Upload tokenization_chatglm.py
Browse files- tokenization_chatglm.py +328 -0
tokenization_chatglm.py
ADDED
|
@@ -0,0 +1,328 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import json
|
| 2 |
+
import os
|
| 3 |
+
import re
|
| 4 |
+
from typing import List, Optional, Union, Dict
|
| 5 |
+
from sentencepiece import SentencePieceProcessor
|
| 6 |
+
from transformers import PreTrainedTokenizer
|
| 7 |
+
from transformers.utils import logging, PaddingStrategy
|
| 8 |
+
from transformers.tokenization_utils_base import EncodedInput, BatchEncoding
|
| 9 |
+
|
| 10 |
+
|
| 11 |
+
logger = logging.get_logger(__name__)
|
| 12 |
+
|
| 13 |
+
|
| 14 |
+
class SPTokenizer:
|
| 15 |
+
def __init__(self, model_path: str):
|
| 16 |
+
# reload tokenizer
|
| 17 |
+
assert os.path.isfile(model_path), model_path
|
| 18 |
+
self.sp_model = SentencePieceProcessor(model_file=model_path)
|
| 19 |
+
|
| 20 |
+
# BOS / EOS token IDs
|
| 21 |
+
self.n_words: int = self.sp_model.vocab_size()
|
| 22 |
+
self.bos_id: int = self.sp_model.bos_id()
|
| 23 |
+
self.eos_id: int = self.sp_model.eos_id()
|
| 24 |
+
self.pad_id: int = self.sp_model.unk_id()
|
| 25 |
+
assert self.sp_model.vocab_size() == self.sp_model.get_piece_size()
|
| 26 |
+
|
| 27 |
+
role_special_tokens = ["<|system|>", "<|user|>", "<|assistant|>", "<|observation|>"]
|
| 28 |
+
special_tokens = ["[MASK]", "[gMASK]", "[sMASK]", "sop", "eop"] + role_special_tokens
|
| 29 |
+
self.special_tokens = {}
|
| 30 |
+
self.index_special_tokens = {}
|
| 31 |
+
for token in special_tokens:
|
| 32 |
+
self.special_tokens[token] = self.n_words
|
| 33 |
+
self.index_special_tokens[self.n_words] = token
|
| 34 |
+
self.n_words += 1
|
| 35 |
+
self.role_special_token_expression = "|".join([re.escape(token) for token in special_tokens]) # for apply_chat_template
|
| 36 |
+
|
| 37 |
+
def tokenize(self, s: str, encode_special_tokens=False):
|
| 38 |
+
if encode_special_tokens:
|
| 39 |
+
last_index = 0
|
| 40 |
+
t = []
|
| 41 |
+
for match in re.finditer(self.role_special_token_expression, s):
|
| 42 |
+
if last_index < match.start():
|
| 43 |
+
t.extend(self.sp_model.EncodeAsPieces(s[last_index:match.start()]))
|
| 44 |
+
t.append(s[match.start():match.end()])
|
| 45 |
+
last_index = match.end()
|
| 46 |
+
if last_index < len(s):
|
| 47 |
+
t.extend(self.sp_model.EncodeAsPieces(s[last_index:]))
|
| 48 |
+
return t
|
| 49 |
+
else:
|
| 50 |
+
return self.sp_model.EncodeAsPieces(s)
|
| 51 |
+
|
| 52 |
+
def encode(self, s: str, bos: bool = False, eos: bool = False) -> List[int]:
|
| 53 |
+
assert type(s) is str
|
| 54 |
+
t = self.sp_model.encode(s)
|
| 55 |
+
if bos:
|
| 56 |
+
t = [self.bos_id] + t
|
| 57 |
+
if eos:
|
| 58 |
+
t = t + [self.eos_id]
|
| 59 |
+
return t
|
| 60 |
+
|
| 61 |
+
def decode(self, t: List[int]) -> str:
|
| 62 |
+
text, buffer = "", []
|
| 63 |
+
for token in t:
|
| 64 |
+
if token in self.index_special_tokens:
|
| 65 |
+
if buffer:
|
| 66 |
+
text += self.sp_model.decode(buffer)
|
| 67 |
+
buffer = []
|
| 68 |
+
text += self.index_special_tokens[token]
|
| 69 |
+
else:
|
| 70 |
+
buffer.append(token)
|
| 71 |
+
if buffer:
|
| 72 |
+
text += self.sp_model.decode(buffer)
|
| 73 |
+
return text
|
| 74 |
+
|
| 75 |
+
def decode_tokens(self, tokens: List[str]) -> str:
|
| 76 |
+
text = self.sp_model.DecodePieces(tokens)
|
| 77 |
+
return text
|
| 78 |
+
|
| 79 |
+
def convert_token_to_id(self, token):
|
| 80 |
+
""" Converts a token (str) in an id using the vocab. """
|
| 81 |
+
if token in self.special_tokens:
|
| 82 |
+
return self.special_tokens[token]
|
| 83 |
+
return self.sp_model.PieceToId(token)
|
| 84 |
+
|
| 85 |
+
def convert_id_to_token(self, index):
|
| 86 |
+
"""Converts an index (integer) in a token (str) using the vocab."""
|
| 87 |
+
if index in self.index_special_tokens:
|
| 88 |
+
return self.index_special_tokens[index]
|
| 89 |
+
if index in [self.eos_id, self.bos_id, self.pad_id] or index < 0 or index > self.sp_model.vocab_size():
|
| 90 |
+
return ""
|
| 91 |
+
return self.sp_model.IdToPiece(index)
|
| 92 |
+
|
| 93 |
+
|
| 94 |
+
class ChatGLMTokenizer(PreTrainedTokenizer):
|
| 95 |
+
|
| 96 |
+
vocab_files_names = {"vocab_file": "tokenizer.model"}
|
| 97 |
+
model_input_names = ["input_ids", "attention_mask", "position_ids"]
|
| 98 |
+
|
| 99 |
+
def __init__(
|
| 100 |
+
self,
|
| 101 |
+
vocab_file,
|
| 102 |
+
padding_side="left",
|
| 103 |
+
clean_up_tokenization_spaces=False,
|
| 104 |
+
encode_special_tokens=False,
|
| 105 |
+
**kwargs
|
| 106 |
+
):
|
| 107 |
+
self.name = "GLMTokenizer"
|
| 108 |
+
self.vocab_file = vocab_file
|
| 109 |
+
self.tokenizer = SPTokenizer(vocab_file)
|
| 110 |
+
self.special_tokens = {
|
| 111 |
+
"<bos>": self.tokenizer.bos_id,
|
| 112 |
+
"<eos>": self.tokenizer.eos_id,
|
| 113 |
+
"<unk>": self.tokenizer.pad_id,
|
| 114 |
+
"<pad>": self.tokenizer.pad_id
|
| 115 |
+
}
|
| 116 |
+
self.encode_special_tokens = encode_special_tokens
|
| 117 |
+
|
| 118 |
+
super().__init__(
|
| 119 |
+
padding_side=padding_side,
|
| 120 |
+
clean_up_tokenization_spaces=clean_up_tokenization_spaces,
|
| 121 |
+
**kwargs
|
| 122 |
+
)
|
| 123 |
+
|
| 124 |
+
def get_command(self, token):
|
| 125 |
+
if token in self.special_tokens:
|
| 126 |
+
return self.special_tokens[token]
|
| 127 |
+
assert token in self.tokenizer.special_tokens, f"{token} is not a special token for {self.name}"
|
| 128 |
+
return self.tokenizer.special_tokens[token]
|
| 129 |
+
|
| 130 |
+
@property
|
| 131 |
+
def unk_token(self) -> str:
|
| 132 |
+
return self.tokenizer.sp_model.IdToPiece(self.get_command("<unk>"))
|
| 133 |
+
|
| 134 |
+
@property
|
| 135 |
+
def pad_token(self) -> str:
|
| 136 |
+
return self.tokenizer.sp_model.IdToPiece(self.get_command("<pad>"))
|
| 137 |
+
|
| 138 |
+
@property
|
| 139 |
+
def eos_token(self) -> str:
|
| 140 |
+
return self.tokenizer.sp_model.IdToPiece(self.get_command("<eos>"))
|
| 141 |
+
|
| 142 |
+
@property
|
| 143 |
+
def unk_token_id(self) -> int:
|
| 144 |
+
return self.get_command("<unk>")
|
| 145 |
+
|
| 146 |
+
@property
|
| 147 |
+
def pad_token_id(self) -> int:
|
| 148 |
+
return self.get_command("<pad>")
|
| 149 |
+
|
| 150 |
+
@property
|
| 151 |
+
def eos_token_id(self):
|
| 152 |
+
return self.get_command("<eos>")
|
| 153 |
+
|
| 154 |
+
@unk_token.setter
|
| 155 |
+
def unk_token(self, value):
|
| 156 |
+
logger.warning("Setting unk_token is not supported, use the default one.")
|
| 157 |
+
|
| 158 |
+
@pad_token.setter
|
| 159 |
+
def pad_token(self, value):
|
| 160 |
+
logger.warning("Setting pad_token is not supported, use the default one.")
|
| 161 |
+
|
| 162 |
+
@eos_token.setter
|
| 163 |
+
def eos_token(self, value):
|
| 164 |
+
logger.warning("Setting eos_token is not supported, use the default one.")
|
| 165 |
+
|
| 166 |
+
@property
|
| 167 |
+
def vocab_size(self):
|
| 168 |
+
return self.tokenizer.n_words
|
| 169 |
+
|
| 170 |
+
def get_vocab(self):
|
| 171 |
+
""" Returns vocab as a dict """
|
| 172 |
+
vocab = {self._convert_id_to_token(i): i for i in range(self.vocab_size)}
|
| 173 |
+
vocab.update(self.added_tokens_encoder)
|
| 174 |
+
return vocab
|
| 175 |
+
|
| 176 |
+
def _tokenize(self, text, **kwargs):
|
| 177 |
+
return self.tokenizer.tokenize(text, encode_special_tokens=self.encode_special_tokens)
|
| 178 |
+
|
| 179 |
+
def _convert_token_to_id(self, token):
|
| 180 |
+
""" Converts a token (str) in an id using the vocab. """
|
| 181 |
+
return self.tokenizer.convert_token_to_id(token)
|
| 182 |
+
|
| 183 |
+
def _convert_id_to_token(self, index):
|
| 184 |
+
"""Converts an index (integer) in a token (str) using the vocab."""
|
| 185 |
+
return self.tokenizer.convert_id_to_token(index)
|
| 186 |
+
|
| 187 |
+
def convert_tokens_to_string(self, tokens: List[str]) -> str:
|
| 188 |
+
return self.tokenizer.decode_tokens(tokens)
|
| 189 |
+
|
| 190 |
+
def save_vocabulary(self, save_directory, filename_prefix=None):
|
| 191 |
+
"""
|
| 192 |
+
Save the vocabulary and special tokens file to a directory.
|
| 193 |
+
|
| 194 |
+
Args:
|
| 195 |
+
save_directory (`str`):
|
| 196 |
+
The directory in which to save the vocabulary.
|
| 197 |
+
filename_prefix (`str`, *optional*):
|
| 198 |
+
An optional prefix to add to the named of the saved files.
|
| 199 |
+
|
| 200 |
+
Returns:
|
| 201 |
+
`Tuple(str)`: Paths to the files saved.
|
| 202 |
+
"""
|
| 203 |
+
if os.path.isdir(save_directory):
|
| 204 |
+
vocab_file = os.path.join(
|
| 205 |
+
save_directory, self.vocab_files_names["vocab_file"]
|
| 206 |
+
)
|
| 207 |
+
else:
|
| 208 |
+
vocab_file = save_directory
|
| 209 |
+
|
| 210 |
+
with open(self.vocab_file, 'rb') as fin:
|
| 211 |
+
proto_str = fin.read()
|
| 212 |
+
|
| 213 |
+
with open(vocab_file, "wb") as writer:
|
| 214 |
+
writer.write(proto_str)
|
| 215 |
+
|
| 216 |
+
return (vocab_file,)
|
| 217 |
+
|
| 218 |
+
def get_prefix_tokens(self):
|
| 219 |
+
prefix_tokens = [self.get_command("[gMASK]"), self.get_command("sop")]
|
| 220 |
+
return prefix_tokens
|
| 221 |
+
|
| 222 |
+
def build_single_message(self, role, metadata, message):
|
| 223 |
+
assert role in ["system", "user", "assistant", "observation"], role
|
| 224 |
+
role_tokens = [self.get_command(f"<|{role}|>")] + self.tokenizer.encode(f"{metadata}\n")
|
| 225 |
+
message_tokens = self.tokenizer.encode(message)
|
| 226 |
+
tokens = role_tokens + message_tokens
|
| 227 |
+
return tokens
|
| 228 |
+
|
| 229 |
+
def build_chat_input(self, query, history=None, role="user"):
|
| 230 |
+
if history is None:
|
| 231 |
+
history = []
|
| 232 |
+
input_ids = []
|
| 233 |
+
for item in history:
|
| 234 |
+
content = item["content"]
|
| 235 |
+
if item["role"] == "system" and "tools" in item:
|
| 236 |
+
content = content + "\n" + json.dumps(item["tools"], indent=4, ensure_ascii=False)
|
| 237 |
+
input_ids.extend(self.build_single_message(item["role"], item.get("metadata", ""), content))
|
| 238 |
+
input_ids.extend(self.build_single_message(role, "", query))
|
| 239 |
+
input_ids.extend([self.get_command("<|assistant|>")])
|
| 240 |
+
return self.batch_encode_plus([input_ids], return_tensors="pt", is_split_into_words=True)
|
| 241 |
+
|
| 242 |
+
def build_inputs_with_special_tokens(
|
| 243 |
+
self, token_ids_0: List[int], token_ids_1: Optional[List[int]] = None
|
| 244 |
+
) -> List[int]:
|
| 245 |
+
"""
|
| 246 |
+
Build model inputs from a sequence or a pair of sequence for sequence classification tasks by concatenating and
|
| 247 |
+
adding special tokens. A BERT sequence has the following format:
|
| 248 |
+
|
| 249 |
+
- single sequence: `[CLS] X [SEP]`
|
| 250 |
+
- pair of sequences: `[CLS] A [SEP] B [SEP]`
|
| 251 |
+
|
| 252 |
+
Args:
|
| 253 |
+
token_ids_0 (`List[int]`):
|
| 254 |
+
List of IDs to which the special tokens will be added.
|
| 255 |
+
token_ids_1 (`List[int]`, *optional*):
|
| 256 |
+
Optional second list of IDs for sequence pairs.
|
| 257 |
+
|
| 258 |
+
Returns:
|
| 259 |
+
`List[int]`: List of [input IDs](../glossary#input-ids) with the appropriate special tokens.
|
| 260 |
+
"""
|
| 261 |
+
prefix_tokens = self.get_prefix_tokens()
|
| 262 |
+
token_ids_0 = prefix_tokens + token_ids_0
|
| 263 |
+
if token_ids_1 is not None:
|
| 264 |
+
token_ids_0 = token_ids_0 + token_ids_1 + [self.get_command("<eos>")]
|
| 265 |
+
return token_ids_0
|
| 266 |
+
|
| 267 |
+
def _pad(
|
| 268 |
+
self,
|
| 269 |
+
encoded_inputs: Union[Dict[str, EncodedInput], BatchEncoding],
|
| 270 |
+
max_length: Optional[int] = None,
|
| 271 |
+
padding_strategy: PaddingStrategy = PaddingStrategy.DO_NOT_PAD,
|
| 272 |
+
pad_to_multiple_of: Optional[int] = None,
|
| 273 |
+
return_attention_mask: Optional[bool] = None,
|
| 274 |
+
) -> dict:
|
| 275 |
+
"""
|
| 276 |
+
Pad encoded inputs (on left/right and up to predefined length or max length in the batch)
|
| 277 |
+
|
| 278 |
+
Args:
|
| 279 |
+
encoded_inputs:
|
| 280 |
+
Dictionary of tokenized inputs (`List[int]`) or batch of tokenized inputs (`List[List[int]]`).
|
| 281 |
+
max_length: maximum length of the returned list and optionally padding length (see below).
|
| 282 |
+
Will truncate by taking into account the special tokens.
|
| 283 |
+
padding_strategy: PaddingStrategy to use for padding.
|
| 284 |
+
|
| 285 |
+
- PaddingStrategy.LONGEST Pad to the longest sequence in the batch
|
| 286 |
+
- PaddingStrategy.MAX_LENGTH: Pad to the max length (default)
|
| 287 |
+
- PaddingStrategy.DO_NOT_PAD: Do not pad
|
| 288 |
+
The tokenizer padding sides are defined in self.padding_side:
|
| 289 |
+
|
| 290 |
+
- 'left': pads on the left of the sequences
|
| 291 |
+
- 'right': pads on the right of the sequences
|
| 292 |
+
pad_to_multiple_of: (optional) Integer if set will pad the sequence to a multiple of the provided value.
|
| 293 |
+
This is especially useful to enable the use of Tensor Core on NVIDIA hardware with compute capability
|
| 294 |
+
`>= 7.5` (Volta).
|
| 295 |
+
return_attention_mask:
|
| 296 |
+
(optional) Set to False to avoid returning attention mask (default: set to model specifics)
|
| 297 |
+
"""
|
| 298 |
+
# Load from model defaults
|
| 299 |
+
assert self.padding_side == "left"
|
| 300 |
+
|
| 301 |
+
required_input = encoded_inputs[self.model_input_names[0]]
|
| 302 |
+
seq_length = len(required_input)
|
| 303 |
+
|
| 304 |
+
if padding_strategy == PaddingStrategy.LONGEST:
|
| 305 |
+
max_length = len(required_input)
|
| 306 |
+
|
| 307 |
+
if max_length is not None and pad_to_multiple_of is not None and (max_length % pad_to_multiple_of != 0):
|
| 308 |
+
max_length = ((max_length // pad_to_multiple_of) + 1) * pad_to_multiple_of
|
| 309 |
+
|
| 310 |
+
needs_to_be_padded = padding_strategy != PaddingStrategy.DO_NOT_PAD and len(required_input) != max_length
|
| 311 |
+
|
| 312 |
+
# Initialize attention mask if not present.
|
| 313 |
+
if "attention_mask" not in encoded_inputs:
|
| 314 |
+
encoded_inputs["attention_mask"] = [1] * seq_length
|
| 315 |
+
|
| 316 |
+
if "position_ids" not in encoded_inputs:
|
| 317 |
+
encoded_inputs["position_ids"] = list(range(seq_length))
|
| 318 |
+
|
| 319 |
+
if needs_to_be_padded:
|
| 320 |
+
difference = max_length - len(required_input)
|
| 321 |
+
|
| 322 |
+
if "attention_mask" in encoded_inputs:
|
| 323 |
+
encoded_inputs["attention_mask"] = [0] * difference + encoded_inputs["attention_mask"]
|
| 324 |
+
if "position_ids" in encoded_inputs:
|
| 325 |
+
encoded_inputs["position_ids"] = [0] * difference + encoded_inputs["position_ids"]
|
| 326 |
+
encoded_inputs[self.model_input_names[0]] = [self.pad_token_id] * difference + required_input
|
| 327 |
+
|
| 328 |
+
return encoded_inputs
|