.weight', 'model.layers.25.mamba.norm.weight', 'model.layers.25.mamba.out_proj.weight', 'model.layers.26.mla.kv_a_proj_with_mqa.weight', 'model.layers.26.mla.kv_b_proj.weight', 'model.layers.26.mla.out_proj.weight', 'model.layers.26.mla.q_a_proj.weight', 'model.layers.26.mla.q_b_proj.weight', 'model.layers.27.mamba.A_log', 'model.layers.27.mamba.D', 'model.layers.27.mamba.conv1d.bias', 'model.layers.27.mamba.conv1d.weight', 'model.layers.27.mamba.dt_bias', 'model.layers.27.mamba.in_proj.weight', 'model.layers.27.mamba.norm.weight', 'model.layers.27.mamba.out_proj.weight', 'model.layers.28.mla.kv_a_proj_with_mqa.weight', 'model.layers.28.mla.kv_b_proj.weight', 'model.layers.28.mla.out_proj.weight', 'model.layers.28.mla.q_a_proj.weight', 'model.layers.28.mla.q_b_proj.weight', 'model.layers.29.mamba.A_log', 'model.layers.29.mamba.D', 'model.layers.29.mamba.conv1d.bias', 'model.layers.29.mamba.conv1d.weight', 'model.layers.29.mamba.dt_bias', 'model.layers.29.mamba.in_proj.weight', 'model.layers.29.mamba.norm.weight', 'model.layers.29.mamba.out_proj.weight', 'model.layers.3.mamba.A_log', 'model.layers.3.mamba.D', 'model.layers.3.mamba.conv1d.bias', 'model.layers.3.mamba.conv1d.weight', 'model.layers.3.mamba.dt_bias', 'model.layers.3.mamba.in_proj.weight', 'model.layers.3.mamba.norm.weight', 'model.layers.3.mamba.out_proj.weight', 'model.layers.30.mla.kv_a_proj_with_mqa.weight', 'model.layers.30.mla.kv_b_proj.weight', 'model.layers.30.mla.out_proj.weight', 'model.layers.30.mla.q_a_proj.weight', 'model.layers.30.mla.q_b_proj.weight', 'model.layers.31.mamba.A_log', 'model.layers.31.mamba.D', 'model.layers.31.mamba.conv1d.bias', 'model.layers.31.mamba.conv1d.weight', 'model.layers.31.mamba.dt_bias', 'model.layers.31.mamba.in_proj.weight', 'model.layers.31.mamba.norm.weight', 'model.layers.31.mamba.out_proj.weight', 'model.layers.4.mla.kv_a_proj_with_mqa.weight', 'model.layers.4.mla.kv_b_proj.weight', 'model.layers.4.mla.out_proj.weight', 'model.layers.4.mla.q_a_proj.weight', 'model.layers.4.mla.q_b_proj.weight', 'model.layers.5.mamba.A_log', 'model.layers.5.mamba.D', 'model.layers.5.mamba.conv1d.bias', 'model.layers.5.mamba.conv1d.weight', 'model.layers.5.mamba.dt_bias', 'model.layers.5.mamba.in_proj.weight', 'model.layers.5.mamba.norm.weight', 'model.layers.5.mamba.out_proj.weight', 'model.layers.6.mla.kv_a_proj_with_mqa.weight', 'model.layers.6.mla.kv_b_proj.weight', 'model.layers.6.mla.out_proj.weight', 'model.layers.6.mla.q_a_proj.weight', 'model.layers.6.mla.q_b_proj.weight', 'model.layers.7.mamba.A_log', 'model.layers.7.mamba.D', 'model.layers.7.mamba.conv1d.bias', 'model.layers.7.mamba.conv1d.weight', 'model.layers.7.mamba.dt_bias', 'model.layers.7.mamba.in_proj.weight', 'model.layers.7.mamba.norm.weight', 'model.layers.7.mamba.out_proj.weight', 'model.layers.8.mla.kv_a_proj_with_mqa.weight', 'model.layers.8.mla.kv_b_proj.weight', 'model.layers.8.mla.out_proj.weight', 'model.layers.8.mla.q_a_proj.weight', 'model.layers.8.mla.q_b_proj.weight', 'model.layers.9.mamba.A_log', 'model.layers.9.mamba.D', 'model.layers.9.mamba.conv1d.bias', 'model.layers.9.mamba.conv1d.weight', 'model.layers.9.mamba.dt_bias', 'model.layers.9.mamba.in_proj.weight', 'model.layers.9.mamba.norm.weight', 'model.layers.9.mamba.out_proj.weight']
11
+ - This IS expected if you are initializing LlamaForCausalLM from the checkpoint of a model trained on another task or with another architecture (e.g. initializing a BertForSequenceClassification model from a BertForPreTraining model).
12
+ - This IS NOT expected if you are initializing LlamaForCausalLM from the checkpoint of a model that you expect to be exactly identical (initializing a BertForSequenceClassification model from a BertForSequenceClassification model).
13
+ Some weights of LlamaForCausalLM were not initialized from the model checkpoint at ./hybrid_8B_mla16_mamba16_Fix160_qr2048_qh64_stage2_data11B and are newly initialized: ['model.layers.0.self_attn.k_proj.weight', 'model.layers.0.self_attn.o_proj.weight', 'model.layers.0.self_attn.q_proj.weight', 'model.layers.0.self_attn.v_proj.weight', 'model.layers.1.self_attn.k_proj.weight', 'model.layers.1.self_attn.o_proj.weight', 'model.layers.1.self_attn.q_proj.weight', 'model.layers.1.self_attn.v_proj.weight', 'model.layers.10.self_attn.k_proj.weight', 'model.layers.10.self_attn.o_proj.weight', 'model.layers.10.self_attn.q_proj.weight', 'model.layers.10.self_attn.v_proj.weight', 'model.layers.11.self_attn.k_proj.weight', 'model.layers.11.self_attn.o_proj.weight', 'model.layers.11.self_attn.q_proj.weight', 'model.layers.11.self_attn.v_proj.weight', 'model.layers.12.self_attn.k_proj.weight', 'model.layers.12.self_attn.o_proj.weight', 'model.layers.12.self_attn.q_proj.weight', 'model.layers.12.self_attn.v_proj.weight', 'model.layers.13.self_attn.k_proj.weight', 'model.layers.13.self_attn.o_proj.weight', 'model.layers.13.self_attn.q_proj.weight', 'model.layers.13.self_attn.v_proj.weight', 'model.layers.14.self_attn.k_proj.weight', 'model.layers.14.self_attn.o_proj.weight', 'model.layers.14.self_attn.q_proj.weight', 'model.layers.14.self_attn.v_proj.weight', 'model.layers.15.self_attn.k_proj.weight', 'model.layers.15.self_attn.o_proj.weight', 'model.layers.15.self_attn.q_proj.weight', 'model.layers.15.self_attn.v_proj.weight', 'model.layers.16.self_attn.k_proj.weight', 'model.layers.16.self_attn.o_proj.weight', 'model.layers.16.self_attn.q_proj.weight', 'model.layers.16.self_attn.v_proj.weight', 'model.layers.17.self_attn.k_proj.weight', 'model.layers.17.self_attn.o_proj.weight', 'model.layers.17.self_attn.q_proj.weight', 'model.layers.17.self_attn.v_proj.weight', 'model.layers.18.self_attn.k_proj.weight', 'model.layers.18.self_attn.o_proj.weight', 'model.layers.18.self_attn.q_proj.weight', 'model.layers.18.self_attn.v_proj.weight', 'model.layers.19.self_attn.k_proj.weight', 'model.layers.19.self_attn.o_proj.weight', 'model.layers.19.self_attn.q_proj.weight', 'model.layers.19.self_attn.v_proj.weight', 'model.layers.2.self_attn.k_proj.weight', 'model.layers.2.self_attn.o_proj.weight', 'model.layers.2.self_attn.q_proj.weight', 'model.layers.2.self_attn.v_proj.weight', 'model.layers.20.self_attn.k_proj.weight', 'model.layers.20.self_attn.o_proj.weight', 'model.layers.20.self_attn.q_proj.weight', 'model.layers.20.self_attn.v_proj.weight', 'model.layers.21.self_attn.k_proj.weight', 'model.layers.21.self_attn.o_proj.weight', 'model.layers.21.self_attn.q_proj.weight', 'model.layers.21.self_attn.v_proj.weight', 'model.layers.22.self_attn.k_proj.weight', 'model.layers.22.self_attn.o_proj.weight', 'model.layers.22.self_attn.q_proj.weight', 'model.layers.22.self_attn.v_proj.weight', 'model.layers.23.self_attn.k_proj.weight', 'model.layers.23.self_attn.o_proj.weight', 'model.layers.23.self_attn.q_proj.weight', 'model.layers.23.self_attn.v_proj.weight', 'model.layers.24.self_attn.k_proj.weight', 'model.layers.24.self_attn.o_proj.weight', 'model.layers.24.self_attn.q_proj.weight', 'model.layers.24.self_attn.v_proj.weight', 'model.layers.25.self_attn.k_proj.weight', 'model.layers.25.self_attn.o_proj.weight', 'model.layers.25.self_attn.q_proj.weight', 'model.layers.25.self_attn.v_proj.weight', 'model.layers.26.self_attn.k_proj.weight', 'model.layers.26.self_attn.o_proj.weight', 'model.layers.26.self_attn.q_proj.weight', 'model.layers.26.self_attn.v_proj.weight', 'model.layers.27.self_attn.k_proj.weight', 'model.layers.27.self_attn.o_proj.weight', 'model.layers.27.self_attn.q_proj.weight', 'model.layers.27.self_attn.v_proj.weight', 'model.layers.28.self_attn.k_proj.weight', 'model.layers.28.self_attn.o_proj.weight', 'model.layers.28.self_attn.q_proj.weight', 'model.layers.28.self_attn.v_proj.weight', 'model.layers.29.self_attn.k_proj.weight', 'model.layers.29.self_attn.o_proj.weight', 'model.layers.29.self_attn.q_proj.weight', 'model.layers.29.self_attn.v_proj.weight', 'model.layers.3.self_attn.k_proj.weight', 'model.layers.3.self_attn.o_proj.weight', 'model.layers.3.self_attn.q_proj.weight', 'model.layers.3.self_attn.v_proj.weight', 'model.layers.30.self_attn.k_proj.weight', 'model.layers.30.self_attn.o_proj.weight', 'model.layers.30.self_attn.q_proj.weight', 'model.layers.30.self_attn.v_proj.weight', 'model.layers.31.self_attn.k_proj.weight', 'model.layers.31.self_attn.o_proj.weight', 'model.layers.31.self_attn.q_proj.weight', 'model.layers.31.self_attn.v_proj.weight', 'model.layers.4.self_attn.k_proj.weight', 'model.layers.4.self_attn.o_proj.weight', 'model.layers.4.self_attn.q_proj.weight', 'model.layers.4.self_attn.v_proj.weight', 'model.layers.5.self_attn.k_proj.weight', 'model.layers.5.self_attn.o_proj.weight', 'model.layers.5.self_attn.q_proj.weight', 'model.layers.5.self_attn.v_proj.weight', 'model.layers.6.self_attn.k_proj.weight', 'model.layers.6.self_attn.o_proj.weight', 'model.layers.6.self_attn.q_proj.weight', 'model.layers.6.self_attn.v_proj.weight', 'model.layers.7.self_attn.k_proj.weight', 'model.layers.7.self_attn.o_proj.weight', 'model.layers.7.self_attn.q_proj.weight', 'model.layers.7.self_attn.v_proj.weight', 'model.layers.8.self_attn.k_proj.weight', 'model.layers.8.self_attn.o_proj.weight', 'model.layers.8.self_attn.q_proj.weight', 'model.layers.8.self_attn.v_proj.weight', 'model.layers.9.self_attn.k_proj.weight', 'model.layers.9.self_attn.o_proj.weight', 'model.layers.9.self_attn.q_proj.weight', 'model.layers.9.self_attn.v_proj.weight']
14
+ You should probably TRAIN this model on a down-stream task to be able to use it for predictions and inference.
15
+ Traceback (most recent call last):
16
+ File "/workspace/amd-mla/benchmark/llm_eval/lm_harness_eval.py", line 407, in <module>
17
+ cli_evaluate()
18
+ File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/lm_eval/__main__.py", line 207, in cli_evaluate
19
+ results = evaluator.simple_evaluate(
20
+ File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/lm_eval/utils.py", line 402, in _wrapper
21
+ return fn(*args, **kwargs)
22
+ File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/lm_eval/evaluator.py", line 102, in simple_evaluate
23
+ lm = lm_eval.api.registry.get_model(model).create_from_arg_string(
24
+ File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/lm_eval/api/model.py", line 136, in create_from_arg_string
25
+ return cls(**args, **args2)
26
+ File "/workspace/amd-mla/benchmark/llm_eval/lm_harness_eval.py", line 312, in __init__
27
+ self._model = MLATransformerHybridModelWrapper.from_pretrained(pretrained, torch_dtype=dtype).model
28
+ File "/workspace/amd-mla/./mla/hybrid_wrapper.py", line 227, in from_pretrained
29
+ return MLATransformerHybridModelWrapper.from_pretrained_local(pretrained_model_name, torch_dtype, attn_implementation)
30
+ File "/workspace/amd-mla/./mla/hybrid_wrapper.py", line 210, in from_pretrained_local
31
+ return MLATransformerHybridModelWrapper(pretrained_model_name, transformer_model, MLA_config, MLA_config.attn_layers, torch_dtype, init_with_svd=False)
32
+ File "/workspace/amd-mla/./mla/hybrid_wrapper.py", line 155, in __init__
33
+ self.model.load_state_dict(torch.load(f"{checkpoint_path}/pytorch_model.bin", map_location=torch.device("cpu")))
34
+ File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/torch/nn/modules/module.py", line 2591, in load_state_dict
35
+ raise RuntimeError(
36
+ RuntimeError: Error(s) in loading state_dict for LlamaForCausalLM:
37
+ Missing key(s) in state_dict: "model.layers.1.self_attn.q_proj.weight", "model.layers.1.self_attn.k_proj.weight", "model.layers.1.self_attn.v_proj.weight", "model.layers.1.self_attn.o_proj.weight", "model.layers.3.self_attn.q_proj.weight", "model.layers.3.self_attn.k_proj.weight", "model.layers.3.self_attn.v_proj.weight", "model.layers.3.self_attn.o_proj.weight", "model.layers.5.self_attn.q_proj.weight", "model.layers.5.self_attn.k_proj.weight", "model.layers.5.self_attn.v_proj.weight", "model.layers.5.self_attn.o_proj.weight", "model.layers.7.self_attn.q_proj.weight", "model.layers.7.self_attn.k_proj.weight", "model.layers.7.self_attn.v_proj.weight", "model.layers.7.self_attn.o_proj.weight", "model.layers.9.self_attn.q_proj.weight", "model.layers.9.self_attn.k_proj.weight", "model.layers.9.self_attn.v_proj.weight", "model.layers.9.self_attn.o_proj.weight", "model.layers.11.self_attn.q_proj.weight", "model.layers.11.self_attn.k_proj.weight", "model.layers.11.self_attn.v_proj.weight", "model.layers.11.self_attn.o_proj.weight", "model.layers.13.self_attn.q_proj.weight", "model.layers.13.self_attn.k_proj.weight", "model.layers.13.self_attn.v_proj.weight", "model.layers.13.self_attn.o_proj.weight", "model.layers.15.self_attn.q_proj.weight", "model.layers.15.self_attn.k_proj.weight", "model.layers.15.self_attn.v_proj.weight", "model.layers.15.self_attn.o_proj.weight", "model.layers.17.self_attn.q_proj.weight", "model.layers.17.self_attn.k_proj.weight", "model.layers.17.self_attn.v_proj.weight", "model.layers.17.self_attn.o_proj.weight", "model.layers.19.self_attn.q_proj.weight", "model.layers.19.self_attn.k_proj.weight", "model.layers.19.self_attn.v_proj.weight", "model.layers.19.self_attn.o_proj.weight", "model.layers.21.self_attn.q_proj.weight", "model.layers.21.self_attn.k_proj.weight", "model.layers.21.self_attn.v_proj.weight", "model.layers.21.self_attn.o_proj.weight", "model.layers.23.self_attn.q_proj.weight", "model.layers.23.self_attn.k_proj.weight", "model.layers.23.self_attn.v_proj.weight", "model.layers.23.self_attn.o_proj.weight", "model.layers.25.self_attn.q_proj.weight", "model.layers.25.self_attn.k_proj.weight", "model.layers.25.self_attn.v_proj.weight", "model.layers.25.self_attn.o_proj.weight", "model.layers.27.self_attn.q_proj.weight", "model.layers.27.self_attn.k_proj.weight", "model.layers.27.self_attn.v_proj.weight", "model.layers.27.self_attn.o_proj.weight", "model.layers.29.self_attn.q_proj.weight", "model.layers.29.self_attn.k_proj.weight", "model.layers.29.self_attn.v_proj.weight", "model.layers.29.self_attn.o_proj.weight", "model.layers.31.self_attn.q_proj.weight", "model.layers.31.self_attn.k_proj.weight", "model.layers.31.self_attn.v_proj.weight", "model.layers.31.self_attn.o_proj.weight".
38
+ Unexpected key(s) in state_dict: "model.layers.1.mamba.A_log", "model.layers.1.mamba.D", "model.layers.1.mamba.in_proj.weight", "model.layers.1.mamba.conv1d.weight", "model.layers.1.mamba.norm.weight", "model.layers.1.mamba.out_proj.weight", "model.layers.1.mamba.dt_bias", "model.layers.1.mamba.conv1d.bias", "model.layers.3.mamba.A_log", "model.layers.3.mamba.D", "model.layers.3.mamba.in_proj.weight", "model.layers.3.mamba.conv1d.weight", "model.layers.3.mamba.norm.weight", "model.layers.3.mamba.out_proj.weight", "model.layers.3.mamba.dt_bias", "model.layers.3.mamba.conv1d.bias", "model.layers.5.mamba.A_log", "model.layers.5.mamba.D", "model.layers.5.mamba.in_proj.weight", "model.layers.5.mamba.conv1d.weight", "model.layers.5.mamba.norm.weight", "model.layers.5.mamba.out_proj.weight", "model.layers.5.mamba.dt_bias", "model.layers.5.mamba.conv1d.bias", "model.layers.7.mamba.A_log", "model.layers.7.mamba.D", "model.layers.7.mamba.in_proj.weight", "model.layers.7.mamba.conv1d.weight", "model.layers.7.mamba.norm.weight", "model.layers.7.mamba.out_proj.weight", "model.layers.7.mamba.dt_bias", "model.layers.7.mamba.conv1d.bias", "model.layers.9.mamba.A_log", "model.layers.9.mamba.D", "model.layers.9.mamba.in_proj.weight", "model.layers.9.mamba.conv1d.weight", "model.layers.9.mamba.norm.weight", "model.layers.9.mamba.out_proj.weight", "model.layers.9.mamba.dt_bias", "model.layers.9.mamba.conv1d.bias", "model.layers.11.mamba.A_log", "model.layers.11.mamba.D", "model.layers.11.mamba.in_proj.weight", "model.layers.11.mamba.conv1d.weight", "model.layers.11.mamba.norm.weight", "model.layers.11.mamba.out_proj.weight", "model.layers.11.mamba.dt_bias", "model.layers.11.mamba.conv1d.bias", "model.layers.13.mamba.A_log", "model.layers.13.mamba.D", "model.layers.13.mamba.in_proj.weight", "model.layers.13.mamba.conv1d.weight", "model.layers.13.mamba.norm.weight", "model.layers.13.mamba.out_proj.weight", "model.layers.13.mamba.dt_bias", "model.layers.13.mamba.conv1d.bias", "model.layers.15.mamba.A_log", "model.layers.15.mamba.D", "model.layers.15.mamba.in_proj.weight", "model.layers.15.mamba.conv1d.weight", "model.layers.15.mamba.norm.weight", "model.layers.15.mamba.out_proj.weight", "model.layers.15.mamba.dt_bias", "model.layers.15.mamba.conv1d.bias", "model.layers.17.mamba.A_log", "model.layers.17.mamba.D", "model.layers.17.mamba.in_proj.weight", "model.layers.17.mamba.conv1d.weight", "model.layers.17.mamba.norm.weight", "model.layers.17.mamba.out_proj.weight", "model.layers.17.mamba.dt_bias", "model.layers.17.mamba.conv1d.bias", "model.layers.19.mamba.A_log", "model.layers.19.mamba.D", "model.layers.19.mamba.in_proj.weight", "model.layers.19.mamba.conv1d.weight", "model.layers.19.mamba.norm.weight", "model.layers.19.mamba.out_proj.weight", "model.layers.19.mamba.dt_bias", "model.layers.19.mamba.conv1d.bias", "model.layers.21.mamba.A_log", "model.layers.21.mamba.D", "model.layers.21.mamba.in_proj.weight", "model.layers.21.mamba.conv1d.weight", "model.layers.21.mamba.norm.weight", "model.layers.21.mamba.out_proj.weight", "model.layers.21.mamba.dt_bias", "model.layers.21.mamba.conv1d.bias", "model.layers.23.mamba.A_log", "model.layers.23.mamba.D", "model.layers.23.mamba.in_proj.weight", "model.layers.23.mamba.conv1d.weight", "model.layers.23.mamba.norm.weight", "model.layers.23.mamba.out_proj.weight", "model.layers.23.mamba.dt_bias", "model.layers.23.mamba.conv1d.bias", "model.layers.25.mamba.A_log", "model.layers.25.mamba.D", "model.layers.25.mamba.in_proj.weight", "model.layers.25.mamba.conv1d.weight", "model.layers.25.mamba.norm.weight", "model.layers.25.mamba.out_proj.weight", "model.layers.25.mamba.dt_bias", "model.layers.25.mamba.conv1d.bias", "model.layers.27.mamba.A_log", "model.layers.27.mamba.D", "model.layers.27.mamba.in_proj.weight", "model.layers.27.mamba.conv1d.weight", "model.layers.27.mamba.norm.weight", "model.layers.27.mamba.out_proj.weight", "model.layers.27.mamba.dt_bias", "model.layers.27.mamba.conv1d.bias", "model.layers.29.mamba.A_log", "model.layers.29.mamba.D", "model.layers.29.mamba.in_proj.weight", "model.layers.29.mamba.conv1d.weight", "model.layers.29.mamba.norm.weight", "model.layers.29.mamba.out_proj.weight", "model.layers.29.mamba.dt_bias", "model.layers.29.mamba.conv1d.bias", "model.layers.31.mamba.A_log", "model.layers.31.mamba.D", "model.layers.31.mamba.in_proj.weight", "model.layers.31.mamba.conv1d.weight", "model.layers.31.mamba.norm.weight", "model.layers.31.mamba.out_proj.weight", "model.layers.31.mamba.dt_bias", "model.layers.31.mamba.conv1d.bias".
mamba_config.json ADDED
@@ -0,0 +1,34 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "d_model": 4096,
3
+ "ssm_cfg": {
4
+ "expand": 1,
5
+ "ngroups": 32,
6
+ "d_state": 128
7
+ },
8
+ "rms_norm_eps": 1e-05,
9
+ "vocab_size": null,
10
+ "d_inner": 4096,
11
+ "d_xb": 1024,
12
+ "intermediate_size": 14336,
13
+ "hidden_act": "silu",
14
+ "n_layer": 32,
15
+ "mamba_to_mha": false,
16
+ "attn_layers": [
17
+ 1,
18
+ 3,
19
+ 5,
20
+ 7,
21
+ 9,
22
+ 11,
23
+ 13,
24
+ 15,
25
+ 17,
26
+ 19,
27
+ 21,
28
+ 23,
29
+ 25,
30
+ 27,
31
+ 29,
32
+ 31
33
+ ]
34
+ }
mla_layer_config.json ADDED
@@ -0,0 +1,55 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "attention_bias": false,
3
+ "attention_dropout": 0.0,
4
+ "aux_loss_alpha": 0.001,
5
+ "bos_token_id": 0,
6
+ "eos_token_id": 1,
7
+ "ep_size": 1,
8
+ "first_k_dense_replace": 3,
9
+ "hidden_act": "silu",
10
+ "hidden_size": 4096,
11
+ "initializer_range": 0.02,
12
+ "intermediate_size": 14336,
13
+ "kv_energy_ratio": null,
14
+ "kv_lora_rank": 160,
15
+ "kv_svd_norm": 2.0,
16
+ "layer_rank_list": {},
17
+ "max_position_embeddings": 131072,
18
+ "model_type": "deepseek_v3",
19
+ "n_group": 8,
20
+ "norm_topk_prob": true,
21
+ "num_attention_heads": 32,
22
+ "num_hidden_layers": 61,
23
+ "num_key_value_heads": 8,
24
+ "num_nextn_predict_layers": 1,
25
+ "pretraining_tp": 1,
26
+ "q_energy_ratio": null,
27
+ "q_lora_rank": 2048,
28
+ "q_svd_norm": 2.0,
29
+ "qk_nope_head_dim": 64,
30
+ "qk_rope_head_dim": 64,
31
+ "qkv_rank_divisor": 8,
32
+ "rms_norm_eps": 1e-06,
33
+ "rope_scaling": {
34
+ "factor": 8.0,
35
+ "high_freq_factor": 4.0,
36
+ "low_freq_factor": 1.0,
37
+ "original_max_position_embeddings": 8192,
38
+ "rope_type": "llama3"
39
+ },
40
+ "rope_theta": 500000.0,
41
+ "rope_type": "yarn",
42
+ "routed_scaling_factor": 2.5,
43
+ "scoring_func": "sigmoid",
44
+ "seq_aux": true,
45
+ "tie_word_embeddings": false,
46
+ "topk_group": 4,
47
+ "topk_method": "noaux_tc",
48
+ "transformers_version": "4.43.1",
49
+ "use_cache": true,
50
+ "use_fixed_rank_for_first_and_last_block": true,
51
+ "use_full_kv_head": false,
52
+ "use_lora_layer_norm": false,
53
+ "v_head_dim": 128,
54
+ "vocab_size": 129280
55
+ }
output.log ADDED
The diff for this file is too large to render. See raw diff
 
special_tokens_map.json ADDED
@@ -0,0 +1,17 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "bos_token": {
3
+ "content": "<|begin_of_text|>",
4
+ "lstrip": false,
5
+ "normalized": false,
6
+ "rstrip": false,
7
+ "single_word": false
8
+ },
9
+ "eos_token": {
10
+ "content": "<|eot_id|>",
11
+ "lstrip": false,
12
+ "normalized": false,
13
+ "rstrip": false,
14
+ "single_word": false
15
+ },
16
+ "pad_token": "<|eot_id|>"
17
+ }
tokenizer.json ADDED
The diff for this file is too large to render. See raw diff
 
tokenizer_config.json ADDED
@@ -0,0 +1,2063 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "added_tokens_decoder": {
3
+ "128000": {
4
+ "content": "<|begin_of_text|>",
5
+ "lstrip": false,
6
+ "normalized": false,
7
+ "rstrip": false,
8
+ "single_word": false,
9
+ "special": true
10
+ },
11
+ "128001": {
12
+ "content": "<|end_of_text|>",
13
+ "lstrip": false,
14
+ "normalized": false,
15
+ "rstrip": false,
16
+ "single_word": false,
17
+ "special": true
18
+ },
19
+ "128002": {
20
+ "content": "<|reserved_special_token_0|>",
21
+ "lstrip": false,
22
+ "normalized": false,
23
+ "rstrip": false,
24
+ "single_word": false,
25
+ "special": true
26
+ },
27
+ "128003": {
28
+ "content": "<|reserved_special_token_1|>",
29
+ "lstrip": false,
30
+ "normalized": false,
31
+ "rstrip": false,
32
+ "single_word": false,
33
+ "special": true
34
+ },
35
+ "128004": {
36
+ "content": "<|finetune_right_pad_id|>",
37
+ "lstrip": false,
38
+ "normalized": false,
39
+ "rstrip": false,
40
+ "single_word": false,
41
+ "special": true
42
+ },
43
+ "128005": {
44
+ "content": "<|reserved_special_token_2|>",
45
+ "lstrip": false,
46
+ "normalized": false,
47
+ "rstrip": false,
48
+ "single_word": false,
49
+ "special": true
50
+ },
51
+ "128006": {
52
+ "content": "<|start_header_id|>",
53
+ "lstrip": false,
54
+ "normalized": false,
55
+ "rstrip": false,
56
+ "single_word": false,
57
+ "special": true
58
+ },
59
+ "128007": {
60
+ "content": "<|end_header_id|>",
61
+ "lstrip": false,
62
+ "normalized": false,
63
+ "rstrip": false,
64
+ "single_word": false,
65
+ "special": true
66
+ },
67
+ "128008": {
68
+ "content": "<|eom_id|>",
69
+ "lstrip": false,
70
+ "normalized": false,
71
+ "rstrip": false,
72
+ "single_word": false,
73
+ "special": true
74
+ },
75
+ "128009": {
76
+ "content": "<|eot_id|>",
77
+ "lstrip": false,
78
+ "normalized": false,
79
+ "rstrip": false,
80
+ "single_word": false,
81
+ "special": true
82
+ },
83
+ "128010": {
84
+ "content": "<|python_tag|>",
85
+ "lstrip": false,
86
+ "normalized": false,
87
+ "rstrip": false,
88
+ "single_word": false,
89
+ "special": true
90
+ },
91
+ "128011": {
92
+ "content": "<|reserved_special_token_3|>",
93
+ "lstrip": false,
94
+ "normalized": false,
95
+ "rstrip": false,
96
+ "single_word": false,
97
+ "special": true
98
+ },
99
+ "128012": {
100
+ "content": "<|reserved_special_token_4|>",
101
+ "lstrip": false,
102
+ "normalized": false,
103
+ "rstrip": false,
104
+ "single_word": false,
105
+ "special": true
106
+ },
107
+ "128013": {
108
+ "content": "<|reserved_special_token_5|>",
109
+ "lstrip": false,
110
+ "normalized": false,
111
+ "rstrip": false,
112
+ "single_word": false,
113
+ "special": true
114
+ },
115
+ "128014": {
116
+ "content": "<|reserved_special_token_6|>",
117
+ "lstrip": false,
118
+ "normalized": false,
119
+ "rstrip": false,
120
+ "single_word": false,
121
+ "special": true
122
+ },
123
+ "128015": {
124
+ "content": "<|reserved_special_token_7|>",
125
+ "lstrip": false,
126
+ "normalized": false,
127
+ "rstrip": false,
128
+ "single_word": false,
129
+ "special": true
130
+ },
131
+ "128016": {
132
+ "content": "<|reserved_special_token_8|>",
133
+ "lstrip": false,
134
+ "normalized": false,
135
+ "rstrip": false,
136
+ "single_word": false,
137
+ "special": true
138
+ },
139
+ "128017": {
140
+ "content": "<|reserved_special_token_9|>",
141
+ "lstrip": false,
142
+ "normalized": false,
143
+ "rstrip": false,
144
+ "single_word": false,
145
+ "special": true
146
+ },
147
+ "128018": {
148
+ "content": "<|reserved_special_token_10|>",
149
+ "lstrip": false,
150
+ "normalized": false,
151
+ "rstrip": false,
152
+ "single_word": false,
153
+ "special": true
154
+ },
155
+ "128019": {
156
+ "content": "<|reserved_special_token_11|>",
157
+ "lstrip": false,
158
+ "normalized": false,
159
+ "rstrip": false,
160
+ "single_word": false,
161
+ "special": true
162
+ },
163
+ "128020": {
164
+ "content": "<|reserved_special_token_12|>",
165
+ "lstrip": false,
166
+ "normalized": false,
167
+ "rstrip": false,
168
+ "single_word": false,
169
+ "special": true
170
+ },
171
+ "128021": {
172
+ "content": "<|reserved_special_token_13|>",
173
+ "lstrip": false,
174
+ "normalized": false,
175
+ "rstrip": false,
176
+ "single_word": false,
177
+ "special": true
178
+ },
179
+ "128022": {
180
+ "content": "<|reserved_special_token_14|>",
181
+ "lstrip": false,
182
+ "normalized": false,
183
+ "rstrip": false,
184
+ "single_word": false,
185
+ "special": true
186
+ },
187
+ "128023": {
188
+ "content": "<|reserved_special_token_15|>",
189
+ "lstrip": false,
190
+ "normalized": false,
191
+ "rstrip": false,
192
+ "single_word": false,
193
+ "special": true
194
+ },
195
+ "128024": {
196
+ "content": "<|reserved_special_token_16|>",
197
+ "lstrip": false,
198
+ "normalized": false,
199
+ "rstrip": false,
200
+ "single_word": false,
201
+ "special": true
202
+ },
203
+ "128025": {
204
+ "content": "<|reserved_special_token_17|>",
205
+ "lstrip": false,
206
+ "normalized": false,
207
+ "rstrip": false,
208
+ "single_word": false,
209
+ "special": true
210
+ },
211
+ "128026": {
212
+ "content": "<|reserved_special_token_18|>",
213
+ "lstrip": false,
214
+ "normalized": false,
215
+ "rstrip": false,
216
+ "single_word": false,
217
+ "special": true
218
+ },
219
+ "128027": {
220
+ "content": "<|reserved_special_token_19|>",
221
+ "lstrip": false,
222
+ "normalized": false,
223
+ "rstrip": false,
224
+ "single_word": false,
225
+ "special": true
226
+ },
227
+ "128028": {
228
+ "content": "<|reserved_special_token_20|>",
229
+ "lstrip": false,
230
+ "normalized": false,
231
+ "rstrip": false,
232
+ "single_word": false,
233
+ "special": true
234
+ },
235
+ "128029": {
236
+ "content": "<|reserved_special_token_21|>",
237
+ "lstrip": false,
238
+ "normalized": false,
239
+ "rstrip": false,
240
+ "single_word": false,
241
+ "special": true
242
+ },
243
+ "128030": {
244
+ "content": "<|reserved_special_token_22|>",
245
+ "lstrip": false,
246
+ "normalized": false,
247
+ "rstrip": false,
248
+ "single_word": false,
249
+ "special": true
250
+ },
251
+ "128031": {
252
+ "content": "<|reserved_special_token_23|>",
253
+ "lstrip": false,
254
+ "normalized": false,
255
+ "rstrip": false,
256
+ "single_word": false,
257
+ "special": true
258
+ },
259
+ "128032": {
260
+ "content": "<|reserved_special_token_24|>",
261
+ "lstrip": false,
262
+ "normalized": false,
263
+ "rstrip": false,
264
+ "single_word": false,
265
+ "special": true
266
+ },
267
+ "128033": {
268
+ "content": "<|reserved_special_token_25|>",
269
+ "lstrip": false,
270
+ "normalized": false,
271
+ "rstrip": false,
272
+ "single_word": false,
273
+ "special": true
274
+ },
275
+ "128034": {
276
+ "content": "<|reserved_special_token_26|>",
277
+ "lstrip": false,
278
+ "normalized": false,
279
+ "rstrip": false,
280
+ "single_word": false,
281
+ "special": true
282
+ },
283
+ "128035": {
284
+ "content": "<|reserved_special_token_27|>",
285
+ "lstrip": false,
286
+ "normalized": false,
287
+ "rstrip": false,
288
+ "single_word": false,
289
+ "special": true
290
+ },
291
+ "128036": {
292
+ "content": "<|reserved_special_token_28|>",
293
+ "lstrip": false,
294
+ "normalized": false,
295
+ "rstrip": false,
296
+ "single_word": false,
297
+ "special": true
298
+ },
299
+ "128037": {
300
+ "content": "<|reserved_special_token_29|>",
301
+ "lstrip": false,
302
+ "normalized": false,
303
+ "rstrip": false,
304
+ "single_word": false,
305
+ "special": true
306
+ },
307
+ "128038": {
308
+ "content": "<|reserved_special_token_30|>",
309
+ "lstrip": false,
310
+ "normalized": false,
311
+ "rstrip": false,
312
+ "single_word": false,
313
+ "special": true
314
+ },
315
+ "128039": {
316
+ "content": "<|reserved_special_token_31|>",
317
+ "lstrip": false,
318
+ "normalized": false,
319
+ "rstrip": false,
320
+ "single_word": false,
321
+ "special": true
322
+ },
323
+ "128040": {
324
+ "content": "<|reserved_special_token_32|>",
325
+ "lstrip": false,
326
+ "normalized": false,
327
+ "rstrip": false,
328
+ "single_word": false,
329
+ "special": true
330
+ },
331
+ "128041": {
332
+ "content": "<|reserved_special_token_33|>",
333
+ "lstrip": false,
334
+ "normalized": false,
335
+ "rstrip": false,
336
+ "single_word": false,
337
+ "special": true
338
+ },
339
+ "128042": {
340
+ "content": "<|reserved_special_token_34|>",
341
+ "lstrip": false,
342
+ "normalized": false,
343
+ "rstrip": false,
344
+ "single_word": false,
345
+ "special": true
346
+ },
347
+ "128043": {
348
+ "content": "<|reserved_special_token_35|>",
349
+ "lstrip": false,
350
+ "normalized": false,
351
+ "rstrip": false,
352
+ "single_word": false,
353
+ "special": true
354
+ },
355
+ "128044": {
356
+ "content": "<|reserved_special_token_36|>",
357
+ "lstrip": false,
358
+ "normalized": false,
359
+ "rstrip": false,
360
+ "single_word": false,
361
+ "special": true
362
+ },
363
+ "128045": {
364
+ "content": "<|reserved_special_token_37|>",
365
+ "lstrip": false,
366
+ "normalized": false,
367
+ "rstrip": false,
368
+ "single_word": false,
369
+ "special": true
370
+ },
371
+ "128046": {
372
+ "content": "<|reserved_special_token_38|>",
373
+ "lstrip": false,
374
+ "normalized": false,
375
+ "rstrip": false,
376
+ "single_word": false,
377
+ "special": true
378
+ },
379
+ "128047": {
380
+ "content": "<|reserved_special_token_39|>",
381
+ "lstrip": false,
382
+ "normalized": false,
383
+ "rstrip": false,
384
+ "single_word": false,
385
+ "special": true
386
+ },
387
+ "128048": {
388
+ "content": "<|reserved_special_token_40|>",
389
+ "lstrip": false,
390
+ "normalized": false,
391
+ "rstrip": false,
392
+ "single_word": false,
393
+ "special": true
394
+ },
395
+ "128049": {
396
+ "content": "<|reserved_special_token_41|>",
397
+ "lstrip": false,
398
+ "normalized": false,
399
+ "rstrip": false,
400
+ "single_word": false,
401
+ "special": true
402
+ },
403
+ "128050": {
404
+ "content": "<|reserved_special_token_42|>",
405
+ "lstrip": false,
406
+ "normalized": false,
407
+ "rstrip": false,
408
+ "single_word": false,
409
+ "special": true
410
+ },
411
+ "128051": {
412
+ "content": "<|reserved_special_token_43|>",
413
+ "lstrip": false,
414
+ "normalized": false,
415
+ "rstrip": false,
416
+ "single_word": false,
417
+ "special": true
418
+ },
419
+ "128052": {
420
+ "content": "<|reserved_special_token_44|>",
421
+ "lstrip": false,
422
+ "normalized": false,
423
+ "rstrip": false,
424
+ "single_word": false,
425
+ "special": true
426
+ },
427
+ "128053": {
428
+ "content": "<|reserved_special_token_45|>",
429
+ "lstrip": false,
430
+ "normalized": false,
431
+ "rstrip": false,
432
+ "single_word": false,
433
+ "special": true
434
+ },
435
+ "128054": {
436
+ "content": "<|reserved_special_token_46|>",
437
+ "lstrip": false,
438
+ "normalized": false,
439
+ "rstrip": false,
440
+ "single_word": false,
441
+ "special": true
442
+ },
443
+ "128055": {
444
+ "content": "<|reserved_special_token_47|>",
445
+ "lstrip": false,
446
+ "normalized": false,
447
+ "rstrip": false,
448
+ "single_word": false,
449
+ "special": true
450
+ },
451
+ "128056": {
452
+ "content": "<|reserved_special_token_48|>",
453
+ "lstrip": false,
454
+ "normalized": false,
455
+ "rstrip": false,
456
+ "single_word": false,
457
+ "special": true
458
+ },
459
+ "128057": {
460
+ "content": "<|reserved_special_token_49|>",
461
+ "lstrip": false,
462
+ "normalized": false,
463
+ "rstrip": false,
464
+ "single_word": false,
465
+ "special": true
466
+ },
467
+ "128058": {
468
+ "content": "<|reserved_special_token_50|>",
469
+ "lstrip": false,
470
+ "normalized": false,
471
+ "rstrip": false,
472
+ "single_word": false,
473
+ "special": true
474
+ },
475
+ "128059": {
476
+ "content": "<|reserved_special_token_51|>",
477
+ "lstrip": false,
478
+ "normalized": false,
479
+ "rstrip": false,
480
+ "single_word": false,
481
+ "special": true
482
+ },
483
+ "128060": {
484
+ "content": "<|reserved_special_token_52|>",
485
+ "lstrip": false,
486
+ "normalized": false,
487
+ "rstrip": false,
488
+ "single_word": false,
489
+ "special": true
490
+ },
491
+ "128061": {
492
+ "content": "<|reserved_special_token_53|>",
493
+ "lstrip": false,
494
+ "normalized": false,
495
+ "rstrip": false,
496
+ "single_word": false,
497
+ "special": true
498
+ },
499
+ "128062": {
500
+ "content": "<|reserved_special_token_54|>",
501
+ "lstrip": false,
502
+ "normalized": false,
503
+ "rstrip": false,
504
+ "single_word": false,
505
+ "special": true
506
+ },
507
+ "128063": {
508
+ "content": "<|reserved_special_token_55|>",
509
+ "lstrip": false,
510
+ "normalized": false,
511
+ "rstrip": false,
512
+ "single_word": false,
513
+ "special": true
514
+ },
515
+ "128064": {
516
+ "content": "<|reserved_special_token_56|>",
517
+ "lstrip": false,
518
+ "normalized": false,
519
+ "rstrip": false,
520
+ "single_word": false,
521
+ "special": true
522
+ },
523
+ "128065": {
524
+ "content": "<|reserved_special_token_57|>",
525
+ "lstrip": false,
526
+ "normalized": false,
527
+ "rstrip": false,
528
+ "single_word": false,
529
+ "special": true
530
+ },
531
+ "128066": {
532
+ "content": "<|reserved_special_token_58|>",
533
+ "lstrip": false,
534
+ "normalized": false,
535
+ "rstrip": false,
536
+ "single_word": false,
537
+ "special": true
538
+ },
539
+ "128067": {
540
+ "content": "<|reserved_special_token_59|>",
541
+ "lstrip": false,
542
+ "normalized": false,
543
+ "rstrip": false,
544
+ "single_word": false,
545
+ "special": true
546
+ },
547
+ "128068": {
548
+ "content": "<|reserved_special_token_60|>",
549
+ "lstrip": false,
550
+ "normalized": false,
551
+ "rstrip": false,
552
+ "single_word": false,
553
+ "special": true
554
+ },
555
+ "128069": {
556
+ "content": "<|reserved_special_token_61|>",
557
+ "lstrip": false,
558
+ "normalized": false,
559
+ "rstrip": false,
560
+ "single_word": false,
561
+ "special": true
562
+ },
563
+ "128070": {
564
+ "content": "<|reserved_special_token_62|>",
565
+ "lstrip": false,
566
+ "normalized": false,
567
+ "rstrip": false,
568
+ "single_word": false,
569
+ "special": true
570
+ },
571
+ "128071": {
572
+ "content": "<|reserved_special_token_63|>",
573
+ "lstrip": false,
574
+ "normalized": false,
575
+ "rstrip": false,
576
+ "single_word": false,
577
+ "special": true
578
+ },
579
+ "128072": {
580
+ "content": "<|reserved_special_token_64|>",
581
+ "lstrip": false,
582
+ "normalized": false,
583
+ "rstrip": false,
584
+ "single_word": false,
585
+ "special": true
586
+ },
587
+ "128073": {
588
+ "content": "<|reserved_special_token_65|>",
589
+ "lstrip": false,
590
+ "normalized": false,
591
+ "rstrip": false,
592
+ "single_word": false,
593
+ "special": true
594
+ },
595
+ "128074": {
596
+ "content": "<|reserved_special_token_66|>",
597
+ "lstrip": false,
598
+ "normalized": false,
599
+ "rstrip": false,
600
+ "single_word": false,
601
+ "special": true
602
+ },
603
+ "128075": {
604
+ "content": "<|reserved_special_token_67|>",
605
+ "lstrip": false,
606
+ "normalized": false,
607
+ "rstrip": false,
608
+ "single_word": false,
609
+ "special": true
610
+ },
611
+ "128076": {
612
+ "content": "<|reserved_special_token_68|>",
613
+ "lstrip": false,
614
+ "normalized": false,
615
+ "rstrip": false,
616
+ "single_word": false,
617
+ "special": true
618
+ },
619
+ "128077": {
620
+ "content": "<|reserved_special_token_69|>",
621
+ "lstrip": false,
622
+ "normalized": false,
623
+ "rstrip": false,
624
+ "single_word": false,
625
+ "special": true
626
+ },
627
+ "128078": {
628
+ "content": "<|reserved_special_token_70|>",
629
+ "lstrip": false,
630
+ "normalized": false,
631
+ "rstrip": false,
632
+ "single_word": false,
633
+ "special": true
634
+ },
635
+ "128079": {
636
+ "content": "<|reserved_special_token_71|>",
637
+ "lstrip": false,
638
+ "normalized": false,
639
+ "rstrip": false,
640
+ "single_word": false,
641
+ "special": true
642
+ },
643
+ "128080": {
644
+ "content": "<|reserved_special_token_72|>",
645
+ "lstrip": false,
646
+ "normalized": false,
647
+ "rstrip": false,
648
+ "single_word": false,
649
+ "special": true
650
+ },
651
+ "128081": {
652
+ "content": "<|reserved_special_token_73|>",
653
+ "lstrip": false,
654
+ "normalized": false,
655
+ "rstrip": false,
656
+ "single_word": false,
657
+ "special": true
658
+ },
659
+ "128082": {
660
+ "content": "<|reserved_special_token_74|>",
661
+ "lstrip": false,
662
+ "normalized": false,
663
+ "rstrip": false,
664
+ "single_word": false,
665
+ "special": true
666
+ },
667
+ "128083": {
668
+ "content": "<|reserved_special_token_75|>",
669
+ "lstrip": false,
670
+ "normalized": false,
671
+ "rstrip": false,
672
+ "single_word": false,
673
+ "special": true
674
+ },
675
+ "128084": {
676
+ "content": "<|reserved_special_token_76|>",
677
+ "lstrip": false,
678
+ "normalized": false,
679
+ "rstrip": false,
680
+ "single_word": false,
681
+ "special": true
682
+ },
683
+ "128085": {
684
+ "content": "<|reserved_special_token_77|>",
685
+ "lstrip": false,
686
+ "normalized": false,
687
+ "rstrip": false,
688
+ "single_word": false,
689
+ "special": true
690
+ },
691
+ "128086": {
692
+ "content": "<|reserved_special_token_78|>",
693
+ "lstrip": false,
694
+ "normalized": false,
695
+ "rstrip": false,
696
+ "single_word": false,
697
+ "special": true
698
+ },
699
+ "128087": {
700
+ "content": "<|reserved_special_token_79|>",
701
+ "lstrip": false,
702
+ "normalized": false,
703
+ "rstrip": false,
704
+ "single_word": false,
705
+ "special": true
706
+ },
707
+ "128088": {
708
+ "content": "<|reserved_special_token_80|>",
709
+ "lstrip": false,
710
+ "normalized": false,
711
+ "rstrip": false,
712
+ "single_word": false,
713
+ "special": true
714
+ },
715
+ "128089": {
716
+ "content": "<|reserved_special_token_81|>",
717
+ "lstrip": false,
718
+ "normalized": false,
719
+ "rstrip": false,
720
+ "single_word": false,
721
+ "special": true
722
+ },
723
+ "128090": {
724
+ "content": "<|reserved_special_token_82|>",
725
+ "lstrip": false,
726
+ "normalized": false,
727
+ "rstrip": false,
728
+ "single_word": false,
729
+ "special": true
730
+ },
731
+ "128091": {
732
+ "content": "<|reserved_special_token_83|>",
733
+ "lstrip": false,
734
+ "normalized": false,
735
+ "rstrip": false,
736
+ "single_word": false,
737
+ "special": true
738
+ },
739
+ "128092": {
740
+ "content": "<|reserved_special_token_84|>",
741
+ "lstrip": false,
742
+ "normalized": false,
743
+ "rstrip": false,
744
+ "single_word": false,
745
+ "special": true
746
+ },
747
+ "128093": {
748
+ "content": "<|reserved_special_token_85|>",
749
+ "lstrip": false,
750
+ "normalized": false,
751
+ "rstrip": false,
752
+ "single_word": false,
753
+ "special": true
754
+ },
755
+ "128094": {
756
+ "content": "<|reserved_special_token_86|>",
757
+ "lstrip": false,
758
+ "normalized": false,
759
+ "rstrip": false,
760
+ "single_word": false,
761
+ "special": true
762
+ },
763
+ "128095": {
764
+ "content": "<|reserved_special_token_87|>",
765
+ "lstrip": false,
766
+ "normalized": false,
767
+ "rstrip": false,
768
+ "single_word": false,
769
+ "special": true
770
+ },
771
+ "128096": {
772
+ "content": "<|reserved_special_token_88|>",
773
+ "lstrip": false,
774
+ "normalized": false,
775
+ "rstrip": false,
776
+ "single_word": false,
777
+ "special": true
778
+ },
779
+ "128097": {
780
+ "content": "<|reserved_special_token_89|>",
781
+ "lstrip": false,
782
+ "normalized": false,
783
+ "rstrip": false,
784
+ "single_word": false,
785
+ "special": true
786
+ },
787
+ "128098": {
788
+ "content": "<|reserved_special_token_90|>",
789
+ "lstrip": false,
790
+ "normalized": false,
791
+ "rstrip": false,
792
+ "single_word": false,
793
+ "special": true
794
+ },
795
+ "128099": {
796
+ "content": "<|reserved_special_token_91|>",
797
+ "lstrip": false,
798
+ "normalized": false,
799
+ "rstrip": false,
800
+ "single_word": false,
801
+ "special": true
802
+ },
803
+ "128100": {
804
+ "content": "<|reserved_special_token_92|>",
805
+ "lstrip": false,
806
+ "normalized": false,
807
+ "rstrip": false,
808
+ "single_word": false,
809
+ "special": true
810
+ },
811
+ "128101": {
812
+ "content": "<|reserved_special_token_93|>",
813
+ "lstrip": false,
814
+ "normalized": false,
815
+ "rstrip": false,
816
+ "single_word": false,
817
+ "special": true
818
+ },
819
+ "128102": {
820
+ "content": "<|reserved_special_token_94|>",
821
+ "lstrip": false,
822
+ "normalized": false,
823
+ "rstrip": false,
824
+ "single_word": false,
825
+ "special": true
826
+ },
827
+ "128103": {
828
+ "content": "<|reserved_special_token_95|>",
829
+ "lstrip": false,
830
+ "normalized": false,
831
+ "rstrip": false,
832
+ "single_word": false,
833
+ "special": true
834
+ },
835
+ "128104": {
836
+ "content": "<|reserved_special_token_96|>",
837
+ "lstrip": false,
838
+ "normalized": false,
839
+ "rstrip": false,
840
+ "single_word": false,
841
+ "special": true
842
+ },
843
+ "128105": {
844
+ "content": "<|reserved_special_token_97|>",
845
+ "lstrip": false,
846
+ "normalized": false,
847
+ "rstrip": false,
848
+ "single_word": false,
849
+ "special": true
850
+ },
851
+ "128106": {
852
+ "content": "<|reserved_special_token_98|>",
853
+ "lstrip": false,
854
+ "normalized": false,
855
+ "rstrip": false,
856
+ "single_word": false,
857
+ "special": true
858
+ },
859
+ "128107": {
860
+ "content": "<|reserved_special_token_99|>",
861
+ "lstrip": false,
862
+ "normalized": false,
863
+ "rstrip": false,
864
+ "single_word": false,
865
+ "special": true
866
+ },
867
+ "128108": {
868
+ "content": "<|reserved_special_token_100|>",
869
+ "lstrip": false,
870
+ "normalized": false,
871
+ "rstrip": false,
872
+ "single_word": false,
873
+ "special": true
874
+ },
875
+ "128109": {
876
+ "content": "<|reserved_special_token_101|>",
877
+ "lstrip": false,
878
+ "normalized": false,
879
+ "rstrip": false,
880
+ "single_word": false,
881
+ "special": true
882
+ },
883
+ "128110": {
884
+ "content": "<|reserved_special_token_102|>",
885
+ "lstrip": false,
886
+ "normalized": false,
887
+ "rstrip": false,
888
+ "single_word": false,
889
+ "special": true
890
+ },
891
+ "128111": {
892
+ "content": "<|reserved_special_token_103|>",
893
+ "lstrip": false,
894
+ "normalized": false,
895
+ "rstrip": false,
896
+ "single_word": false,
897
+ "special": true
898
+ },
899
+ "128112": {
900
+ "content": "<|reserved_special_token_104|>",
901
+ "lstrip": false,
902
+ "normalized": false,
903
+ "rstrip": false,
904
+ "single_word": false,
905
+ "special": true
906
+ },
907
+ "128113": {
908
+ "content": "<|reserved_special_token_105|>",
909
+ "lstrip": false,
910
+ "normalized": false,
911
+ "rstrip": false,
912
+ "single_word": false,
913
+ "special": true
914
+ },
915
+ "128114": {
916
+ "content": "<|reserved_special_token_106|>",
917
+ "lstrip": false,
918
+ "normalized": false,
919
+ "rstrip": false,
920
+ "single_word": false,
921
+ "special": true
922
+ },
923
+ "128115": {
924
+ "content": "<|reserved_special_token_107|>",
925
+ "lstrip": false,
926
+ "normalized": false,
927
+ "rstrip": false,
928
+ "single_word": false,
929
+ "special": true
930
+ },
931
+ "128116": {
932
+ "content": "<|reserved_special_token_108|>",
933
+ "lstrip": false,
934
+ "normalized": false,
935
+ "rstrip": false,
936
+ "single_word": false,
937
+ "special": true
938
+ },
939
+ "128117": {
940
+ "content": "<|reserved_special_token_109|>",
941
+ "lstrip": false,
942
+ "normalized": false,
943
+ "rstrip": false,
944
+ "single_word": false,
945
+ "special": true
946
+ },
947
+ "128118": {
948
+ "content": "<|reserved_special_token_110|>",
949
+ "lstrip": false,
950
+ "normalized": false,
951
+ "rstrip": false,
952
+ "single_word": false,
953
+ "special": true
954
+ },
955
+ "128119": {
956
+ "content": "<|reserved_special_token_111|>",
957
+ "lstrip": false,
958
+ "normalized": false,
959
+ "rstrip": false,
960
+ "single_word": false,
961
+ "special": true
962
+ },
963
+ "128120": {
964
+ "content": "<|reserved_special_token_112|>",
965
+ "lstrip": false,
966
+ "normalized": false,
967
+ "rstrip": false,
968
+ "single_word": false,
969
+ "special": true
970
+ },
971
+ "128121": {
972
+ "content": "<|reserved_special_token_113|>",
973
+ "lstrip": false,
974
+ "normalized": false,
975
+ "rstrip": false,
976
+ "single_word": false,
977
+ "special": true
978
+ },
979
+ "128122": {
980
+ "content": "<|reserved_special_token_114|>",
981
+ "lstrip": false,
982
+ "normalized": false,
983
+ "rstrip": false,
984
+ "single_word": false,
985
+ "special": true
986
+ },
987
+ "128123": {
988
+ "content": "<|reserved_special_token_115|>",
989
+ "lstrip": false,
990
+ "normalized": false,
991
+ "rstrip": false,
992
+ "single_word": false,
993
+ "special": true
994
+ },
995
+ "128124": {
996
+ "content": "<|reserved_special_token_116|>",
997
+ "lstrip": false,
998
+ "normalized": false,
999
+ "rstrip": false,
1000
+ "single_word": false,
1001
+ "special": true
1002
+ },
1003
+ "128125": {
1004
+ "content": "<|reserved_special_token_117|>",
1005
+ "lstrip": false,
1006
+ "normalized": false,
1007
+ "rstrip": false,
1008
+ "single_word": false,
1009
+ "special": true
1010
+ },
1011
+ "128126": {
1012
+ "content": "<|reserved_special_token_118|>",
1013
+ "lstrip": false,
1014
+ "normalized": false,
1015
+ "rstrip": false,
1016
+ "single_word": false,
1017
+ "special": true
1018
+ },
1019
+ "128127": {
1020
+ "content": "<|reserved_special_token_119|>",
1021
+ "lstrip": false,
1022
+ "normalized": false,
1023
+ "rstrip": false,
1024
+ "single_word": false,
1025
+ "special": true
1026
+ },
1027
+ "128128": {
1028
+ "content": "<|reserved_special_token_120|>",
1029
+ "lstrip": false,
1030
+ "normalized": false,
1031
+ "rstrip": false,
1032
+ "single_word": false,
1033
+ "special": true
1034
+ },
1035
+ "128129": {
1036
+ "content": "<|reserved_special_token_121|>",
1037
+ "lstrip": false,
1038
+ "normalized": false,
1039
+ "rstrip": false,
1040
+ "single_word": false,
1041
+ "special": true
1042
+ },
1043
+ "128130": {
1044
+ "content": "<|reserved_special_token_122|>",
1045
+ "lstrip": false,
1046
+ "normalized": false,
1047
+ "rstrip": false,
1048
+ "single_word": false,
1049
+ "special": true
1050
+ },
1051
+ "128131": {
1052
+ "content": "<|reserved_special_token_123|>",
1053
+ "lstrip": false,
1054
+ "normalized": false,
1055
+ "rstrip": false,
1056
+ "single_word": false,
1057
+ "special": true
1058
+ },
1059
+ "128132": {
1060
+ "content": "<|reserved_special_token_124|>",
1061
+ "lstrip": false,
1062
+ "normalized": false,
1063
+ "rstrip": false,
1064
+ "single_word": false,
1065
+ "special": true
1066
+ },
1067
+ "128133": {
1068
+ "content": "<|reserved_special_token_125|>",
1069
+ "lstrip": false,
1070
+ "normalized": false,
1071
+ "rstrip": false,
1072
+ "single_word": false,
1073
+ "special": true
1074
+ },
1075
+ "128134": {
1076
+ "content": "<|reserved_special_token_126|>",
1077
+ "lstrip": false,
1078
+ "normalized": false,
1079
+ "rstrip": false,
1080
+ "single_word": false,
1081
+ "special": true
1082
+ },
1083
+ "128135": {
1084
+ "content": "<|reserved_special_token_127|>",
1085
+ "lstrip": false,
1086
+ "normalized": false,
1087
+ "rstrip": false,
1088
+ "single_word": false,
1089
+ "special": true
1090
+ },
1091
+ "128136": {
1092
+ "content": "<|reserved_special_token_128|>",
1093
+ "lstrip": false,
1094
+ "normalized": false,
1095
+ "rstrip": false,
1096
+ "single_word": false,
1097
+ "special": true
1098
+ },
1099
+ "128137": {
1100
+ "content": "<|reserved_special_token_129|>",
1101
+ "lstrip": false,
1102
+ "normalized": false,
1103
+ "rstrip": false,
1104
+ "single_word": false,
1105
+ "special": true
1106
+ },
1107
+ "128138": {
1108
+ "content": "<|reserved_special_token_130|>",
1109
+ "lstrip": false,
1110
+ "normalized": false,
1111
+ "rstrip": false,
1112
+ "single_word": false,
1113
+ "special": true
1114
+ },
1115
+ "128139": {
1116
+ "content": "<|reserved_special_token_131|>",
1117
+ "lstrip": false,
1118
+ "normalized": false,
1119
+ "rstrip": false,
1120
+ "single_word": false,
1121
+ "special": true
1122
+ },
1123
+ "128140": {
1124
+ "content": "<|reserved_special_token_132|>",
1125
+ "lstrip": false,
1126
+ "normalized": false,
1127
+ "rstrip": false,
1128
+ "single_word": false,
1129
+ "special": true
1130
+ },
1131
+ "128141": {
1132
+ "content": "<|reserved_special_token_133|>",
1133
+ "lstrip": false,
1134
+ "normalized": false,
1135
+ "rstrip": false,
1136
+ "single_word": false,
1137
+ "special": true
1138
+ },
1139
+ "128142": {
1140
+ "content": "<|reserved_special_token_134|>",
1141
+ "lstrip": false,
1142
+ "normalized": false,
1143
+ "rstrip": false,
1144
+ "single_word": false,
1145
+ "special": true
1146
+ },
1147
+ "128143": {
1148
+ "content": "<|reserved_special_token_135|>",
1149
+ "lstrip": false,
1150
+ "normalized": false,
1151
+ "rstrip": false,
1152
+ "single_word": false,
1153
+ "special": true
1154
+ },
1155
+ "128144": {
1156
+ "content": "<|reserved_special_token_136|>",
1157
+ "lstrip": false,
1158
+ "normalized": false,
1159
+ "rstrip": false,
1160
+ "single_word": false,
1161
+ "special": true
1162
+ },
1163
+ "128145": {
1164
+ "content": "<|reserved_special_token_137|>",
1165
+ "lstrip": false,
1166
+ "normalized": false,
1167
+ "rstrip": false,
1168
+ "single_word": false,
1169
+ "special": true
1170
+ },
1171
+ "128146": {
1172
+ "content": "<|reserved_special_token_138|>",
1173
+ "lstrip": false,
1174
+ "normalized": false,
1175
+ "rstrip": false,
1176
+ "single_word": false,
1177
+ "special": true
1178
+ },
1179
+ "128147": {
1180
+ "content": "<|reserved_special_token_139|>",
1181
+ "lstrip": false,
1182
+ "normalized": false,
1183
+ "rstrip": false,
1184
+ "single_word": false,
1185
+ "special": true
1186
+ },
1187
+ "128148": {
1188
+ "content": "<|reserved_special_token_140|>",
1189
+ "lstrip": false,
1190
+ "normalized": false,
1191
+ "rstrip": false,
1192
+ "single_word": false,
1193
+ "special": true
1194
+ },
1195
+ "128149": {
1196
+ "content": "<|reserved_special_token_141|>",
1197
+ "lstrip": false,
1198
+ "normalized": false,
1199
+ "rstrip": false,
1200
+ "single_word": false,
1201
+ "special": true
1202
+ },
1203
+ "128150": {
1204
+ "content": "<|reserved_special_token_142|>",
1205
+ "lstrip": false,
1206
+ "normalized": false,
1207
+ "rstrip": false,
1208
+ "single_word": false,
1209
+ "special": true
1210
+ },
1211
+ "128151": {
1212
+ "content": "<|reserved_special_token_143|>",
1213
+ "lstrip": false,
1214
+ "normalized": false,
1215
+ "rstrip": false,
1216
+ "single_word": false,
1217
+ "special": true
1218
+ },
1219
+ "128152": {
1220
+ "content": "<|reserved_special_token_144|>",
1221
+ "lstrip": false,
1222
+ "normalized": false,
1223
+ "rstrip": false,
1224
+ "single_word": false,
1225
+ "special": true
1226
+ },
1227
+ "128153": {
1228
+ "content": "<|reserved_special_token_145|>",
1229
+ "lstrip": false,
1230
+ "normalized": false,
1231
+ "rstrip": false,
1232
+ "single_word": false,
1233
+ "special": true
1234
+ },
1235
+ "128154": {
1236
+ "content": "<|reserved_special_token_146|>",
1237
+ "lstrip": false,
1238
+ "normalized": false,
1239
+ "rstrip": false,
1240
+ "single_word": false,
1241
+ "special": true
1242
+ },
1243
+ "128155": {
1244
+ "content": "<|reserved_special_token_147|>",
1245
+ "lstrip": false,
1246
+ "normalized": false,
1247
+ "rstrip": false,
1248
+ "single_word": false,
1249
+ "special": true
1250
+ },
1251
+ "128156": {
1252
+ "content": "<|reserved_special_token_148|>",
1253
+ "lstrip": false,
1254
+ "normalized": false,
1255
+ "rstrip": false,
1256
+ "single_word": false,
1257
+ "special": true
1258
+ },
1259
+ "128157": {
1260
+ "content": "<|reserved_special_token_149|>",
1261
+ "lstrip": false,
1262
+ "normalized": false,
1263
+ "rstrip": false,
1264
+ "single_word": false,
1265
+ "special": true
1266
+ },
1267
+ "128158": {
1268
+ "content": "<|reserved_special_token_150|>",
1269
+ "lstrip": false,
1270
+ "normalized": false,
1271
+ "rstrip": false,
1272
+ "single_word": false,
1273
+ "special": true
1274
+ },
1275
+ "128159": {
1276
+ "content": "<|reserved_special_token_151|>",
1277
+ "lstrip": false,
1278
+ "normalized": false,
1279
+ "rstrip": false,
1280
+ "single_word": false,
1281
+ "special": true
1282
+ },
1283
+ "128160": {
1284
+ "content": "<|reserved_special_token_152|>",
1285
+ "lstrip": false,
1286
+ "normalized": false,
1287
+ "rstrip": false,
1288
+ "single_word": false,
1289
+ "special": true
1290
+ },
1291
+ "128161": {
1292
+ "content": "<|reserved_special_token_153|>",
1293
+ "lstrip": false,
1294
+ "normalized": false,
1295
+ "rstrip": false,
1296
+ "single_word": false,
1297
+ "special": true
1298
+ },
1299
+ "128162": {
1300
+ "content": "<|reserved_special_token_154|>",
1301
+ "lstrip": false,
1302
+ "normalized": false,
1303
+ "rstrip": false,
1304
+ "single_word": false,
1305
+ "special": true
1306
+ },
1307
+ "128163": {
1308
+ "content": "<|reserved_special_token_155|>",
1309
+ "lstrip": false,
1310
+ "normalized": false,
1311
+ "rstrip": false,
1312
+ "single_word": false,
1313
+ "special": true
1314
+ },
1315
+ "128164": {
1316
+ "content": "<|reserved_special_token_156|>",
1317
+ "lstrip": false,
1318
+ "normalized": false,
1319
+ "rstrip": false,
1320
+ "single_word": false,
1321
+ "special": true
1322
+ },
1323
+ "128165": {
1324
+ "content": "<|reserved_special_token_157|>",
1325
+ "lstrip": false,
1326
+ "normalized": false,
1327
+ "rstrip": false,
1328
+ "single_word": false,
1329
+ "special": true
1330
+ },
1331
+ "128166": {
1332
+ "content": "<|reserved_special_token_158|>",
1333
+ "lstrip": false,
1334
+ "normalized": false,
1335
+ "rstrip": false,
1336
+ "single_word": false,
1337
+ "special": true
1338
+ },
1339
+ "128167": {
1340
+ "content": "<|reserved_special_token_159|>",
1341
+ "lstrip": false,
1342
+ "normalized": false,
1343
+ "rstrip": false,
1344
+ "single_word": false,
1345
+ "special": true
1346
+ },
1347
+ "128168": {
1348
+ "content": "<|reserved_special_token_160|>",
1349
+ "lstrip": false,
1350
+ "normalized": false,
1351
+ "rstrip": false,
1352
+ "single_word": false,
1353
+ "special": true
1354
+ },
1355
+ "128169": {
1356
+ "content": "<|reserved_special_token_161|>",
1357
+ "lstrip": false,
1358
+ "normalized": false,
1359
+ "rstrip": false,
1360
+ "single_word": false,
1361
+ "special": true
1362
+ },
1363
+ "128170": {
1364
+ "content": "<|reserved_special_token_162|>",
1365
+ "lstrip": false,
1366
+ "normalized": false,
1367
+ "rstrip": false,
1368
+ "single_word": false,
1369
+ "special": true
1370
+ },
1371
+ "128171": {
1372
+ "content": "<|reserved_special_token_163|>",
1373
+ "lstrip": false,
1374
+ "normalized": false,
1375
+ "rstrip": false,
1376
+ "single_word": false,
1377
+ "special": true
1378
+ },
1379
+ "128172": {
1380
+ "content": "<|reserved_special_token_164|>",
1381
+ "lstrip": false,
1382
+ "normalized": false,
1383
+ "rstrip": false,
1384
+ "single_word": false,
1385
+ "special": true
1386
+ },
1387
+ "128173": {
1388
+ "content": "<|reserved_special_token_165|>",
1389
+ "lstrip": false,
1390
+ "normalized": false,
1391
+ "rstrip": false,
1392
+ "single_word": false,
1393
+ "special": true
1394
+ },
1395
+ "128174": {
1396
+ "content": "<|reserved_special_token_166|>",
1397
+ "lstrip": false,
1398
+ "normalized": false,
1399
+ "rstrip": false,
1400
+ "single_word": false,
1401
+ "special": true
1402
+ },
1403
+ "128175": {
1404
+ "content": "<|reserved_special_token_167|>",
1405
+ "lstrip": false,
1406
+ "normalized": false,
1407
+ "rstrip": false,
1408
+ "single_word": false,
1409
+ "special": true
1410
+ },
1411
+ "128176": {
1412
+ "content": "<|reserved_special_token_168|>",
1413
+ "lstrip": false,
1414
+ "normalized": false,
1415
+ "rstrip": false,
1416
+ "single_word": false,
1417
+ "special": true
1418
+ },
1419
+ "128177": {
1420
+ "content": "<|reserved_special_token_169|>",
1421
+ "lstrip": false,
1422
+ "normalized": false,
1423
+ "rstrip": false,
1424
+ "single_word": false,
1425
+ "special": true
1426
+ },
1427
+ "128178": {
1428
+ "content": "<|reserved_special_token_170|>",
1429
+ "lstrip": false,
1430
+ "normalized": false,
1431
+ "rstrip": false,
1432
+ "single_word": false,
1433
+ "special": true
1434
+ },
1435
+ "128179": {
1436
+ "content": "<|reserved_special_token_171|>",
1437
+ "lstrip": false,
1438
+ "normalized": false,
1439
+ "rstrip": false,
1440
+ "single_word": false,
1441
+ "special": true
1442
+ },
1443
+ "128180": {
1444
+ "content": "<|reserved_special_token_172|>",
1445
+ "lstrip": false,
1446
+ "normalized": false,
1447
+ "rstrip": false,
1448
+ "single_word": false,
1449
+ "special": true
1450
+ },
1451
+ "128181": {
1452
+ "content": "<|reserved_special_token_173|>",
1453
+ "lstrip": false,
1454
+ "normalized": false,
1455
+ "rstrip": false,
1456
+ "single_word": false,
1457
+ "special": true
1458
+ },
1459
+ "128182": {
1460
+ "content": "<|reserved_special_token_174|>",
1461
+ "lstrip": false,
1462
+ "normalized": false,
1463
+ "rstrip": false,
1464
+ "single_word": false,
1465
+ "special": true
1466
+ },
1467
+ "128183": {
1468
+ "content": "<|reserved_special_token_175|>",
1469
+ "lstrip": false,
1470
+ "normalized": false,
1471
+ "rstrip": false,
1472
+ "single_word": false,
1473
+ "special": true
1474
+ },
1475
+ "128184": {
1476
+ "content": "<|reserved_special_token_176|>",
1477
+ "lstrip": false,
1478
+ "normalized": false,
1479
+ "rstrip": false,
1480
+ "single_word": false,
1481
+ "special": true
1482
+ },
1483
+ "128185": {
1484
+ "content": "<|reserved_special_token_177|>",
1485
+ "lstrip": false,
1486
+ "normalized": false,
1487
+ "rstrip": false,
1488
+ "single_word": false,
1489
+ "special": true
1490
+ },
1491
+ "128186": {
1492
+ "content": "<|reserved_special_token_178|>",
1493
+ "lstrip": false,
1494
+ "normalized": false,
1495
+ "rstrip": false,
1496
+ "single_word": false,
1497
+ "special": true
1498
+ },
1499
+ "128187": {
1500
+ "content": "<|reserved_special_token_179|>",
1501
+ "lstrip": false,
1502
+ "normalized": false,
1503
+ "rstrip": false,
1504
+ "single_word": false,
1505
+ "special": true
1506
+ },
1507
+ "128188": {
1508
+ "content": "<|reserved_special_token_180|>",
1509
+ "lstrip": false,
1510
+ "normalized": false,
1511
+ "rstrip": false,
1512
+ "single_word": false,
1513
+ "special": true
1514
+ },
1515
+ "128189": {
1516
+ "content": "<|reserved_special_token_181|>",
1517
+ "lstrip": false,
1518
+ "normalized": false,
1519
+ "rstrip": false,
1520
+ "single_word": false,
1521
+ "special": true
1522
+ },
1523
+ "128190": {
1524
+ "content": "<|reserved_special_token_182|>",
1525
+ "lstrip": false,
1526
+ "normalized": false,
1527
+ "rstrip": false,
1528
+ "single_word": false,
1529
+ "special": true
1530
+ },
1531
+ "128191": {
1532
+ "content": "<|reserved_special_token_183|>",
1533
+ "lstrip": false,
1534
+ "normalized": false,
1535
+ "rstrip": false,
1536
+ "single_word": false,
1537
+ "special": true
1538
+ },
1539
+ "128192": {
1540
+ "content": "<|reserved_special_token_184|>",
1541
+ "lstrip": false,
1542
+ "normalized": false,
1543
+ "rstrip": false,
1544
+ "single_word": false,
1545
+ "special": true
1546
+ },
1547
+ "128193": {
1548
+ "content": "<|reserved_special_token_185|>",
1549
+ "lstrip": false,
1550
+ "normalized": false,
1551
+ "rstrip": false,
1552
+ "single_word": false,
1553
+ "special": true
1554
+ },
1555
+ "128194": {
1556
+ "content": "<|reserved_special_token_186|>",
1557
+ "lstrip": false,
1558
+ "normalized": false,
1559
+ "rstrip": false,
1560
+ "single_word": false,
1561
+ "special": true
1562
+ },
1563
+ "128195": {
1564
+ "content": "<|reserved_special_token_187|>",
1565
+ "lstrip": false,
1566
+ "normalized": false,
1567
+ "rstrip": false,
1568
+ "single_word": false,
1569
+ "special": true
1570
+ },
1571
+ "128196": {
1572
+ "content": "<|reserved_special_token_188|>",
1573
+ "lstrip": false,
1574
+ "normalized": false,
1575
+ "rstrip": false,
1576
+ "single_word": false,
1577
+ "special": true
1578
+ },
1579
+ "128197": {
1580
+ "content": "<|reserved_special_token_189|>",
1581
+ "lstrip": false,
1582
+ "normalized": false,
1583
+ "rstrip": false,
1584
+ "single_word": false,
1585
+ "special": true
1586
+ },
1587
+ "128198": {
1588
+ "content": "<|reserved_special_token_190|>",
1589
+ "lstrip": false,
1590
+ "normalized": false,
1591
+ "rstrip": false,
1592
+ "single_word": false,
1593
+ "special": true
1594
+ },
1595
+ "128199": {
1596
+ "content": "<|reserved_special_token_191|>",
1597
+ "lstrip": false,
1598
+ "normalized": false,
1599
+ "rstrip": false,
1600
+ "single_word": false,
1601
+ "special": true
1602
+ },
1603
+ "128200": {
1604
+ "content": "<|reserved_special_token_192|>",
1605
+ "lstrip": false,
1606
+ "normalized": false,
1607
+ "rstrip": false,
1608
+ "single_word": false,
1609
+ "special": true
1610
+ },
1611
+ "128201": {
1612
+ "content": "<|reserved_special_token_193|>",
1613
+ "lstrip": false,
1614
+ "normalized": false,
1615
+ "rstrip": false,
1616
+ "single_word": false,
1617
+ "special": true
1618
+ },
1619
+ "128202": {
1620
+ "content": "<|reserved_special_token_194|>",
1621
+ "lstrip": false,
1622
+ "normalized": false,
1623
+ "rstrip": false,
1624
+ "single_word": false,
1625
+ "special": true
1626
+ },
1627
+ "128203": {
1628
+ "content": "<|reserved_special_token_195|>",
1629
+ "lstrip": false,
1630
+ "normalized": false,
1631
+ "rstrip": false,
1632
+ "single_word": false,
1633
+ "special": true
1634
+ },
1635
+ "128204": {
1636
+ "content": "<|reserved_special_token_196|>",
1637
+ "lstrip": false,
1638
+ "normalized": false,
1639
+ "rstrip": false,
1640
+ "single_word": false,
1641
+ "special": true
1642
+ },
1643
+ "128205": {
1644
+ "content": "<|reserved_special_token_197|>",
1645
+ "lstrip": false,
1646
+ "normalized": false,
1647
+ "rstrip": false,
1648
+ "single_word": false,
1649
+ "special": true
1650
+ },
1651
+ "128206": {
1652
+ "content": "<|reserved_special_token_198|>",
1653
+ "lstrip": false,
1654
+ "normalized": false,
1655
+ "rstrip": false,
1656
+ "single_word": false,
1657
+ "special": true
1658
+ },
1659
+ "128207": {
1660
+ "content": "<|reserved_special_token_199|>",
1661
+ "lstrip": false,
1662
+ "normalized": false,
1663
+ "rstrip": false,
1664
+ "single_word": false,
1665
+ "special": true
1666
+ },
1667
+ "128208": {
1668
+ "content": "<|reserved_special_token_200|>",
1669
+ "lstrip": false,
1670
+ "normalized": false,
1671
+ "rstrip": false,
1672
+ "single_word": false,
1673
+ "special": true
1674
+ },
1675
+ "128209": {
1676
+ "content": "<|reserved_special_token_201|>",
1677
+ "lstrip": false,
1678
+ "normalized": false,
1679
+ "rstrip": false,
1680
+ "single_word": false,
1681
+ "special": true
1682
+ },
1683
+ "128210": {
1684
+ "content": "<|reserved_special_token_202|>",
1685
+ "lstrip": false,
1686
+ "normalized": false,
1687
+ "rstrip": false,
1688
+ "single_word": false,
1689
+ "special": true
1690
+ },
1691
+ "128211": {
1692
+ "content": "<|reserved_special_token_203|>",
1693
+ "lstrip": false,
1694
+ "normalized": false,
1695
+ "rstrip": false,
1696
+ "single_word": false,
1697
+ "special": true
1698
+ },
1699
+ "128212": {
1700
+ "content": "<|reserved_special_token_204|>",
1701
+ "lstrip": false,
1702
+ "normalized": false,
1703
+ "rstrip": false,
1704
+ "single_word": false,
1705
+ "special": true
1706
+ },
1707
+ "128213": {
1708
+ "content": "<|reserved_special_token_205|>",
1709
+ "lstrip": false,
1710
+ "normalized": false,
1711
+ "rstrip": false,
1712
+ "single_word": false,
1713
+ "special": true
1714
+ },
1715
+ "128214": {
1716
+ "content": "<|reserved_special_token_206|>",
1717
+ "lstrip": false,
1718
+ "normalized": false,
1719
+ "rstrip": false,
1720
+ "single_word": false,
1721
+ "special": true
1722
+ },
1723
+ "128215": {
1724
+ "content": "<|reserved_special_token_207|>",
1725
+ "lstrip": false,
1726
+ "normalized": false,
1727
+ "rstrip": false,
1728
+ "single_word": false,
1729
+ "special": true
1730
+ },
1731
+ "128216": {
1732
+ "content": "<|reserved_special_token_208|>",
1733
+ "lstrip": false,
1734
+ "normalized": false,
1735
+ "rstrip": false,
1736
+ "single_word": false,
1737
+ "special": true
1738
+ },
1739
+ "128217": {
1740
+ "content": "<|reserved_special_token_209|>",
1741
+ "lstrip": false,
1742
+ "normalized": false,
1743
+ "rstrip": false,
1744
+ "single_word": false,
1745
+ "special": true
1746
+ },
1747
+ "128218": {
1748
+ "content": "<|reserved_special_token_210|>",
1749
+ "lstrip": false,
1750
+ "normalized": false,
1751
+ "rstrip": false,
1752
+ "single_word": false,
1753
+ "special": true
1754
+ },
1755
+ "128219": {
1756
+ "content": "<|reserved_special_token_211|>",
1757
+ "lstrip": false,
1758
+ "normalized": false,
1759
+ "rstrip": false,
1760
+ "single_word": false,
1761
+ "special": true
1762
+ },
1763
+ "128220": {
1764
+ "content": "<|reserved_special_token_212|>",
1765
+ "lstrip": false,
1766
+ "normalized": false,
1767
+ "rstrip": false,
1768
+ "single_word": false,
1769
+ "special": true
1770
+ },
1771
+ "128221": {
1772
+ "content": "<|reserved_special_token_213|>",
1773
+ "lstrip": false,
1774
+ "normalized": false,
1775
+ "rstrip": false,
1776
+ "single_word": false,
1777
+ "special": true
1778
+ },
1779
+ "128222": {
1780
+ "content": "<|reserved_special_token_214|>",
1781
+ "lstrip": false,
1782
+ "normalized": false,
1783
+ "rstrip": false,
1784
+ "single_word": false,
1785
+ "special": true
1786
+ },
1787
+ "128223": {
1788
+ "content": "<|reserved_special_token_215|>",
1789
+ "lstrip": false,
1790
+ "normalized": false,
1791
+ "rstrip": false,
1792
+ "single_word": false,
1793
+ "special": true
1794
+ },
1795
+ "128224": {
1796
+ "content": "<|reserved_special_token_216|>",
1797
+ "lstrip": false,
1798
+ "normalized": false,
1799
+ "rstrip": false,
1800
+ "single_word": false,
1801
+ "special": true
1802
+ },
1803
+ "128225": {
1804
+ "content": "<|reserved_special_token_217|>",
1805
+ "lstrip": false,
1806
+ "normalized": false,
1807
+ "rstrip": false,
1808
+ "single_word": false,
1809
+ "special": true
1810
+ },
1811
+ "128226": {
1812
+ "content": "<|reserved_special_token_218|>",
1813
+ "lstrip": false,
1814
+ "normalized": false,
1815
+ "rstrip": false,
1816
+ "single_word": false,
1817
+ "special": true
1818
+ },
1819
+ "128227": {
1820
+ "content": "<|reserved_special_token_219|>",
1821
+ "lstrip": false,
1822
+ "normalized": false,
1823
+ "rstrip": false,
1824
+ "single_word": false,
1825
+ "special": true
1826
+ },
1827
+ "128228": {
1828
+ "content": "<|reserved_special_token_220|>",
1829
+ "lstrip": false,
1830
+ "normalized": false,
1831
+ "rstrip": false,
1832
+ "single_word": false,
1833
+ "special": true
1834
+ },
1835
+ "128229": {
1836
+ "content": "<|reserved_special_token_221|>",
1837
+ "lstrip": false,
1838
+ "normalized": false,
1839
+ "rstrip": false,
1840
+ "single_word": false,
1841
+ "special": true
1842
+ },
1843
+ "128230": {
1844
+ "content": "<|reserved_special_token_222|>",
1845
+ "lstrip": false,
1846
+ "normalized": false,
1847
+ "rstrip": false,
1848
+ "single_word": false,
1849
+ "special": true
1850
+ },
1851
+ "128231": {
1852
+ "content": "<|reserved_special_token_223|>",
1853
+ "lstrip": false,
1854
+ "normalized": false,
1855
+ "rstrip": false,
1856
+ "single_word": false,
1857
+ "special": true
1858
+ },
1859
+ "128232": {
1860
+ "content": "<|reserved_special_token_224|>",
1861
+ "lstrip": false,
1862
+ "normalized": false,
1863
+ "rstrip": false,
1864
+ "single_word": false,
1865
+ "special": true
1866
+ },
1867
+ "128233": {
1868
+ "content": "<|reserved_special_token_225|>",
1869
+ "lstrip": false,
1870
+ "normalized": false,
1871
+ "rstrip": false,
1872
+ "single_word": false,
1873
+ "special": true
1874
+ },
1875
+ "128234": {
1876
+ "content": "<|reserved_special_token_226|>",
1877
+ "lstrip": false,
1878
+ "normalized": false,
1879
+ "rstrip": false,
1880
+ "single_word": false,
1881
+ "special": true
1882
+ },
1883
+ "128235": {
1884
+ "content": "<|reserved_special_token_227|>",
1885
+ "lstrip": false,
1886
+ "normalized": false,
1887
+ "rstrip": false,
1888
+ "single_word": false,
1889
+ "special": true
1890
+ },
1891
+ "128236": {
1892
+ "content": "<|reserved_special_token_228|>",
1893
+ "lstrip": false,
1894
+ "normalized": false,
1895
+ "rstrip": false,
1896
+ "single_word": false,
1897
+ "special": true
1898
+ },
1899
+ "128237": {
1900
+ "content": "<|reserved_special_token_229|>",
1901
+ "lstrip": false,
1902
+ "normalized": false,
1903
+ "rstrip": false,
1904
+ "single_word": false,
1905
+ "special": true
1906
+ },
1907
+ "128238": {
1908
+ "content": "<|reserved_special_token_230|>",
1909
+ "lstrip": false,
1910
+ "normalized": false,
1911
+ "rstrip": false,
1912
+ "single_word": false,
1913
+ "special": true
1914
+ },
1915
+ "128239": {
1916
+ "content": "<|reserved_special_token_231|>",
1917
+ "lstrip": false,
1918
+ "normalized": false,
1919
+ "rstrip": false,
1920
+ "single_word": false,
1921
+ "special": true
1922
+ },
1923
+ "128240": {
1924
+ "content": "<|reserved_special_token_232|>",
1925
+ "lstrip": false,
1926
+ "normalized": false,
1927
+ "rstrip": false,
1928
+ "single_word": false,
1929
+ "special": true
1930
+ },
1931
+ "128241": {
1932
+ "content": "<|reserved_special_token_233|>",
1933
+ "lstrip": false,
1934
+ "normalized": false,
1935
+ "rstrip": false,
1936
+ "single_word": false,
1937
+ "special": true
1938
+ },
1939
+ "128242": {
1940
+ "content": "<|reserved_special_token_234|>",
1941
+ "lstrip": false,
1942
+ "normalized": false,
1943
+ "rstrip": false,
1944
+ "single_word": false,
1945
+ "special": true
1946
+ },
1947
+ "128243": {
1948
+ "content": "<|reserved_special_token_235|>",
1949
+ "lstrip": false,
1950
+ "normalized": false,
1951
+ "rstrip": false,
1952
+ "single_word": false,
1953
+ "special": true
1954
+ },
1955
+ "128244": {
1956
+ "content": "<|reserved_special_token_236|>",
1957
+ "lstrip": false,
1958
+ "normalized": false,
1959
+ "rstrip": false,
1960
+ "single_word": false,
1961
+ "special": true
1962
+ },
1963
+ "128245": {
1964
+ "content": "<|reserved_special_token_237|>",
1965
+ "lstrip": false,
1966
+ "normalized": false,
1967
+ "rstrip": false,
1968
+ "single_word": false,
1969
+ "special": true
1970
+ },
1971
+ "128246": {
1972
+ "content": "<|reserved_special_token_238|>",
1973
+ "lstrip": false,
1974
+ "normalized": false,
1975
+ "rstrip": false,
1976
+ "single_word": false,
1977
+ "special": true
1978
+ },
1979
+ "128247": {
1980
+ "content": "<|reserved_special_token_239|>",
1981
+ "lstrip": false,
1982
+ "normalized": false,
1983
+ "rstrip": false,
1984
+ "single_word": false,
1985
+ "special": true
1986
+ },
1987
+ "128248": {
1988
+ "content": "<|reserved_special_token_240|>",
1989
+ "lstrip": false,
1990
+ "normalized": false,
1991
+ "rstrip": false,
1992
+ "single_word": false,
1993
+ "special": true
1994
+ },
1995
+ "128249": {
1996
+ "content": "<|reserved_special_token_241|>",
1997
+ "lstrip": false,
1998
+ "normalized": false,
1999
+ "rstrip": false,
2000
+ "single_word": false,
2001
+ "special": true
2002
+ },
2003
+ "128250": {
2004
+ "content": "<|reserved_special_token_242|>",
2005
+ "lstrip": false,
2006
+ "normalized": false,
2007
+ "rstrip": false,
2008
+ "single_word": false,
2009
+ "special": true
2010
+ },
2011
+ "128251": {
2012
+ "content": "<|reserved_special_token_243|>",
2013
+ "lstrip": false,
2014
+ "normalized": false,
2015
+ "rstrip": false,
2016
+ "single_word": false,
2017
+ "special": true
2018
+ },
2019
+ "128252": {
2020
+ "content": "<|reserved_special_token_244|>",
2021
+ "lstrip": false,
2022
+ "normalized": false,
2023
+ "rstrip": false,
2024
+ "single_word": false,
2025
+ "special": true
2026
+ },
2027
+ "128253": {
2028
+ "content": "<|reserved_special_token_245|>",
2029
+ "lstrip": false,
2030
+ "normalized": false,
2031
+ "rstrip": false,
2032
+ "single_word": false,
2033
+ "special": true
2034
+ },
2035
+ "128254": {
2036
+ "content": "<|reserved_special_token_246|>",
2037
+ "lstrip": false,
2038
+ "normalized": false,
2039
+ "rstrip": false,
2040
+ "single_word": false,
2041
+ "special": true
2042
+ },
2043
+ "128255": {
2044
+ "content": "<|reserved_special_token_247|>",
2045
+ "lstrip": false,
2046
+ "normalized": false,
2047
+ "rstrip": false,
2048
+ "single_word": false,
2049
+ "special": true
2050
+ }
2051
+ },
2052
+ "bos_token": "<|begin_of_text|>",
2053
+ "chat_template": "{% set loop_messages = messages %}{% for message in loop_messages %}{% set content = '<|start_header_id|>' + message['role'] + '<|end_header_id|>\n\n'+ message['content'] | trim + '<|eot_id|>' %}{% if loop.index0 == 0 %}{% set content = bos_token + content %}{% endif %}{{ content }}{% endfor %}{% if add_generation_prompt %}{{ '<|start_header_id|>assistant<|end_header_id|>\n\n' }}{% endif %}",
2054
+ "clean_up_tokenization_spaces": true,
2055
+ "eos_token": "<|eot_id|>",
2056
+ "model_input_names": [
2057
+ "input_ids",
2058
+ "attention_mask"
2059
+ ],
2060
+ "model_max_length": 2048,
2061
+ "pad_token": "<|eot_id|>",
2062
+ "tokenizer_class": "PreTrainedTokenizerFast"
2063
+ }
train_results.json ADDED
@@ -0,0 +1,9 @@
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "epoch": 1.4,
3
+ "total_flos": 4.721862248497152e+16,
4
+ "train_loss": 149.02320945810703,
5
+ "train_runtime": 264406.7938,
6
+ "train_samples": 19473081,
7
+ "train_samples_per_second": 17.62,
8
+ "train_steps_per_second": 0.275
9
+ }
trainer_state.json ADDED
The diff for this file is too large to render. See raw diff
 
training_args.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:a555ab498a1b857719f50fc47d4e99c63658af3be8d2a2a1818f2dbd5ebccb90
3
+ size 7608
zero_to_fp32.py ADDED
@@ -0,0 +1,589 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ #!/usr/bin/env python
2
+
3
+ # Copyright (c) Microsoft Corporation.
4
+ # SPDX-License-Identifier: Apache-2.0
5
+
6
+ # DeepSpeed Team
7
+
8
+ # This script extracts fp32 consolidated weights from a zero 1, 2 and 3 DeepSpeed checkpoints. It gets
9
+ # copied into the top level checkpoint dir, so the user can easily do the conversion at any point in
10
+ # the future. Once extracted, the weights don't require DeepSpeed and can be used in any
11
+ # application.
12
+ #
13
+ # todo: update the examples
14
+ # example: python zero_to_fp32.py . pytorch_model.bin
15
+
16
+ import argparse
17
+ import torch
18
+ import glob
19
+ import math
20
+ import os
21
+ import re
22
+ from collections import OrderedDict
23
+ from dataclasses import dataclass
24
+
25
+ # while this script doesn't use deepspeed to recover data, since the checkpoints are pickled with
26
+ # DeepSpeed data structures it has to be available in the current python environment.
27
+ from deepspeed.utils import logger
28
+ from deepspeed.checkpoint.constants import (DS_VERSION, OPTIMIZER_STATE_DICT, SINGLE_PARTITION_OF_FP32_GROUPS,
29
+ FP32_FLAT_GROUPS, ZERO_STAGE, PARTITION_COUNT, PARAM_SHAPES, BUFFER_NAMES,
30
+ FROZEN_PARAM_SHAPES, FROZEN_PARAM_FRAGMENTS)
31
+
32
+
33
+ @dataclass
34
+ class zero_model_state:
35
+ buffers: dict()
36
+ param_shapes: dict()
37
+ shared_params: list
38
+ ds_version: int
39
+ frozen_param_shapes: dict()
40
+ frozen_param_fragments: dict()
41
+
42
+
43
+ debug = 0
44
+
45
+ # load to cpu
46
+ device = torch.device('cpu')
47
+
48
+
49
+ def atoi(text):
50
+ return int(text) if text.isdigit() else text
51
+
52
+
53
+ def natural_keys(text):
54
+ '''
55
+ alist.sort(key=natural_keys) sorts in human order
56
+ http://nedbatchelder.com/blog/200712/human_sorting.html
57
+ (See Toothy's implementation in the comments)
58
+ '''
59
+ return [atoi(c) for c in re.split(r'(\d+)', text)]
60
+
61
+
62
+ def get_model_state_file(checkpoint_dir, zero_stage):
63
+ if not os.path.isdir(checkpoint_dir):
64
+ raise FileNotFoundError(f"Directory '{checkpoint_dir}' doesn't exist")
65
+
66
+ # there should be only one file
67
+ if zero_stage <= 2:
68
+ file = os.path.join(checkpoint_dir, "mp_rank_00_model_states.pt")
69
+ elif zero_stage == 3:
70
+ file = os.path.join(checkpoint_dir, "zero_pp_rank_0_mp_rank_00_model_states.pt")
71
+
72
+ if not os.path.exists(file):
73
+ raise FileNotFoundError(f"can't find model states file at '{file}'")
74
+
75
+ return file
76
+
77
+
78
+ def get_checkpoint_files(checkpoint_dir, glob_pattern):
79
+ # XXX: need to test that this simple glob rule works for multi-node setup too
80
+ ckpt_files = sorted(glob.glob(os.path.join(checkpoint_dir, glob_pattern)), key=natural_keys)
81
+
82
+ if len(ckpt_files) == 0:
83
+ raise FileNotFoundError(f"can't find {glob_pattern} files in directory '{checkpoint_dir}'")
84
+
85
+ return ckpt_files
86
+
87
+
88
+ def get_optim_files(checkpoint_dir):
89
+ return get_checkpoint_files(checkpoint_dir, "*_optim_states.pt")
90
+
91
+
92
+ def get_model_state_files(checkpoint_dir):
93
+ return get_checkpoint_files(checkpoint_dir, "*_model_states.pt")
94
+
95
+
96
+ def parse_model_states(files):
97
+ zero_model_states = []
98
+ for file in files:
99
+ state_dict = torch.load(file, map_location=device)
100
+
101
+ if BUFFER_NAMES not in state_dict:
102
+ raise ValueError(f"{file} is not a model state checkpoint")
103
+ buffer_names = state_dict[BUFFER_NAMES]
104
+ if debug:
105
+ print("Found buffers:", buffer_names)
106
+
107
+ # recover just the buffers while restoring them to fp32 if they were saved in fp16
108
+ buffers = {k: v.float() for k, v in state_dict["module"].items() if k in buffer_names}
109
+ param_shapes = state_dict[PARAM_SHAPES]
110
+
111
+ # collect parameters that are included in param_shapes
112
+ param_names = []
113
+ for s in param_shapes:
114
+ for name in s.keys():
115
+ param_names.append(name)
116
+
117
+ # update with frozen parameters
118
+ frozen_param_shapes = state_dict.get(FROZEN_PARAM_SHAPES, None)
119
+ if frozen_param_shapes is not None:
120
+ if debug:
121
+ print(f"Found frozen_param_shapes: {frozen_param_shapes}")
122
+ param_names += list(frozen_param_shapes.keys())
123
+
124
+ # handle shared params
125
+ shared_params = [[k, v] for k, v in state_dict["shared_params"].items()]
126
+
127
+ ds_version = state_dict.get(DS_VERSION, None)
128
+
129
+ frozen_param_fragments = state_dict.get(FROZEN_PARAM_FRAGMENTS, None)
130
+
131
+ z_model_state = zero_model_state(buffers=buffers,
132
+ param_shapes=param_shapes,
133
+ shared_params=shared_params,
134
+ ds_version=ds_version,
135
+ frozen_param_shapes=frozen_param_shapes,
136
+ frozen_param_fragments=frozen_param_fragments)
137
+ zero_model_states.append(z_model_state)
138
+
139
+ return zero_model_states
140
+
141
+
142
+ def parse_optim_states(files, ds_checkpoint_dir):
143
+
144
+ total_files = len(files)
145
+ state_dicts = []
146
+ for f in files:
147
+ state_dict = torch.load(f, map_location=device, weights_only=False)
148
+ # immediately discard the potentially huge 2 optimizer states as we only care for fp32 master weights
149
+ # and also handle the case where it was already removed by another helper script
150
+ state_dict["optimizer_state_dict"].pop("optimizer_state_dict", None)
151
+ state_dicts.append(state_dict)
152
+
153
+ if not ZERO_STAGE in state_dicts[0][OPTIMIZER_STATE_DICT]:
154
+ raise ValueError(f"{files[0]} is not a zero checkpoint")
155
+ zero_stage = state_dicts[0][OPTIMIZER_STATE_DICT][ZERO_STAGE]
156
+ world_size = state_dicts[0][OPTIMIZER_STATE_DICT][PARTITION_COUNT]
157
+
158
+ # For ZeRO-2 each param group can have different partition_count as data parallelism for expert
159
+ # parameters can be different from data parallelism for non-expert parameters. So we can just
160
+ # use the max of the partition_count to get the dp world_size.
161
+
162
+ if type(world_size) is list:
163
+ world_size = max(world_size)
164
+
165
+ if world_size != total_files:
166
+ raise ValueError(
167
+ f"Expected {world_size} of '*_optim_states.pt' under '{ds_checkpoint_dir}' but found {total_files} files. "
168
+ "Possibly due to an overwrite of an old checkpoint, or a checkpoint didn't get saved by one or more processes."
169
+ )
170
+
171
+ # the groups are named differently in each stage
172
+ if zero_stage <= 2:
173
+ fp32_groups_key = SINGLE_PARTITION_OF_FP32_GROUPS
174
+ elif zero_stage == 3:
175
+ fp32_groups_key = FP32_FLAT_GROUPS
176
+ else:
177
+ raise ValueError(f"unknown zero stage {zero_stage}")
178
+
179
+ if zero_stage <= 2:
180
+ fp32_flat_groups = [state_dicts[i][OPTIMIZER_STATE_DICT][fp32_groups_key] for i in range(len(state_dicts))]
181
+ elif zero_stage == 3:
182
+ # if there is more than one param group, there will be multiple flattened tensors - one
183
+ # flattened tensor per group - for simplicity merge them into a single tensor
184
+ #
185
+ # XXX: could make the script more memory efficient for when there are multiple groups - it
186
+ # will require matching the sub-lists of param_shapes for each param group flattened tensor
187
+
188
+ fp32_flat_groups = [
189
+ torch.cat(state_dicts[i][OPTIMIZER_STATE_DICT][fp32_groups_key], 0) for i in range(len(state_dicts))
190
+ ]
191
+
192
+ return zero_stage, world_size, fp32_flat_groups
193
+
194
+
195
+ def _get_fp32_state_dict_from_zero_checkpoint(ds_checkpoint_dir):
196
+ """
197
+ Returns fp32 state_dict reconstructed from ds checkpoint
198
+
199
+ Args:
200
+ - ``ds_checkpoint_dir``: path to the deepspeed checkpoint folder (where the optimizer files are)
201
+
202
+ """
203
+ print(f"Processing zero checkpoint '{ds_checkpoint_dir}'")
204
+
205
+ optim_files = get_optim_files(ds_checkpoint_dir)
206
+ zero_stage, world_size, fp32_flat_groups = parse_optim_states(optim_files, ds_checkpoint_dir)
207
+ print(f"Detected checkpoint of type zero stage {zero_stage}, world_size: {world_size}")
208
+
209
+ model_files = get_model_state_files(ds_checkpoint_dir)
210
+
211
+ zero_model_states = parse_model_states(model_files)
212
+ print(f'Parsing checkpoint created by deepspeed=={zero_model_states[0].ds_version}')
213
+
214
+ if zero_stage <= 2:
215
+ return _get_fp32_state_dict_from_zero2_checkpoint(world_size, fp32_flat_groups, zero_model_states)
216
+ elif zero_stage == 3:
217
+ return _get_fp32_state_dict_from_zero3_checkpoint(world_size, fp32_flat_groups, zero_model_states)
218
+
219
+
220
+ def _zero2_merge_frozen_params(state_dict, zero_model_states):
221
+ if zero_model_states[0].frozen_param_shapes is None or len(zero_model_states[0].frozen_param_shapes) == 0:
222
+ return
223
+
224
+ frozen_param_shapes = zero_model_states[0].frozen_param_shapes
225
+ frozen_param_fragments = zero_model_states[0].frozen_param_fragments
226
+
227
+ if debug:
228
+ num_elem = sum(s.numel() for s in frozen_param_shapes.values())
229
+ print(f'rank 0: {FROZEN_PARAM_SHAPES}.numel = {num_elem}')
230
+
231
+ wanted_params = len(frozen_param_shapes)
232
+ wanted_numel = sum(s.numel() for s in frozen_param_shapes.values())
233
+ avail_numel = sum([p.numel() for p in frozen_param_fragments.values()])
234
+ print(f'Frozen params: Have {avail_numel} numels to process.')
235
+ print(f'Frozen params: Need {wanted_numel} numels in {wanted_params} params')
236
+
237
+ total_params = 0
238
+ total_numel = 0
239
+ for name, shape in frozen_param_shapes.items():
240
+ total_params += 1
241
+ unpartitioned_numel = shape.numel()
242
+ total_numel += unpartitioned_numel
243
+
244
+ state_dict[name] = frozen_param_fragments[name]
245
+
246
+ if debug:
247
+ print(f"{name} full shape: {shape} unpartitioned numel {unpartitioned_numel} ")
248
+
249
+ print(f"Reconstructed Frozen fp32 state dict with {total_params} params {total_numel} elements")
250
+
251
+
252
+ def _zero2_merge_trainable_params(state_dict, world_size, fp32_flat_groups, zero_model_states):
253
+ param_shapes = zero_model_states[0].param_shapes
254
+
255
+ # Reconstruction protocol:
256
+ #
257
+ # XXX: document this
258
+
259
+ if debug:
260
+ for i in range(world_size):
261
+ for j in range(len(fp32_flat_groups[0])):
262
+ print(f"{FP32_FLAT_GROUPS}[{i}][{j}].shape={fp32_flat_groups[i][j].shape}")
263
+
264
+ # XXX: memory usage doubles here (zero2)
265
+ num_param_groups = len(fp32_flat_groups[0])
266
+ merged_single_partition_of_fp32_groups = []
267
+ for i in range(num_param_groups):
268
+ merged_partitions = [sd[i] for sd in fp32_flat_groups]
269
+ full_single_fp32_vector = torch.cat(merged_partitions, 0)
270
+ merged_single_partition_of_fp32_groups.append(full_single_fp32_vector)
271
+ avail_numel = sum(
272
+ [full_single_fp32_vector.numel() for full_single_fp32_vector in merged_single_partition_of_fp32_groups])
273
+
274
+ if debug:
275
+ wanted_params = sum([len(shapes) for shapes in param_shapes])
276
+ wanted_numel = sum([sum(shape.numel() for shape in shapes.values()) for shapes in param_shapes])
277
+ # not asserting if there is a mismatch due to possible padding
278
+ print(f"Have {avail_numel} numels to process.")
279
+ print(f"Need {wanted_numel} numels in {wanted_params} params.")
280
+
281
+ # params
282
+ # XXX: for huge models that can't fit into the host's RAM we will have to recode this to support
283
+ # out-of-core computing solution
284
+ total_numel = 0
285
+ total_params = 0
286
+ for shapes, full_single_fp32_vector in zip(param_shapes, merged_single_partition_of_fp32_groups):
287
+ offset = 0
288
+ avail_numel = full_single_fp32_vector.numel()
289
+ for name, shape in shapes.items():
290
+
291
+ unpartitioned_numel = shape.numel()
292
+ total_numel += unpartitioned_numel
293
+ total_params += 1
294
+
295
+ if debug:
296
+ print(f"{name} full shape: {shape} unpartitioned numel {unpartitioned_numel} ")
297
+ state_dict[name] = full_single_fp32_vector.narrow(0, offset, unpartitioned_numel).view(shape)
298
+ offset += unpartitioned_numel
299
+
300
+ # Z2 started to align to 2*world_size to improve nccl performance. Therefore both offset and
301
+ # avail_numel can differ by anywhere between 0..2*world_size. Due to two unrelated complex
302
+ # paddings performed in the code it's almost impossible to predict the exact numbers w/o the
303
+ # live optimizer object, so we are checking that the numbers are within the right range
304
+ align_to = 2 * world_size
305
+
306
+ def zero2_align(x):
307
+ return align_to * math.ceil(x / align_to)
308
+
309
+ if debug:
310
+ print(f"original offset={offset}, avail_numel={avail_numel}")
311
+
312
+ offset = zero2_align(offset)
313
+ avail_numel = zero2_align(avail_numel)
314
+
315
+ if debug:
316
+ print(f"aligned offset={offset}, avail_numel={avail_numel}")
317
+
318
+ # Sanity check
319
+ if offset != avail_numel:
320
+ raise ValueError(f"consumed {offset} numels out of {avail_numel} - something is wrong")
321
+
322
+ print(f"Reconstructed fp32 state dict with {total_params} params {total_numel} elements")
323
+
324
+
325
+ def _get_fp32_state_dict_from_zero2_checkpoint(world_size, fp32_flat_groups, zero_model_states):
326
+ state_dict = OrderedDict()
327
+
328
+ # buffers
329
+ buffers = zero_model_states[0].buffers
330
+ state_dict.update(buffers)
331
+ if debug:
332
+ print(f"added {len(buffers)} buffers")
333
+
334
+ _zero2_merge_frozen_params(state_dict, zero_model_states)
335
+
336
+ _zero2_merge_trainable_params(state_dict, world_size, fp32_flat_groups, zero_model_states)
337
+
338
+ # recover shared parameters
339
+ for pair in zero_model_states[0].shared_params:
340
+ if pair[1] in state_dict:
341
+ state_dict[pair[0]] = state_dict[pair[1]]
342
+
343
+ return state_dict
344
+
345
+
346
+ def zero3_partitioned_param_info(unpartitioned_numel, world_size):
347
+ remainder = unpartitioned_numel % world_size
348
+ padding_numel = (world_size - remainder) if remainder else 0
349
+ partitioned_numel = math.ceil(unpartitioned_numel / world_size)
350
+ return partitioned_numel, padding_numel
351
+
352
+
353
+ def _zero3_merge_frozen_params(state_dict, world_size, zero_model_states):
354
+ if zero_model_states[0].frozen_param_shapes is None or len(zero_model_states[0].frozen_param_shapes) == 0:
355
+ return
356
+
357
+ if debug:
358
+ for i in range(world_size):
359
+ num_elem = sum(s.numel() for s in zero_model_states[i].frozen_param_fragments.values())
360
+ print(f'rank {i}: {FROZEN_PARAM_SHAPES}.numel = {num_elem}')
361
+
362
+ frozen_param_shapes = zero_model_states[0].frozen_param_shapes
363
+ wanted_params = len(frozen_param_shapes)
364
+ wanted_numel = sum(s.numel() for s in frozen_param_shapes.values())
365
+ avail_numel = sum([p.numel() for p in zero_model_states[0].frozen_param_fragments.values()]) * world_size
366
+ print(f'Frozen params: Have {avail_numel} numels to process.')
367
+ print(f'Frozen params: Need {wanted_numel} numels in {wanted_params} params')
368
+
369
+ total_params = 0
370
+ total_numel = 0
371
+ for name, shape in zero_model_states[0].frozen_param_shapes.items():
372
+ total_params += 1
373
+ unpartitioned_numel = shape.numel()
374
+ total_numel += unpartitioned_numel
375
+
376
+ param_frags = tuple(model_state.frozen_param_fragments[name] for model_state in zero_model_states)
377
+ state_dict[name] = torch.cat(param_frags, 0).narrow(0, 0, unpartitioned_numel).view(shape)
378
+
379
+ partitioned_numel, partitioned_padding_numel = zero3_partitioned_param_info(unpartitioned_numel, world_size)
380
+
381
+ if debug:
382
+ print(
383
+ f"Frozen params: {total_params} {name} full shape: {shape} partition0 numel={partitioned_numel} partitioned_padding_numel={partitioned_padding_numel}"
384
+ )
385
+
386
+ print(f"Reconstructed Frozen fp32 state dict with {total_params} params {total_numel} elements")
387
+
388
+
389
+ def _zero3_merge_trainable_params(state_dict, world_size, fp32_flat_groups, zero_model_states):
390
+ param_shapes = zero_model_states[0].param_shapes
391
+ avail_numel = fp32_flat_groups[0].numel() * world_size
392
+ # Reconstruction protocol: For zero3 we need to zip the partitions together at boundary of each
393
+ # param, re-consolidating each param, while dealing with padding if any
394
+
395
+ # merge list of dicts, preserving order
396
+ param_shapes = {k: v for d in param_shapes for k, v in d.items()}
397
+
398
+ if debug:
399
+ for i in range(world_size):
400
+ print(f"{FP32_FLAT_GROUPS}[{i}].shape={fp32_flat_groups[i].shape}")
401
+
402
+ wanted_params = len(param_shapes)
403
+ wanted_numel = sum(shape.numel() for shape in param_shapes.values())
404
+ # not asserting if there is a mismatch due to possible padding
405
+ avail_numel = fp32_flat_groups[0].numel() * world_size
406
+ print(f"Trainable params: Have {avail_numel} numels to process.")
407
+ print(f"Trainable params: Need {wanted_numel} numels in {wanted_params} params.")
408
+
409
+ # params
410
+ # XXX: for huge models that can't fit into the host's RAM we will have to recode this to support
411
+ # out-of-core computing solution
412
+ offset = 0
413
+ total_numel = 0
414
+ total_params = 0
415
+ for name, shape in param_shapes.items():
416
+
417
+ unpartitioned_numel = shape.numel()
418
+ total_numel += unpartitioned_numel
419
+ total_params += 1
420
+
421
+ partitioned_numel, partitioned_padding_numel = zero3_partitioned_param_info(unpartitioned_numel, world_size)
422
+
423
+ if debug:
424
+ print(
425
+ f"Trainable params: {total_params} {name} full shape: {shape} partition0 numel={partitioned_numel} partitioned_padding_numel={partitioned_padding_numel}"
426
+ )
427
+
428
+ # XXX: memory usage doubles here
429
+ state_dict[name] = torch.cat(
430
+ tuple(fp32_flat_groups[i].narrow(0, offset, partitioned_numel) for i in range(world_size)),
431
+ 0).narrow(0, 0, unpartitioned_numel).view(shape)
432
+ offset += partitioned_numel
433
+
434
+ offset *= world_size
435
+
436
+ # Sanity check
437
+ if offset != avail_numel:
438
+ raise ValueError(f"consumed {offset} numels out of {avail_numel} - something is wrong")
439
+
440
+ print(f"Reconstructed Trainable fp32 state dict with {total_params} params {total_numel} elements")
441
+
442
+
443
+ def _get_fp32_state_dict_from_zero3_checkpoint(world_size, fp32_flat_groups, zero_model_states):
444
+ state_dict = OrderedDict()
445
+
446
+ # buffers
447
+ buffers = zero_model_states[0].buffers
448
+ state_dict.update(buffers)
449
+ if debug:
450
+ print(f"added {len(buffers)} buffers")
451
+
452
+ _zero3_merge_frozen_params(state_dict, world_size, zero_model_states)
453
+
454
+ _zero3_merge_trainable_params(state_dict, world_size, fp32_flat_groups, zero_model_states)
455
+
456
+ # recover shared parameters
457
+ for pair in zero_model_states[0].shared_params:
458
+ if pair[1] in state_dict:
459
+ state_dict[pair[0]] = state_dict[pair[1]]
460
+
461
+ return state_dict
462
+
463
+
464
+ def get_fp32_state_dict_from_zero_checkpoint(checkpoint_dir, tag=None):
465
+ """
466
+ Convert ZeRO 2 or 3 checkpoint into a single fp32 consolidated state_dict that can be loaded with
467
+ ``load_state_dict()`` and used for training without DeepSpeed or shared with others, for example
468
+ via a model hub.
469
+
470
+ Args:
471
+ - ``checkpoint_dir``: path to the desired checkpoint folder
472
+ - ``tag``: checkpoint tag used as a unique identifier for checkpoint. If not provided will attempt to load tag in 'latest' file. e.g., ``global_step14``
473
+
474
+ Returns:
475
+ - pytorch ``state_dict``
476
+
477
+ Note: this approach may not work if your application doesn't have sufficient free CPU memory and
478
+ you may need to use the offline approach using the ``zero_to_fp32.py`` script that is saved with
479
+ the checkpoint.
480
+
481
+ A typical usage might be ::
482
+
483
+ from deepspeed.utils.zero_to_fp32 import get_fp32_state_dict_from_zero_checkpoint
484
+ # do the training and checkpoint saving
485
+ state_dict = get_fp32_state_dict_from_zero_checkpoint(checkpoint_dir) # already on cpu
486
+ model = model.cpu() # move to cpu
487
+ model.load_state_dict(state_dict)
488
+ # submit to model hub or save the model to share with others
489
+
490
+ In this example the ``model`` will no longer be usable in the deepspeed context of the same
491
+ application. i.e. you will need to re-initialize the deepspeed engine, since
492
+ ``model.load_state_dict(state_dict)`` will remove all the deepspeed magic from it.
493
+
494
+ If you want it all done for you, use ``load_state_dict_from_zero_checkpoint`` instead.
495
+
496
+ """
497
+ if tag is None:
498
+ latest_path = os.path.join(checkpoint_dir, 'latest')
499
+ if os.path.isfile(latest_path):
500
+ with open(latest_path, 'r') as fd:
501
+ tag = fd.read().strip()
502
+ else:
503
+ raise ValueError(f"Unable to find 'latest' file at {latest_path}")
504
+
505
+ ds_checkpoint_dir = os.path.join(checkpoint_dir, tag)
506
+
507
+ if not os.path.isdir(ds_checkpoint_dir):
508
+ raise FileNotFoundError(f"Directory '{ds_checkpoint_dir}' doesn't exist")
509
+
510
+ return _get_fp32_state_dict_from_zero_checkpoint(ds_checkpoint_dir)
511
+
512
+
513
+ def convert_zero_checkpoint_to_fp32_state_dict(checkpoint_dir, output_file, tag=None):
514
+ """
515
+ Convert ZeRO 2 or 3 checkpoint into a single fp32 consolidated ``state_dict`` file that can be
516
+ loaded with ``torch.load(file)`` + ``load_state_dict()`` and used for training without DeepSpeed.
517
+
518
+ Args:
519
+ - ``checkpoint_dir``: path to the desired checkpoint folder. (one that contains the tag-folder, like ``global_step14``)
520
+ - ``output_file``: path to the pytorch fp32 state_dict output file (e.g. path/pytorch_model.bin)
521
+ - ``tag``: checkpoint tag used as a unique identifier for checkpoint. If not provided will attempt to load tag in the file named ``latest`` in the checkpoint folder, e.g., ``global_step14``
522
+ """
523
+
524
+ state_dict = get_fp32_state_dict_from_zero_checkpoint(checkpoint_dir, tag)
525
+ print(f"Saving fp32 state dict to {output_file}")
526
+ torch.save(state_dict, output_file)
527
+
528
+
529
+ def load_state_dict_from_zero_checkpoint(model, checkpoint_dir, tag=None):
530
+ """
531
+ 1. Put the provided model to cpu
532
+ 2. Convert ZeRO 2 or 3 checkpoint into a single fp32 consolidated ``state_dict``
533
+ 3. Load it into the provided model
534
+
535
+ Args:
536
+ - ``model``: the model object to update
537
+ - ``checkpoint_dir``: path to the desired checkpoint folder. (one that contains the tag-folder, like ``global_step14``)
538
+ - ``tag``: checkpoint tag used as a unique identifier for checkpoint. If not provided will attempt to load tag in the file named ``latest`` in the checkpoint folder, e.g., ``global_step14``
539
+
540
+ Returns:
541
+ - ``model`: modified model
542
+
543
+ Make sure you have plenty of CPU memory available before you call this function. If you don't
544
+ have enough use the ``zero_to_fp32.py`` utility to do the conversion. You will find it
545
+ conveniently placed for you in the checkpoint folder.
546
+
547
+ A typical usage might be ::
548
+
549
+ from deepspeed.utils.zero_to_fp32 import load_state_dict_from_zero_checkpoint
550
+ model = load_state_dict_from_zero_checkpoint(trainer.model, checkpoint_dir)
551
+ # submit to model hub or save the model to share with others
552
+
553
+ Note, that once this was run, the ``model`` will no longer be usable in the deepspeed context
554
+ of the same application. i.e. you will need to re-initialize the deepspeed engine, since
555
+ ``model.load_state_dict(state_dict)`` will remove all the deepspeed magic from it.
556
+
557
+ """
558
+ logger.info(f"Extracting fp32 weights")
559
+ state_dict = get_fp32_state_dict_from_zero_checkpoint(checkpoint_dir, tag)
560
+
561
+ logger.info(f"Overwriting model with fp32 weights")
562
+ model = model.cpu()
563
+ model.load_state_dict(state_dict, strict=False)
564
+
565
+ return model
566
+
567
+
568
+ if __name__ == "__main__":
569
+
570
+ parser = argparse.ArgumentParser()
571
+ parser.add_argument("checkpoint_dir",
572
+ type=str,
573
+ help="path to the desired checkpoint folder, e.g., path/checkpoint-12")
574
+ parser.add_argument(
575
+ "--output_file",
576
+ default="pytorch_model.bin",
577
+ type=str,
578
+ help="path to the pytorch fp32 state_dict output file (e.g. path/checkpoint-12/pytorch_model.bin)")
579
+ parser.add_argument("-t",
580
+ "--tag",
581
+ type=str,
582
+ default=None,
583
+ help="checkpoint tag used as a unique identifier for checkpoint. e.g., global_step1")
584
+ parser.add_argument("-d", "--debug", action='store_true', help="enable debug")
585
+ args = parser.parse_args()
586
+
587
+ debug = args.debug
588
+
589
+ convert_zero_checkpoint_to_fp32_state_dict(args.checkpoint_dir, args.output_file, tag=args.tag)