amphora commited on
Commit
7997cd3
·
verified ·
1 Parent(s): 61adc49

Delete checkpoint-488

Browse files
checkpoint-488/added_tokens.json DELETED
@@ -1,24 +0,0 @@
1
- {
2
- "</tool_call>": 151658,
3
- "<tool_call>": 151657,
4
- "<|box_end|>": 151649,
5
- "<|box_start|>": 151648,
6
- "<|endoftext|>": 151643,
7
- "<|file_sep|>": 151664,
8
- "<|fim_middle|>": 151660,
9
- "<|fim_pad|>": 151662,
10
- "<|fim_prefix|>": 151659,
11
- "<|fim_suffix|>": 151661,
12
- "<|im_end|>": 151645,
13
- "<|im_start|>": 151644,
14
- "<|image_pad|>": 151655,
15
- "<|object_ref_end|>": 151647,
16
- "<|object_ref_start|>": 151646,
17
- "<|quad_end|>": 151651,
18
- "<|quad_start|>": 151650,
19
- "<|repo_name|>": 151663,
20
- "<|video_pad|>": 151656,
21
- "<|vision_end|>": 151653,
22
- "<|vision_pad|>": 151654,
23
- "<|vision_start|>": 151652
24
- }
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
checkpoint-488/config.json DELETED
@@ -1,28 +0,0 @@
1
- {
2
- "_name_or_path": "Qwen/Qwen2.5-3B-Instruct",
3
- "architectures": [
4
- "Qwen2ForCausalLM"
5
- ],
6
- "attention_dropout": 0.0,
7
- "eos_token_id": 151645,
8
- "hidden_act": "silu",
9
- "hidden_size": 2048,
10
- "initializer_range": 0.02,
11
- "intermediate_size": 11008,
12
- "max_position_embeddings": 32768,
13
- "max_window_layers": 70,
14
- "model_type": "qwen2",
15
- "num_attention_heads": 16,
16
- "num_hidden_layers": 36,
17
- "num_key_value_heads": 2,
18
- "rms_norm_eps": 1e-06,
19
- "rope_scaling": null,
20
- "rope_theta": 1000000.0,
21
- "sliding_window": null,
22
- "tie_word_embeddings": true,
23
- "torch_dtype": "bfloat16",
24
- "transformers_version": "4.48.1",
25
- "use_cache": false,
26
- "use_sliding_window": false,
27
- "vocab_size": 151665
28
- }
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
checkpoint-488/generation_config.json DELETED
@@ -1,14 +0,0 @@
1
- {
2
- "bos_token_id": 151643,
3
- "do_sample": true,
4
- "eos_token_id": [
5
- 151645,
6
- 151643
7
- ],
8
- "pad_token_id": 151643,
9
- "repetition_penalty": 1.05,
10
- "temperature": 0.7,
11
- "top_k": 20,
12
- "top_p": 0.8,
13
- "transformers_version": "4.48.1"
14
- }
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
checkpoint-488/latest DELETED
@@ -1 +0,0 @@
1
- global_step488
 
 
checkpoint-488/merges.txt DELETED
The diff for this file is too large to render. See raw diff
 
checkpoint-488/model-00001-of-00002.safetensors DELETED
@@ -1,3 +0,0 @@
1
- version https://git-lfs.github.com/spec/v1
2
- oid sha256:7bc974c51afa91050753be9509aad253632e3f54e8ef7abefff0fd407e809321
3
- size 4956450288
 
 
 
 
checkpoint-488/model-00002-of-00002.safetensors DELETED
@@ -1,3 +0,0 @@
1
- version https://git-lfs.github.com/spec/v1
2
- oid sha256:8f57fb6f644c16010eadbc4ff90a14eb769cef04dcea00d2116b60e65fb8db3f
3
- size 1835586736
 
 
 
 
checkpoint-488/model.safetensors.index.json DELETED
@@ -1,442 +0,0 @@
1
- {
2
- "metadata": {
3
- "total_size": 6791987200
4
- },
5
- "weight_map": {
6
- "lm_head.weight": "model-00002-of-00002.safetensors",
7
- "model.embed_tokens.weight": "model-00001-of-00002.safetensors",
8
- "model.layers.0.input_layernorm.weight": "model-00001-of-00002.safetensors",
9
- "model.layers.0.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
10
- "model.layers.0.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
11
- "model.layers.0.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
12
- "model.layers.0.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
13
- "model.layers.0.self_attn.k_proj.bias": "model-00001-of-00002.safetensors",
14
- "model.layers.0.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
15
- "model.layers.0.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
16
- "model.layers.0.self_attn.q_proj.bias": "model-00001-of-00002.safetensors",
17
- "model.layers.0.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
18
- "model.layers.0.self_attn.v_proj.bias": "model-00001-of-00002.safetensors",
19
- "model.layers.0.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
20
- "model.layers.1.input_layernorm.weight": "model-00001-of-00002.safetensors",
21
- "model.layers.1.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
22
- "model.layers.1.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
23
- "model.layers.1.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
24
- "model.layers.1.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
25
- "model.layers.1.self_attn.k_proj.bias": "model-00001-of-00002.safetensors",
26
- "model.layers.1.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
27
- "model.layers.1.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
28
- "model.layers.1.self_attn.q_proj.bias": "model-00001-of-00002.safetensors",
29
- "model.layers.1.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
30
- "model.layers.1.self_attn.v_proj.bias": "model-00001-of-00002.safetensors",
31
- "model.layers.1.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
32
- "model.layers.10.input_layernorm.weight": "model-00001-of-00002.safetensors",
33
- "model.layers.10.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
34
- "model.layers.10.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
35
- "model.layers.10.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
36
- "model.layers.10.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
37
- "model.layers.10.self_attn.k_proj.bias": "model-00001-of-00002.safetensors",
38
- "model.layers.10.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
39
- "model.layers.10.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
40
- "model.layers.10.self_attn.q_proj.bias": "model-00001-of-00002.safetensors",
41
- "model.layers.10.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
42
- "model.layers.10.self_attn.v_proj.bias": "model-00001-of-00002.safetensors",
43
- "model.layers.10.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
44
- "model.layers.11.input_layernorm.weight": "model-00001-of-00002.safetensors",
45
- "model.layers.11.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
46
- "model.layers.11.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
47
- "model.layers.11.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
48
- "model.layers.11.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
49
- "model.layers.11.self_attn.k_proj.bias": "model-00001-of-00002.safetensors",
50
- "model.layers.11.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
51
- "model.layers.11.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
52
- "model.layers.11.self_attn.q_proj.bias": "model-00001-of-00002.safetensors",
53
- "model.layers.11.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
54
- "model.layers.11.self_attn.v_proj.bias": "model-00001-of-00002.safetensors",
55
- "model.layers.11.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
56
- "model.layers.12.input_layernorm.weight": "model-00001-of-00002.safetensors",
57
- "model.layers.12.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
58
- "model.layers.12.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
59
- "model.layers.12.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
60
- "model.layers.12.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
61
- "model.layers.12.self_attn.k_proj.bias": "model-00001-of-00002.safetensors",
62
- "model.layers.12.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
63
- "model.layers.12.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
64
- "model.layers.12.self_attn.q_proj.bias": "model-00001-of-00002.safetensors",
65
- "model.layers.12.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
66
- "model.layers.12.self_attn.v_proj.bias": "model-00001-of-00002.safetensors",
67
- "model.layers.12.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
68
- "model.layers.13.input_layernorm.weight": "model-00001-of-00002.safetensors",
69
- "model.layers.13.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
70
- "model.layers.13.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
71
- "model.layers.13.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
72
- "model.layers.13.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
73
- "model.layers.13.self_attn.k_proj.bias": "model-00001-of-00002.safetensors",
74
- "model.layers.13.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
75
- "model.layers.13.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
76
- "model.layers.13.self_attn.q_proj.bias": "model-00001-of-00002.safetensors",
77
- "model.layers.13.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
78
- "model.layers.13.self_attn.v_proj.bias": "model-00001-of-00002.safetensors",
79
- "model.layers.13.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
80
- "model.layers.14.input_layernorm.weight": "model-00001-of-00002.safetensors",
81
- "model.layers.14.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
82
- "model.layers.14.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
83
- "model.layers.14.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
84
- "model.layers.14.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
85
- "model.layers.14.self_attn.k_proj.bias": "model-00001-of-00002.safetensors",
86
- "model.layers.14.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
87
- "model.layers.14.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
88
- "model.layers.14.self_attn.q_proj.bias": "model-00001-of-00002.safetensors",
89
- "model.layers.14.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
90
- "model.layers.14.self_attn.v_proj.bias": "model-00001-of-00002.safetensors",
91
- "model.layers.14.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
92
- "model.layers.15.input_layernorm.weight": "model-00001-of-00002.safetensors",
93
- "model.layers.15.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
94
- "model.layers.15.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
95
- "model.layers.15.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
96
- "model.layers.15.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
97
- "model.layers.15.self_attn.k_proj.bias": "model-00001-of-00002.safetensors",
98
- "model.layers.15.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
99
- "model.layers.15.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
100
- "model.layers.15.self_attn.q_proj.bias": "model-00001-of-00002.safetensors",
101
- "model.layers.15.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
102
- "model.layers.15.self_attn.v_proj.bias": "model-00001-of-00002.safetensors",
103
- "model.layers.15.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
104
- "model.layers.16.input_layernorm.weight": "model-00001-of-00002.safetensors",
105
- "model.layers.16.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
106
- "model.layers.16.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
107
- "model.layers.16.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
108
- "model.layers.16.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
109
- "model.layers.16.self_attn.k_proj.bias": "model-00001-of-00002.safetensors",
110
- "model.layers.16.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
111
- "model.layers.16.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
112
- "model.layers.16.self_attn.q_proj.bias": "model-00001-of-00002.safetensors",
113
- "model.layers.16.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
114
- "model.layers.16.self_attn.v_proj.bias": "model-00001-of-00002.safetensors",
115
- "model.layers.16.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
116
- "model.layers.17.input_layernorm.weight": "model-00001-of-00002.safetensors",
117
- "model.layers.17.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
118
- "model.layers.17.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
119
- "model.layers.17.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
120
- "model.layers.17.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
121
- "model.layers.17.self_attn.k_proj.bias": "model-00001-of-00002.safetensors",
122
- "model.layers.17.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
123
- "model.layers.17.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
124
- "model.layers.17.self_attn.q_proj.bias": "model-00001-of-00002.safetensors",
125
- "model.layers.17.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
126
- "model.layers.17.self_attn.v_proj.bias": "model-00001-of-00002.safetensors",
127
- "model.layers.17.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
128
- "model.layers.18.input_layernorm.weight": "model-00001-of-00002.safetensors",
129
- "model.layers.18.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
130
- "model.layers.18.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
131
- "model.layers.18.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
132
- "model.layers.18.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
133
- "model.layers.18.self_attn.k_proj.bias": "model-00001-of-00002.safetensors",
134
- "model.layers.18.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
135
- "model.layers.18.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
136
- "model.layers.18.self_attn.q_proj.bias": "model-00001-of-00002.safetensors",
137
- "model.layers.18.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
138
- "model.layers.18.self_attn.v_proj.bias": "model-00001-of-00002.safetensors",
139
- "model.layers.18.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
140
- "model.layers.19.input_layernorm.weight": "model-00001-of-00002.safetensors",
141
- "model.layers.19.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
142
- "model.layers.19.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
143
- "model.layers.19.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
144
- "model.layers.19.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
145
- "model.layers.19.self_attn.k_proj.bias": "model-00001-of-00002.safetensors",
146
- "model.layers.19.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
147
- "model.layers.19.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
148
- "model.layers.19.self_attn.q_proj.bias": "model-00001-of-00002.safetensors",
149
- "model.layers.19.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
150
- "model.layers.19.self_attn.v_proj.bias": "model-00001-of-00002.safetensors",
151
- "model.layers.19.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
152
- "model.layers.2.input_layernorm.weight": "model-00001-of-00002.safetensors",
153
- "model.layers.2.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
154
- "model.layers.2.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
155
- "model.layers.2.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
156
- "model.layers.2.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
157
- "model.layers.2.self_attn.k_proj.bias": "model-00001-of-00002.safetensors",
158
- "model.layers.2.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
159
- "model.layers.2.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
160
- "model.layers.2.self_attn.q_proj.bias": "model-00001-of-00002.safetensors",
161
- "model.layers.2.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
162
- "model.layers.2.self_attn.v_proj.bias": "model-00001-of-00002.safetensors",
163
- "model.layers.2.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
164
- "model.layers.20.input_layernorm.weight": "model-00001-of-00002.safetensors",
165
- "model.layers.20.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
166
- "model.layers.20.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
167
- "model.layers.20.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
168
- "model.layers.20.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
169
- "model.layers.20.self_attn.k_proj.bias": "model-00001-of-00002.safetensors",
170
- "model.layers.20.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
171
- "model.layers.20.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
172
- "model.layers.20.self_attn.q_proj.bias": "model-00001-of-00002.safetensors",
173
- "model.layers.20.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
174
- "model.layers.20.self_attn.v_proj.bias": "model-00001-of-00002.safetensors",
175
- "model.layers.20.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
176
- "model.layers.21.input_layernorm.weight": "model-00001-of-00002.safetensors",
177
- "model.layers.21.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
178
- "model.layers.21.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
179
- "model.layers.21.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
180
- "model.layers.21.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
181
- "model.layers.21.self_attn.k_proj.bias": "model-00001-of-00002.safetensors",
182
- "model.layers.21.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
183
- "model.layers.21.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
184
- "model.layers.21.self_attn.q_proj.bias": "model-00001-of-00002.safetensors",
185
- "model.layers.21.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
186
- "model.layers.21.self_attn.v_proj.bias": "model-00001-of-00002.safetensors",
187
- "model.layers.21.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
188
- "model.layers.22.input_layernorm.weight": "model-00001-of-00002.safetensors",
189
- "model.layers.22.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
190
- "model.layers.22.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
191
- "model.layers.22.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
192
- "model.layers.22.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
193
- "model.layers.22.self_attn.k_proj.bias": "model-00001-of-00002.safetensors",
194
- "model.layers.22.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
195
- "model.layers.22.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
196
- "model.layers.22.self_attn.q_proj.bias": "model-00001-of-00002.safetensors",
197
- "model.layers.22.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
198
- "model.layers.22.self_attn.v_proj.bias": "model-00001-of-00002.safetensors",
199
- "model.layers.22.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
200
- "model.layers.23.input_layernorm.weight": "model-00001-of-00002.safetensors",
201
- "model.layers.23.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
202
- "model.layers.23.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
203
- "model.layers.23.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
204
- "model.layers.23.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
205
- "model.layers.23.self_attn.k_proj.bias": "model-00001-of-00002.safetensors",
206
- "model.layers.23.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
207
- "model.layers.23.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
208
- "model.layers.23.self_attn.q_proj.bias": "model-00001-of-00002.safetensors",
209
- "model.layers.23.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
210
- "model.layers.23.self_attn.v_proj.bias": "model-00001-of-00002.safetensors",
211
- "model.layers.23.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
212
- "model.layers.24.input_layernorm.weight": "model-00001-of-00002.safetensors",
213
- "model.layers.24.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
214
- "model.layers.24.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
215
- "model.layers.24.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
216
- "model.layers.24.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
217
- "model.layers.24.self_attn.k_proj.bias": "model-00001-of-00002.safetensors",
218
- "model.layers.24.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
219
- "model.layers.24.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
220
- "model.layers.24.self_attn.q_proj.bias": "model-00001-of-00002.safetensors",
221
- "model.layers.24.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
222
- "model.layers.24.self_attn.v_proj.bias": "model-00001-of-00002.safetensors",
223
- "model.layers.24.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
224
- "model.layers.25.input_layernorm.weight": "model-00001-of-00002.safetensors",
225
- "model.layers.25.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
226
- "model.layers.25.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
227
- "model.layers.25.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
228
- "model.layers.25.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
229
- "model.layers.25.self_attn.k_proj.bias": "model-00001-of-00002.safetensors",
230
- "model.layers.25.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
231
- "model.layers.25.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
232
- "model.layers.25.self_attn.q_proj.bias": "model-00001-of-00002.safetensors",
233
- "model.layers.25.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
234
- "model.layers.25.self_attn.v_proj.bias": "model-00001-of-00002.safetensors",
235
- "model.layers.25.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
236
- "model.layers.26.input_layernorm.weight": "model-00001-of-00002.safetensors",
237
- "model.layers.26.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
238
- "model.layers.26.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
239
- "model.layers.26.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
240
- "model.layers.26.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
241
- "model.layers.26.self_attn.k_proj.bias": "model-00001-of-00002.safetensors",
242
- "model.layers.26.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
243
- "model.layers.26.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
244
- "model.layers.26.self_attn.q_proj.bias": "model-00001-of-00002.safetensors",
245
- "model.layers.26.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
246
- "model.layers.26.self_attn.v_proj.bias": "model-00001-of-00002.safetensors",
247
- "model.layers.26.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
248
- "model.layers.27.input_layernorm.weight": "model-00001-of-00002.safetensors",
249
- "model.layers.27.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
250
- "model.layers.27.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
251
- "model.layers.27.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
252
- "model.layers.27.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
253
- "model.layers.27.self_attn.k_proj.bias": "model-00001-of-00002.safetensors",
254
- "model.layers.27.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
255
- "model.layers.27.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
256
- "model.layers.27.self_attn.q_proj.bias": "model-00001-of-00002.safetensors",
257
- "model.layers.27.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
258
- "model.layers.27.self_attn.v_proj.bias": "model-00001-of-00002.safetensors",
259
- "model.layers.27.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
260
- "model.layers.28.input_layernorm.weight": "model-00002-of-00002.safetensors",
261
- "model.layers.28.mlp.down_proj.weight": "model-00002-of-00002.safetensors",
262
- "model.layers.28.mlp.gate_proj.weight": "model-00002-of-00002.safetensors",
263
- "model.layers.28.mlp.up_proj.weight": "model-00002-of-00002.safetensors",
264
- "model.layers.28.post_attention_layernorm.weight": "model-00002-of-00002.safetensors",
265
- "model.layers.28.self_attn.k_proj.bias": "model-00001-of-00002.safetensors",
266
- "model.layers.28.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
267
- "model.layers.28.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
268
- "model.layers.28.self_attn.q_proj.bias": "model-00001-of-00002.safetensors",
269
- "model.layers.28.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
270
- "model.layers.28.self_attn.v_proj.bias": "model-00001-of-00002.safetensors",
271
- "model.layers.28.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
272
- "model.layers.29.input_layernorm.weight": "model-00002-of-00002.safetensors",
273
- "model.layers.29.mlp.down_proj.weight": "model-00002-of-00002.safetensors",
274
- "model.layers.29.mlp.gate_proj.weight": "model-00002-of-00002.safetensors",
275
- "model.layers.29.mlp.up_proj.weight": "model-00002-of-00002.safetensors",
276
- "model.layers.29.post_attention_layernorm.weight": "model-00002-of-00002.safetensors",
277
- "model.layers.29.self_attn.k_proj.bias": "model-00002-of-00002.safetensors",
278
- "model.layers.29.self_attn.k_proj.weight": "model-00002-of-00002.safetensors",
279
- "model.layers.29.self_attn.o_proj.weight": "model-00002-of-00002.safetensors",
280
- "model.layers.29.self_attn.q_proj.bias": "model-00002-of-00002.safetensors",
281
- "model.layers.29.self_attn.q_proj.weight": "model-00002-of-00002.safetensors",
282
- "model.layers.29.self_attn.v_proj.bias": "model-00002-of-00002.safetensors",
283
- "model.layers.29.self_attn.v_proj.weight": "model-00002-of-00002.safetensors",
284
- "model.layers.3.input_layernorm.weight": "model-00001-of-00002.safetensors",
285
- "model.layers.3.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
286
- "model.layers.3.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
287
- "model.layers.3.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
288
- "model.layers.3.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
289
- "model.layers.3.self_attn.k_proj.bias": "model-00001-of-00002.safetensors",
290
- "model.layers.3.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
291
- "model.layers.3.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
292
- "model.layers.3.self_attn.q_proj.bias": "model-00001-of-00002.safetensors",
293
- "model.layers.3.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
294
- "model.layers.3.self_attn.v_proj.bias": "model-00001-of-00002.safetensors",
295
- "model.layers.3.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
296
- "model.layers.30.input_layernorm.weight": "model-00002-of-00002.safetensors",
297
- "model.layers.30.mlp.down_proj.weight": "model-00002-of-00002.safetensors",
298
- "model.layers.30.mlp.gate_proj.weight": "model-00002-of-00002.safetensors",
299
- "model.layers.30.mlp.up_proj.weight": "model-00002-of-00002.safetensors",
300
- "model.layers.30.post_attention_layernorm.weight": "model-00002-of-00002.safetensors",
301
- "model.layers.30.self_attn.k_proj.bias": "model-00002-of-00002.safetensors",
302
- "model.layers.30.self_attn.k_proj.weight": "model-00002-of-00002.safetensors",
303
- "model.layers.30.self_attn.o_proj.weight": "model-00002-of-00002.safetensors",
304
- "model.layers.30.self_attn.q_proj.bias": "model-00002-of-00002.safetensors",
305
- "model.layers.30.self_attn.q_proj.weight": "model-00002-of-00002.safetensors",
306
- "model.layers.30.self_attn.v_proj.bias": "model-00002-of-00002.safetensors",
307
- "model.layers.30.self_attn.v_proj.weight": "model-00002-of-00002.safetensors",
308
- "model.layers.31.input_layernorm.weight": "model-00002-of-00002.safetensors",
309
- "model.layers.31.mlp.down_proj.weight": "model-00002-of-00002.safetensors",
310
- "model.layers.31.mlp.gate_proj.weight": "model-00002-of-00002.safetensors",
311
- "model.layers.31.mlp.up_proj.weight": "model-00002-of-00002.safetensors",
312
- "model.layers.31.post_attention_layernorm.weight": "model-00002-of-00002.safetensors",
313
- "model.layers.31.self_attn.k_proj.bias": "model-00002-of-00002.safetensors",
314
- "model.layers.31.self_attn.k_proj.weight": "model-00002-of-00002.safetensors",
315
- "model.layers.31.self_attn.o_proj.weight": "model-00002-of-00002.safetensors",
316
- "model.layers.31.self_attn.q_proj.bias": "model-00002-of-00002.safetensors",
317
- "model.layers.31.self_attn.q_proj.weight": "model-00002-of-00002.safetensors",
318
- "model.layers.31.self_attn.v_proj.bias": "model-00002-of-00002.safetensors",
319
- "model.layers.31.self_attn.v_proj.weight": "model-00002-of-00002.safetensors",
320
- "model.layers.32.input_layernorm.weight": "model-00002-of-00002.safetensors",
321
- "model.layers.32.mlp.down_proj.weight": "model-00002-of-00002.safetensors",
322
- "model.layers.32.mlp.gate_proj.weight": "model-00002-of-00002.safetensors",
323
- "model.layers.32.mlp.up_proj.weight": "model-00002-of-00002.safetensors",
324
- "model.layers.32.post_attention_layernorm.weight": "model-00002-of-00002.safetensors",
325
- "model.layers.32.self_attn.k_proj.bias": "model-00002-of-00002.safetensors",
326
- "model.layers.32.self_attn.k_proj.weight": "model-00002-of-00002.safetensors",
327
- "model.layers.32.self_attn.o_proj.weight": "model-00002-of-00002.safetensors",
328
- "model.layers.32.self_attn.q_proj.bias": "model-00002-of-00002.safetensors",
329
- "model.layers.32.self_attn.q_proj.weight": "model-00002-of-00002.safetensors",
330
- "model.layers.32.self_attn.v_proj.bias": "model-00002-of-00002.safetensors",
331
- "model.layers.32.self_attn.v_proj.weight": "model-00002-of-00002.safetensors",
332
- "model.layers.33.input_layernorm.weight": "model-00002-of-00002.safetensors",
333
- "model.layers.33.mlp.down_proj.weight": "model-00002-of-00002.safetensors",
334
- "model.layers.33.mlp.gate_proj.weight": "model-00002-of-00002.safetensors",
335
- "model.layers.33.mlp.up_proj.weight": "model-00002-of-00002.safetensors",
336
- "model.layers.33.post_attention_layernorm.weight": "model-00002-of-00002.safetensors",
337
- "model.layers.33.self_attn.k_proj.bias": "model-00002-of-00002.safetensors",
338
- "model.layers.33.self_attn.k_proj.weight": "model-00002-of-00002.safetensors",
339
- "model.layers.33.self_attn.o_proj.weight": "model-00002-of-00002.safetensors",
340
- "model.layers.33.self_attn.q_proj.bias": "model-00002-of-00002.safetensors",
341
- "model.layers.33.self_attn.q_proj.weight": "model-00002-of-00002.safetensors",
342
- "model.layers.33.self_attn.v_proj.bias": "model-00002-of-00002.safetensors",
343
- "model.layers.33.self_attn.v_proj.weight": "model-00002-of-00002.safetensors",
344
- "model.layers.34.input_layernorm.weight": "model-00002-of-00002.safetensors",
345
- "model.layers.34.mlp.down_proj.weight": "model-00002-of-00002.safetensors",
346
- "model.layers.34.mlp.gate_proj.weight": "model-00002-of-00002.safetensors",
347
- "model.layers.34.mlp.up_proj.weight": "model-00002-of-00002.safetensors",
348
- "model.layers.34.post_attention_layernorm.weight": "model-00002-of-00002.safetensors",
349
- "model.layers.34.self_attn.k_proj.bias": "model-00002-of-00002.safetensors",
350
- "model.layers.34.self_attn.k_proj.weight": "model-00002-of-00002.safetensors",
351
- "model.layers.34.self_attn.o_proj.weight": "model-00002-of-00002.safetensors",
352
- "model.layers.34.self_attn.q_proj.bias": "model-00002-of-00002.safetensors",
353
- "model.layers.34.self_attn.q_proj.weight": "model-00002-of-00002.safetensors",
354
- "model.layers.34.self_attn.v_proj.bias": "model-00002-of-00002.safetensors",
355
- "model.layers.34.self_attn.v_proj.weight": "model-00002-of-00002.safetensors",
356
- "model.layers.35.input_layernorm.weight": "model-00002-of-00002.safetensors",
357
- "model.layers.35.mlp.down_proj.weight": "model-00002-of-00002.safetensors",
358
- "model.layers.35.mlp.gate_proj.weight": "model-00002-of-00002.safetensors",
359
- "model.layers.35.mlp.up_proj.weight": "model-00002-of-00002.safetensors",
360
- "model.layers.35.post_attention_layernorm.weight": "model-00002-of-00002.safetensors",
361
- "model.layers.35.self_attn.k_proj.bias": "model-00002-of-00002.safetensors",
362
- "model.layers.35.self_attn.k_proj.weight": "model-00002-of-00002.safetensors",
363
- "model.layers.35.self_attn.o_proj.weight": "model-00002-of-00002.safetensors",
364
- "model.layers.35.self_attn.q_proj.bias": "model-00002-of-00002.safetensors",
365
- "model.layers.35.self_attn.q_proj.weight": "model-00002-of-00002.safetensors",
366
- "model.layers.35.self_attn.v_proj.bias": "model-00002-of-00002.safetensors",
367
- "model.layers.35.self_attn.v_proj.weight": "model-00002-of-00002.safetensors",
368
- "model.layers.4.input_layernorm.weight": "model-00001-of-00002.safetensors",
369
- "model.layers.4.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
370
- "model.layers.4.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
371
- "model.layers.4.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
372
- "model.layers.4.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
373
- "model.layers.4.self_attn.k_proj.bias": "model-00001-of-00002.safetensors",
374
- "model.layers.4.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
375
- "model.layers.4.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
376
- "model.layers.4.self_attn.q_proj.bias": "model-00001-of-00002.safetensors",
377
- "model.layers.4.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
378
- "model.layers.4.self_attn.v_proj.bias": "model-00001-of-00002.safetensors",
379
- "model.layers.4.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
380
- "model.layers.5.input_layernorm.weight": "model-00001-of-00002.safetensors",
381
- "model.layers.5.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
382
- "model.layers.5.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
383
- "model.layers.5.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
384
- "model.layers.5.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
385
- "model.layers.5.self_attn.k_proj.bias": "model-00001-of-00002.safetensors",
386
- "model.layers.5.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
387
- "model.layers.5.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
388
- "model.layers.5.self_attn.q_proj.bias": "model-00001-of-00002.safetensors",
389
- "model.layers.5.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
390
- "model.layers.5.self_attn.v_proj.bias": "model-00001-of-00002.safetensors",
391
- "model.layers.5.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
392
- "model.layers.6.input_layernorm.weight": "model-00001-of-00002.safetensors",
393
- "model.layers.6.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
394
- "model.layers.6.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
395
- "model.layers.6.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
396
- "model.layers.6.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
397
- "model.layers.6.self_attn.k_proj.bias": "model-00001-of-00002.safetensors",
398
- "model.layers.6.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
399
- "model.layers.6.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
400
- "model.layers.6.self_attn.q_proj.bias": "model-00001-of-00002.safetensors",
401
- "model.layers.6.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
402
- "model.layers.6.self_attn.v_proj.bias": "model-00001-of-00002.safetensors",
403
- "model.layers.6.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
404
- "model.layers.7.input_layernorm.weight": "model-00001-of-00002.safetensors",
405
- "model.layers.7.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
406
- "model.layers.7.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
407
- "model.layers.7.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
408
- "model.layers.7.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
409
- "model.layers.7.self_attn.k_proj.bias": "model-00001-of-00002.safetensors",
410
- "model.layers.7.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
411
- "model.layers.7.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
412
- "model.layers.7.self_attn.q_proj.bias": "model-00001-of-00002.safetensors",
413
- "model.layers.7.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
414
- "model.layers.7.self_attn.v_proj.bias": "model-00001-of-00002.safetensors",
415
- "model.layers.7.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
416
- "model.layers.8.input_layernorm.weight": "model-00001-of-00002.safetensors",
417
- "model.layers.8.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
418
- "model.layers.8.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
419
- "model.layers.8.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
420
- "model.layers.8.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
421
- "model.layers.8.self_attn.k_proj.bias": "model-00001-of-00002.safetensors",
422
- "model.layers.8.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
423
- "model.layers.8.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
424
- "model.layers.8.self_attn.q_proj.bias": "model-00001-of-00002.safetensors",
425
- "model.layers.8.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
426
- "model.layers.8.self_attn.v_proj.bias": "model-00001-of-00002.safetensors",
427
- "model.layers.8.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
428
- "model.layers.9.input_layernorm.weight": "model-00001-of-00002.safetensors",
429
- "model.layers.9.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
430
- "model.layers.9.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
431
- "model.layers.9.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
432
- "model.layers.9.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
433
- "model.layers.9.self_attn.k_proj.bias": "model-00001-of-00002.safetensors",
434
- "model.layers.9.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
435
- "model.layers.9.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
436
- "model.layers.9.self_attn.q_proj.bias": "model-00001-of-00002.safetensors",
437
- "model.layers.9.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
438
- "model.layers.9.self_attn.v_proj.bias": "model-00001-of-00002.safetensors",
439
- "model.layers.9.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
440
- "model.norm.weight": "model-00002-of-00002.safetensors"
441
- }
442
- }
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
checkpoint-488/rng_state_0.pth DELETED
@@ -1,3 +0,0 @@
1
- version https://git-lfs.github.com/spec/v1
2
- oid sha256:3dcb161b22b2558dbf7e3f8c871050cec383d11a40423fab11f18d5e630639bf
3
- size 14512
 
 
 
 
checkpoint-488/rng_state_1.pth DELETED
@@ -1,3 +0,0 @@
1
- version https://git-lfs.github.com/spec/v1
2
- oid sha256:d50af6aef769414a6f28fa1b1bc51ce707dc8ecd15474e03f99a2f10fde086be
3
- size 14512
 
 
 
 
checkpoint-488/scheduler.pt DELETED
@@ -1,3 +0,0 @@
1
- version https://git-lfs.github.com/spec/v1
2
- oid sha256:6d8b2a59c30f5e09b1d7ce944fea889fdfc7000e147a68a8ad08ea9263213eb2
3
- size 1064
 
 
 
 
checkpoint-488/special_tokens_map.json DELETED
@@ -1,31 +0,0 @@
1
- {
2
- "additional_special_tokens": [
3
- "<|im_start|>",
4
- "<|im_end|>",
5
- "<|object_ref_start|>",
6
- "<|object_ref_end|>",
7
- "<|box_start|>",
8
- "<|box_end|>",
9
- "<|quad_start|>",
10
- "<|quad_end|>",
11
- "<|vision_start|>",
12
- "<|vision_end|>",
13
- "<|vision_pad|>",
14
- "<|image_pad|>",
15
- "<|video_pad|>"
16
- ],
17
- "eos_token": {
18
- "content": "<|im_end|>",
19
- "lstrip": false,
20
- "normalized": false,
21
- "rstrip": false,
22
- "single_word": false
23
- },
24
- "pad_token": {
25
- "content": "<|endoftext|>",
26
- "lstrip": false,
27
- "normalized": false,
28
- "rstrip": false,
29
- "single_word": false
30
- }
31
- }
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
checkpoint-488/tokenizer.json DELETED
@@ -1,3 +0,0 @@
1
- version https://git-lfs.github.com/spec/v1
2
- oid sha256:9c5ae00e602b8860cbd784ba82a8aa14e8feecec692e7076590d014d7b7fdafa
3
- size 11421896
 
 
 
 
checkpoint-488/tokenizer_config.json DELETED
@@ -1,208 +0,0 @@
1
- {
2
- "add_bos_token": false,
3
- "add_prefix_space": false,
4
- "added_tokens_decoder": {
5
- "151643": {
6
- "content": "<|endoftext|>",
7
- "lstrip": false,
8
- "normalized": false,
9
- "rstrip": false,
10
- "single_word": false,
11
- "special": true
12
- },
13
- "151644": {
14
- "content": "<|im_start|>",
15
- "lstrip": false,
16
- "normalized": false,
17
- "rstrip": false,
18
- "single_word": false,
19
- "special": true
20
- },
21
- "151645": {
22
- "content": "<|im_end|>",
23
- "lstrip": false,
24
- "normalized": false,
25
- "rstrip": false,
26
- "single_word": false,
27
- "special": true
28
- },
29
- "151646": {
30
- "content": "<|object_ref_start|>",
31
- "lstrip": false,
32
- "normalized": false,
33
- "rstrip": false,
34
- "single_word": false,
35
- "special": true
36
- },
37
- "151647": {
38
- "content": "<|object_ref_end|>",
39
- "lstrip": false,
40
- "normalized": false,
41
- "rstrip": false,
42
- "single_word": false,
43
- "special": true
44
- },
45
- "151648": {
46
- "content": "<|box_start|>",
47
- "lstrip": false,
48
- "normalized": false,
49
- "rstrip": false,
50
- "single_word": false,
51
- "special": true
52
- },
53
- "151649": {
54
- "content": "<|box_end|>",
55
- "lstrip": false,
56
- "normalized": false,
57
- "rstrip": false,
58
- "single_word": false,
59
- "special": true
60
- },
61
- "151650": {
62
- "content": "<|quad_start|>",
63
- "lstrip": false,
64
- "normalized": false,
65
- "rstrip": false,
66
- "single_word": false,
67
- "special": true
68
- },
69
- "151651": {
70
- "content": "<|quad_end|>",
71
- "lstrip": false,
72
- "normalized": false,
73
- "rstrip": false,
74
- "single_word": false,
75
- "special": true
76
- },
77
- "151652": {
78
- "content": "<|vision_start|>",
79
- "lstrip": false,
80
- "normalized": false,
81
- "rstrip": false,
82
- "single_word": false,
83
- "special": true
84
- },
85
- "151653": {
86
- "content": "<|vision_end|>",
87
- "lstrip": false,
88
- "normalized": false,
89
- "rstrip": false,
90
- "single_word": false,
91
- "special": true
92
- },
93
- "151654": {
94
- "content": "<|vision_pad|>",
95
- "lstrip": false,
96
- "normalized": false,
97
- "rstrip": false,
98
- "single_word": false,
99
- "special": true
100
- },
101
- "151655": {
102
- "content": "<|image_pad|>",
103
- "lstrip": false,
104
- "normalized": false,
105
- "rstrip": false,
106
- "single_word": false,
107
- "special": true
108
- },
109
- "151656": {
110
- "content": "<|video_pad|>",
111
- "lstrip": false,
112
- "normalized": false,
113
- "rstrip": false,
114
- "single_word": false,
115
- "special": true
116
- },
117
- "151657": {
118
- "content": "<tool_call>",
119
- "lstrip": false,
120
- "normalized": false,
121
- "rstrip": false,
122
- "single_word": false,
123
- "special": false
124
- },
125
- "151658": {
126
- "content": "</tool_call>",
127
- "lstrip": false,
128
- "normalized": false,
129
- "rstrip": false,
130
- "single_word": false,
131
- "special": false
132
- },
133
- "151659": {
134
- "content": "<|fim_prefix|>",
135
- "lstrip": false,
136
- "normalized": false,
137
- "rstrip": false,
138
- "single_word": false,
139
- "special": false
140
- },
141
- "151660": {
142
- "content": "<|fim_middle|>",
143
- "lstrip": false,
144
- "normalized": false,
145
- "rstrip": false,
146
- "single_word": false,
147
- "special": false
148
- },
149
- "151661": {
150
- "content": "<|fim_suffix|>",
151
- "lstrip": false,
152
- "normalized": false,
153
- "rstrip": false,
154
- "single_word": false,
155
- "special": false
156
- },
157
- "151662": {
158
- "content": "<|fim_pad|>",
159
- "lstrip": false,
160
- "normalized": false,
161
- "rstrip": false,
162
- "single_word": false,
163
- "special": false
164
- },
165
- "151663": {
166
- "content": "<|repo_name|>",
167
- "lstrip": false,
168
- "normalized": false,
169
- "rstrip": false,
170
- "single_word": false,
171
- "special": false
172
- },
173
- "151664": {
174
- "content": "<|file_sep|>",
175
- "lstrip": false,
176
- "normalized": false,
177
- "rstrip": false,
178
- "single_word": false,
179
- "special": false
180
- }
181
- },
182
- "additional_special_tokens": [
183
- "<|im_start|>",
184
- "<|im_end|>",
185
- "<|object_ref_start|>",
186
- "<|object_ref_end|>",
187
- "<|box_start|>",
188
- "<|box_end|>",
189
- "<|quad_start|>",
190
- "<|quad_end|>",
191
- "<|vision_start|>",
192
- "<|vision_end|>",
193
- "<|vision_pad|>",
194
- "<|image_pad|>",
195
- "<|video_pad|>"
196
- ],
197
- "bos_token": null,
198
- "chat_template": "{%- if tools %}\n {{- '<|im_start|>system\\n' }}\n {%- if messages[0]['role'] == 'system' %}\n {{- messages[0]['content'] }}\n {%- else %}\n {{- 'You are Qwen, created by Alibaba Cloud. You are a helpful assistant.' }}\n {%- endif %}\n {{- \"\\n\\n# Tools\\n\\nYou may call one or more functions to assist with the user query.\\n\\nYou are provided with function signatures within <tools></tools> XML tags:\\n<tools>\" }}\n {%- for tool in tools %}\n {{- \"\\n\" }}\n {{- tool | tojson }}\n {%- endfor %}\n {{- \"\\n</tools>\\n\\nFor each function call, return a json object with function name and arguments within <tool_call></tool_call> XML tags:\\n<tool_call>\\n{\\\"name\\\": <function-name>, \\\"arguments\\\": <args-json-object>}\\n</tool_call><|im_end|>\\n\" }}\n{%- else %}\n {%- if messages[0]['role'] == 'system' %}\n {{- '<|im_start|>system\\n' + messages[0]['content'] + '<|im_end|>\\n' }}\n {%- else %}\n {{- '<|im_start|>system\\nYou are Qwen, created by Alibaba Cloud. You are a helpful assistant.<|im_end|>\\n' }}\n {%- endif %}\n{%- endif %}\n{%- for message in messages %}\n {%- if (message.role == \"user\") or (message.role == \"system\" and not loop.first) or (message.role == \"assistant\" and not message.tool_calls) %}\n {{- '<|im_start|>' + message.role + '\\n' + message.content + '<|im_end|>' + '\\n' }}\n {%- elif message.role == \"assistant\" %}\n {{- '<|im_start|>' + message.role }}\n {%- if message.content %}\n {{- '\\n' + message.content }}\n {%- endif %}\n {%- for tool_call in message.tool_calls %}\n {%- if tool_call.function is defined %}\n {%- set tool_call = tool_call.function %}\n {%- endif %}\n {{- '\\n<tool_call>\\n{\"name\": \"' }}\n {{- tool_call.name }}\n {{- '\", \"arguments\": ' }}\n {{- tool_call.arguments | tojson }}\n {{- '}\\n</tool_call>' }}\n {%- endfor %}\n {{- '<|im_end|>\\n' }}\n {%- elif message.role == \"tool\" %}\n {%- if (loop.index0 == 0) or (messages[loop.index0 - 1].role != \"tool\") %}\n {{- '<|im_start|>user' }}\n {%- endif %}\n {{- '\\n<tool_response>\\n' }}\n {{- message.content }}\n {{- '\\n</tool_response>' }}\n {%- if loop.last or (messages[loop.index0 + 1].role != \"tool\") %}\n {{- '<|im_end|>\\n' }}\n {%- endif %}\n {%- endif %}\n{%- endfor %}\n{%- if add_generation_prompt %}\n {{- '<|im_start|>assistant\\n' }}\n{%- endif %}\n",
199
- "clean_up_tokenization_spaces": false,
200
- "eos_token": "<|im_end|>",
201
- "errors": "replace",
202
- "extra_special_tokens": {},
203
- "model_max_length": 131072,
204
- "pad_token": "<|endoftext|>",
205
- "split_special_tokens": false,
206
- "tokenizer_class": "Qwen2Tokenizer",
207
- "unk_token": null
208
- }
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
checkpoint-488/trainer_state.json DELETED
@@ -1,3497 +0,0 @@
1
- {
2
- "best_metric": null,
3
- "best_model_checkpoint": null,
4
- "epoch": 1.996935648621042,
5
- "eval_steps": 82,
6
- "global_step": 488,
7
- "is_hyper_param_search": false,
8
- "is_local_process_zero": true,
9
- "is_world_process_zero": true,
10
- "log_history": [
11
- {
12
- "epoch": 0.0040858018386108275,
13
- "grad_norm": 4.75867223739624,
14
- "learning_rate": 6.666666666666667e-07,
15
- "loss": 1.3989,
16
- "step": 1
17
- },
18
- {
19
- "epoch": 0.0040858018386108275,
20
- "eval_loss": 1.7111468315124512,
21
- "eval_runtime": 5.4436,
22
- "eval_samples_per_second": 14.512,
23
- "eval_steps_per_second": 1.837,
24
- "step": 1
25
- },
26
- {
27
- "epoch": 0.008171603677221655,
28
- "grad_norm": 4.975377559661865,
29
- "learning_rate": 1.3333333333333334e-06,
30
- "loss": 1.4837,
31
- "step": 2
32
- },
33
- {
34
- "epoch": 0.012257405515832482,
35
- "grad_norm": 5.219729900360107,
36
- "learning_rate": 2.0000000000000003e-06,
37
- "loss": 1.5181,
38
- "step": 3
39
- },
40
- {
41
- "epoch": 0.01634320735444331,
42
- "grad_norm": 4.57335901260376,
43
- "learning_rate": 2.666666666666667e-06,
44
- "loss": 1.4106,
45
- "step": 4
46
- },
47
- {
48
- "epoch": 0.020429009193054137,
49
- "grad_norm": 3.840559720993042,
50
- "learning_rate": 3.3333333333333333e-06,
51
- "loss": 1.3763,
52
- "step": 5
53
- },
54
- {
55
- "epoch": 0.024514811031664963,
56
- "grad_norm": 3.2056212425231934,
57
- "learning_rate": 4.000000000000001e-06,
58
- "loss": 1.1876,
59
- "step": 6
60
- },
61
- {
62
- "epoch": 0.028600612870275793,
63
- "grad_norm": 2.6987595558166504,
64
- "learning_rate": 4.666666666666667e-06,
65
- "loss": 1.2154,
66
- "step": 7
67
- },
68
- {
69
- "epoch": 0.03268641470888662,
70
- "grad_norm": 2.378502130508423,
71
- "learning_rate": 5.333333333333334e-06,
72
- "loss": 1.1594,
73
- "step": 8
74
- },
75
- {
76
- "epoch": 0.03677221654749745,
77
- "grad_norm": 1.7688865661621094,
78
- "learning_rate": 6e-06,
79
- "loss": 0.8435,
80
- "step": 9
81
- },
82
- {
83
- "epoch": 0.04085801838610827,
84
- "grad_norm": 1.3263744115829468,
85
- "learning_rate": 6.666666666666667e-06,
86
- "loss": 0.7219,
87
- "step": 10
88
- },
89
- {
90
- "epoch": 0.0449438202247191,
91
- "grad_norm": 1.3509997129440308,
92
- "learning_rate": 7.333333333333333e-06,
93
- "loss": 0.8172,
94
- "step": 11
95
- },
96
- {
97
- "epoch": 0.049029622063329927,
98
- "grad_norm": 1.4541417360305786,
99
- "learning_rate": 8.000000000000001e-06,
100
- "loss": 0.7393,
101
- "step": 12
102
- },
103
- {
104
- "epoch": 0.05311542390194075,
105
- "grad_norm": 1.181699275970459,
106
- "learning_rate": 8.666666666666668e-06,
107
- "loss": 0.664,
108
- "step": 13
109
- },
110
- {
111
- "epoch": 0.05720122574055159,
112
- "grad_norm": 0.9503294825553894,
113
- "learning_rate": 9.333333333333334e-06,
114
- "loss": 0.6222,
115
- "step": 14
116
- },
117
- {
118
- "epoch": 0.06128702757916241,
119
- "grad_norm": 0.7614471316337585,
120
- "learning_rate": 1e-05,
121
- "loss": 0.56,
122
- "step": 15
123
- },
124
- {
125
- "epoch": 0.06537282941777324,
126
- "grad_norm": 0.9878801107406616,
127
- "learning_rate": 1.0666666666666667e-05,
128
- "loss": 0.5548,
129
- "step": 16
130
- },
131
- {
132
- "epoch": 0.06945863125638406,
133
- "grad_norm": 0.8131901025772095,
134
- "learning_rate": 1.1333333333333334e-05,
135
- "loss": 0.4878,
136
- "step": 17
137
- },
138
- {
139
- "epoch": 0.0735444330949949,
140
- "grad_norm": 0.7322743535041809,
141
- "learning_rate": 1.2e-05,
142
- "loss": 0.5159,
143
- "step": 18
144
- },
145
- {
146
- "epoch": 0.07763023493360573,
147
- "grad_norm": 0.6428759098052979,
148
- "learning_rate": 1.2666666666666667e-05,
149
- "loss": 0.4575,
150
- "step": 19
151
- },
152
- {
153
- "epoch": 0.08171603677221655,
154
- "grad_norm": 0.562318742275238,
155
- "learning_rate": 1.3333333333333333e-05,
156
- "loss": 0.4571,
157
- "step": 20
158
- },
159
- {
160
- "epoch": 0.08580183861082738,
161
- "grad_norm": 0.5707699060440063,
162
- "learning_rate": 1.4e-05,
163
- "loss": 0.4592,
164
- "step": 21
165
- },
166
- {
167
- "epoch": 0.0898876404494382,
168
- "grad_norm": 0.5272228717803955,
169
- "learning_rate": 1.4666666666666666e-05,
170
- "loss": 0.4457,
171
- "step": 22
172
- },
173
- {
174
- "epoch": 0.09397344228804903,
175
- "grad_norm": 0.5120903253555298,
176
- "learning_rate": 1.5333333333333334e-05,
177
- "loss": 0.4034,
178
- "step": 23
179
- },
180
- {
181
- "epoch": 0.09805924412665985,
182
- "grad_norm": 0.46359285712242126,
183
- "learning_rate": 1.6000000000000003e-05,
184
- "loss": 0.4037,
185
- "step": 24
186
- },
187
- {
188
- "epoch": 0.10214504596527069,
189
- "grad_norm": 0.49431198835372925,
190
- "learning_rate": 1.6666666666666667e-05,
191
- "loss": 0.3875,
192
- "step": 25
193
- },
194
- {
195
- "epoch": 0.1062308478038815,
196
- "grad_norm": 0.4450273811817169,
197
- "learning_rate": 1.7333333333333336e-05,
198
- "loss": 0.3797,
199
- "step": 26
200
- },
201
- {
202
- "epoch": 0.11031664964249234,
203
- "grad_norm": 0.4551868140697479,
204
- "learning_rate": 1.8e-05,
205
- "loss": 0.3512,
206
- "step": 27
207
- },
208
- {
209
- "epoch": 0.11440245148110317,
210
- "grad_norm": 0.5083736777305603,
211
- "learning_rate": 1.866666666666667e-05,
212
- "loss": 0.3906,
213
- "step": 28
214
- },
215
- {
216
- "epoch": 0.118488253319714,
217
- "grad_norm": 0.47295963764190674,
218
- "learning_rate": 1.9333333333333333e-05,
219
- "loss": 0.3554,
220
- "step": 29
221
- },
222
- {
223
- "epoch": 0.12257405515832483,
224
- "grad_norm": 0.4848616123199463,
225
- "learning_rate": 2e-05,
226
- "loss": 0.3712,
227
- "step": 30
228
- },
229
- {
230
- "epoch": 0.12665985699693566,
231
- "grad_norm": 0.4398118555545807,
232
- "learning_rate": 1.999989986294826e-05,
233
- "loss": 0.3694,
234
- "step": 31
235
- },
236
- {
237
- "epoch": 0.13074565883554648,
238
- "grad_norm": 0.41183602809906006,
239
- "learning_rate": 1.9999599453798523e-05,
240
- "loss": 0.3336,
241
- "step": 32
242
- },
243
- {
244
- "epoch": 0.1348314606741573,
245
- "grad_norm": 0.492713987827301,
246
- "learning_rate": 1.999909877856721e-05,
247
- "loss": 0.3657,
248
- "step": 33
249
- },
250
- {
251
- "epoch": 0.13891726251276812,
252
- "grad_norm": 0.4517015516757965,
253
- "learning_rate": 1.9998397847281548e-05,
254
- "loss": 0.367,
255
- "step": 34
256
- },
257
- {
258
- "epoch": 0.14300306435137897,
259
- "grad_norm": 0.4641965627670288,
260
- "learning_rate": 1.9997496673979375e-05,
261
- "loss": 0.3565,
262
- "step": 35
263
- },
264
- {
265
- "epoch": 0.1470888661899898,
266
- "grad_norm": 0.4812065064907074,
267
- "learning_rate": 1.9996395276708856e-05,
268
- "loss": 0.3773,
269
- "step": 36
270
- },
271
- {
272
- "epoch": 0.1511746680286006,
273
- "grad_norm": 0.42300987243652344,
274
- "learning_rate": 1.999509367752813e-05,
275
- "loss": 0.3643,
276
- "step": 37
277
- },
278
- {
279
- "epoch": 0.15526046986721145,
280
- "grad_norm": 0.4512963593006134,
281
- "learning_rate": 1.9993591902504854e-05,
282
- "loss": 0.3409,
283
- "step": 38
284
- },
285
- {
286
- "epoch": 0.15934627170582227,
287
- "grad_norm": 0.41626426577568054,
288
- "learning_rate": 1.9991889981715696e-05,
289
- "loss": 0.3546,
290
- "step": 39
291
- },
292
- {
293
- "epoch": 0.1634320735444331,
294
- "grad_norm": 0.43549367785453796,
295
- "learning_rate": 1.9989987949245725e-05,
296
- "loss": 0.3091,
297
- "step": 40
298
- },
299
- {
300
- "epoch": 0.1675178753830439,
301
- "grad_norm": 0.4042600393295288,
302
- "learning_rate": 1.9987885843187717e-05,
303
- "loss": 0.3174,
304
- "step": 41
305
- },
306
- {
307
- "epoch": 0.17160367722165476,
308
- "grad_norm": 0.4394363462924957,
309
- "learning_rate": 1.9985583705641418e-05,
310
- "loss": 0.3601,
311
- "step": 42
312
- },
313
- {
314
- "epoch": 0.17568947906026558,
315
- "grad_norm": 0.4294170141220093,
316
- "learning_rate": 1.9983081582712684e-05,
317
- "loss": 0.3283,
318
- "step": 43
319
- },
320
- {
321
- "epoch": 0.1797752808988764,
322
- "grad_norm": 0.44452300667762756,
323
- "learning_rate": 1.998037952451255e-05,
324
- "loss": 0.3367,
325
- "step": 44
326
- },
327
- {
328
- "epoch": 0.18386108273748722,
329
- "grad_norm": 0.4113090932369232,
330
- "learning_rate": 1.9977477585156252e-05,
331
- "loss": 0.2986,
332
- "step": 45
333
- },
334
- {
335
- "epoch": 0.18794688457609807,
336
- "grad_norm": 0.44443050026893616,
337
- "learning_rate": 1.9974375822762117e-05,
338
- "loss": 0.3463,
339
- "step": 46
340
- },
341
- {
342
- "epoch": 0.1920326864147089,
343
- "grad_norm": 0.4303809106349945,
344
- "learning_rate": 1.9971074299450414e-05,
345
- "loss": 0.3281,
346
- "step": 47
347
- },
348
- {
349
- "epoch": 0.1961184882533197,
350
- "grad_norm": 0.4178621470928192,
351
- "learning_rate": 1.9967573081342103e-05,
352
- "loss": 0.3629,
353
- "step": 48
354
- },
355
- {
356
- "epoch": 0.20020429009193055,
357
- "grad_norm": 0.38657113909721375,
358
- "learning_rate": 1.9963872238557516e-05,
359
- "loss": 0.3225,
360
- "step": 49
361
- },
362
- {
363
- "epoch": 0.20429009193054137,
364
- "grad_norm": 0.5300270915031433,
365
- "learning_rate": 1.9959971845214953e-05,
366
- "loss": 0.3279,
367
- "step": 50
368
- },
369
- {
370
- "epoch": 0.2083758937691522,
371
- "grad_norm": 0.4061177968978882,
372
- "learning_rate": 1.9955871979429188e-05,
373
- "loss": 0.3278,
374
- "step": 51
375
- },
376
- {
377
- "epoch": 0.212461695607763,
378
- "grad_norm": 0.41504785418510437,
379
- "learning_rate": 1.9951572723309918e-05,
380
- "loss": 0.3096,
381
- "step": 52
382
- },
383
- {
384
- "epoch": 0.21654749744637386,
385
- "grad_norm": 0.4208971858024597,
386
- "learning_rate": 1.9947074162960113e-05,
387
- "loss": 0.3187,
388
- "step": 53
389
- },
390
- {
391
- "epoch": 0.22063329928498468,
392
- "grad_norm": 0.36819201707839966,
393
- "learning_rate": 1.9942376388474282e-05,
394
- "loss": 0.3167,
395
- "step": 54
396
- },
397
- {
398
- "epoch": 0.2247191011235955,
399
- "grad_norm": 0.43327596783638,
400
- "learning_rate": 1.993747949393668e-05,
401
- "loss": 0.3188,
402
- "step": 55
403
- },
404
- {
405
- "epoch": 0.22880490296220635,
406
- "grad_norm": 0.4377865791320801,
407
- "learning_rate": 1.9932383577419432e-05,
408
- "loss": 0.3478,
409
- "step": 56
410
- },
411
- {
412
- "epoch": 0.23289070480081717,
413
- "grad_norm": 0.43336397409439087,
414
- "learning_rate": 1.992708874098054e-05,
415
- "loss": 0.3025,
416
- "step": 57
417
- },
418
- {
419
- "epoch": 0.236976506639428,
420
- "grad_norm": 0.4399135410785675,
421
- "learning_rate": 1.9921595090661872e-05,
422
- "loss": 0.3098,
423
- "step": 58
424
- },
425
- {
426
- "epoch": 0.2410623084780388,
427
- "grad_norm": 0.4253901243209839,
428
- "learning_rate": 1.991590273648702e-05,
429
- "loss": 0.3303,
430
- "step": 59
431
- },
432
- {
433
- "epoch": 0.24514811031664965,
434
- "grad_norm": 0.39254307746887207,
435
- "learning_rate": 1.9910011792459086e-05,
436
- "loss": 0.3018,
437
- "step": 60
438
- },
439
- {
440
- "epoch": 0.24923391215526047,
441
- "grad_norm": 0.4217659831047058,
442
- "learning_rate": 1.9903922376558432e-05,
443
- "loss": 0.285,
444
- "step": 61
445
- },
446
- {
447
- "epoch": 0.2533197139938713,
448
- "grad_norm": 0.48558109998703003,
449
- "learning_rate": 1.989763461074029e-05,
450
- "loss": 0.3221,
451
- "step": 62
452
- },
453
- {
454
- "epoch": 0.2574055158324821,
455
- "grad_norm": 0.47454214096069336,
456
- "learning_rate": 1.989114862093232e-05,
457
- "loss": 0.3056,
458
- "step": 63
459
- },
460
- {
461
- "epoch": 0.26149131767109296,
462
- "grad_norm": 0.4013993442058563,
463
- "learning_rate": 1.9884464537032103e-05,
464
- "loss": 0.3376,
465
- "step": 64
466
- },
467
- {
468
- "epoch": 0.26557711950970375,
469
- "grad_norm": 0.4264606237411499,
470
- "learning_rate": 1.9877582492904533e-05,
471
- "loss": 0.3158,
472
- "step": 65
473
- },
474
- {
475
- "epoch": 0.2696629213483146,
476
- "grad_norm": 0.5440453886985779,
477
- "learning_rate": 1.9870502626379127e-05,
478
- "loss": 0.3056,
479
- "step": 66
480
- },
481
- {
482
- "epoch": 0.27374872318692545,
483
- "grad_norm": 0.40003377199172974,
484
- "learning_rate": 1.9863225079247286e-05,
485
- "loss": 0.3357,
486
- "step": 67
487
- },
488
- {
489
- "epoch": 0.27783452502553624,
490
- "grad_norm": 0.39155763387680054,
491
- "learning_rate": 1.985574999725943e-05,
492
- "loss": 0.2819,
493
- "step": 68
494
- },
495
- {
496
- "epoch": 0.2819203268641471,
497
- "grad_norm": 0.4461009204387665,
498
- "learning_rate": 1.9848077530122083e-05,
499
- "loss": 0.2732,
500
- "step": 69
501
- },
502
- {
503
- "epoch": 0.28600612870275793,
504
- "grad_norm": 0.38970062136650085,
505
- "learning_rate": 1.9840207831494903e-05,
506
- "loss": 0.2957,
507
- "step": 70
508
- },
509
- {
510
- "epoch": 0.2900919305413687,
511
- "grad_norm": 0.4369664788246155,
512
- "learning_rate": 1.983214105898757e-05,
513
- "loss": 0.3158,
514
- "step": 71
515
- },
516
- {
517
- "epoch": 0.2941777323799796,
518
- "grad_norm": 0.4734659492969513,
519
- "learning_rate": 1.9823877374156647e-05,
520
- "loss": 0.3054,
521
- "step": 72
522
- },
523
- {
524
- "epoch": 0.2982635342185904,
525
- "grad_norm": 0.3933468461036682,
526
- "learning_rate": 1.9815416942502346e-05,
527
- "loss": 0.286,
528
- "step": 73
529
- },
530
- {
531
- "epoch": 0.3023493360572012,
532
- "grad_norm": 0.4472273290157318,
533
- "learning_rate": 1.98067599334652e-05,
534
- "loss": 0.3149,
535
- "step": 74
536
- },
537
- {
538
- "epoch": 0.30643513789581206,
539
- "grad_norm": 0.43143752217292786,
540
- "learning_rate": 1.979790652042268e-05,
541
- "loss": 0.2792,
542
- "step": 75
543
- },
544
- {
545
- "epoch": 0.3105209397344229,
546
- "grad_norm": 0.4325246512889862,
547
- "learning_rate": 1.978885688068572e-05,
548
- "loss": 0.3024,
549
- "step": 76
550
- },
551
- {
552
- "epoch": 0.3146067415730337,
553
- "grad_norm": 0.48796600103378296,
554
- "learning_rate": 1.9779611195495177e-05,
555
- "loss": 0.3343,
556
- "step": 77
557
- },
558
- {
559
- "epoch": 0.31869254341164455,
560
- "grad_norm": 0.40505748987197876,
561
- "learning_rate": 1.977016965001817e-05,
562
- "loss": 0.2753,
563
- "step": 78
564
- },
565
- {
566
- "epoch": 0.32277834525025534,
567
- "grad_norm": 0.40753036737442017,
568
- "learning_rate": 1.976053243334442e-05,
569
- "loss": 0.3073,
570
- "step": 79
571
- },
572
- {
573
- "epoch": 0.3268641470888662,
574
- "grad_norm": 0.4000149071216583,
575
- "learning_rate": 1.9750699738482403e-05,
576
- "loss": 0.284,
577
- "step": 80
578
- },
579
- {
580
- "epoch": 0.33094994892747703,
581
- "grad_norm": 0.42099907994270325,
582
- "learning_rate": 1.9740671762355548e-05,
583
- "loss": 0.2881,
584
- "step": 81
585
- },
586
- {
587
- "epoch": 0.3350357507660878,
588
- "grad_norm": 0.4155902564525604,
589
- "learning_rate": 1.973044870579824e-05,
590
- "loss": 0.2969,
591
- "step": 82
592
- },
593
- {
594
- "epoch": 0.3350357507660878,
595
- "eval_loss": 0.31923907995224,
596
- "eval_runtime": 5.81,
597
- "eval_samples_per_second": 13.597,
598
- "eval_steps_per_second": 1.721,
599
- "step": 82
600
- },
601
- {
602
- "epoch": 0.3391215526046987,
603
- "grad_norm": 0.39282551407814026,
604
- "learning_rate": 1.972003077355183e-05,
605
- "loss": 0.2948,
606
- "step": 83
607
- },
608
- {
609
- "epoch": 0.3432073544433095,
610
- "grad_norm": 0.4381943643093109,
611
- "learning_rate": 1.9709418174260523e-05,
612
- "loss": 0.3454,
613
- "step": 84
614
- },
615
- {
616
- "epoch": 0.3472931562819203,
617
- "grad_norm": 0.4093382954597473,
618
- "learning_rate": 1.9698611120467196e-05,
619
- "loss": 0.2962,
620
- "step": 85
621
- },
622
- {
623
- "epoch": 0.35137895812053116,
624
- "grad_norm": 0.450135737657547,
625
- "learning_rate": 1.9687609828609156e-05,
626
- "loss": 0.3243,
627
- "step": 86
628
- },
629
- {
630
- "epoch": 0.355464759959142,
631
- "grad_norm": 0.4139018654823303,
632
- "learning_rate": 1.9676414519013782e-05,
633
- "loss": 0.2996,
634
- "step": 87
635
- },
636
- {
637
- "epoch": 0.3595505617977528,
638
- "grad_norm": 0.40026575326919556,
639
- "learning_rate": 1.966502541589414e-05,
640
- "loss": 0.2788,
641
- "step": 88
642
- },
643
- {
644
- "epoch": 0.36363636363636365,
645
- "grad_norm": 0.36627820134162903,
646
- "learning_rate": 1.965344274734447e-05,
647
- "loss": 0.2857,
648
- "step": 89
649
- },
650
- {
651
- "epoch": 0.36772216547497444,
652
- "grad_norm": 0.42685478925704956,
653
- "learning_rate": 1.9641666745335626e-05,
654
- "loss": 0.2995,
655
- "step": 90
656
- },
657
- {
658
- "epoch": 0.3718079673135853,
659
- "grad_norm": 0.374288946390152,
660
- "learning_rate": 1.9629697645710432e-05,
661
- "loss": 0.3056,
662
- "step": 91
663
- },
664
- {
665
- "epoch": 0.37589376915219613,
666
- "grad_norm": 0.3649786114692688,
667
- "learning_rate": 1.961753568817896e-05,
668
- "loss": 0.2854,
669
- "step": 92
670
- },
671
- {
672
- "epoch": 0.3799795709908069,
673
- "grad_norm": 0.38573023676872253,
674
- "learning_rate": 1.9605181116313725e-05,
675
- "loss": 0.2667,
676
- "step": 93
677
- },
678
- {
679
- "epoch": 0.3840653728294178,
680
- "grad_norm": 0.37577807903289795,
681
- "learning_rate": 1.9592634177544803e-05,
682
- "loss": 0.2815,
683
- "step": 94
684
- },
685
- {
686
- "epoch": 0.3881511746680286,
687
- "grad_norm": 0.4320047199726105,
688
- "learning_rate": 1.957989512315489e-05,
689
- "loss": 0.3094,
690
- "step": 95
691
- },
692
- {
693
- "epoch": 0.3922369765066394,
694
- "grad_norm": 0.3816889524459839,
695
- "learning_rate": 1.9566964208274254e-05,
696
- "loss": 0.292,
697
- "step": 96
698
- },
699
- {
700
- "epoch": 0.39632277834525026,
701
- "grad_norm": 0.3946669399738312,
702
- "learning_rate": 1.9553841691875632e-05,
703
- "loss": 0.3002,
704
- "step": 97
705
- },
706
- {
707
- "epoch": 0.4004085801838611,
708
- "grad_norm": 0.36885613203048706,
709
- "learning_rate": 1.9540527836769047e-05,
710
- "loss": 0.2583,
711
- "step": 98
712
- },
713
- {
714
- "epoch": 0.4044943820224719,
715
- "grad_norm": 0.37865176796913147,
716
- "learning_rate": 1.9527022909596537e-05,
717
- "loss": 0.2787,
718
- "step": 99
719
- },
720
- {
721
- "epoch": 0.40858018386108275,
722
- "grad_norm": 0.4429585337638855,
723
- "learning_rate": 1.951332718082682e-05,
724
- "loss": 0.3226,
725
- "step": 100
726
- },
727
- {
728
- "epoch": 0.41266598569969354,
729
- "grad_norm": 0.3926009237766266,
730
- "learning_rate": 1.9499440924749878e-05,
731
- "loss": 0.2914,
732
- "step": 101
733
- },
734
- {
735
- "epoch": 0.4167517875383044,
736
- "grad_norm": 0.3467339277267456,
737
- "learning_rate": 1.9485364419471454e-05,
738
- "loss": 0.266,
739
- "step": 102
740
- },
741
- {
742
- "epoch": 0.42083758937691523,
743
- "grad_norm": 0.4126642644405365,
744
- "learning_rate": 1.9471097946907506e-05,
745
- "loss": 0.2775,
746
- "step": 103
747
- },
748
- {
749
- "epoch": 0.424923391215526,
750
- "grad_norm": 0.44586020708084106,
751
- "learning_rate": 1.9456641792778527e-05,
752
- "loss": 0.2884,
753
- "step": 104
754
- },
755
- {
756
- "epoch": 0.4290091930541369,
757
- "grad_norm": 0.3969588279724121,
758
- "learning_rate": 1.9441996246603848e-05,
759
- "loss": 0.2835,
760
- "step": 105
761
- },
762
- {
763
- "epoch": 0.4330949948927477,
764
- "grad_norm": 0.38928356766700745,
765
- "learning_rate": 1.9427161601695833e-05,
766
- "loss": 0.2826,
767
- "step": 106
768
- },
769
- {
770
- "epoch": 0.4371807967313585,
771
- "grad_norm": 0.4089799225330353,
772
- "learning_rate": 1.9412138155154e-05,
773
- "loss": 0.2817,
774
- "step": 107
775
- },
776
- {
777
- "epoch": 0.44126659856996936,
778
- "grad_norm": 0.375505656003952,
779
- "learning_rate": 1.9396926207859085e-05,
780
- "loss": 0.2882,
781
- "step": 108
782
- },
783
- {
784
- "epoch": 0.4453524004085802,
785
- "grad_norm": 0.406118780374527,
786
- "learning_rate": 1.9381526064466995e-05,
787
- "loss": 0.2861,
788
- "step": 109
789
- },
790
- {
791
- "epoch": 0.449438202247191,
792
- "grad_norm": 0.3882409334182739,
793
- "learning_rate": 1.9365938033402715e-05,
794
- "loss": 0.261,
795
- "step": 110
796
- },
797
- {
798
- "epoch": 0.45352400408580185,
799
- "grad_norm": 0.4351583421230316,
800
- "learning_rate": 1.9350162426854152e-05,
801
- "loss": 0.3014,
802
- "step": 111
803
- },
804
- {
805
- "epoch": 0.4576098059244127,
806
- "grad_norm": 0.3621097505092621,
807
- "learning_rate": 1.933419956076584e-05,
808
- "loss": 0.2728,
809
- "step": 112
810
- },
811
- {
812
- "epoch": 0.4616956077630235,
813
- "grad_norm": 0.3881032466888428,
814
- "learning_rate": 1.9318049754832656e-05,
815
- "loss": 0.2736,
816
- "step": 113
817
- },
818
- {
819
- "epoch": 0.46578140960163433,
820
- "grad_norm": 0.37627285718917847,
821
- "learning_rate": 1.9301713332493386e-05,
822
- "loss": 0.2707,
823
- "step": 114
824
- },
825
- {
826
- "epoch": 0.4698672114402451,
827
- "grad_norm": 0.4285913109779358,
828
- "learning_rate": 1.9285190620924267e-05,
829
- "loss": 0.2815,
830
- "step": 115
831
- },
832
- {
833
- "epoch": 0.473953013278856,
834
- "grad_norm": 0.35718926787376404,
835
- "learning_rate": 1.926848195103242e-05,
836
- "loss": 0.2621,
837
- "step": 116
838
- },
839
- {
840
- "epoch": 0.4780388151174668,
841
- "grad_norm": 0.3852044641971588,
842
- "learning_rate": 1.925158765744924e-05,
843
- "loss": 0.283,
844
- "step": 117
845
- },
846
- {
847
- "epoch": 0.4821246169560776,
848
- "grad_norm": 0.3884032368659973,
849
- "learning_rate": 1.923450807852367e-05,
850
- "loss": 0.2711,
851
- "step": 118
852
- },
853
- {
854
- "epoch": 0.48621041879468846,
855
- "grad_norm": 0.4398249685764313,
856
- "learning_rate": 1.9217243556315445e-05,
857
- "loss": 0.2757,
858
- "step": 119
859
- },
860
- {
861
- "epoch": 0.4902962206332993,
862
- "grad_norm": 0.36689624190330505,
863
- "learning_rate": 1.9199794436588244e-05,
864
- "loss": 0.2669,
865
- "step": 120
866
- },
867
- {
868
- "epoch": 0.4943820224719101,
869
- "grad_norm": 0.46398666501045227,
870
- "learning_rate": 1.9182161068802742e-05,
871
- "loss": 0.2683,
872
- "step": 121
873
- },
874
- {
875
- "epoch": 0.49846782431052095,
876
- "grad_norm": 0.40020987391471863,
877
- "learning_rate": 1.916434380610963e-05,
878
- "loss": 0.2927,
879
- "step": 122
880
- },
881
- {
882
- "epoch": 0.5025536261491318,
883
- "grad_norm": 0.4032459259033203,
884
- "learning_rate": 1.9146343005342546e-05,
885
- "loss": 0.31,
886
- "step": 123
887
- },
888
- {
889
- "epoch": 0.5066394279877426,
890
- "grad_norm": 0.44166550040245056,
891
- "learning_rate": 1.912815902701091e-05,
892
- "loss": 0.2842,
893
- "step": 124
894
- },
895
- {
896
- "epoch": 0.5107252298263534,
897
- "grad_norm": 0.39895153045654297,
898
- "learning_rate": 1.9109792235292715e-05,
899
- "loss": 0.2766,
900
- "step": 125
901
- },
902
- {
903
- "epoch": 0.5148110316649642,
904
- "grad_norm": 0.3415013253688812,
905
- "learning_rate": 1.909124299802724e-05,
906
- "loss": 0.2761,
907
- "step": 126
908
- },
909
- {
910
- "epoch": 0.5188968335035751,
911
- "grad_norm": 0.3837663531303406,
912
- "learning_rate": 1.9072511686707663e-05,
913
- "loss": 0.2797,
914
- "step": 127
915
- },
916
- {
917
- "epoch": 0.5229826353421859,
918
- "grad_norm": 0.4030819833278656,
919
- "learning_rate": 1.9053598676473656e-05,
920
- "loss": 0.2932,
921
- "step": 128
922
- },
923
- {
924
- "epoch": 0.5270684371807968,
925
- "grad_norm": 0.40120938420295715,
926
- "learning_rate": 1.9034504346103825e-05,
927
- "loss": 0.2698,
928
- "step": 129
929
- },
930
- {
931
- "epoch": 0.5311542390194075,
932
- "grad_norm": 0.3621327579021454,
933
- "learning_rate": 1.9015229078008163e-05,
934
- "loss": 0.298,
935
- "step": 130
936
- },
937
- {
938
- "epoch": 0.5352400408580184,
939
- "grad_norm": 0.33476150035858154,
940
- "learning_rate": 1.8995773258220374e-05,
941
- "loss": 0.2612,
942
- "step": 131
943
- },
944
- {
945
- "epoch": 0.5393258426966292,
946
- "grad_norm": 0.3523140549659729,
947
- "learning_rate": 1.8976137276390145e-05,
948
- "loss": 0.2671,
949
- "step": 132
950
- },
951
- {
952
- "epoch": 0.54341164453524,
953
- "grad_norm": 0.3624558746814728,
954
- "learning_rate": 1.8956321525775337e-05,
955
- "loss": 0.2687,
956
- "step": 133
957
- },
958
- {
959
- "epoch": 0.5474974463738509,
960
- "grad_norm": 0.35892072319984436,
961
- "learning_rate": 1.8936326403234125e-05,
962
- "loss": 0.2755,
963
- "step": 134
964
- },
965
- {
966
- "epoch": 0.5515832482124617,
967
- "grad_norm": 0.3678256869316101,
968
- "learning_rate": 1.891615230921703e-05,
969
- "loss": 0.278,
970
- "step": 135
971
- },
972
- {
973
- "epoch": 0.5556690500510725,
974
- "grad_norm": 0.38125160336494446,
975
- "learning_rate": 1.8895799647758912e-05,
976
- "loss": 0.2765,
977
- "step": 136
978
- },
979
- {
980
- "epoch": 0.5597548518896833,
981
- "grad_norm": 0.40152257680892944,
982
- "learning_rate": 1.8875268826470875e-05,
983
- "loss": 0.3239,
984
- "step": 137
985
- },
986
- {
987
- "epoch": 0.5638406537282942,
988
- "grad_norm": 0.3935178816318512,
989
- "learning_rate": 1.8854560256532098e-05,
990
- "loss": 0.2956,
991
- "step": 138
992
- },
993
- {
994
- "epoch": 0.567926455566905,
995
- "grad_norm": 0.4389478266239166,
996
- "learning_rate": 1.8833674352681613e-05,
997
- "loss": 0.2968,
998
- "step": 139
999
- },
1000
- {
1001
- "epoch": 0.5720122574055159,
1002
- "grad_norm": 0.3884355127811432,
1003
- "learning_rate": 1.881261153320999e-05,
1004
- "loss": 0.3074,
1005
- "step": 140
1006
- },
1007
- {
1008
- "epoch": 0.5760980592441267,
1009
- "grad_norm": 0.4054373502731323,
1010
- "learning_rate": 1.879137221995095e-05,
1011
- "loss": 0.2996,
1012
- "step": 141
1013
- },
1014
- {
1015
- "epoch": 0.5801838610827375,
1016
- "grad_norm": 0.4423893690109253,
1017
- "learning_rate": 1.8769956838272937e-05,
1018
- "loss": 0.3082,
1019
- "step": 142
1020
- },
1021
- {
1022
- "epoch": 0.5842696629213483,
1023
- "grad_norm": 0.42978307604789734,
1024
- "learning_rate": 1.8748365817070586e-05,
1025
- "loss": 0.2878,
1026
- "step": 143
1027
- },
1028
- {
1029
- "epoch": 0.5883554647599591,
1030
- "grad_norm": 0.38182228803634644,
1031
- "learning_rate": 1.8726599588756144e-05,
1032
- "loss": 0.2649,
1033
- "step": 144
1034
- },
1035
- {
1036
- "epoch": 0.59244126659857,
1037
- "grad_norm": 0.43477413058280945,
1038
- "learning_rate": 1.8704658589250795e-05,
1039
- "loss": 0.271,
1040
- "step": 145
1041
- },
1042
- {
1043
- "epoch": 0.5965270684371808,
1044
- "grad_norm": 0.3876926898956299,
1045
- "learning_rate": 1.868254325797594e-05,
1046
- "loss": 0.2804,
1047
- "step": 146
1048
- },
1049
- {
1050
- "epoch": 0.6006128702757916,
1051
- "grad_norm": 0.39310601353645325,
1052
- "learning_rate": 1.866025403784439e-05,
1053
- "loss": 0.2767,
1054
- "step": 147
1055
- },
1056
- {
1057
- "epoch": 0.6046986721144024,
1058
- "grad_norm": 0.421290785074234,
1059
- "learning_rate": 1.8637791375251505e-05,
1060
- "loss": 0.2668,
1061
- "step": 148
1062
- },
1063
- {
1064
- "epoch": 0.6087844739530133,
1065
- "grad_norm": 0.450023353099823,
1066
- "learning_rate": 1.8615155720066247e-05,
1067
- "loss": 0.2888,
1068
- "step": 149
1069
- },
1070
- {
1071
- "epoch": 0.6128702757916241,
1072
- "grad_norm": 0.3645341396331787,
1073
- "learning_rate": 1.859234752562217e-05,
1074
- "loss": 0.2828,
1075
- "step": 150
1076
- },
1077
- {
1078
- "epoch": 0.616956077630235,
1079
- "grad_norm": 0.41853606700897217,
1080
- "learning_rate": 1.8569367248708343e-05,
1081
- "loss": 0.284,
1082
- "step": 151
1083
- },
1084
- {
1085
- "epoch": 0.6210418794688458,
1086
- "grad_norm": 0.3675737679004669,
1087
- "learning_rate": 1.8546215349560204e-05,
1088
- "loss": 0.2933,
1089
- "step": 152
1090
- },
1091
- {
1092
- "epoch": 0.6251276813074566,
1093
- "grad_norm": 0.3668256998062134,
1094
- "learning_rate": 1.8522892291850335e-05,
1095
- "loss": 0.2729,
1096
- "step": 153
1097
- },
1098
- {
1099
- "epoch": 0.6292134831460674,
1100
- "grad_norm": 0.34576019644737244,
1101
- "learning_rate": 1.849939854267919e-05,
1102
- "loss": 0.2612,
1103
- "step": 154
1104
- },
1105
- {
1106
- "epoch": 0.6332992849846782,
1107
- "grad_norm": 0.41370126605033875,
1108
- "learning_rate": 1.847573457256571e-05,
1109
- "loss": 0.2693,
1110
- "step": 155
1111
- },
1112
- {
1113
- "epoch": 0.6373850868232891,
1114
- "grad_norm": 0.4205566644668579,
1115
- "learning_rate": 1.845190085543795e-05,
1116
- "loss": 0.2746,
1117
- "step": 156
1118
- },
1119
- {
1120
- "epoch": 0.6414708886618999,
1121
- "grad_norm": 0.3997614085674286,
1122
- "learning_rate": 1.8427897868623535e-05,
1123
- "loss": 0.2813,
1124
- "step": 157
1125
- },
1126
- {
1127
- "epoch": 0.6455566905005107,
1128
- "grad_norm": 0.41005200147628784,
1129
- "learning_rate": 1.840372609284013e-05,
1130
- "loss": 0.2647,
1131
- "step": 158
1132
- },
1133
- {
1134
- "epoch": 0.6496424923391215,
1135
- "grad_norm": 0.4547550678253174,
1136
- "learning_rate": 1.8379386012185813e-05,
1137
- "loss": 0.2791,
1138
- "step": 159
1139
- },
1140
- {
1141
- "epoch": 0.6537282941777324,
1142
- "grad_norm": 0.4075047969818115,
1143
- "learning_rate": 1.8354878114129368e-05,
1144
- "loss": 0.2769,
1145
- "step": 160
1146
- },
1147
- {
1148
- "epoch": 0.6578140960163432,
1149
- "grad_norm": 0.37060046195983887,
1150
- "learning_rate": 1.8330202889500518e-05,
1151
- "loss": 0.3028,
1152
- "step": 161
1153
- },
1154
- {
1155
- "epoch": 0.6618998978549541,
1156
- "grad_norm": 0.35541340708732605,
1157
- "learning_rate": 1.8305360832480118e-05,
1158
- "loss": 0.2981,
1159
- "step": 162
1160
- },
1161
- {
1162
- "epoch": 0.6659856996935649,
1163
- "grad_norm": 0.3970625400543213,
1164
- "learning_rate": 1.8280352440590236e-05,
1165
- "loss": 0.2634,
1166
- "step": 163
1167
- },
1168
- {
1169
- "epoch": 0.6700715015321757,
1170
- "grad_norm": 0.4075865149497986,
1171
- "learning_rate": 1.82551782146842e-05,
1172
- "loss": 0.3027,
1173
- "step": 164
1174
- },
1175
- {
1176
- "epoch": 0.6700715015321757,
1177
- "eval_loss": 0.291363924741745,
1178
- "eval_runtime": 5.7936,
1179
- "eval_samples_per_second": 13.636,
1180
- "eval_steps_per_second": 1.726,
1181
- "step": 164
1182
- },
1183
- {
1184
- "epoch": 0.6741573033707865,
1185
- "grad_norm": 0.34390076994895935,
1186
- "learning_rate": 1.8229838658936566e-05,
1187
- "loss": 0.2536,
1188
- "step": 165
1189
- },
1190
- {
1191
- "epoch": 0.6782431052093973,
1192
- "grad_norm": 0.3729197084903717,
1193
- "learning_rate": 1.8204334280833005e-05,
1194
- "loss": 0.2739,
1195
- "step": 166
1196
- },
1197
- {
1198
- "epoch": 0.6823289070480082,
1199
- "grad_norm": 0.3974601924419403,
1200
- "learning_rate": 1.817866559116017e-05,
1201
- "loss": 0.2858,
1202
- "step": 167
1203
- },
1204
- {
1205
- "epoch": 0.686414708886619,
1206
- "grad_norm": 0.3424644470214844,
1207
- "learning_rate": 1.8152833103995443e-05,
1208
- "loss": 0.2305,
1209
- "step": 168
1210
- },
1211
- {
1212
- "epoch": 0.6905005107252298,
1213
- "grad_norm": 0.4293709397315979,
1214
- "learning_rate": 1.8126837336696645e-05,
1215
- "loss": 0.3179,
1216
- "step": 169
1217
- },
1218
- {
1219
- "epoch": 0.6945863125638406,
1220
- "grad_norm": 0.3259459435939789,
1221
- "learning_rate": 1.8100678809891668e-05,
1222
- "loss": 0.2589,
1223
- "step": 170
1224
- },
1225
- {
1226
- "epoch": 0.6986721144024515,
1227
- "grad_norm": 0.40771302580833435,
1228
- "learning_rate": 1.807435804746807e-05,
1229
- "loss": 0.2637,
1230
- "step": 171
1231
- },
1232
- {
1233
- "epoch": 0.7027579162410623,
1234
- "grad_norm": 0.3847212493419647,
1235
- "learning_rate": 1.8047875576562556e-05,
1236
- "loss": 0.2782,
1237
- "step": 172
1238
- },
1239
- {
1240
- "epoch": 0.7068437180796732,
1241
- "grad_norm": 0.35547974705696106,
1242
- "learning_rate": 1.802123192755044e-05,
1243
- "loss": 0.2695,
1244
- "step": 173
1245
- },
1246
- {
1247
- "epoch": 0.710929519918284,
1248
- "grad_norm": 0.3954298198223114,
1249
- "learning_rate": 1.7994427634035016e-05,
1250
- "loss": 0.3005,
1251
- "step": 174
1252
- },
1253
- {
1254
- "epoch": 0.7150153217568948,
1255
- "grad_norm": 0.3506409525871277,
1256
- "learning_rate": 1.796746323283686e-05,
1257
- "loss": 0.2716,
1258
- "step": 175
1259
- },
1260
- {
1261
- "epoch": 0.7191011235955056,
1262
- "grad_norm": 0.42227277159690857,
1263
- "learning_rate": 1.7940339263983112e-05,
1264
- "loss": 0.2915,
1265
- "step": 176
1266
- },
1267
- {
1268
- "epoch": 0.7231869254341164,
1269
- "grad_norm": 0.3948259949684143,
1270
- "learning_rate": 1.791305627069662e-05,
1271
- "loss": 0.2883,
1272
- "step": 177
1273
- },
1274
- {
1275
- "epoch": 0.7272727272727273,
1276
- "grad_norm": 0.3580792248249054,
1277
- "learning_rate": 1.7885614799385086e-05,
1278
- "loss": 0.2782,
1279
- "step": 178
1280
- },
1281
- {
1282
- "epoch": 0.7313585291113381,
1283
- "grad_norm": 0.39698660373687744,
1284
- "learning_rate": 1.785801539963012e-05,
1285
- "loss": 0.2657,
1286
- "step": 179
1287
- },
1288
- {
1289
- "epoch": 0.7354443309499489,
1290
- "grad_norm": 0.3663792610168457,
1291
- "learning_rate": 1.7830258624176224e-05,
1292
- "loss": 0.2686,
1293
- "step": 180
1294
- },
1295
- {
1296
- "epoch": 0.7395301327885597,
1297
- "grad_norm": 0.38216930627822876,
1298
- "learning_rate": 1.7802345028919728e-05,
1299
- "loss": 0.2706,
1300
- "step": 181
1301
- },
1302
- {
1303
- "epoch": 0.7436159346271706,
1304
- "grad_norm": 0.4187450706958771,
1305
- "learning_rate": 1.777427517289766e-05,
1306
- "loss": 0.2573,
1307
- "step": 182
1308
- },
1309
- {
1310
- "epoch": 0.7477017364657814,
1311
- "grad_norm": 0.34619036316871643,
1312
- "learning_rate": 1.7746049618276545e-05,
1313
- "loss": 0.269,
1314
- "step": 183
1315
- },
1316
- {
1317
- "epoch": 0.7517875383043923,
1318
- "grad_norm": 0.35370582342147827,
1319
- "learning_rate": 1.7717668930341152e-05,
1320
- "loss": 0.2552,
1321
- "step": 184
1322
- },
1323
- {
1324
- "epoch": 0.7558733401430031,
1325
- "grad_norm": 0.4264880418777466,
1326
- "learning_rate": 1.768913367748316e-05,
1327
- "loss": 0.2952,
1328
- "step": 185
1329
- },
1330
- {
1331
- "epoch": 0.7599591419816139,
1332
- "grad_norm": 0.39135676622390747,
1333
- "learning_rate": 1.766044443118978e-05,
1334
- "loss": 0.2661,
1335
- "step": 186
1336
- },
1337
- {
1338
- "epoch": 0.7640449438202247,
1339
- "grad_norm": 0.39061596989631653,
1340
- "learning_rate": 1.7631601766032337e-05,
1341
- "loss": 0.2737,
1342
- "step": 187
1343
- },
1344
- {
1345
- "epoch": 0.7681307456588355,
1346
- "grad_norm": 0.3799816966056824,
1347
- "learning_rate": 1.7602606259654704e-05,
1348
- "loss": 0.2767,
1349
- "step": 188
1350
- },
1351
- {
1352
- "epoch": 0.7722165474974464,
1353
- "grad_norm": 0.3592148721218109,
1354
- "learning_rate": 1.7573458492761802e-05,
1355
- "loss": 0.2448,
1356
- "step": 189
1357
- },
1358
- {
1359
- "epoch": 0.7763023493360572,
1360
- "grad_norm": 0.39084604382514954,
1361
- "learning_rate": 1.7544159049107902e-05,
1362
- "loss": 0.275,
1363
- "step": 190
1364
- },
1365
- {
1366
- "epoch": 0.780388151174668,
1367
- "grad_norm": 0.36443451046943665,
1368
- "learning_rate": 1.7514708515485002e-05,
1369
- "loss": 0.2645,
1370
- "step": 191
1371
- },
1372
- {
1373
- "epoch": 0.7844739530132788,
1374
- "grad_norm": 0.4001200497150421,
1375
- "learning_rate": 1.7485107481711014e-05,
1376
- "loss": 0.2724,
1377
- "step": 192
1378
- },
1379
- {
1380
- "epoch": 0.7885597548518897,
1381
- "grad_norm": 0.39093396067619324,
1382
- "learning_rate": 1.7455356540617988e-05,
1383
- "loss": 0.2712,
1384
- "step": 193
1385
- },
1386
- {
1387
- "epoch": 0.7926455566905005,
1388
- "grad_norm": 0.3430577218532562,
1389
- "learning_rate": 1.7425456288040236e-05,
1390
- "loss": 0.2489,
1391
- "step": 194
1392
- },
1393
- {
1394
- "epoch": 0.7967313585291114,
1395
- "grad_norm": 0.3573733866214752,
1396
- "learning_rate": 1.7395407322802374e-05,
1397
- "loss": 0.2696,
1398
- "step": 195
1399
- },
1400
- {
1401
- "epoch": 0.8008171603677222,
1402
- "grad_norm": 0.38158077001571655,
1403
- "learning_rate": 1.736521024670737e-05,
1404
- "loss": 0.2814,
1405
- "step": 196
1406
- },
1407
- {
1408
- "epoch": 0.804902962206333,
1409
- "grad_norm": 0.366470068693161,
1410
- "learning_rate": 1.733486566452446e-05,
1411
- "loss": 0.2529,
1412
- "step": 197
1413
- },
1414
- {
1415
- "epoch": 0.8089887640449438,
1416
- "grad_norm": 0.3718278408050537,
1417
- "learning_rate": 1.7304374183977032e-05,
1418
- "loss": 0.2747,
1419
- "step": 198
1420
- },
1421
- {
1422
- "epoch": 0.8130745658835546,
1423
- "grad_norm": 0.3395809233188629,
1424
- "learning_rate": 1.7273736415730488e-05,
1425
- "loss": 0.2693,
1426
- "step": 199
1427
- },
1428
- {
1429
- "epoch": 0.8171603677221655,
1430
- "grad_norm": 0.307731032371521,
1431
- "learning_rate": 1.7242952973379983e-05,
1432
- "loss": 0.2081,
1433
- "step": 200
1434
- },
1435
- {
1436
- "epoch": 0.8212461695607763,
1437
- "grad_norm": 0.3522433936595917,
1438
- "learning_rate": 1.7212024473438145e-05,
1439
- "loss": 0.2495,
1440
- "step": 201
1441
- },
1442
- {
1443
- "epoch": 0.8253319713993871,
1444
- "grad_norm": 0.35946980118751526,
1445
- "learning_rate": 1.7180951535322742e-05,
1446
- "loss": 0.2702,
1447
- "step": 202
1448
- },
1449
- {
1450
- "epoch": 0.8294177732379979,
1451
- "grad_norm": 0.3933047950267792,
1452
- "learning_rate": 1.7149734781344247e-05,
1453
- "loss": 0.2629,
1454
- "step": 203
1455
- },
1456
- {
1457
- "epoch": 0.8335035750766088,
1458
- "grad_norm": 0.3658384084701538,
1459
- "learning_rate": 1.7118374836693407e-05,
1460
- "loss": 0.2538,
1461
- "step": 204
1462
- },
1463
- {
1464
- "epoch": 0.8375893769152196,
1465
- "grad_norm": 0.3532220423221588,
1466
- "learning_rate": 1.7086872329428702e-05,
1467
- "loss": 0.2587,
1468
- "step": 205
1469
- },
1470
- {
1471
- "epoch": 0.8416751787538305,
1472
- "grad_norm": 0.3619686961174011,
1473
- "learning_rate": 1.705522789046377e-05,
1474
- "loss": 0.2658,
1475
- "step": 206
1476
- },
1477
- {
1478
- "epoch": 0.8457609805924413,
1479
- "grad_norm": 0.4083801209926605,
1480
- "learning_rate": 1.7023442153554776e-05,
1481
- "loss": 0.2614,
1482
- "step": 207
1483
- },
1484
- {
1485
- "epoch": 0.849846782431052,
1486
- "grad_norm": 0.3868924081325531,
1487
- "learning_rate": 1.6991515755287715e-05,
1488
- "loss": 0.2831,
1489
- "step": 208
1490
- },
1491
- {
1492
- "epoch": 0.8539325842696629,
1493
- "grad_norm": 0.38413897156715393,
1494
- "learning_rate": 1.695944933506567e-05,
1495
- "loss": 0.2596,
1496
- "step": 209
1497
- },
1498
- {
1499
- "epoch": 0.8580183861082737,
1500
- "grad_norm": 0.34999531507492065,
1501
- "learning_rate": 1.6927243535095995e-05,
1502
- "loss": 0.2842,
1503
- "step": 210
1504
- },
1505
- {
1506
- "epoch": 0.8621041879468846,
1507
- "grad_norm": 0.328204482793808,
1508
- "learning_rate": 1.6894899000377462e-05,
1509
- "loss": 0.2332,
1510
- "step": 211
1511
- },
1512
- {
1513
- "epoch": 0.8661899897854954,
1514
- "grad_norm": 0.3802552819252014,
1515
- "learning_rate": 1.686241637868734e-05,
1516
- "loss": 0.2709,
1517
- "step": 212
1518
- },
1519
- {
1520
- "epoch": 0.8702757916241062,
1521
- "grad_norm": 0.35758858919143677,
1522
- "learning_rate": 1.6829796320568416e-05,
1523
- "loss": 0.279,
1524
- "step": 213
1525
- },
1526
- {
1527
- "epoch": 0.874361593462717,
1528
- "grad_norm": 0.3561984896659851,
1529
- "learning_rate": 1.6797039479315994e-05,
1530
- "loss": 0.2868,
1531
- "step": 214
1532
- },
1533
- {
1534
- "epoch": 0.8784473953013279,
1535
- "grad_norm": 0.32591065764427185,
1536
- "learning_rate": 1.6764146510964762e-05,
1537
- "loss": 0.2485,
1538
- "step": 215
1539
- },
1540
- {
1541
- "epoch": 0.8825331971399387,
1542
- "grad_norm": 0.36409640312194824,
1543
- "learning_rate": 1.67311180742757e-05,
1544
- "loss": 0.2577,
1545
- "step": 216
1546
- },
1547
- {
1548
- "epoch": 0.8866189989785496,
1549
- "grad_norm": 0.34685492515563965,
1550
- "learning_rate": 1.669795483072287e-05,
1551
- "loss": 0.247,
1552
- "step": 217
1553
- },
1554
- {
1555
- "epoch": 0.8907048008171604,
1556
- "grad_norm": 0.3445712625980377,
1557
- "learning_rate": 1.6664657444480145e-05,
1558
- "loss": 0.2565,
1559
- "step": 218
1560
- },
1561
- {
1562
- "epoch": 0.8947906026557712,
1563
- "grad_norm": 0.34710460901260376,
1564
- "learning_rate": 1.6631226582407954e-05,
1565
- "loss": 0.2363,
1566
- "step": 219
1567
- },
1568
- {
1569
- "epoch": 0.898876404494382,
1570
- "grad_norm": 0.33726766705513,
1571
- "learning_rate": 1.6597662914039885e-05,
1572
- "loss": 0.2483,
1573
- "step": 220
1574
- },
1575
- {
1576
- "epoch": 0.9029622063329928,
1577
- "grad_norm": 0.34024032950401306,
1578
- "learning_rate": 1.65639671115693e-05,
1579
- "loss": 0.2474,
1580
- "step": 221
1581
- },
1582
- {
1583
- "epoch": 0.9070480081716037,
1584
- "grad_norm": 0.38807395100593567,
1585
- "learning_rate": 1.653013984983585e-05,
1586
- "loss": 0.2726,
1587
- "step": 222
1588
- },
1589
- {
1590
- "epoch": 0.9111338100102145,
1591
- "grad_norm": 0.36375290155410767,
1592
- "learning_rate": 1.6496181806312005e-05,
1593
- "loss": 0.2726,
1594
- "step": 223
1595
- },
1596
- {
1597
- "epoch": 0.9152196118488254,
1598
- "grad_norm": 0.36927178502082825,
1599
- "learning_rate": 1.6462093661089432e-05,
1600
- "loss": 0.2518,
1601
- "step": 224
1602
- },
1603
- {
1604
- "epoch": 0.9193054136874361,
1605
- "grad_norm": 0.3809269070625305,
1606
- "learning_rate": 1.6427876096865394e-05,
1607
- "loss": 0.2449,
1608
- "step": 225
1609
- },
1610
- {
1611
- "epoch": 0.923391215526047,
1612
- "grad_norm": 0.34634968638420105,
1613
- "learning_rate": 1.6393529798929103e-05,
1614
- "loss": 0.2575,
1615
- "step": 226
1616
- },
1617
- {
1618
- "epoch": 0.9274770173646578,
1619
- "grad_norm": 0.33054831624031067,
1620
- "learning_rate": 1.635905545514795e-05,
1621
- "loss": 0.2639,
1622
- "step": 227
1623
- },
1624
- {
1625
- "epoch": 0.9315628192032687,
1626
- "grad_norm": 0.35482174158096313,
1627
- "learning_rate": 1.6324453755953772e-05,
1628
- "loss": 0.2667,
1629
- "step": 228
1630
- },
1631
- {
1632
- "epoch": 0.9356486210418795,
1633
- "grad_norm": 0.3657509684562683,
1634
- "learning_rate": 1.6289725394328998e-05,
1635
- "loss": 0.255,
1636
- "step": 229
1637
- },
1638
- {
1639
- "epoch": 0.9397344228804902,
1640
- "grad_norm": 0.3343275785446167,
1641
- "learning_rate": 1.6254871065792776e-05,
1642
- "loss": 0.2336,
1643
- "step": 230
1644
- },
1645
- {
1646
- "epoch": 0.9438202247191011,
1647
- "grad_norm": 0.3493170142173767,
1648
- "learning_rate": 1.621989146838704e-05,
1649
- "loss": 0.2649,
1650
- "step": 231
1651
- },
1652
- {
1653
- "epoch": 0.947906026557712,
1654
- "grad_norm": 0.3305867612361908,
1655
- "learning_rate": 1.618478730266255e-05,
1656
- "loss": 0.2767,
1657
- "step": 232
1658
- },
1659
- {
1660
- "epoch": 0.9519918283963228,
1661
- "grad_norm": 0.35817259550094604,
1662
- "learning_rate": 1.6149559271664835e-05,
1663
- "loss": 0.2817,
1664
- "step": 233
1665
- },
1666
- {
1667
- "epoch": 0.9560776302349336,
1668
- "grad_norm": 0.37733370065689087,
1669
- "learning_rate": 1.6114208080920125e-05,
1670
- "loss": 0.2809,
1671
- "step": 234
1672
- },
1673
- {
1674
- "epoch": 0.9601634320735445,
1675
- "grad_norm": 0.3227766156196594,
1676
- "learning_rate": 1.607873443842122e-05,
1677
- "loss": 0.2545,
1678
- "step": 235
1679
- },
1680
- {
1681
- "epoch": 0.9642492339121552,
1682
- "grad_norm": 0.3445710241794586,
1683
- "learning_rate": 1.6043139054613326e-05,
1684
- "loss": 0.2476,
1685
- "step": 236
1686
- },
1687
- {
1688
- "epoch": 0.9683350357507661,
1689
- "grad_norm": 0.3375508785247803,
1690
- "learning_rate": 1.600742264237979e-05,
1691
- "loss": 0.2502,
1692
- "step": 237
1693
- },
1694
- {
1695
- "epoch": 0.9724208375893769,
1696
- "grad_norm": 0.356039434671402,
1697
- "learning_rate": 1.5971585917027864e-05,
1698
- "loss": 0.268,
1699
- "step": 238
1700
- },
1701
- {
1702
- "epoch": 0.9765066394279878,
1703
- "grad_norm": 0.34852373600006104,
1704
- "learning_rate": 1.5935629596274345e-05,
1705
- "loss": 0.2605,
1706
- "step": 239
1707
- },
1708
- {
1709
- "epoch": 0.9805924412665986,
1710
- "grad_norm": 0.3376101851463318,
1711
- "learning_rate": 1.5899554400231233e-05,
1712
- "loss": 0.2567,
1713
- "step": 240
1714
- },
1715
- {
1716
- "epoch": 0.9846782431052093,
1717
- "grad_norm": 0.32361170649528503,
1718
- "learning_rate": 1.586336105139127e-05,
1719
- "loss": 0.2481,
1720
- "step": 241
1721
- },
1722
- {
1723
- "epoch": 0.9887640449438202,
1724
- "grad_norm": 0.35558903217315674,
1725
- "learning_rate": 1.5827050274613512e-05,
1726
- "loss": 0.2514,
1727
- "step": 242
1728
- },
1729
- {
1730
- "epoch": 0.992849846782431,
1731
- "grad_norm": 0.31636619567871094,
1732
- "learning_rate": 1.579062279710879e-05,
1733
- "loss": 0.2237,
1734
- "step": 243
1735
- },
1736
- {
1737
- "epoch": 0.9969356486210419,
1738
- "grad_norm": 0.3540779948234558,
1739
- "learning_rate": 1.5754079348425137e-05,
1740
- "loss": 0.2381,
1741
- "step": 244
1742
- },
1743
- {
1744
- "epoch": 1.0040858018386107,
1745
- "grad_norm": 0.7127255201339722,
1746
- "learning_rate": 1.57174206604332e-05,
1747
- "loss": 0.4477,
1748
- "step": 245
1749
- },
1750
- {
1751
- "epoch": 1.0081716036772217,
1752
- "grad_norm": 0.21768411993980408,
1753
- "learning_rate": 1.568064746731156e-05,
1754
- "loss": 0.177,
1755
- "step": 246
1756
- },
1757
- {
1758
- "epoch": 1.0081716036772217,
1759
- "eval_loss": 0.2854033410549164,
1760
- "eval_runtime": 5.5756,
1761
- "eval_samples_per_second": 14.169,
1762
- "eval_steps_per_second": 1.794,
1763
- "step": 246
1764
- },
1765
- {
1766
- "epoch": 1.0122574055158324,
1767
- "grad_norm": 0.24506381154060364,
1768
- "learning_rate": 1.564376050553205e-05,
1769
- "loss": 0.1647,
1770
- "step": 247
1771
- },
1772
- {
1773
- "epoch": 1.0163432073544434,
1774
- "grad_norm": 0.24179627001285553,
1775
- "learning_rate": 1.560676051384499e-05,
1776
- "loss": 0.1908,
1777
- "step": 248
1778
- },
1779
- {
1780
- "epoch": 1.0204290091930541,
1781
- "grad_norm": 0.2527990937232971,
1782
- "learning_rate": 1.5569648233264395e-05,
1783
- "loss": 0.1728,
1784
- "step": 249
1785
- },
1786
- {
1787
- "epoch": 1.0245148110316649,
1788
- "grad_norm": 0.28597134351730347,
1789
- "learning_rate": 1.553242440705314e-05,
1790
- "loss": 0.1854,
1791
- "step": 250
1792
- },
1793
- {
1794
- "epoch": 1.0286006128702758,
1795
- "grad_norm": 0.2613103985786438,
1796
- "learning_rate": 1.5495089780708062e-05,
1797
- "loss": 0.1762,
1798
- "step": 251
1799
- },
1800
- {
1801
- "epoch": 1.0326864147088866,
1802
- "grad_norm": 0.2806336581707001,
1803
- "learning_rate": 1.5457645101945046e-05,
1804
- "loss": 0.1801,
1805
- "step": 252
1806
- },
1807
- {
1808
- "epoch": 1.0367722165474975,
1809
- "grad_norm": 0.29933255910873413,
1810
- "learning_rate": 1.5420091120684042e-05,
1811
- "loss": 0.1869,
1812
- "step": 253
1813
- },
1814
- {
1815
- "epoch": 1.0408580183861083,
1816
- "grad_norm": 0.2678683400154114,
1817
- "learning_rate": 1.538242858903404e-05,
1818
- "loss": 0.1684,
1819
- "step": 254
1820
- },
1821
- {
1822
- "epoch": 1.0449438202247192,
1823
- "grad_norm": 0.27515852451324463,
1824
- "learning_rate": 1.5344658261278013e-05,
1825
- "loss": 0.1859,
1826
- "step": 255
1827
- },
1828
- {
1829
- "epoch": 1.04902962206333,
1830
- "grad_norm": 0.2876634895801544,
1831
- "learning_rate": 1.530678089385782e-05,
1832
- "loss": 0.1705,
1833
- "step": 256
1834
- },
1835
- {
1836
- "epoch": 1.0531154239019407,
1837
- "grad_norm": 0.2911262810230255,
1838
- "learning_rate": 1.5268797245359035e-05,
1839
- "loss": 0.1937,
1840
- "step": 257
1841
- },
1842
- {
1843
- "epoch": 1.0572012257405516,
1844
- "grad_norm": 0.3048553466796875,
1845
- "learning_rate": 1.5230708076495777e-05,
1846
- "loss": 0.1882,
1847
- "step": 258
1848
- },
1849
- {
1850
- "epoch": 1.0612870275791624,
1851
- "grad_norm": 0.28508955240249634,
1852
- "learning_rate": 1.519251415009546e-05,
1853
- "loss": 0.1767,
1854
- "step": 259
1855
- },
1856
- {
1857
- "epoch": 1.0653728294177733,
1858
- "grad_norm": 0.266313374042511,
1859
- "learning_rate": 1.5154216231083522e-05,
1860
- "loss": 0.1647,
1861
- "step": 260
1862
- },
1863
- {
1864
- "epoch": 1.069458631256384,
1865
- "grad_norm": 0.2724918723106384,
1866
- "learning_rate": 1.5115815086468103e-05,
1867
- "loss": 0.1685,
1868
- "step": 261
1869
- },
1870
- {
1871
- "epoch": 1.0735444330949948,
1872
- "grad_norm": 0.2324502021074295,
1873
- "learning_rate": 1.507731148532468e-05,
1874
- "loss": 0.1632,
1875
- "step": 262
1876
- },
1877
- {
1878
- "epoch": 1.0776302349336058,
1879
- "grad_norm": 0.26865899562835693,
1880
- "learning_rate": 1.5038706198780673e-05,
1881
- "loss": 0.1802,
1882
- "step": 263
1883
- },
1884
- {
1885
- "epoch": 1.0817160367722165,
1886
- "grad_norm": 0.29491883516311646,
1887
- "learning_rate": 1.5000000000000002e-05,
1888
- "loss": 0.1803,
1889
- "step": 264
1890
- },
1891
- {
1892
- "epoch": 1.0858018386108275,
1893
- "grad_norm": 0.28987348079681396,
1894
- "learning_rate": 1.496119366416759e-05,
1895
- "loss": 0.1862,
1896
- "step": 265
1897
- },
1898
- {
1899
- "epoch": 1.0898876404494382,
1900
- "grad_norm": 0.27755048871040344,
1901
- "learning_rate": 1.492228796847385e-05,
1902
- "loss": 0.1741,
1903
- "step": 266
1904
- },
1905
- {
1906
- "epoch": 1.093973442288049,
1907
- "grad_norm": 0.2608552873134613,
1908
- "learning_rate": 1.4883283692099114e-05,
1909
- "loss": 0.1693,
1910
- "step": 267
1911
- },
1912
- {
1913
- "epoch": 1.09805924412666,
1914
- "grad_norm": 0.27284783124923706,
1915
- "learning_rate": 1.4844181616198028e-05,
1916
- "loss": 0.1878,
1917
- "step": 268
1918
- },
1919
- {
1920
- "epoch": 1.1021450459652706,
1921
- "grad_norm": 0.24481667578220367,
1922
- "learning_rate": 1.4804982523883915e-05,
1923
- "loss": 0.1589,
1924
- "step": 269
1925
- },
1926
- {
1927
- "epoch": 1.1062308478038816,
1928
- "grad_norm": 0.2996629774570465,
1929
- "learning_rate": 1.4765687200213079e-05,
1930
- "loss": 0.1823,
1931
- "step": 270
1932
- },
1933
- {
1934
- "epoch": 1.1103166496424923,
1935
- "grad_norm": 0.2922385632991791,
1936
- "learning_rate": 1.4726296432169095e-05,
1937
- "loss": 0.1769,
1938
- "step": 271
1939
- },
1940
- {
1941
- "epoch": 1.1144024514811033,
1942
- "grad_norm": 0.3046974241733551,
1943
- "learning_rate": 1.4686811008647037e-05,
1944
- "loss": 0.1823,
1945
- "step": 272
1946
- },
1947
- {
1948
- "epoch": 1.118488253319714,
1949
- "grad_norm": 0.2792796790599823,
1950
- "learning_rate": 1.4647231720437687e-05,
1951
- "loss": 0.1717,
1952
- "step": 273
1953
- },
1954
- {
1955
- "epoch": 1.1225740551583248,
1956
- "grad_norm": 0.27251774072647095,
1957
- "learning_rate": 1.4607559360211688e-05,
1958
- "loss": 0.1652,
1959
- "step": 274
1960
- },
1961
- {
1962
- "epoch": 1.1266598569969357,
1963
- "grad_norm": 0.2751109302043915,
1964
- "learning_rate": 1.456779472250368e-05,
1965
- "loss": 0.1713,
1966
- "step": 275
1967
- },
1968
- {
1969
- "epoch": 1.1307456588355465,
1970
- "grad_norm": 0.2737586796283722,
1971
- "learning_rate": 1.4527938603696376e-05,
1972
- "loss": 0.162,
1973
- "step": 276
1974
- },
1975
- {
1976
- "epoch": 1.1348314606741572,
1977
- "grad_norm": 0.24653682112693787,
1978
- "learning_rate": 1.4487991802004625e-05,
1979
- "loss": 0.1626,
1980
- "step": 277
1981
- },
1982
- {
1983
- "epoch": 1.1389172625127681,
1984
- "grad_norm": 0.46106576919555664,
1985
- "learning_rate": 1.4447955117459414e-05,
1986
- "loss": 0.1609,
1987
- "step": 278
1988
- },
1989
- {
1990
- "epoch": 1.1430030643513789,
1991
- "grad_norm": 0.27714091539382935,
1992
- "learning_rate": 1.4407829351891858e-05,
1993
- "loss": 0.1759,
1994
- "step": 279
1995
- },
1996
- {
1997
- "epoch": 1.1470888661899898,
1998
- "grad_norm": 0.2678029537200928,
1999
- "learning_rate": 1.436761530891713e-05,
2000
- "loss": 0.1753,
2001
- "step": 280
2002
- },
2003
- {
2004
- "epoch": 1.1511746680286006,
2005
- "grad_norm": 0.2559642791748047,
2006
- "learning_rate": 1.4327313793918362e-05,
2007
- "loss": 0.1778,
2008
- "step": 281
2009
- },
2010
- {
2011
- "epoch": 1.1552604698672115,
2012
- "grad_norm": 0.3033258616924286,
2013
- "learning_rate": 1.4286925614030542e-05,
2014
- "loss": 0.1871,
2015
- "step": 282
2016
- },
2017
- {
2018
- "epoch": 1.1593462717058223,
2019
- "grad_norm": 0.2658158540725708,
2020
- "learning_rate": 1.4246451578124321e-05,
2021
- "loss": 0.1782,
2022
- "step": 283
2023
- },
2024
- {
2025
- "epoch": 1.163432073544433,
2026
- "grad_norm": 0.2901168465614319,
2027
- "learning_rate": 1.4205892496789816e-05,
2028
- "loss": 0.174,
2029
- "step": 284
2030
- },
2031
- {
2032
- "epoch": 1.167517875383044,
2033
- "grad_norm": 0.23054322600364685,
2034
- "learning_rate": 1.4165249182320401e-05,
2035
- "loss": 0.1553,
2036
- "step": 285
2037
- },
2038
- {
2039
- "epoch": 1.1716036772216547,
2040
- "grad_norm": 0.267805278301239,
2041
- "learning_rate": 1.4124522448696407e-05,
2042
- "loss": 0.168,
2043
- "step": 286
2044
- },
2045
- {
2046
- "epoch": 1.1756894790602657,
2047
- "grad_norm": 0.26580214500427246,
2048
- "learning_rate": 1.4083713111568841e-05,
2049
- "loss": 0.167,
2050
- "step": 287
2051
- },
2052
- {
2053
- "epoch": 1.1797752808988764,
2054
- "grad_norm": 0.2736794948577881,
2055
- "learning_rate": 1.404282198824305e-05,
2056
- "loss": 0.1623,
2057
- "step": 288
2058
- },
2059
- {
2060
- "epoch": 1.1838610827374871,
2061
- "grad_norm": 0.25851017236709595,
2062
- "learning_rate": 1.4001849897662337e-05,
2063
- "loss": 0.1646,
2064
- "step": 289
2065
- },
2066
- {
2067
- "epoch": 1.187946884576098,
2068
- "grad_norm": 0.26858997344970703,
2069
- "learning_rate": 1.396079766039157e-05,
2070
- "loss": 0.1768,
2071
- "step": 290
2072
- },
2073
- {
2074
- "epoch": 1.1920326864147088,
2075
- "grad_norm": 0.2878361940383911,
2076
- "learning_rate": 1.3919666098600753e-05,
2077
- "loss": 0.1712,
2078
- "step": 291
2079
- },
2080
- {
2081
- "epoch": 1.1961184882533198,
2082
- "grad_norm": 0.23014627397060394,
2083
- "learning_rate": 1.387845603604855e-05,
2084
- "loss": 0.1595,
2085
- "step": 292
2086
- },
2087
- {
2088
- "epoch": 1.2002042900919305,
2089
- "grad_norm": 0.27550917863845825,
2090
- "learning_rate": 1.3837168298065798e-05,
2091
- "loss": 0.1639,
2092
- "step": 293
2093
- },
2094
- {
2095
- "epoch": 1.2042900919305413,
2096
- "grad_norm": 0.2697204053401947,
2097
- "learning_rate": 1.3795803711538966e-05,
2098
- "loss": 0.1619,
2099
- "step": 294
2100
- },
2101
- {
2102
- "epoch": 1.2083758937691522,
2103
- "grad_norm": 0.29666051268577576,
2104
- "learning_rate": 1.37543631048936e-05,
2105
- "loss": 0.1815,
2106
- "step": 295
2107
- },
2108
- {
2109
- "epoch": 1.212461695607763,
2110
- "grad_norm": 0.25596365332603455,
2111
- "learning_rate": 1.3712847308077737e-05,
2112
- "loss": 0.1629,
2113
- "step": 296
2114
- },
2115
- {
2116
- "epoch": 1.216547497446374,
2117
- "grad_norm": 0.25550931692123413,
2118
- "learning_rate": 1.3671257152545277e-05,
2119
- "loss": 0.1635,
2120
- "step": 297
2121
- },
2122
- {
2123
- "epoch": 1.2206332992849847,
2124
- "grad_norm": 0.2615107297897339,
2125
- "learning_rate": 1.3629593471239328e-05,
2126
- "loss": 0.1547,
2127
- "step": 298
2128
- },
2129
- {
2130
- "epoch": 1.2247191011235956,
2131
- "grad_norm": 0.2814185917377472,
2132
- "learning_rate": 1.3587857098575534e-05,
2133
- "loss": 0.1713,
2134
- "step": 299
2135
- },
2136
- {
2137
- "epoch": 1.2288049029622063,
2138
- "grad_norm": 0.2644117772579193,
2139
- "learning_rate": 1.3546048870425356e-05,
2140
- "loss": 0.1703,
2141
- "step": 300
2142
- },
2143
- {
2144
- "epoch": 1.232890704800817,
2145
- "grad_norm": 0.2645355463027954,
2146
- "learning_rate": 1.350416962409934e-05,
2147
- "loss": 0.159,
2148
- "step": 301
2149
- },
2150
- {
2151
- "epoch": 1.236976506639428,
2152
- "grad_norm": 0.2637065351009369,
2153
- "learning_rate": 1.346222019833033e-05,
2154
- "loss": 0.1647,
2155
- "step": 302
2156
- },
2157
- {
2158
- "epoch": 1.2410623084780388,
2159
- "grad_norm": 0.24007368087768555,
2160
- "learning_rate": 1.342020143325669e-05,
2161
- "loss": 0.1569,
2162
- "step": 303
2163
- },
2164
- {
2165
- "epoch": 1.2451481103166497,
2166
- "grad_norm": 0.2273741364479065,
2167
- "learning_rate": 1.3378114170405473e-05,
2168
- "loss": 0.1645,
2169
- "step": 304
2170
- },
2171
- {
2172
- "epoch": 1.2492339121552605,
2173
- "grad_norm": 0.2602927088737488,
2174
- "learning_rate": 1.3335959252675566e-05,
2175
- "loss": 0.1723,
2176
- "step": 305
2177
- },
2178
- {
2179
- "epoch": 1.2533197139938714,
2180
- "grad_norm": 0.28329333662986755,
2181
- "learning_rate": 1.3293737524320798e-05,
2182
- "loss": 0.1704,
2183
- "step": 306
2184
- },
2185
- {
2186
- "epoch": 1.2574055158324822,
2187
- "grad_norm": 0.270916610956192,
2188
- "learning_rate": 1.3251449830933052e-05,
2189
- "loss": 0.1621,
2190
- "step": 307
2191
- },
2192
- {
2193
- "epoch": 1.261491317671093,
2194
- "grad_norm": 0.268443763256073,
2195
- "learning_rate": 1.3209097019425317e-05,
2196
- "loss": 0.177,
2197
- "step": 308
2198
- },
2199
- {
2200
- "epoch": 1.2655771195097039,
2201
- "grad_norm": 0.2811964750289917,
2202
- "learning_rate": 1.3166679938014728e-05,
2203
- "loss": 0.1581,
2204
- "step": 309
2205
- },
2206
- {
2207
- "epoch": 1.2696629213483146,
2208
- "grad_norm": 0.2809509038925171,
2209
- "learning_rate": 1.3124199436205575e-05,
2210
- "loss": 0.1625,
2211
- "step": 310
2212
- },
2213
- {
2214
- "epoch": 1.2737487231869253,
2215
- "grad_norm": 0.27429160475730896,
2216
- "learning_rate": 1.3081656364772308e-05,
2217
- "loss": 0.1796,
2218
- "step": 311
2219
- },
2220
- {
2221
- "epoch": 1.2778345250255363,
2222
- "grad_norm": 0.2557787299156189,
2223
- "learning_rate": 1.303905157574247e-05,
2224
- "loss": 0.1664,
2225
- "step": 312
2226
- },
2227
- {
2228
- "epoch": 1.281920326864147,
2229
- "grad_norm": 0.3070502281188965,
2230
- "learning_rate": 1.2996385922379657e-05,
2231
- "loss": 0.1884,
2232
- "step": 313
2233
- },
2234
- {
2235
- "epoch": 1.286006128702758,
2236
- "grad_norm": 0.2685239315032959,
2237
- "learning_rate": 1.2953660259166413e-05,
2238
- "loss": 0.1728,
2239
- "step": 314
2240
- },
2241
- {
2242
- "epoch": 1.2900919305413687,
2243
- "grad_norm": 0.2761296331882477,
2244
- "learning_rate": 1.291087544178713e-05,
2245
- "loss": 0.1754,
2246
- "step": 315
2247
- },
2248
- {
2249
- "epoch": 1.2941777323799797,
2250
- "grad_norm": 0.29421859979629517,
2251
- "learning_rate": 1.2868032327110904e-05,
2252
- "loss": 0.1566,
2253
- "step": 316
2254
- },
2255
- {
2256
- "epoch": 1.2982635342185904,
2257
- "grad_norm": 0.2753983736038208,
2258
- "learning_rate": 1.2825131773174371e-05,
2259
- "loss": 0.1722,
2260
- "step": 317
2261
- },
2262
- {
2263
- "epoch": 1.3023493360572012,
2264
- "grad_norm": 0.280300498008728,
2265
- "learning_rate": 1.2782174639164528e-05,
2266
- "loss": 0.1743,
2267
- "step": 318
2268
- },
2269
- {
2270
- "epoch": 1.3064351378958121,
2271
- "grad_norm": 0.28724053502082825,
2272
- "learning_rate": 1.2739161785401525e-05,
2273
- "loss": 0.1727,
2274
- "step": 319
2275
- },
2276
- {
2277
- "epoch": 1.3105209397344229,
2278
- "grad_norm": 0.24978399276733398,
2279
- "learning_rate": 1.269609407332144e-05,
2280
- "loss": 0.1654,
2281
- "step": 320
2282
- },
2283
- {
2284
- "epoch": 1.3146067415730336,
2285
- "grad_norm": 0.2458401620388031,
2286
- "learning_rate": 1.2652972365459008e-05,
2287
- "loss": 0.1558,
2288
- "step": 321
2289
- },
2290
- {
2291
- "epoch": 1.3186925434116445,
2292
- "grad_norm": 0.29217007756233215,
2293
- "learning_rate": 1.2609797525430374e-05,
2294
- "loss": 0.1749,
2295
- "step": 322
2296
- },
2297
- {
2298
- "epoch": 1.3227783452502553,
2299
- "grad_norm": 0.2738885283470154,
2300
- "learning_rate": 1.2566570417915769e-05,
2301
- "loss": 0.1598,
2302
- "step": 323
2303
- },
2304
- {
2305
- "epoch": 1.3268641470888662,
2306
- "grad_norm": 0.23460422456264496,
2307
- "learning_rate": 1.2523291908642219e-05,
2308
- "loss": 0.1586,
2309
- "step": 324
2310
- },
2311
- {
2312
- "epoch": 1.330949948927477,
2313
- "grad_norm": 0.2899508476257324,
2314
- "learning_rate": 1.2479962864366186e-05,
2315
- "loss": 0.1698,
2316
- "step": 325
2317
- },
2318
- {
2319
- "epoch": 1.335035750766088,
2320
- "grad_norm": 0.2744244933128357,
2321
- "learning_rate": 1.243658415285622e-05,
2322
- "loss": 0.167,
2323
- "step": 326
2324
- },
2325
- {
2326
- "epoch": 1.3391215526046987,
2327
- "grad_norm": 0.3147677183151245,
2328
- "learning_rate": 1.2393156642875579e-05,
2329
- "loss": 0.1592,
2330
- "step": 327
2331
- },
2332
- {
2333
- "epoch": 1.3432073544433094,
2334
- "grad_norm": 0.26883426308631897,
2335
- "learning_rate": 1.2349681204164823e-05,
2336
- "loss": 0.1735,
2337
- "step": 328
2338
- },
2339
- {
2340
- "epoch": 1.3432073544433094,
2341
- "eval_loss": 0.2857210040092468,
2342
- "eval_runtime": 5.8046,
2343
- "eval_samples_per_second": 13.61,
2344
- "eval_steps_per_second": 1.723,
2345
- "step": 328
2346
- },
2347
- {
2348
- "epoch": 1.3472931562819204,
2349
- "grad_norm": 0.26572638750076294,
2350
- "learning_rate": 1.2306158707424402e-05,
2351
- "loss": 0.172,
2352
- "step": 329
2353
- },
2354
- {
2355
- "epoch": 1.351378958120531,
2356
- "grad_norm": 0.3158324062824249,
2357
- "learning_rate": 1.2262590024297226e-05,
2358
- "loss": 0.184,
2359
- "step": 330
2360
- },
2361
- {
2362
- "epoch": 1.355464759959142,
2363
- "grad_norm": 0.2606561779975891,
2364
- "learning_rate": 1.2218976027351177e-05,
2365
- "loss": 0.1681,
2366
- "step": 331
2367
- },
2368
- {
2369
- "epoch": 1.3595505617977528,
2370
- "grad_norm": 0.2860865592956543,
2371
- "learning_rate": 1.2175317590061676e-05,
2372
- "loss": 0.1768,
2373
- "step": 332
2374
- },
2375
- {
2376
- "epoch": 1.3636363636363638,
2377
- "grad_norm": 0.2928154766559601,
2378
- "learning_rate": 1.2131615586794162e-05,
2379
- "loss": 0.1654,
2380
- "step": 333
2381
- },
2382
- {
2383
- "epoch": 1.3677221654749745,
2384
- "grad_norm": 0.2754892110824585,
2385
- "learning_rate": 1.2087870892786588e-05,
2386
- "loss": 0.1679,
2387
- "step": 334
2388
- },
2389
- {
2390
- "epoch": 1.3718079673135852,
2391
- "grad_norm": 0.25418567657470703,
2392
- "learning_rate": 1.2044084384131891e-05,
2393
- "loss": 0.1692,
2394
- "step": 335
2395
- },
2396
- {
2397
- "epoch": 1.3758937691521962,
2398
- "grad_norm": 0.29680415987968445,
2399
- "learning_rate": 1.2000256937760446e-05,
2400
- "loss": 0.1835,
2401
- "step": 336
2402
- },
2403
- {
2404
- "epoch": 1.379979570990807,
2405
- "grad_norm": 0.25421565771102905,
2406
- "learning_rate": 1.1956389431422508e-05,
2407
- "loss": 0.1628,
2408
- "step": 337
2409
- },
2410
- {
2411
- "epoch": 1.3840653728294177,
2412
- "grad_norm": 0.26102015376091003,
2413
- "learning_rate": 1.1912482743670624e-05,
2414
- "loss": 0.1587,
2415
- "step": 338
2416
- },
2417
- {
2418
- "epoch": 1.3881511746680286,
2419
- "grad_norm": 0.2658519744873047,
2420
- "learning_rate": 1.1868537753842052e-05,
2421
- "loss": 0.1622,
2422
- "step": 339
2423
- },
2424
- {
2425
- "epoch": 1.3922369765066394,
2426
- "grad_norm": 0.25693395733833313,
2427
- "learning_rate": 1.1824555342041129e-05,
2428
- "loss": 0.1611,
2429
- "step": 340
2430
- },
2431
- {
2432
- "epoch": 1.3963227783452503,
2433
- "grad_norm": 0.24095548689365387,
2434
- "learning_rate": 1.1780536389121668e-05,
2435
- "loss": 0.1566,
2436
- "step": 341
2437
- },
2438
- {
2439
- "epoch": 1.400408580183861,
2440
- "grad_norm": 0.25440356135368347,
2441
- "learning_rate": 1.1736481776669307e-05,
2442
- "loss": 0.1646,
2443
- "step": 342
2444
- },
2445
- {
2446
- "epoch": 1.404494382022472,
2447
- "grad_norm": 0.23900751769542694,
2448
- "learning_rate": 1.1692392386983837e-05,
2449
- "loss": 0.1567,
2450
- "step": 343
2451
- },
2452
- {
2453
- "epoch": 1.4085801838610827,
2454
- "grad_norm": 0.2516697645187378,
2455
- "learning_rate": 1.1648269103061567e-05,
2456
- "loss": 0.1693,
2457
- "step": 344
2458
- },
2459
- {
2460
- "epoch": 1.4126659856996935,
2461
- "grad_norm": 0.23285552859306335,
2462
- "learning_rate": 1.1604112808577603e-05,
2463
- "loss": 0.1565,
2464
- "step": 345
2465
- },
2466
- {
2467
- "epoch": 1.4167517875383044,
2468
- "grad_norm": 0.22535811364650726,
2469
- "learning_rate": 1.155992438786818e-05,
2470
- "loss": 0.1519,
2471
- "step": 346
2472
- },
2473
- {
2474
- "epoch": 1.4208375893769152,
2475
- "grad_norm": 0.2757152020931244,
2476
- "learning_rate": 1.1515704725912926e-05,
2477
- "loss": 0.1824,
2478
- "step": 347
2479
- },
2480
- {
2481
- "epoch": 1.424923391215526,
2482
- "grad_norm": 0.25517934560775757,
2483
- "learning_rate": 1.1471454708317163e-05,
2484
- "loss": 0.1524,
2485
- "step": 348
2486
- },
2487
- {
2488
- "epoch": 1.4290091930541369,
2489
- "grad_norm": 0.26882752776145935,
2490
- "learning_rate": 1.1427175221294145e-05,
2491
- "loss": 0.1653,
2492
- "step": 349
2493
- },
2494
- {
2495
- "epoch": 1.4330949948927478,
2496
- "grad_norm": 0.2248525470495224,
2497
- "learning_rate": 1.1382867151647333e-05,
2498
- "loss": 0.1458,
2499
- "step": 350
2500
- },
2501
- {
2502
- "epoch": 1.4371807967313586,
2503
- "grad_norm": 0.2648623585700989,
2504
- "learning_rate": 1.1338531386752618e-05,
2505
- "loss": 0.1663,
2506
- "step": 351
2507
- },
2508
- {
2509
- "epoch": 1.4412665985699693,
2510
- "grad_norm": 0.2239081859588623,
2511
- "learning_rate": 1.1294168814540554e-05,
2512
- "loss": 0.1488,
2513
- "step": 352
2514
- },
2515
- {
2516
- "epoch": 1.4453524004085803,
2517
- "grad_norm": 0.2529364824295044,
2518
- "learning_rate": 1.1249780323478585e-05,
2519
- "loss": 0.1633,
2520
- "step": 353
2521
- },
2522
- {
2523
- "epoch": 1.449438202247191,
2524
- "grad_norm": 0.22921797633171082,
2525
- "learning_rate": 1.1205366802553231e-05,
2526
- "loss": 0.1648,
2527
- "step": 354
2528
- },
2529
- {
2530
- "epoch": 1.4535240040858017,
2531
- "grad_norm": 0.29341360926628113,
2532
- "learning_rate": 1.1160929141252303e-05,
2533
- "loss": 0.1657,
2534
- "step": 355
2535
- },
2536
- {
2537
- "epoch": 1.4576098059244127,
2538
- "grad_norm": 0.2699342966079712,
2539
- "learning_rate": 1.1116468229547079e-05,
2540
- "loss": 0.1726,
2541
- "step": 356
2542
- },
2543
- {
2544
- "epoch": 1.4616956077630234,
2545
- "grad_norm": 0.22347010672092438,
2546
- "learning_rate": 1.107198495787448e-05,
2547
- "loss": 0.1549,
2548
- "step": 357
2549
- },
2550
- {
2551
- "epoch": 1.4657814096016344,
2552
- "grad_norm": 0.2765299677848816,
2553
- "learning_rate": 1.1027480217119245e-05,
2554
- "loss": 0.1567,
2555
- "step": 358
2556
- },
2557
- {
2558
- "epoch": 1.4698672114402451,
2559
- "grad_norm": 0.2796229422092438,
2560
- "learning_rate": 1.0982954898596072e-05,
2561
- "loss": 0.1673,
2562
- "step": 359
2563
- },
2564
- {
2565
- "epoch": 1.473953013278856,
2566
- "grad_norm": 0.2708180546760559,
2567
- "learning_rate": 1.0938409894031793e-05,
2568
- "loss": 0.1608,
2569
- "step": 360
2570
- },
2571
- {
2572
- "epoch": 1.4780388151174668,
2573
- "grad_norm": 0.26708030700683594,
2574
- "learning_rate": 1.0893846095547493e-05,
2575
- "loss": 0.1672,
2576
- "step": 361
2577
- },
2578
- {
2579
- "epoch": 1.4821246169560776,
2580
- "grad_norm": 0.25234729051589966,
2581
- "learning_rate": 1.084926439564065e-05,
2582
- "loss": 0.1695,
2583
- "step": 362
2584
- },
2585
- {
2586
- "epoch": 1.4862104187946885,
2587
- "grad_norm": 0.23701204359531403,
2588
- "learning_rate": 1.0804665687167262e-05,
2589
- "loss": 0.1478,
2590
- "step": 363
2591
- },
2592
- {
2593
- "epoch": 1.4902962206332993,
2594
- "grad_norm": 0.23572878539562225,
2595
- "learning_rate": 1.0760050863323961e-05,
2596
- "loss": 0.1518,
2597
- "step": 364
2598
- },
2599
- {
2600
- "epoch": 1.49438202247191,
2601
- "grad_norm": 0.26712414622306824,
2602
- "learning_rate": 1.0715420817630137e-05,
2603
- "loss": 0.1641,
2604
- "step": 365
2605
- },
2606
- {
2607
- "epoch": 1.498467824310521,
2608
- "grad_norm": 0.2618795931339264,
2609
- "learning_rate": 1.0670776443910024e-05,
2610
- "loss": 0.1584,
2611
- "step": 366
2612
- },
2613
- {
2614
- "epoch": 1.502553626149132,
2615
- "grad_norm": 0.24355687201023102,
2616
- "learning_rate": 1.062611863627482e-05,
2617
- "loss": 0.155,
2618
- "step": 367
2619
- },
2620
- {
2621
- "epoch": 1.5066394279877426,
2622
- "grad_norm": 0.28303593397140503,
2623
- "learning_rate": 1.0581448289104759e-05,
2624
- "loss": 0.1699,
2625
- "step": 368
2626
- },
2627
- {
2628
- "epoch": 1.5107252298263534,
2629
- "grad_norm": 0.2682429254055023,
2630
- "learning_rate": 1.0536766297031216e-05,
2631
- "loss": 0.1638,
2632
- "step": 369
2633
- },
2634
- {
2635
- "epoch": 1.5148110316649643,
2636
- "grad_norm": 0.2611052095890045,
2637
- "learning_rate": 1.0492073554918782e-05,
2638
- "loss": 0.162,
2639
- "step": 370
2640
- },
2641
- {
2642
- "epoch": 1.518896833503575,
2643
- "grad_norm": 0.2545654773712158,
2644
- "learning_rate": 1.0447370957847343e-05,
2645
- "loss": 0.171,
2646
- "step": 371
2647
- },
2648
- {
2649
- "epoch": 1.5229826353421858,
2650
- "grad_norm": 0.2540684640407562,
2651
- "learning_rate": 1.0402659401094154e-05,
2652
- "loss": 0.1609,
2653
- "step": 372
2654
- },
2655
- {
2656
- "epoch": 1.5270684371807968,
2657
- "grad_norm": 0.29473230242729187,
2658
- "learning_rate": 1.0357939780115906e-05,
2659
- "loss": 0.1739,
2660
- "step": 373
2661
- },
2662
- {
2663
- "epoch": 1.5311542390194075,
2664
- "grad_norm": 0.23088738322257996,
2665
- "learning_rate": 1.0313212990530804e-05,
2666
- "loss": 0.1396,
2667
- "step": 374
2668
- },
2669
- {
2670
- "epoch": 1.5352400408580182,
2671
- "grad_norm": 0.2865520119667053,
2672
- "learning_rate": 1.0268479928100615e-05,
2673
- "loss": 0.1587,
2674
- "step": 375
2675
- },
2676
- {
2677
- "epoch": 1.5393258426966292,
2678
- "grad_norm": 0.26724815368652344,
2679
- "learning_rate": 1.0223741488712732e-05,
2680
- "loss": 0.1643,
2681
- "step": 376
2682
- },
2683
- {
2684
- "epoch": 1.5434116445352402,
2685
- "grad_norm": 0.2568652033805847,
2686
- "learning_rate": 1.0178998568362243e-05,
2687
- "loss": 0.1502,
2688
- "step": 377
2689
- },
2690
- {
2691
- "epoch": 1.547497446373851,
2692
- "grad_norm": 0.25489166378974915,
2693
- "learning_rate": 1.0134252063133976e-05,
2694
- "loss": 0.1551,
2695
- "step": 378
2696
- },
2697
- {
2698
- "epoch": 1.5515832482124616,
2699
- "grad_norm": 0.2938600480556488,
2700
- "learning_rate": 1.0089502869184549e-05,
2701
- "loss": 0.1721,
2702
- "step": 379
2703
- },
2704
- {
2705
- "epoch": 1.5556690500510726,
2706
- "grad_norm": 0.2571638822555542,
2707
- "learning_rate": 1.0044751882724436e-05,
2708
- "loss": 0.1596,
2709
- "step": 380
2710
- },
2711
- {
2712
- "epoch": 1.5597548518896833,
2713
- "grad_norm": 0.2504737079143524,
2714
- "learning_rate": 1e-05,
2715
- "loss": 0.1652,
2716
- "step": 381
2717
- },
2718
- {
2719
- "epoch": 1.563840653728294,
2720
- "grad_norm": 0.25643548369407654,
2721
- "learning_rate": 9.955248117275566e-06,
2722
- "loss": 0.1646,
2723
- "step": 382
2724
- },
2725
- {
2726
- "epoch": 1.567926455566905,
2727
- "grad_norm": 0.24690495431423187,
2728
- "learning_rate": 9.910497130815454e-06,
2729
- "loss": 0.1692,
2730
- "step": 383
2731
- },
2732
- {
2733
- "epoch": 1.572012257405516,
2734
- "grad_norm": 0.23503315448760986,
2735
- "learning_rate": 9.865747936866027e-06,
2736
- "loss": 0.1614,
2737
- "step": 384
2738
- },
2739
- {
2740
- "epoch": 1.5760980592441267,
2741
- "grad_norm": 0.2600212097167969,
2742
- "learning_rate": 9.821001431637759e-06,
2743
- "loss": 0.1843,
2744
- "step": 385
2745
- },
2746
- {
2747
- "epoch": 1.5801838610827375,
2748
- "grad_norm": 0.24049755930900574,
2749
- "learning_rate": 9.776258511287271e-06,
2750
- "loss": 0.1939,
2751
- "step": 386
2752
- },
2753
- {
2754
- "epoch": 1.5842696629213484,
2755
- "grad_norm": 0.26995447278022766,
2756
- "learning_rate": 9.73152007189939e-06,
2757
- "loss": 0.1608,
2758
- "step": 387
2759
- },
2760
- {
2761
- "epoch": 1.5883554647599591,
2762
- "grad_norm": 0.25705352425575256,
2763
- "learning_rate": 9.6867870094692e-06,
2764
- "loss": 0.1503,
2765
- "step": 388
2766
- },
2767
- {
2768
- "epoch": 1.5924412665985699,
2769
- "grad_norm": 0.2591187059879303,
2770
- "learning_rate": 9.642060219884096e-06,
2771
- "loss": 0.1601,
2772
- "step": 389
2773
- },
2774
- {
2775
- "epoch": 1.5965270684371808,
2776
- "grad_norm": 0.26638317108154297,
2777
- "learning_rate": 9.597340598905851e-06,
2778
- "loss": 0.1525,
2779
- "step": 390
2780
- },
2781
- {
2782
- "epoch": 1.6006128702757916,
2783
- "grad_norm": 0.27399975061416626,
2784
- "learning_rate": 9.55262904215266e-06,
2785
- "loss": 0.1571,
2786
- "step": 391
2787
- },
2788
- {
2789
- "epoch": 1.6046986721144023,
2790
- "grad_norm": 0.298513263463974,
2791
- "learning_rate": 9.50792644508122e-06,
2792
- "loss": 0.1734,
2793
- "step": 392
2794
- },
2795
- {
2796
- "epoch": 1.6087844739530133,
2797
- "grad_norm": 0.2932952344417572,
2798
- "learning_rate": 9.463233702968784e-06,
2799
- "loss": 0.1595,
2800
- "step": 393
2801
- },
2802
- {
2803
- "epoch": 1.6128702757916242,
2804
- "grad_norm": 0.2699350118637085,
2805
- "learning_rate": 9.418551710895243e-06,
2806
- "loss": 0.1513,
2807
- "step": 394
2808
- },
2809
- {
2810
- "epoch": 1.616956077630235,
2811
- "grad_norm": 0.2710689902305603,
2812
- "learning_rate": 9.373881363725182e-06,
2813
- "loss": 0.1558,
2814
- "step": 395
2815
- },
2816
- {
2817
- "epoch": 1.6210418794688457,
2818
- "grad_norm": 0.26967060565948486,
2819
- "learning_rate": 9.329223556089976e-06,
2820
- "loss": 0.1532,
2821
- "step": 396
2822
- },
2823
- {
2824
- "epoch": 1.6251276813074567,
2825
- "grad_norm": 0.26783767342567444,
2826
- "learning_rate": 9.284579182369868e-06,
2827
- "loss": 0.167,
2828
- "step": 397
2829
- },
2830
- {
2831
- "epoch": 1.6292134831460674,
2832
- "grad_norm": 0.2573103606700897,
2833
- "learning_rate": 9.239949136676042e-06,
2834
- "loss": 0.1675,
2835
- "step": 398
2836
- },
2837
- {
2838
- "epoch": 1.6332992849846781,
2839
- "grad_norm": 0.2554529905319214,
2840
- "learning_rate": 9.195334312832742e-06,
2841
- "loss": 0.1653,
2842
- "step": 399
2843
- },
2844
- {
2845
- "epoch": 1.637385086823289,
2846
- "grad_norm": 0.2697620391845703,
2847
- "learning_rate": 9.15073560435935e-06,
2848
- "loss": 0.1754,
2849
- "step": 400
2850
- },
2851
- {
2852
- "epoch": 1.6414708886619,
2853
- "grad_norm": 0.2908802032470703,
2854
- "learning_rate": 9.10615390445251e-06,
2855
- "loss": 0.1694,
2856
- "step": 401
2857
- },
2858
- {
2859
- "epoch": 1.6455566905005106,
2860
- "grad_norm": 0.28988802433013916,
2861
- "learning_rate": 9.061590105968208e-06,
2862
- "loss": 0.1596,
2863
- "step": 402
2864
- },
2865
- {
2866
- "epoch": 1.6496424923391215,
2867
- "grad_norm": 0.27670571208000183,
2868
- "learning_rate": 9.01704510140393e-06,
2869
- "loss": 0.1486,
2870
- "step": 403
2871
- },
2872
- {
2873
- "epoch": 1.6537282941777325,
2874
- "grad_norm": 0.29919058084487915,
2875
- "learning_rate": 8.97251978288076e-06,
2876
- "loss": 0.1668,
2877
- "step": 404
2878
- },
2879
- {
2880
- "epoch": 1.6578140960163432,
2881
- "grad_norm": 0.2605692446231842,
2882
- "learning_rate": 8.928015042125523e-06,
2883
- "loss": 0.1533,
2884
- "step": 405
2885
- },
2886
- {
2887
- "epoch": 1.661899897854954,
2888
- "grad_norm": 0.27188801765441895,
2889
- "learning_rate": 8.883531770452924e-06,
2890
- "loss": 0.1591,
2891
- "step": 406
2892
- },
2893
- {
2894
- "epoch": 1.665985699693565,
2895
- "grad_norm": 0.2607693374156952,
2896
- "learning_rate": 8.839070858747697e-06,
2897
- "loss": 0.1631,
2898
- "step": 407
2899
- },
2900
- {
2901
- "epoch": 1.6700715015321757,
2902
- "grad_norm": 0.26251208782196045,
2903
- "learning_rate": 8.79463319744677e-06,
2904
- "loss": 0.1669,
2905
- "step": 408
2906
- },
2907
- {
2908
- "epoch": 1.6741573033707864,
2909
- "grad_norm": 0.27655109763145447,
2910
- "learning_rate": 8.750219676521417e-06,
2911
- "loss": 0.1797,
2912
- "step": 409
2913
- },
2914
- {
2915
- "epoch": 1.6782431052093973,
2916
- "grad_norm": 0.2489909827709198,
2917
- "learning_rate": 8.705831185459446e-06,
2918
- "loss": 0.1684,
2919
- "step": 410
2920
- },
2921
- {
2922
- "epoch": 1.6782431052093973,
2923
- "eval_loss": 0.2804652154445648,
2924
- "eval_runtime": 5.3248,
2925
- "eval_samples_per_second": 14.836,
2926
- "eval_steps_per_second": 1.878,
2927
- "step": 410
2928
- },
2929
- {
2930
- "epoch": 1.6823289070480083,
2931
- "grad_norm": 0.2541872560977936,
2932
- "learning_rate": 8.661468613247387e-06,
2933
- "loss": 0.1738,
2934
- "step": 411
2935
- },
2936
- {
2937
- "epoch": 1.686414708886619,
2938
- "grad_norm": 0.26432761549949646,
2939
- "learning_rate": 8.617132848352672e-06,
2940
- "loss": 0.1523,
2941
- "step": 412
2942
- },
2943
- {
2944
- "epoch": 1.6905005107252298,
2945
- "grad_norm": 0.24682320654392242,
2946
- "learning_rate": 8.572824778705858e-06,
2947
- "loss": 0.1685,
2948
- "step": 413
2949
- },
2950
- {
2951
- "epoch": 1.6945863125638407,
2952
- "grad_norm": 0.255575567483902,
2953
- "learning_rate": 8.528545291682839e-06,
2954
- "loss": 0.1603,
2955
- "step": 414
2956
- },
2957
- {
2958
- "epoch": 1.6986721144024515,
2959
- "grad_norm": 0.27255284786224365,
2960
- "learning_rate": 8.484295274087077e-06,
2961
- "loss": 0.1649,
2962
- "step": 415
2963
- },
2964
- {
2965
- "epoch": 1.7027579162410622,
2966
- "grad_norm": 0.2935710549354553,
2967
- "learning_rate": 8.440075612131823e-06,
2968
- "loss": 0.1824,
2969
- "step": 416
2970
- },
2971
- {
2972
- "epoch": 1.7068437180796732,
2973
- "grad_norm": 0.28145232796669006,
2974
- "learning_rate": 8.395887191422397e-06,
2975
- "loss": 0.1664,
2976
- "step": 417
2977
- },
2978
- {
2979
- "epoch": 1.7109295199182841,
2980
- "grad_norm": 0.2540966272354126,
2981
- "learning_rate": 8.351730896938438e-06,
2982
- "loss": 0.139,
2983
- "step": 418
2984
- },
2985
- {
2986
- "epoch": 1.7150153217568946,
2987
- "grad_norm": 0.2761797606945038,
2988
- "learning_rate": 8.307607613016166e-06,
2989
- "loss": 0.1468,
2990
- "step": 419
2991
- },
2992
- {
2993
- "epoch": 1.7191011235955056,
2994
- "grad_norm": 0.26004406809806824,
2995
- "learning_rate": 8.263518223330698e-06,
2996
- "loss": 0.1791,
2997
- "step": 420
2998
- },
2999
- {
3000
- "epoch": 1.7231869254341166,
3001
- "grad_norm": 0.26706498861312866,
3002
- "learning_rate": 8.219463610878336e-06,
3003
- "loss": 0.1767,
3004
- "step": 421
3005
- },
3006
- {
3007
- "epoch": 1.7272727272727273,
3008
- "grad_norm": 0.25433361530303955,
3009
- "learning_rate": 8.175444657958875e-06,
3010
- "loss": 0.1641,
3011
- "step": 422
3012
- },
3013
- {
3014
- "epoch": 1.731358529111338,
3015
- "grad_norm": 0.28011849522590637,
3016
- "learning_rate": 8.131462246157953e-06,
3017
- "loss": 0.1667,
3018
- "step": 423
3019
- },
3020
- {
3021
- "epoch": 1.735444330949949,
3022
- "grad_norm": 0.24411511421203613,
3023
- "learning_rate": 8.087517256329376e-06,
3024
- "loss": 0.1484,
3025
- "step": 424
3026
- },
3027
- {
3028
- "epoch": 1.7395301327885597,
3029
- "grad_norm": 0.2515384554862976,
3030
- "learning_rate": 8.043610568577497e-06,
3031
- "loss": 0.149,
3032
- "step": 425
3033
- },
3034
- {
3035
- "epoch": 1.7436159346271705,
3036
- "grad_norm": 0.28085580468177795,
3037
- "learning_rate": 7.999743062239557e-06,
3038
- "loss": 0.1758,
3039
- "step": 426
3040
- },
3041
- {
3042
- "epoch": 1.7477017364657814,
3043
- "grad_norm": 0.2542356848716736,
3044
- "learning_rate": 7.95591561586811e-06,
3045
- "loss": 0.1526,
3046
- "step": 427
3047
- },
3048
- {
3049
- "epoch": 1.7517875383043924,
3050
- "grad_norm": 0.2624610960483551,
3051
- "learning_rate": 7.912129107213417e-06,
3052
- "loss": 0.1669,
3053
- "step": 428
3054
- },
3055
- {
3056
- "epoch": 1.7558733401430031,
3057
- "grad_norm": 0.2531009316444397,
3058
- "learning_rate": 7.868384413205842e-06,
3059
- "loss": 0.1728,
3060
- "step": 429
3061
- },
3062
- {
3063
- "epoch": 1.7599591419816139,
3064
- "grad_norm": 0.26832813024520874,
3065
- "learning_rate": 7.824682409938328e-06,
3066
- "loss": 0.1689,
3067
- "step": 430
3068
- },
3069
- {
3070
- "epoch": 1.7640449438202248,
3071
- "grad_norm": 0.26647037267684937,
3072
- "learning_rate": 7.781023972648826e-06,
3073
- "loss": 0.1566,
3074
- "step": 431
3075
- },
3076
- {
3077
- "epoch": 1.7681307456588355,
3078
- "grad_norm": 0.2441844940185547,
3079
- "learning_rate": 7.73740997570278e-06,
3080
- "loss": 0.1475,
3081
- "step": 432
3082
- },
3083
- {
3084
- "epoch": 1.7722165474974463,
3085
- "grad_norm": 0.26222023367881775,
3086
- "learning_rate": 7.6938412925756e-06,
3087
- "loss": 0.1627,
3088
- "step": 433
3089
- },
3090
- {
3091
- "epoch": 1.7763023493360572,
3092
- "grad_norm": 0.27849847078323364,
3093
- "learning_rate": 7.650318795835179e-06,
3094
- "loss": 0.1692,
3095
- "step": 434
3096
- },
3097
- {
3098
- "epoch": 1.780388151174668,
3099
- "grad_norm": 0.23362480103969574,
3100
- "learning_rate": 7.606843357124426e-06,
3101
- "loss": 0.1486,
3102
- "step": 435
3103
- },
3104
- {
3105
- "epoch": 1.7844739530132787,
3106
- "grad_norm": 0.25098103284835815,
3107
- "learning_rate": 7.563415847143782e-06,
3108
- "loss": 0.1586,
3109
- "step": 436
3110
- },
3111
- {
3112
- "epoch": 1.7885597548518897,
3113
- "grad_norm": 0.2666711211204529,
3114
- "learning_rate": 7.520037135633817e-06,
3115
- "loss": 0.1631,
3116
- "step": 437
3117
- },
3118
- {
3119
- "epoch": 1.7926455566905006,
3120
- "grad_norm": 0.25154757499694824,
3121
- "learning_rate": 7.476708091357783e-06,
3122
- "loss": 0.1496,
3123
- "step": 438
3124
- },
3125
- {
3126
- "epoch": 1.7967313585291114,
3127
- "grad_norm": 0.2870493233203888,
3128
- "learning_rate": 7.433429582084233e-06,
3129
- "loss": 0.1718,
3130
- "step": 439
3131
- },
3132
- {
3133
- "epoch": 1.800817160367722,
3134
- "grad_norm": 0.2450946867465973,
3135
- "learning_rate": 7.39020247456963e-06,
3136
- "loss": 0.1551,
3137
- "step": 440
3138
- },
3139
- {
3140
- "epoch": 1.804902962206333,
3141
- "grad_norm": 0.2701391577720642,
3142
- "learning_rate": 7.347027634540993e-06,
3143
- "loss": 0.1611,
3144
- "step": 441
3145
- },
3146
- {
3147
- "epoch": 1.8089887640449438,
3148
- "grad_norm": 0.25652557611465454,
3149
- "learning_rate": 7.303905926678565e-06,
3150
- "loss": 0.1571,
3151
- "step": 442
3152
- },
3153
- {
3154
- "epoch": 1.8130745658835545,
3155
- "grad_norm": 0.24130114912986755,
3156
- "learning_rate": 7.260838214598475e-06,
3157
- "loss": 0.1525,
3158
- "step": 443
3159
- },
3160
- {
3161
- "epoch": 1.8171603677221655,
3162
- "grad_norm": 0.2391010969877243,
3163
- "learning_rate": 7.217825360835475e-06,
3164
- "loss": 0.1478,
3165
- "step": 444
3166
- },
3167
- {
3168
- "epoch": 1.8212461695607765,
3169
- "grad_norm": 0.24808183312416077,
3170
- "learning_rate": 7.174868226825631e-06,
3171
- "loss": 0.1449,
3172
- "step": 445
3173
- },
3174
- {
3175
- "epoch": 1.825331971399387,
3176
- "grad_norm": 0.24367845058441162,
3177
- "learning_rate": 7.131967672889101e-06,
3178
- "loss": 0.1527,
3179
- "step": 446
3180
- },
3181
- {
3182
- "epoch": 1.829417773237998,
3183
- "grad_norm": 0.24614740908145905,
3184
- "learning_rate": 7.089124558212872e-06,
3185
- "loss": 0.1473,
3186
- "step": 447
3187
- },
3188
- {
3189
- "epoch": 1.8335035750766089,
3190
- "grad_norm": 0.23732498288154602,
3191
- "learning_rate": 7.04633974083359e-06,
3192
- "loss": 0.1676,
3193
- "step": 448
3194
- },
3195
- {
3196
- "epoch": 1.8375893769152196,
3197
- "grad_norm": 0.26191797852516174,
3198
- "learning_rate": 7.003614077620348e-06,
3199
- "loss": 0.1625,
3200
- "step": 449
3201
- },
3202
- {
3203
- "epoch": 1.8416751787538304,
3204
- "grad_norm": 0.22175060212612152,
3205
- "learning_rate": 6.960948424257532e-06,
3206
- "loss": 0.1417,
3207
- "step": 450
3208
- },
3209
- {
3210
- "epoch": 1.8457609805924413,
3211
- "grad_norm": 0.2599637806415558,
3212
- "learning_rate": 6.918343635227694e-06,
3213
- "loss": 0.1542,
3214
- "step": 451
3215
- },
3216
- {
3217
- "epoch": 1.849846782431052,
3218
- "grad_norm": 0.2902531325817108,
3219
- "learning_rate": 6.8758005637944245e-06,
3220
- "loss": 0.1673,
3221
- "step": 452
3222
- },
3223
- {
3224
- "epoch": 1.8539325842696628,
3225
- "grad_norm": 0.26200827956199646,
3226
- "learning_rate": 6.833320061985278e-06,
3227
- "loss": 0.1507,
3228
- "step": 453
3229
- },
3230
- {
3231
- "epoch": 1.8580183861082737,
3232
- "grad_norm": 0.22496499121189117,
3233
- "learning_rate": 6.7909029805746855e-06,
3234
- "loss": 0.1563,
3235
- "step": 454
3236
- },
3237
- {
3238
- "epoch": 1.8621041879468847,
3239
- "grad_norm": 0.26499348878860474,
3240
- "learning_rate": 6.7485501690669495e-06,
3241
- "loss": 0.1588,
3242
- "step": 455
3243
- },
3244
- {
3245
- "epoch": 1.8661899897854954,
3246
- "grad_norm": 0.21678292751312256,
3247
- "learning_rate": 6.706262475679205e-06,
3248
- "loss": 0.1446,
3249
- "step": 456
3250
- },
3251
- {
3252
- "epoch": 1.8702757916241062,
3253
- "grad_norm": 0.249608114361763,
3254
- "learning_rate": 6.664040747324437e-06,
3255
- "loss": 0.1574,
3256
- "step": 457
3257
- },
3258
- {
3259
- "epoch": 1.8743615934627171,
3260
- "grad_norm": 0.27170929312705994,
3261
- "learning_rate": 6.62188582959453e-06,
3262
- "loss": 0.1714,
3263
- "step": 458
3264
- },
3265
- {
3266
- "epoch": 1.8784473953013279,
3267
- "grad_norm": 0.26091060042381287,
3268
- "learning_rate": 6.579798566743314e-06,
3269
- "loss": 0.153,
3270
- "step": 459
3271
- },
3272
- {
3273
- "epoch": 1.8825331971399386,
3274
- "grad_norm": 0.2784002125263214,
3275
- "learning_rate": 6.537779801669677e-06,
3276
- "loss": 0.1594,
3277
- "step": 460
3278
- },
3279
- {
3280
- "epoch": 1.8866189989785496,
3281
- "grad_norm": 0.2827843427658081,
3282
- "learning_rate": 6.495830375900665e-06,
3283
- "loss": 0.1713,
3284
- "step": 461
3285
- },
3286
- {
3287
- "epoch": 1.8907048008171605,
3288
- "grad_norm": 0.24465838074684143,
3289
- "learning_rate": 6.453951129574644e-06,
3290
- "loss": 0.1398,
3291
- "step": 462
3292
- },
3293
- {
3294
- "epoch": 1.894790602655771,
3295
- "grad_norm": 0.24695105850696564,
3296
- "learning_rate": 6.41214290142447e-06,
3297
- "loss": 0.1569,
3298
- "step": 463
3299
- },
3300
- {
3301
- "epoch": 1.898876404494382,
3302
- "grad_norm": 0.23522843420505524,
3303
- "learning_rate": 6.370406528760675e-06,
3304
- "loss": 0.1572,
3305
- "step": 464
3306
- },
3307
- {
3308
- "epoch": 1.902962206332993,
3309
- "grad_norm": 0.28958627581596375,
3310
- "learning_rate": 6.3287428474547256e-06,
3311
- "loss": 0.1576,
3312
- "step": 465
3313
- },
3314
- {
3315
- "epoch": 1.9070480081716037,
3316
- "grad_norm": 0.22417336702346802,
3317
- "learning_rate": 6.287152691922264e-06,
3318
- "loss": 0.151,
3319
- "step": 466
3320
- },
3321
- {
3322
- "epoch": 1.9111338100102144,
3323
- "grad_norm": 0.24010370671749115,
3324
- "learning_rate": 6.245636895106403e-06,
3325
- "loss": 0.1422,
3326
- "step": 467
3327
- },
3328
- {
3329
- "epoch": 1.9152196118488254,
3330
- "grad_norm": 0.257285475730896,
3331
- "learning_rate": 6.204196288461037e-06,
3332
- "loss": 0.1541,
3333
- "step": 468
3334
- },
3335
- {
3336
- "epoch": 1.9193054136874361,
3337
- "grad_norm": 0.2468208223581314,
3338
- "learning_rate": 6.162831701934203e-06,
3339
- "loss": 0.1618,
3340
- "step": 469
3341
- },
3342
- {
3343
- "epoch": 1.9233912155260469,
3344
- "grad_norm": 0.2693644165992737,
3345
- "learning_rate": 6.121543963951453e-06,
3346
- "loss": 0.1597,
3347
- "step": 470
3348
- },
3349
- {
3350
- "epoch": 1.9274770173646578,
3351
- "grad_norm": 0.22864265739917755,
3352
- "learning_rate": 6.080333901399252e-06,
3353
- "loss": 0.1447,
3354
- "step": 471
3355
- },
3356
- {
3357
- "epoch": 1.9315628192032688,
3358
- "grad_norm": 0.2744729518890381,
3359
- "learning_rate": 6.039202339608432e-06,
3360
- "loss": 0.1649,
3361
- "step": 472
3362
- },
3363
- {
3364
- "epoch": 1.9356486210418795,
3365
- "grad_norm": 0.2626800537109375,
3366
- "learning_rate": 5.998150102337665e-06,
3367
- "loss": 0.1465,
3368
- "step": 473
3369
- },
3370
- {
3371
- "epoch": 1.9397344228804902,
3372
- "grad_norm": 0.24998779594898224,
3373
- "learning_rate": 5.957178011756952e-06,
3374
- "loss": 0.1314,
3375
- "step": 474
3376
- },
3377
- {
3378
- "epoch": 1.9438202247191012,
3379
- "grad_norm": 0.25133228302001953,
3380
- "learning_rate": 5.9162868884311596e-06,
3381
- "loss": 0.1541,
3382
- "step": 475
3383
- },
3384
- {
3385
- "epoch": 1.947906026557712,
3386
- "grad_norm": 0.27924278378486633,
3387
- "learning_rate": 5.875477551303596e-06,
3388
- "loss": 0.1588,
3389
- "step": 476
3390
- },
3391
- {
3392
- "epoch": 1.9519918283963227,
3393
- "grad_norm": 0.23838290572166443,
3394
- "learning_rate": 5.834750817679606e-06,
3395
- "loss": 0.1559,
3396
- "step": 477
3397
- },
3398
- {
3399
- "epoch": 1.9560776302349336,
3400
- "grad_norm": 0.20889320969581604,
3401
- "learning_rate": 5.794107503210187e-06,
3402
- "loss": 0.1376,
3403
- "step": 478
3404
- },
3405
- {
3406
- "epoch": 1.9601634320735446,
3407
- "grad_norm": 0.24007071554660797,
3408
- "learning_rate": 5.753548421875686e-06,
3409
- "loss": 0.1641,
3410
- "step": 479
3411
- },
3412
- {
3413
- "epoch": 1.9642492339121551,
3414
- "grad_norm": 0.25776174664497375,
3415
- "learning_rate": 5.713074385969457e-06,
3416
- "loss": 0.1486,
3417
- "step": 480
3418
- },
3419
- {
3420
- "epoch": 1.968335035750766,
3421
- "grad_norm": 0.24709415435791016,
3422
- "learning_rate": 5.672686206081638e-06,
3423
- "loss": 0.1647,
3424
- "step": 481
3425
- },
3426
- {
3427
- "epoch": 1.972420837589377,
3428
- "grad_norm": 0.2545711398124695,
3429
- "learning_rate": 5.632384691082874e-06,
3430
- "loss": 0.1558,
3431
- "step": 482
3432
- },
3433
- {
3434
- "epoch": 1.9765066394279878,
3435
- "grad_norm": 0.25180289149284363,
3436
- "learning_rate": 5.5921706481081405e-06,
3437
- "loss": 0.1405,
3438
- "step": 483
3439
- },
3440
- {
3441
- "epoch": 1.9805924412665985,
3442
- "grad_norm": 0.2353358417749405,
3443
- "learning_rate": 5.55204488254059e-06,
3444
- "loss": 0.1496,
3445
- "step": 484
3446
- },
3447
- {
3448
- "epoch": 1.9846782431052095,
3449
- "grad_norm": 0.25672510266304016,
3450
- "learning_rate": 5.512008197995379e-06,
3451
- "loss": 0.1557,
3452
- "step": 485
3453
- },
3454
- {
3455
- "epoch": 1.9887640449438202,
3456
- "grad_norm": 0.24256597459316254,
3457
- "learning_rate": 5.47206139630363e-06,
3458
- "loss": 0.1366,
3459
- "step": 486
3460
- },
3461
- {
3462
- "epoch": 1.992849846782431,
3463
- "grad_norm": 0.2704496681690216,
3464
- "learning_rate": 5.432205277496327e-06,
3465
- "loss": 0.1492,
3466
- "step": 487
3467
- },
3468
- {
3469
- "epoch": 1.996935648621042,
3470
- "grad_norm": 0.24868719279766083,
3471
- "learning_rate": 5.3924406397883174e-06,
3472
- "loss": 0.1632,
3473
- "step": 488
3474
- }
3475
- ],
3476
- "logging_steps": 1,
3477
- "max_steps": 732,
3478
- "num_input_tokens_seen": 0,
3479
- "num_train_epochs": 3,
3480
- "save_steps": 244,
3481
- "stateful_callbacks": {
3482
- "TrainerControl": {
3483
- "args": {
3484
- "should_epoch_stop": false,
3485
- "should_evaluate": false,
3486
- "should_log": false,
3487
- "should_save": true,
3488
- "should_training_stop": false
3489
- },
3490
- "attributes": {}
3491
- }
3492
- },
3493
- "total_flos": 8.264375507248742e+17,
3494
- "train_batch_size": 8,
3495
- "trial_name": null,
3496
- "trial_params": null
3497
- }
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
checkpoint-488/training_args.bin DELETED
@@ -1,3 +0,0 @@
1
- version https://git-lfs.github.com/spec/v1
2
- oid sha256:d8a51e619db41bfecd4e2978f86e8cb848022d32d79a042203708d80062927ea
3
- size 10744
 
 
 
 
checkpoint-488/vocab.json DELETED
The diff for this file is too large to render. See raw diff
 
checkpoint-488/zero_to_fp32.py DELETED
@@ -1,760 +0,0 @@
1
- #!/usr/bin/env python
2
-
3
- # Copyright (c) Microsoft Corporation.
4
- # SPDX-License-Identifier: Apache-2.0
5
-
6
- # DeepSpeed Team
7
-
8
- # This script extracts fp32 consolidated weights from a zero 1, 2 and 3 DeepSpeed checkpoints. It gets
9
- # copied into the top level checkpoint dir, so the user can easily do the conversion at any point in
10
- # the future. Once extracted, the weights don't require DeepSpeed and can be used in any
11
- # application.
12
- #
13
- # example:
14
- # python zero_to_fp32.py . output_dir/
15
- # or
16
- # python zero_to_fp32.py . output_dir/ --safe_serialization
17
-
18
- import argparse
19
- import torch
20
- import glob
21
- import math
22
- import os
23
- import re
24
- import gc
25
- import json
26
- import numpy as np
27
- from tqdm import tqdm
28
- from collections import OrderedDict
29
- from dataclasses import dataclass
30
-
31
- # while this script doesn't use deepspeed to recover data, since the checkpoints are pickled with
32
- # DeepSpeed data structures it has to be available in the current python environment.
33
- from deepspeed.utils import logger
34
- from deepspeed.checkpoint.constants import (DS_VERSION, OPTIMIZER_STATE_DICT, SINGLE_PARTITION_OF_FP32_GROUPS,
35
- FP32_FLAT_GROUPS, ZERO_STAGE, PARTITION_COUNT, PARAM_SHAPES, BUFFER_NAMES,
36
- FROZEN_PARAM_SHAPES, FROZEN_PARAM_FRAGMENTS)
37
-
38
-
39
- @dataclass
40
- class zero_model_state:
41
- buffers: dict()
42
- param_shapes: dict()
43
- shared_params: list
44
- ds_version: int
45
- frozen_param_shapes: dict()
46
- frozen_param_fragments: dict()
47
-
48
-
49
- debug = 0
50
-
51
- # load to cpu
52
- device = torch.device('cpu')
53
-
54
-
55
- def atoi(text):
56
- return int(text) if text.isdigit() else text
57
-
58
-
59
- def natural_keys(text):
60
- '''
61
- alist.sort(key=natural_keys) sorts in human order
62
- http://nedbatchelder.com/blog/200712/human_sorting.html
63
- (See Toothy's implementation in the comments)
64
- '''
65
- return [atoi(c) for c in re.split(r'(\d+)', text)]
66
-
67
-
68
- def get_model_state_file(checkpoint_dir, zero_stage):
69
- if not os.path.isdir(checkpoint_dir):
70
- raise FileNotFoundError(f"Directory '{checkpoint_dir}' doesn't exist")
71
-
72
- # there should be only one file
73
- if zero_stage <= 2:
74
- file = os.path.join(checkpoint_dir, "mp_rank_00_model_states.pt")
75
- elif zero_stage == 3:
76
- file = os.path.join(checkpoint_dir, "zero_pp_rank_0_mp_rank_00_model_states.pt")
77
-
78
- if not os.path.exists(file):
79
- raise FileNotFoundError(f"can't find model states file at '{file}'")
80
-
81
- return file
82
-
83
-
84
- def get_checkpoint_files(checkpoint_dir, glob_pattern):
85
- # XXX: need to test that this simple glob rule works for multi-node setup too
86
- ckpt_files = sorted(glob.glob(os.path.join(checkpoint_dir, glob_pattern)), key=natural_keys)
87
-
88
- if len(ckpt_files) == 0:
89
- raise FileNotFoundError(f"can't find {glob_pattern} files in directory '{checkpoint_dir}'")
90
-
91
- return ckpt_files
92
-
93
-
94
- def get_optim_files(checkpoint_dir):
95
- return get_checkpoint_files(checkpoint_dir, "*_optim_states.pt")
96
-
97
-
98
- def get_model_state_files(checkpoint_dir):
99
- return get_checkpoint_files(checkpoint_dir, "*_model_states.pt")
100
-
101
-
102
- def parse_model_states(files):
103
- zero_model_states = []
104
- for file in files:
105
- state_dict = torch.load(file, map_location=device, weights_only=False)
106
-
107
- if BUFFER_NAMES not in state_dict:
108
- raise ValueError(f"{file} is not a model state checkpoint")
109
- buffer_names = state_dict[BUFFER_NAMES]
110
- if debug:
111
- print("Found buffers:", buffer_names)
112
-
113
- # recover just the buffers while restoring them to fp32 if they were saved in fp16
114
- buffers = {k: v.float() for k, v in state_dict["module"].items() if k in buffer_names}
115
- param_shapes = state_dict[PARAM_SHAPES]
116
-
117
- # collect parameters that are included in param_shapes
118
- param_names = []
119
- for s in param_shapes:
120
- for name in s.keys():
121
- param_names.append(name)
122
-
123
- # update with frozen parameters
124
- frozen_param_shapes = state_dict.get(FROZEN_PARAM_SHAPES, None)
125
- if frozen_param_shapes is not None:
126
- if debug:
127
- print(f"Found frozen_param_shapes: {frozen_param_shapes}")
128
- param_names += list(frozen_param_shapes.keys())
129
-
130
- # handle shared params
131
- shared_params = [[k, v] for k, v in state_dict["shared_params"].items()]
132
-
133
- ds_version = state_dict.get(DS_VERSION, None)
134
-
135
- frozen_param_fragments = state_dict.get(FROZEN_PARAM_FRAGMENTS, None)
136
-
137
- z_model_state = zero_model_state(buffers=buffers,
138
- param_shapes=param_shapes,
139
- shared_params=shared_params,
140
- ds_version=ds_version,
141
- frozen_param_shapes=frozen_param_shapes,
142
- frozen_param_fragments=frozen_param_fragments)
143
- zero_model_states.append(z_model_state)
144
-
145
- return zero_model_states
146
-
147
-
148
- def parse_optim_states(files, ds_checkpoint_dir):
149
- total_files = len(files)
150
- state_dicts = []
151
- for f in tqdm(files, desc='Loading checkpoint shards'):
152
- state_dict = torch.load(f, map_location=device, mmap=True, weights_only=False)
153
- # immediately discard the potentially huge 2 optimizer states as we only care for fp32 master weights
154
- # and also handle the case where it was already removed by another helper script
155
- state_dict["optimizer_state_dict"].pop("optimizer_state_dict", None)
156
- state_dicts.append(state_dict)
157
-
158
- if not ZERO_STAGE in state_dicts[0][OPTIMIZER_STATE_DICT]:
159
- raise ValueError(f"{files[0]} is not a zero checkpoint")
160
- zero_stage = state_dicts[0][OPTIMIZER_STATE_DICT][ZERO_STAGE]
161
- world_size = state_dicts[0][OPTIMIZER_STATE_DICT][PARTITION_COUNT]
162
-
163
- # For ZeRO-2 each param group can have different partition_count as data parallelism for expert
164
- # parameters can be different from data parallelism for non-expert parameters. So we can just
165
- # use the max of the partition_count to get the dp world_size.
166
-
167
- if type(world_size) is list:
168
- world_size = max(world_size)
169
-
170
- if world_size != total_files:
171
- raise ValueError(
172
- f"Expected {world_size} of '*_optim_states.pt' under '{ds_checkpoint_dir}' but found {total_files} files. "
173
- "Possibly due to an overwrite of an old checkpoint, or a checkpoint didn't get saved by one or more processes."
174
- )
175
-
176
- # the groups are named differently in each stage
177
- if zero_stage <= 2:
178
- fp32_groups_key = SINGLE_PARTITION_OF_FP32_GROUPS
179
- elif zero_stage == 3:
180
- fp32_groups_key = FP32_FLAT_GROUPS
181
- else:
182
- raise ValueError(f"unknown zero stage {zero_stage}")
183
-
184
- fp32_flat_groups = [state_dicts[i][OPTIMIZER_STATE_DICT][fp32_groups_key] for i in range(len(state_dicts))]
185
- return zero_stage, world_size, fp32_flat_groups
186
-
187
-
188
- def _get_fp32_state_dict_from_zero_checkpoint(ds_checkpoint_dir, exclude_frozen_parameters):
189
- """
190
- Returns fp32 state_dict reconstructed from ds checkpoint
191
-
192
- Args:
193
- - ``ds_checkpoint_dir``: path to the deepspeed checkpoint folder (where the optimizer files are)
194
-
195
- """
196
- print(f"Processing zero checkpoint '{ds_checkpoint_dir}'")
197
-
198
- optim_files = get_optim_files(ds_checkpoint_dir)
199
- zero_stage, world_size, fp32_flat_groups = parse_optim_states(optim_files, ds_checkpoint_dir)
200
- print(f"Detected checkpoint of type zero stage {zero_stage}, world_size: {world_size}")
201
-
202
- model_files = get_model_state_files(ds_checkpoint_dir)
203
-
204
- zero_model_states = parse_model_states(model_files)
205
- print(f'Parsing checkpoint created by deepspeed=={zero_model_states[0].ds_version}')
206
-
207
- if zero_stage <= 2:
208
- return _get_fp32_state_dict_from_zero2_checkpoint(world_size, fp32_flat_groups, zero_model_states,
209
- exclude_frozen_parameters)
210
- elif zero_stage == 3:
211
- return _get_fp32_state_dict_from_zero3_checkpoint(world_size, fp32_flat_groups, zero_model_states,
212
- exclude_frozen_parameters)
213
-
214
-
215
- def _zero2_merge_frozen_params(state_dict, zero_model_states):
216
- if zero_model_states[0].frozen_param_shapes is None or len(zero_model_states[0].frozen_param_shapes) == 0:
217
- return
218
-
219
- frozen_param_shapes = zero_model_states[0].frozen_param_shapes
220
- frozen_param_fragments = zero_model_states[0].frozen_param_fragments
221
-
222
- if debug:
223
- num_elem = sum(s.numel() for s in frozen_param_shapes.values())
224
- print(f'rank 0: {FROZEN_PARAM_SHAPES}.numel = {num_elem}')
225
-
226
- wanted_params = len(frozen_param_shapes)
227
- wanted_numel = sum(s.numel() for s in frozen_param_shapes.values())
228
- avail_numel = sum([p.numel() for p in frozen_param_fragments.values()])
229
- print(f'Frozen params: Have {avail_numel} numels to process.')
230
- print(f'Frozen params: Need {wanted_numel} numels in {wanted_params} params')
231
-
232
- total_params = 0
233
- total_numel = 0
234
- for name, shape in frozen_param_shapes.items():
235
- total_params += 1
236
- unpartitioned_numel = shape.numel()
237
- total_numel += unpartitioned_numel
238
-
239
- state_dict[name] = frozen_param_fragments[name]
240
-
241
- if debug:
242
- print(f"{name} full shape: {shape} unpartitioned numel {unpartitioned_numel} ")
243
-
244
- print(f"Reconstructed Frozen fp32 state dict with {total_params} params {total_numel} elements")
245
-
246
-
247
- def _has_callable(obj, fn):
248
- attr = getattr(obj, fn, None)
249
- return callable(attr)
250
-
251
-
252
- def _zero2_merge_trainable_params(state_dict, world_size, fp32_flat_groups, zero_model_states):
253
- param_shapes = zero_model_states[0].param_shapes
254
-
255
- # Reconstruction protocol:
256
- #
257
- # XXX: document this
258
-
259
- if debug:
260
- for i in range(world_size):
261
- for j in range(len(fp32_flat_groups[0])):
262
- print(f"{FP32_FLAT_GROUPS}[{i}][{j}].shape={fp32_flat_groups[i][j].shape}")
263
-
264
- # XXX: memory usage doubles here (zero2)
265
- num_param_groups = len(fp32_flat_groups[0])
266
- merged_single_partition_of_fp32_groups = []
267
- for i in range(num_param_groups):
268
- merged_partitions = [sd[i] for sd in fp32_flat_groups]
269
- full_single_fp32_vector = torch.cat(merged_partitions, 0)
270
- merged_single_partition_of_fp32_groups.append(full_single_fp32_vector)
271
- avail_numel = sum(
272
- [full_single_fp32_vector.numel() for full_single_fp32_vector in merged_single_partition_of_fp32_groups])
273
-
274
- if debug:
275
- wanted_params = sum([len(shapes) for shapes in param_shapes])
276
- wanted_numel = sum([sum(shape.numel() for shape in shapes.values()) for shapes in param_shapes])
277
- # not asserting if there is a mismatch due to possible padding
278
- print(f"Have {avail_numel} numels to process.")
279
- print(f"Need {wanted_numel} numels in {wanted_params} params.")
280
-
281
- # params
282
- # XXX: for huge models that can't fit into the host's RAM we will have to recode this to support
283
- # out-of-core computing solution
284
- total_numel = 0
285
- total_params = 0
286
- for shapes, full_single_fp32_vector in zip(param_shapes, merged_single_partition_of_fp32_groups):
287
- offset = 0
288
- avail_numel = full_single_fp32_vector.numel()
289
- for name, shape in shapes.items():
290
-
291
- unpartitioned_numel = shape.numel() if _has_callable(shape, 'numel') else math.prod(shape)
292
- total_numel += unpartitioned_numel
293
- total_params += 1
294
-
295
- if debug:
296
- print(f"{name} full shape: {shape} unpartitioned numel {unpartitioned_numel} ")
297
- state_dict[name] = full_single_fp32_vector.narrow(0, offset, unpartitioned_numel).view(shape)
298
- offset += unpartitioned_numel
299
-
300
- # Z2 started to align to 2*world_size to improve nccl performance. Therefore both offset and
301
- # avail_numel can differ by anywhere between 0..2*world_size. Due to two unrelated complex
302
- # paddings performed in the code it's almost impossible to predict the exact numbers w/o the
303
- # live optimizer object, so we are checking that the numbers are within the right range
304
- align_to = 2 * world_size
305
-
306
- def zero2_align(x):
307
- return align_to * math.ceil(x / align_to)
308
-
309
- if debug:
310
- print(f"original offset={offset}, avail_numel={avail_numel}")
311
-
312
- offset = zero2_align(offset)
313
- avail_numel = zero2_align(avail_numel)
314
-
315
- if debug:
316
- print(f"aligned offset={offset}, avail_numel={avail_numel}")
317
-
318
- # Sanity check
319
- if offset != avail_numel:
320
- raise ValueError(f"consumed {offset} numels out of {avail_numel} - something is wrong")
321
-
322
- print(f"Reconstructed fp32 state dict with {total_params} params {total_numel} elements")
323
-
324
-
325
- def _get_fp32_state_dict_from_zero2_checkpoint(world_size, fp32_flat_groups, zero_model_states,
326
- exclude_frozen_parameters):
327
- state_dict = OrderedDict()
328
-
329
- # buffers
330
- buffers = zero_model_states[0].buffers
331
- state_dict.update(buffers)
332
- if debug:
333
- print(f"added {len(buffers)} buffers")
334
-
335
- if not exclude_frozen_parameters:
336
- _zero2_merge_frozen_params(state_dict, zero_model_states)
337
-
338
- _zero2_merge_trainable_params(state_dict, world_size, fp32_flat_groups, zero_model_states)
339
-
340
- # recover shared parameters
341
- for pair in zero_model_states[0].shared_params:
342
- if pair[1] in state_dict:
343
- state_dict[pair[0]] = state_dict[pair[1]]
344
-
345
- return state_dict
346
-
347
-
348
- def zero3_partitioned_param_info(unpartitioned_numel, world_size):
349
- remainder = unpartitioned_numel % world_size
350
- padding_numel = (world_size - remainder) if remainder else 0
351
- partitioned_numel = math.ceil(unpartitioned_numel / world_size)
352
- return partitioned_numel, padding_numel
353
-
354
-
355
- def _zero3_merge_frozen_params(state_dict, world_size, zero_model_states):
356
- if zero_model_states[0].frozen_param_shapes is None or len(zero_model_states[0].frozen_param_shapes) == 0:
357
- return
358
-
359
- if debug:
360
- for i in range(world_size):
361
- num_elem = sum(s.numel() for s in zero_model_states[i].frozen_param_fragments.values())
362
- print(f'rank {i}: {FROZEN_PARAM_SHAPES}.numel = {num_elem}')
363
-
364
- frozen_param_shapes = zero_model_states[0].frozen_param_shapes
365
- wanted_params = len(frozen_param_shapes)
366
- wanted_numel = sum(s.numel() for s in frozen_param_shapes.values())
367
- avail_numel = sum([p.numel() for p in zero_model_states[0].frozen_param_fragments.values()]) * world_size
368
- print(f'Frozen params: Have {avail_numel} numels to process.')
369
- print(f'Frozen params: Need {wanted_numel} numels in {wanted_params} params')
370
-
371
- total_params = 0
372
- total_numel = 0
373
- for name, shape in zero_model_states[0].frozen_param_shapes.items():
374
- total_params += 1
375
- unpartitioned_numel = shape.numel()
376
- total_numel += unpartitioned_numel
377
-
378
- param_frags = tuple(model_state.frozen_param_fragments[name] for model_state in zero_model_states)
379
- state_dict[name] = torch.cat(param_frags, 0).narrow(0, 0, unpartitioned_numel).view(shape)
380
-
381
- partitioned_numel, partitioned_padding_numel = zero3_partitioned_param_info(unpartitioned_numel, world_size)
382
-
383
- if debug:
384
- print(
385
- f"Frozen params: {total_params} {name} full shape: {shape} partition0 numel={partitioned_numel} partitioned_padding_numel={partitioned_padding_numel}"
386
- )
387
-
388
- print(f"Reconstructed Frozen fp32 state dict with {total_params} params {total_numel} elements")
389
-
390
-
391
- class GatheredTensor:
392
- """
393
- A pseudo tensor that collects partitioned weights.
394
- It is more memory efficient when there are multiple groups.
395
- """
396
-
397
- def __init__(self, flat_groups, flat_groups_offset, offset, partitioned_numel, shape):
398
- self.flat_groups = flat_groups
399
- self.flat_groups_offset = flat_groups_offset
400
- self.offset = offset
401
- self.partitioned_numel = partitioned_numel
402
- self.shape = shape
403
- self.dtype = self.flat_groups[0][0].dtype
404
-
405
- def contiguous(self):
406
- """
407
- Merge partitioned weights from flat_groups into a single tensor.
408
- """
409
- end_idx = self.offset + self.partitioned_numel
410
- world_size = len(self.flat_groups)
411
- pad_flat_param_chunks = []
412
-
413
- for rank_i in range(world_size):
414
- # for each rank, we need to collect weights from related group/groups
415
- flat_groups_at_rank_i = self.flat_groups[rank_i]
416
- start_group_id = None
417
- end_group_id = None
418
- for group_id in range(len(self.flat_groups_offset)):
419
- if self.flat_groups_offset[group_id] <= self.offset < self.flat_groups_offset[group_id + 1]:
420
- start_group_id = group_id
421
- if self.flat_groups_offset[group_id] < end_idx <= self.flat_groups_offset[group_id + 1]:
422
- end_group_id = group_id
423
- break
424
- # collect weights from related group/groups
425
- for group_id in range(start_group_id, end_group_id + 1):
426
- flat_tensor = flat_groups_at_rank_i[group_id]
427
- start_offset = self.offset - self.flat_groups_offset[group_id]
428
- end_offset = min(end_idx, self.flat_groups_offset[group_id + 1]) - self.flat_groups_offset[group_id]
429
- pad_flat_param_chunks.append(flat_tensor[start_offset:end_offset])
430
-
431
- # collect weights from all ranks
432
- pad_flat_param = torch.cat(pad_flat_param_chunks, dim=0)
433
- param = pad_flat_param[:self.shape.numel()].view(self.shape).contiguous()
434
- return param
435
-
436
-
437
- def _zero3_merge_trainable_params(state_dict, world_size, fp32_flat_groups, zero_model_states):
438
- param_shapes = zero_model_states[0].param_shapes
439
- avail_numel = sum([flat_group.numel() for flat_group in fp32_flat_groups[0]]) * world_size
440
-
441
- # Reconstruction protocol: For zero3 we need to zip the partitions together at boundary of each
442
- # param, re-consolidating each param, while dealing with padding if any
443
-
444
- # merge list of dicts, preserving order
445
- param_shapes = {k: v for d in param_shapes for k, v in d.items()}
446
-
447
- if debug:
448
- for i in range(world_size):
449
- print(f"{FP32_FLAT_GROUPS}[{i}].shape={fp32_flat_groups[i].shape}")
450
-
451
- wanted_params = len(param_shapes)
452
- wanted_numel = sum(shape.numel() for shape in param_shapes.values())
453
- # not asserting if there is a mismatch due to possible padding
454
- avail_numel = fp32_flat_groups[0].numel() * world_size
455
- print(f"Trainable params: Have {avail_numel} numels to process.")
456
- print(f"Trainable params: Need {wanted_numel} numels in {wanted_params} params.")
457
-
458
- # params
459
- # XXX: for huge models that can't fit into the host's RAM we will have to recode this to support
460
- # out-of-core computing solution
461
- offset = 0
462
- total_numel = 0
463
- total_params = 0
464
- flat_groups_offset = [0] + list(np.cumsum([flat_tensor.numel() for flat_tensor in fp32_flat_groups[0]]))
465
- for name, shape in tqdm(param_shapes.items(), desc='Gathering sharded weights'):
466
- unpartitioned_numel = shape.numel()
467
- total_numel += unpartitioned_numel
468
- total_params += 1
469
- partitioned_numel, partitioned_padding_numel = zero3_partitioned_param_info(unpartitioned_numel, world_size)
470
-
471
- if debug:
472
- print(
473
- f"Trainable params: {total_params} {name} full shape: {shape} partition0 numel={partitioned_numel} partitioned_padding_numel={partitioned_padding_numel}"
474
- )
475
-
476
- # memory efficient tensor
477
- tensor = GatheredTensor(fp32_flat_groups, flat_groups_offset, offset, partitioned_numel, shape)
478
- state_dict[name] = tensor
479
- offset += partitioned_numel
480
-
481
- offset *= world_size
482
-
483
- # Sanity check
484
- if offset != avail_numel:
485
- raise ValueError(f"consumed {offset} numels out of {avail_numel} - something is wrong")
486
-
487
- print(f"Reconstructed Trainable fp32 state dict with {total_params} params {total_numel} elements")
488
-
489
-
490
- def _get_fp32_state_dict_from_zero3_checkpoint(world_size, fp32_flat_groups, zero_model_states,
491
- exclude_frozen_parameters):
492
- state_dict = OrderedDict()
493
-
494
- # buffers
495
- buffers = zero_model_states[0].buffers
496
- state_dict.update(buffers)
497
- if debug:
498
- print(f"added {len(buffers)} buffers")
499
-
500
- if not exclude_frozen_parameters:
501
- _zero3_merge_frozen_params(state_dict, world_size, zero_model_states)
502
-
503
- _zero3_merge_trainable_params(state_dict, world_size, fp32_flat_groups, zero_model_states)
504
-
505
- # recover shared parameters
506
- for pair in zero_model_states[0].shared_params:
507
- if pair[1] in state_dict:
508
- state_dict[pair[0]] = state_dict[pair[1]]
509
-
510
- return state_dict
511
-
512
-
513
- def to_torch_tensor(state_dict, return_empty_tensor=False):
514
- """
515
- Convert state_dict of GatheredTensor to torch tensor
516
- """
517
- torch_state_dict = {}
518
- converted_tensors = {}
519
- for name, tensor in state_dict.items():
520
- tensor_id = id(tensor)
521
- if tensor_id in converted_tensors: # shared tensors
522
- shared_tensor = torch_state_dict[converted_tensors[tensor_id]]
523
- torch_state_dict[name] = shared_tensor
524
- else:
525
- converted_tensors[tensor_id] = name
526
- if return_empty_tensor:
527
- torch_state_dict[name] = torch.empty(tensor.shape, dtype=tensor.dtype)
528
- else:
529
- torch_state_dict[name] = tensor.contiguous()
530
- return torch_state_dict
531
-
532
-
533
- def get_fp32_state_dict_from_zero_checkpoint(checkpoint_dir,
534
- tag=None,
535
- exclude_frozen_parameters=False,
536
- lazy_mode=False):
537
- """
538
- Convert ZeRO 2 or 3 checkpoint into a single fp32 consolidated state_dict that can be loaded with
539
- ``load_state_dict()`` and used for training without DeepSpeed or shared with others, for example
540
- via a model hub.
541
-
542
- Args:
543
- - ``checkpoint_dir``: path to the desired checkpoint folder
544
- - ``tag``: checkpoint tag used as a unique identifier for checkpoint. If not provided will attempt to load tag in 'latest' file. e.g., ``global_step14``
545
- - ``exclude_frozen_parameters``: exclude frozen parameters
546
- - ``lazy_mode``: get state_dict in lazy mode. It returns a dict of pesduo tensor instead of torch tensor, which is more memory efficient.
547
- Convert the pesduo tensor to torch tensor by ``.contiguous()``
548
-
549
- Returns:
550
- - pytorch ``state_dict``
551
-
552
- A typical usage might be ::
553
-
554
- from deepspeed.utils.zero_to_fp32 import get_fp32_state_dict_from_zero_checkpoint
555
- # do the training and checkpoint saving
556
- state_dict = get_fp32_state_dict_from_zero_checkpoint(checkpoint_dir) # already on cpu
557
- model = model.cpu() # move to cpu
558
- model.load_state_dict(state_dict)
559
- # submit to model hub or save the model to share with others
560
-
561
- In this example the ``model`` will no longer be usable in the deepspeed context of the same
562
- application. i.e. you will need to re-initialize the deepspeed engine, since
563
- ``model.load_state_dict(state_dict)`` will remove all the deepspeed magic from it.
564
-
565
- If you want it all done for you, use ``load_state_dict_from_zero_checkpoint`` instead.
566
-
567
- Note: the above usage may not work if your application doesn't have sufficient free CPU memory.
568
- You may need to use the offline approach using the ``zero_to_fp32.py`` script that is saved with
569
- the checkpoint. Or you can load state_dict in lazy mode ::
570
-
571
- from deepspeed.utils.zero_to_fp32 import get_fp32_state_dict_from_zero_checkpoint
572
- state_dict = get_fp32_state_dict_from_zero_checkpoint(checkpoint_dir, lazy_mode=True) # not on cpu
573
- for name, lazy_tensor in state_dict.item():
574
- tensor = lazy_tensor.contiguous() # to cpu
575
- print(name, tensor)
576
- # del tensor to release memory if it no longer in use
577
- """
578
- if tag is None:
579
- latest_path = os.path.join(checkpoint_dir, 'latest')
580
- if os.path.isfile(latest_path):
581
- with open(latest_path, 'r') as fd:
582
- tag = fd.read().strip()
583
- else:
584
- raise ValueError(f"Unable to find 'latest' file at {latest_path}")
585
-
586
- ds_checkpoint_dir = os.path.join(checkpoint_dir, tag)
587
-
588
- if not os.path.isdir(ds_checkpoint_dir):
589
- raise FileNotFoundError(f"Directory '{ds_checkpoint_dir}' doesn't exist")
590
-
591
- state_dict = _get_fp32_state_dict_from_zero_checkpoint(ds_checkpoint_dir, exclude_frozen_parameters)
592
- if lazy_mode:
593
- return state_dict
594
- else:
595
- return to_torch_tensor(state_dict)
596
-
597
-
598
- def convert_zero_checkpoint_to_fp32_state_dict(checkpoint_dir,
599
- output_dir,
600
- max_shard_size="5GB",
601
- safe_serialization=False,
602
- tag=None,
603
- exclude_frozen_parameters=False):
604
- """
605
- Convert ZeRO 2 or 3 checkpoint into a single fp32 consolidated ``state_dict`` file that can be
606
- loaded with ``torch.load(file)`` + ``load_state_dict()`` and used for training without DeepSpeed.
607
-
608
- Args:
609
- - ``checkpoint_dir``: path to the desired checkpoint folder. (one that contains the tag-folder, like ``global_step14``)
610
- - ``output_dir``: directory to the pytorch fp32 state_dict output files
611
- - ``max_shard_size``: the maximum size for a checkpoint before being sharded, default value is 5GB
612
- - ``safe_serialization``: whether to save the model using `safetensors` or the traditional PyTorch way (that uses `pickle`).
613
- - ``tag``: checkpoint tag used as a unique identifier for checkpoint. If not provided will attempt to load tag in the file named ``latest`` in the checkpoint folder, e.g., ``global_step14``
614
- - ``exclude_frozen_parameters``: exclude frozen parameters
615
- """
616
-
617
- # Dependency pre-check
618
- if safe_serialization:
619
- try:
620
- from safetensors.torch import save_file
621
- except ImportError:
622
- print('If you want to use `safe_serialization`, please `pip install safetensors`')
623
- raise
624
- if max_shard_size is not None:
625
- try:
626
- from huggingface_hub import split_torch_state_dict_into_shards
627
- except ImportError:
628
- print('If you want to use `max_shard_size`, please `pip install huggingface_hub`')
629
- raise
630
-
631
- # Convert zero checkpoint to state_dict
632
- state_dict = get_fp32_state_dict_from_zero_checkpoint(checkpoint_dir,
633
- tag,
634
- exclude_frozen_parameters,
635
- lazy_mode=True)
636
-
637
- # Shard the model if it is too big.
638
- weights_name = "model.safetensors" if safe_serialization else "pytorch_model.bin"
639
- if max_shard_size is not None:
640
- filename_pattern = weights_name.replace(".bin", "{suffix}.bin").replace(".safetensors", "{suffix}.safetensors")
641
- # an memory-efficient approach for sharding
642
- empty_state_dict = to_torch_tensor(state_dict, return_empty_tensor=True)
643
- state_dict_split = split_torch_state_dict_into_shards(empty_state_dict,
644
- filename_pattern=filename_pattern,
645
- max_shard_size=max_shard_size)
646
- else:
647
- from collections import namedtuple
648
- StateDictSplit = namedtuple("StateDictSplit", ["is_sharded", "filename_to_tensors"])
649
- state_dict_split = StateDictSplit(is_sharded=False,
650
- filename_to_tensors={weights_name: list(state_dict.keys())})
651
-
652
- # Save the model by shard
653
- os.makedirs(output_dir, exist_ok=True)
654
- filename_to_tensors = state_dict_split.filename_to_tensors.items()
655
- for shard_file, tensors in tqdm(filename_to_tensors, desc="Saving checkpoint shards"):
656
- shard_state_dict = {tensor_name: state_dict[tensor_name] for tensor_name in tensors}
657
- shard_state_dict = to_torch_tensor(shard_state_dict)
658
- output_path = os.path.join(output_dir, shard_file)
659
- if safe_serialization:
660
- save_file(shard_state_dict, output_path, metadata={"format": "pt"})
661
- else:
662
- torch.save(shard_state_dict, output_path)
663
- # release the memory of current shard
664
- for tensor_name in list(shard_state_dict.keys()):
665
- del state_dict[tensor_name]
666
- del shard_state_dict[tensor_name]
667
- del shard_state_dict
668
- gc.collect()
669
-
670
- # Save index if sharded
671
- if state_dict_split.is_sharded:
672
- index = {
673
- "metadata": state_dict_split.metadata,
674
- "weight_map": state_dict_split.tensor_to_filename,
675
- }
676
- save_index_file = "model.safetensors.index.json" if safe_serialization else "pytorch_model.bin.index.json"
677
- save_index_file = os.path.join(output_dir, save_index_file)
678
- with open(save_index_file, "w", encoding="utf-8") as f:
679
- content = json.dumps(index, indent=2, sort_keys=True) + "\n"
680
- f.write(content)
681
-
682
-
683
- def load_state_dict_from_zero_checkpoint(model, checkpoint_dir, tag=None):
684
- """
685
- 1. Put the provided model to cpu
686
- 2. Convert ZeRO 2 or 3 checkpoint into a single fp32 consolidated ``state_dict``
687
- 3. Load it into the provided model
688
-
689
- Args:
690
- - ``model``: the model object to update
691
- - ``checkpoint_dir``: path to the desired checkpoint folder. (one that contains the tag-folder, like ``global_step14``)
692
- - ``tag``: checkpoint tag used as a unique identifier for checkpoint. If not provided will attempt to load tag in the file named ``latest`` in the checkpoint folder, e.g., ``global_step14``
693
-
694
- Returns:
695
- - ``model`: modified model
696
-
697
- Make sure you have plenty of CPU memory available before you call this function. If you don't
698
- have enough use the ``zero_to_fp32.py`` utility to do the conversion. You will find it
699
- conveniently placed for you in the checkpoint folder.
700
-
701
- A typical usage might be ::
702
-
703
- from deepspeed.utils.zero_to_fp32 import load_state_dict_from_zero_checkpoint
704
- model = load_state_dict_from_zero_checkpoint(trainer.model, checkpoint_dir)
705
- # submit to model hub or save the model to share with others
706
-
707
- Note, that once this was run, the ``model`` will no longer be usable in the deepspeed context
708
- of the same application. i.e. you will need to re-initialize the deepspeed engine, since
709
- ``model.load_state_dict(state_dict)`` will remove all the deepspeed magic from it.
710
-
711
- """
712
- logger.info(f"Extracting fp32 weights")
713
- state_dict = get_fp32_state_dict_from_zero_checkpoint(checkpoint_dir, tag)
714
-
715
- logger.info(f"Overwriting model with fp32 weights")
716
- model = model.cpu()
717
- model.load_state_dict(state_dict, strict=False)
718
-
719
- return model
720
-
721
-
722
- if __name__ == "__main__":
723
- parser = argparse.ArgumentParser()
724
- parser.add_argument("checkpoint_dir",
725
- type=str,
726
- help="path to the desired checkpoint folder, e.g., path/checkpoint-12")
727
- parser.add_argument("output_dir",
728
- type=str,
729
- help="directory to the pytorch fp32 state_dict output files"
730
- "(e.g. path/checkpoint-12-output/)")
731
- parser.add_argument(
732
- "--max_shard_size",
733
- type=str,
734
- default="5GB",
735
- help="The maximum size for a checkpoint before being sharded. Checkpoints shard will then be each of size"
736
- "lower than this size. If expressed as a string, needs to be digits followed by a unit (like `5MB`"
737
- "We default it to 5GB in order for models to be able to run easily on free-tier google colab instances"
738
- "without CPU OOM issues.")
739
- parser.add_argument(
740
- "--safe_serialization",
741
- default=False,
742
- action='store_true',
743
- help="Whether to save the model using `safetensors` or the traditional PyTorch way (that uses `pickle`).")
744
- parser.add_argument("-t",
745
- "--tag",
746
- type=str,
747
- default=None,
748
- help="checkpoint tag used as a unique identifier for checkpoint. e.g., global_step1")
749
- parser.add_argument("--exclude_frozen_parameters", action='store_true', help="exclude frozen parameters")
750
- parser.add_argument("-d", "--debug", action='store_true', help="enable debug")
751
- args = parser.parse_args()
752
-
753
- debug = args.debug
754
-
755
- convert_zero_checkpoint_to_fp32_state_dict(args.checkpoint_dir,
756
- args.output_dir,
757
- max_shard_size=args.max_shard_size,
758
- safe_serialization=args.safe_serialization,
759
- tag=args.tag,
760
- exclude_frozen_parameters=args.exclude_frozen_parameters)