Upload folder using huggingface_hub
Browse filesThis view is limited to 50 files because it contains too many changes.
See raw diff
- 3b-w-cot+/README.md +163 -0
- 3b-w-cot+/added_tokens.json +24 -0
- 3b-w-cot+/checkpoint-244/added_tokens.json +24 -0
- 3b-w-cot+/checkpoint-244/config.json +28 -0
- 3b-w-cot+/checkpoint-244/generation_config.json +14 -0
- 3b-w-cot+/checkpoint-244/global_step244/bf16_zero_pp_rank_0_mp_rank_00_optim_states.pt +3 -0
- 3b-w-cot+/checkpoint-244/global_step244/bf16_zero_pp_rank_1_mp_rank_00_optim_states.pt +3 -0
- 3b-w-cot+/checkpoint-244/global_step244/mp_rank_00_model_states.pt +3 -0
- 3b-w-cot+/checkpoint-244/latest +1 -0
- 3b-w-cot+/checkpoint-244/merges.txt +0 -0
- 3b-w-cot+/checkpoint-244/model-00001-of-00002.safetensors +3 -0
- 3b-w-cot+/checkpoint-244/model-00002-of-00002.safetensors +3 -0
- 3b-w-cot+/checkpoint-244/model.safetensors.index.json +442 -0
- 3b-w-cot+/checkpoint-244/rng_state_0.pth +3 -0
- 3b-w-cot+/checkpoint-244/rng_state_1.pth +3 -0
- 3b-w-cot+/checkpoint-244/scheduler.pt +3 -0
- 3b-w-cot+/checkpoint-244/special_tokens_map.json +31 -0
- 3b-w-cot+/checkpoint-244/tokenizer.json +3 -0
- 3b-w-cot+/checkpoint-244/tokenizer_config.json +208 -0
- 3b-w-cot+/checkpoint-244/trainer_state.json +1765 -0
- 3b-w-cot+/checkpoint-244/training_args.bin +3 -0
- 3b-w-cot+/checkpoint-244/vocab.json +0 -0
- 3b-w-cot+/checkpoint-244/zero_to_fp32.py +760 -0
- 3b-w-cot+/checkpoint-488/added_tokens.json +24 -0
- 3b-w-cot+/checkpoint-488/config.json +28 -0
- 3b-w-cot+/checkpoint-488/generation_config.json +14 -0
- 3b-w-cot+/checkpoint-488/global_step487/bf16_zero_pp_rank_0_mp_rank_00_optim_states.pt +3 -0
- 3b-w-cot+/checkpoint-488/global_step487/bf16_zero_pp_rank_1_mp_rank_00_optim_states.pt +3 -0
- 3b-w-cot+/checkpoint-488/global_step487/mp_rank_00_model_states.pt +3 -0
- 3b-w-cot+/checkpoint-488/latest +1 -0
- 3b-w-cot+/checkpoint-488/merges.txt +0 -0
- 3b-w-cot+/checkpoint-488/model-00001-of-00002.safetensors +3 -0
- 3b-w-cot+/checkpoint-488/model-00002-of-00002.safetensors +3 -0
- 3b-w-cot+/checkpoint-488/model.safetensors.index.json +442 -0
- 3b-w-cot+/checkpoint-488/rng_state_0.pth +3 -0
- 3b-w-cot+/checkpoint-488/rng_state_1.pth +3 -0
- 3b-w-cot+/checkpoint-488/scheduler.pt +3 -0
- 3b-w-cot+/checkpoint-488/special_tokens_map.json +31 -0
- 3b-w-cot+/checkpoint-488/tokenizer.json +3 -0
- 3b-w-cot+/checkpoint-488/tokenizer_config.json +208 -0
- 3b-w-cot+/checkpoint-488/trainer_state.json +3497 -0
- 3b-w-cot+/checkpoint-488/training_args.bin +3 -0
- 3b-w-cot+/checkpoint-488/vocab.json +0 -0
- 3b-w-cot+/checkpoint-488/zero_to_fp32.py +760 -0
- 3b-w-cot+/checkpoint-732/added_tokens.json +24 -0
- 3b-w-cot+/checkpoint-732/config.json +28 -0
- 3b-w-cot+/checkpoint-732/generation_config.json +14 -0
- 3b-w-cot+/checkpoint-732/global_step730/bf16_zero_pp_rank_0_mp_rank_00_optim_states.pt +3 -0
- 3b-w-cot+/checkpoint-732/global_step730/bf16_zero_pp_rank_1_mp_rank_00_optim_states.pt +3 -0
- 3b-w-cot+/checkpoint-732/global_step730/mp_rank_00_model_states.pt +3 -0
3b-w-cot+/README.md
ADDED
|
@@ -0,0 +1,163 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
---
|
| 2 |
+
library_name: transformers
|
| 3 |
+
tags:
|
| 4 |
+
- generated_from_trainer
|
| 5 |
+
datasets:
|
| 6 |
+
- train-mb.jsonl
|
| 7 |
+
model-index:
|
| 8 |
+
- name: outputs/out
|
| 9 |
+
results: []
|
| 10 |
+
---
|
| 11 |
+
|
| 12 |
+
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
|
| 13 |
+
should probably proofread and complete it, then remove this comment. -->
|
| 14 |
+
|
| 15 |
+
[<img src="https://raw.githubusercontent.com/axolotl-ai-cloud/axolotl/main/image/axolotl-badge-web.png" alt="Built with Axolotl" width="200" height="32"/>](https://github.com/axolotl-ai-cloud/axolotl)
|
| 16 |
+
<details><summary>See axolotl config</summary>
|
| 17 |
+
|
| 18 |
+
axolotl version: `0.8.0.dev0`
|
| 19 |
+
```yaml
|
| 20 |
+
base_model: ckpt/3b-w-cot/checkpoint-747
|
| 21 |
+
model_type: AutoModelForCausalLM
|
| 22 |
+
tokenizer_type: AutoTokenizer
|
| 23 |
+
trust_remote_code: false
|
| 24 |
+
|
| 25 |
+
load_in_8bit: false
|
| 26 |
+
load_in_4bit: false
|
| 27 |
+
strict: false
|
| 28 |
+
|
| 29 |
+
output_dir: ./outputs/out
|
| 30 |
+
chat_template: qwen_25
|
| 31 |
+
datasets:
|
| 32 |
+
- path: train-mb.jsonl
|
| 33 |
+
type: chat_template
|
| 34 |
+
field_messages: messages
|
| 35 |
+
message_field_role: role
|
| 36 |
+
message_field_content: content
|
| 37 |
+
roles:
|
| 38 |
+
system:
|
| 39 |
+
- system
|
| 40 |
+
user:
|
| 41 |
+
- user
|
| 42 |
+
assistant:
|
| 43 |
+
- assistant
|
| 44 |
+
|
| 45 |
+
dataset_prepared_path: last_run_prepared
|
| 46 |
+
val_set_size: 0.005
|
| 47 |
+
output_dir: ./outputs/out
|
| 48 |
+
eval_sample_packing: False
|
| 49 |
+
|
| 50 |
+
sequence_len: 8192
|
| 51 |
+
sample_packing: False
|
| 52 |
+
pad_to_sequence_len: False
|
| 53 |
+
|
| 54 |
+
wandb_project: mergedbench
|
| 55 |
+
wandb_entity:
|
| 56 |
+
wandb_watch:
|
| 57 |
+
wandb_name:
|
| 58 |
+
wandb_log_model:
|
| 59 |
+
# hub_model_id: amphora/merged-bench-qwen-full
|
| 60 |
+
|
| 61 |
+
plugins:
|
| 62 |
+
- axolotl.integrations.liger.LigerPlugin
|
| 63 |
+
liger_rope: true
|
| 64 |
+
liger_rms_norm: true
|
| 65 |
+
liger_swiglu: true
|
| 66 |
+
liger_fused_linear_cross_entropy: true
|
| 67 |
+
|
| 68 |
+
gradient_accumulation_steps: 4
|
| 69 |
+
micro_batch_size: 8
|
| 70 |
+
eval_batch_size: 4
|
| 71 |
+
num_epochs: 3
|
| 72 |
+
optimizer: paged_adamw_8bit
|
| 73 |
+
lr_scheduler: cosine
|
| 74 |
+
learning_rate: 2e-5
|
| 75 |
+
|
| 76 |
+
train_on_inputs: false
|
| 77 |
+
group_by_length: false
|
| 78 |
+
bf16: auto
|
| 79 |
+
fp16:
|
| 80 |
+
tf32: false
|
| 81 |
+
|
| 82 |
+
gradient_checkpointing: true
|
| 83 |
+
gradient_checkpointing_kwargs:
|
| 84 |
+
use_reentrant: false
|
| 85 |
+
early_stopping_patience:
|
| 86 |
+
resume_from_checkpoint:
|
| 87 |
+
logging_steps: 1
|
| 88 |
+
xformers_attention:
|
| 89 |
+
flash_attention: true
|
| 90 |
+
|
| 91 |
+
warmup_steps: 30
|
| 92 |
+
evals_per_epoch: 3
|
| 93 |
+
eval_max_new_tokens: 128
|
| 94 |
+
eval_table_size:
|
| 95 |
+
saves_per_epoch: 1
|
| 96 |
+
debug:
|
| 97 |
+
deepspeed: deepspeed_configs/zero1.json
|
| 98 |
+
weight_decay: 0.01
|
| 99 |
+
fsdp:
|
| 100 |
+
fsdp_config:
|
| 101 |
+
special_tokens:
|
| 102 |
+
```
|
| 103 |
+
|
| 104 |
+
</details><br>
|
| 105 |
+
|
| 106 |
+
# outputs/out
|
| 107 |
+
|
| 108 |
+
This model was trained from scratch on the train-mb.jsonl dataset.
|
| 109 |
+
It achieves the following results on the evaluation set:
|
| 110 |
+
- Loss: 0.2554
|
| 111 |
+
|
| 112 |
+
## Model description
|
| 113 |
+
|
| 114 |
+
More information needed
|
| 115 |
+
|
| 116 |
+
## Intended uses & limitations
|
| 117 |
+
|
| 118 |
+
More information needed
|
| 119 |
+
|
| 120 |
+
## Training and evaluation data
|
| 121 |
+
|
| 122 |
+
More information needed
|
| 123 |
+
|
| 124 |
+
## Training procedure
|
| 125 |
+
|
| 126 |
+
### Training hyperparameters
|
| 127 |
+
|
| 128 |
+
The following hyperparameters were used during training:
|
| 129 |
+
- learning_rate: 2e-05
|
| 130 |
+
- train_batch_size: 8
|
| 131 |
+
- eval_batch_size: 4
|
| 132 |
+
- seed: 42
|
| 133 |
+
- distributed_type: multi-GPU
|
| 134 |
+
- num_devices: 2
|
| 135 |
+
- gradient_accumulation_steps: 4
|
| 136 |
+
- total_train_batch_size: 64
|
| 137 |
+
- total_eval_batch_size: 8
|
| 138 |
+
- optimizer: Use OptimizerNames.PAGED_ADAMW_8BIT with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
|
| 139 |
+
- lr_scheduler_type: cosine
|
| 140 |
+
- lr_scheduler_warmup_steps: 30
|
| 141 |
+
- num_epochs: 3.0
|
| 142 |
+
|
| 143 |
+
### Training results
|
| 144 |
+
|
| 145 |
+
| Training Loss | Epoch | Step | Validation Loss |
|
| 146 |
+
|:-------------:|:------:|:----:|:---------------:|
|
| 147 |
+
| 0.477 | 0.0041 | 1 | 0.8367 |
|
| 148 |
+
| 0.2339 | 0.3357 | 82 | 0.2754 |
|
| 149 |
+
| 0.2318 | 0.6714 | 164 | 0.2667 |
|
| 150 |
+
| 0.1688 | 1.0041 | 246 | 0.2618 |
|
| 151 |
+
| 0.1467 | 1.3398 | 328 | 0.2673 |
|
| 152 |
+
| 0.1605 | 1.6755 | 410 | 0.2577 |
|
| 153 |
+
| 0.1206 | 2.0082 | 492 | 0.2539 |
|
| 154 |
+
| 0.1022 | 2.3439 | 574 | 0.2587 |
|
| 155 |
+
| 0.0881 | 2.6796 | 656 | 0.2554 |
|
| 156 |
+
|
| 157 |
+
|
| 158 |
+
### Framework versions
|
| 159 |
+
|
| 160 |
+
- Transformers 4.49.0
|
| 161 |
+
- Pytorch 2.5.1+cu121
|
| 162 |
+
- Datasets 3.2.0
|
| 163 |
+
- Tokenizers 0.21.0
|
3b-w-cot+/added_tokens.json
ADDED
|
@@ -0,0 +1,24 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"</tool_call>": 151658,
|
| 3 |
+
"<tool_call>": 151657,
|
| 4 |
+
"<|box_end|>": 151649,
|
| 5 |
+
"<|box_start|>": 151648,
|
| 6 |
+
"<|endoftext|>": 151643,
|
| 7 |
+
"<|file_sep|>": 151664,
|
| 8 |
+
"<|fim_middle|>": 151660,
|
| 9 |
+
"<|fim_pad|>": 151662,
|
| 10 |
+
"<|fim_prefix|>": 151659,
|
| 11 |
+
"<|fim_suffix|>": 151661,
|
| 12 |
+
"<|im_end|>": 151645,
|
| 13 |
+
"<|im_start|>": 151644,
|
| 14 |
+
"<|image_pad|>": 151655,
|
| 15 |
+
"<|object_ref_end|>": 151647,
|
| 16 |
+
"<|object_ref_start|>": 151646,
|
| 17 |
+
"<|quad_end|>": 151651,
|
| 18 |
+
"<|quad_start|>": 151650,
|
| 19 |
+
"<|repo_name|>": 151663,
|
| 20 |
+
"<|video_pad|>": 151656,
|
| 21 |
+
"<|vision_end|>": 151653,
|
| 22 |
+
"<|vision_pad|>": 151654,
|
| 23 |
+
"<|vision_start|>": 151652
|
| 24 |
+
}
|
3b-w-cot+/checkpoint-244/added_tokens.json
ADDED
|
@@ -0,0 +1,24 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"</tool_call>": 151658,
|
| 3 |
+
"<tool_call>": 151657,
|
| 4 |
+
"<|box_end|>": 151649,
|
| 5 |
+
"<|box_start|>": 151648,
|
| 6 |
+
"<|endoftext|>": 151643,
|
| 7 |
+
"<|file_sep|>": 151664,
|
| 8 |
+
"<|fim_middle|>": 151660,
|
| 9 |
+
"<|fim_pad|>": 151662,
|
| 10 |
+
"<|fim_prefix|>": 151659,
|
| 11 |
+
"<|fim_suffix|>": 151661,
|
| 12 |
+
"<|im_end|>": 151645,
|
| 13 |
+
"<|im_start|>": 151644,
|
| 14 |
+
"<|image_pad|>": 151655,
|
| 15 |
+
"<|object_ref_end|>": 151647,
|
| 16 |
+
"<|object_ref_start|>": 151646,
|
| 17 |
+
"<|quad_end|>": 151651,
|
| 18 |
+
"<|quad_start|>": 151650,
|
| 19 |
+
"<|repo_name|>": 151663,
|
| 20 |
+
"<|video_pad|>": 151656,
|
| 21 |
+
"<|vision_end|>": 151653,
|
| 22 |
+
"<|vision_pad|>": 151654,
|
| 23 |
+
"<|vision_start|>": 151652
|
| 24 |
+
}
|
3b-w-cot+/checkpoint-244/config.json
ADDED
|
@@ -0,0 +1,28 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"_name_or_path": "ckpt/3b-w-cot/checkpoint-747",
|
| 3 |
+
"architectures": [
|
| 4 |
+
"Qwen2ForCausalLM"
|
| 5 |
+
],
|
| 6 |
+
"attention_dropout": 0.0,
|
| 7 |
+
"eos_token_id": 151645,
|
| 8 |
+
"hidden_act": "silu",
|
| 9 |
+
"hidden_size": 2048,
|
| 10 |
+
"initializer_range": 0.02,
|
| 11 |
+
"intermediate_size": 11008,
|
| 12 |
+
"max_position_embeddings": 32768,
|
| 13 |
+
"max_window_layers": 70,
|
| 14 |
+
"model_type": "qwen2",
|
| 15 |
+
"num_attention_heads": 16,
|
| 16 |
+
"num_hidden_layers": 36,
|
| 17 |
+
"num_key_value_heads": 2,
|
| 18 |
+
"rms_norm_eps": 1e-06,
|
| 19 |
+
"rope_scaling": null,
|
| 20 |
+
"rope_theta": 1000000.0,
|
| 21 |
+
"sliding_window": null,
|
| 22 |
+
"tie_word_embeddings": true,
|
| 23 |
+
"torch_dtype": "bfloat16",
|
| 24 |
+
"transformers_version": "4.49.0",
|
| 25 |
+
"use_cache": false,
|
| 26 |
+
"use_sliding_window": false,
|
| 27 |
+
"vocab_size": 151936
|
| 28 |
+
}
|
3b-w-cot+/checkpoint-244/generation_config.json
ADDED
|
@@ -0,0 +1,14 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"bos_token_id": 151643,
|
| 3 |
+
"do_sample": true,
|
| 4 |
+
"eos_token_id": [
|
| 5 |
+
151645,
|
| 6 |
+
151643
|
| 7 |
+
],
|
| 8 |
+
"pad_token_id": 151643,
|
| 9 |
+
"repetition_penalty": 1.05,
|
| 10 |
+
"temperature": 0.7,
|
| 11 |
+
"top_k": 20,
|
| 12 |
+
"top_p": 0.8,
|
| 13 |
+
"transformers_version": "4.49.0"
|
| 14 |
+
}
|
3b-w-cot+/checkpoint-244/global_step244/bf16_zero_pp_rank_0_mp_rank_00_optim_states.pt
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:ea41c8f2726b36ff0db03ba02c1c7f67d206be3993e17812e702273aae19dd02
|
| 3 |
+
size 9306058322
|
3b-w-cot+/checkpoint-244/global_step244/bf16_zero_pp_rank_1_mp_rank_00_optim_states.pt
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:fbec0a25e4ee80ff214f60de99f85cd1b59bd87a46e5d9dd13be56139577b3e3
|
| 3 |
+
size 9306060690
|
3b-w-cot+/checkpoint-244/global_step244/mp_rank_00_model_states.pt
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:ee7c23d50026e8003e0359f5a0ed45475e0bafa887d37eeb0dbb473a365e6c24
|
| 3 |
+
size 6171993592
|
3b-w-cot+/checkpoint-244/latest
ADDED
|
@@ -0,0 +1 @@
|
|
|
|
|
|
|
| 1 |
+
global_step244
|
3b-w-cot+/checkpoint-244/merges.txt
ADDED
|
The diff for this file is too large to render.
See raw diff
|
|
|
3b-w-cot+/checkpoint-244/model-00001-of-00002.safetensors
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:902bf38b67efd1e0f84e8b3cd2e6f0ce844ae92f29b646a5cf9bb1560fde4d55
|
| 3 |
+
size 4957560304
|
3b-w-cot+/checkpoint-244/model-00002-of-00002.safetensors
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:04e7e4bcb562e8498e019b7d3ed72400d6a30fd934801232970e3bed8f77a698
|
| 3 |
+
size 1836696752
|
3b-w-cot+/checkpoint-244/model.safetensors.index.json
ADDED
|
@@ -0,0 +1,442 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"metadata": {
|
| 3 |
+
"total_size": 6794207232
|
| 4 |
+
},
|
| 5 |
+
"weight_map": {
|
| 6 |
+
"lm_head.weight": "model-00002-of-00002.safetensors",
|
| 7 |
+
"model.embed_tokens.weight": "model-00001-of-00002.safetensors",
|
| 8 |
+
"model.layers.0.input_layernorm.weight": "model-00001-of-00002.safetensors",
|
| 9 |
+
"model.layers.0.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
|
| 10 |
+
"model.layers.0.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
|
| 11 |
+
"model.layers.0.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
|
| 12 |
+
"model.layers.0.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
|
| 13 |
+
"model.layers.0.self_attn.k_proj.bias": "model-00001-of-00002.safetensors",
|
| 14 |
+
"model.layers.0.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
|
| 15 |
+
"model.layers.0.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
|
| 16 |
+
"model.layers.0.self_attn.q_proj.bias": "model-00001-of-00002.safetensors",
|
| 17 |
+
"model.layers.0.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
|
| 18 |
+
"model.layers.0.self_attn.v_proj.bias": "model-00001-of-00002.safetensors",
|
| 19 |
+
"model.layers.0.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
|
| 20 |
+
"model.layers.1.input_layernorm.weight": "model-00001-of-00002.safetensors",
|
| 21 |
+
"model.layers.1.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
|
| 22 |
+
"model.layers.1.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
|
| 23 |
+
"model.layers.1.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
|
| 24 |
+
"model.layers.1.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
|
| 25 |
+
"model.layers.1.self_attn.k_proj.bias": "model-00001-of-00002.safetensors",
|
| 26 |
+
"model.layers.1.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
|
| 27 |
+
"model.layers.1.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
|
| 28 |
+
"model.layers.1.self_attn.q_proj.bias": "model-00001-of-00002.safetensors",
|
| 29 |
+
"model.layers.1.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
|
| 30 |
+
"model.layers.1.self_attn.v_proj.bias": "model-00001-of-00002.safetensors",
|
| 31 |
+
"model.layers.1.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
|
| 32 |
+
"model.layers.10.input_layernorm.weight": "model-00001-of-00002.safetensors",
|
| 33 |
+
"model.layers.10.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
|
| 34 |
+
"model.layers.10.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
|
| 35 |
+
"model.layers.10.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
|
| 36 |
+
"model.layers.10.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
|
| 37 |
+
"model.layers.10.self_attn.k_proj.bias": "model-00001-of-00002.safetensors",
|
| 38 |
+
"model.layers.10.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
|
| 39 |
+
"model.layers.10.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
|
| 40 |
+
"model.layers.10.self_attn.q_proj.bias": "model-00001-of-00002.safetensors",
|
| 41 |
+
"model.layers.10.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
|
| 42 |
+
"model.layers.10.self_attn.v_proj.bias": "model-00001-of-00002.safetensors",
|
| 43 |
+
"model.layers.10.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
|
| 44 |
+
"model.layers.11.input_layernorm.weight": "model-00001-of-00002.safetensors",
|
| 45 |
+
"model.layers.11.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
|
| 46 |
+
"model.layers.11.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
|
| 47 |
+
"model.layers.11.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
|
| 48 |
+
"model.layers.11.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
|
| 49 |
+
"model.layers.11.self_attn.k_proj.bias": "model-00001-of-00002.safetensors",
|
| 50 |
+
"model.layers.11.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
|
| 51 |
+
"model.layers.11.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
|
| 52 |
+
"model.layers.11.self_attn.q_proj.bias": "model-00001-of-00002.safetensors",
|
| 53 |
+
"model.layers.11.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
|
| 54 |
+
"model.layers.11.self_attn.v_proj.bias": "model-00001-of-00002.safetensors",
|
| 55 |
+
"model.layers.11.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
|
| 56 |
+
"model.layers.12.input_layernorm.weight": "model-00001-of-00002.safetensors",
|
| 57 |
+
"model.layers.12.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
|
| 58 |
+
"model.layers.12.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
|
| 59 |
+
"model.layers.12.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
|
| 60 |
+
"model.layers.12.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
|
| 61 |
+
"model.layers.12.self_attn.k_proj.bias": "model-00001-of-00002.safetensors",
|
| 62 |
+
"model.layers.12.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
|
| 63 |
+
"model.layers.12.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
|
| 64 |
+
"model.layers.12.self_attn.q_proj.bias": "model-00001-of-00002.safetensors",
|
| 65 |
+
"model.layers.12.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
|
| 66 |
+
"model.layers.12.self_attn.v_proj.bias": "model-00001-of-00002.safetensors",
|
| 67 |
+
"model.layers.12.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
|
| 68 |
+
"model.layers.13.input_layernorm.weight": "model-00001-of-00002.safetensors",
|
| 69 |
+
"model.layers.13.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
|
| 70 |
+
"model.layers.13.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
|
| 71 |
+
"model.layers.13.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
|
| 72 |
+
"model.layers.13.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
|
| 73 |
+
"model.layers.13.self_attn.k_proj.bias": "model-00001-of-00002.safetensors",
|
| 74 |
+
"model.layers.13.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
|
| 75 |
+
"model.layers.13.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
|
| 76 |
+
"model.layers.13.self_attn.q_proj.bias": "model-00001-of-00002.safetensors",
|
| 77 |
+
"model.layers.13.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
|
| 78 |
+
"model.layers.13.self_attn.v_proj.bias": "model-00001-of-00002.safetensors",
|
| 79 |
+
"model.layers.13.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
|
| 80 |
+
"model.layers.14.input_layernorm.weight": "model-00001-of-00002.safetensors",
|
| 81 |
+
"model.layers.14.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
|
| 82 |
+
"model.layers.14.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
|
| 83 |
+
"model.layers.14.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
|
| 84 |
+
"model.layers.14.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
|
| 85 |
+
"model.layers.14.self_attn.k_proj.bias": "model-00001-of-00002.safetensors",
|
| 86 |
+
"model.layers.14.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
|
| 87 |
+
"model.layers.14.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
|
| 88 |
+
"model.layers.14.self_attn.q_proj.bias": "model-00001-of-00002.safetensors",
|
| 89 |
+
"model.layers.14.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
|
| 90 |
+
"model.layers.14.self_attn.v_proj.bias": "model-00001-of-00002.safetensors",
|
| 91 |
+
"model.layers.14.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
|
| 92 |
+
"model.layers.15.input_layernorm.weight": "model-00001-of-00002.safetensors",
|
| 93 |
+
"model.layers.15.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
|
| 94 |
+
"model.layers.15.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
|
| 95 |
+
"model.layers.15.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
|
| 96 |
+
"model.layers.15.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
|
| 97 |
+
"model.layers.15.self_attn.k_proj.bias": "model-00001-of-00002.safetensors",
|
| 98 |
+
"model.layers.15.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
|
| 99 |
+
"model.layers.15.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
|
| 100 |
+
"model.layers.15.self_attn.q_proj.bias": "model-00001-of-00002.safetensors",
|
| 101 |
+
"model.layers.15.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
|
| 102 |
+
"model.layers.15.self_attn.v_proj.bias": "model-00001-of-00002.safetensors",
|
| 103 |
+
"model.layers.15.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
|
| 104 |
+
"model.layers.16.input_layernorm.weight": "model-00001-of-00002.safetensors",
|
| 105 |
+
"model.layers.16.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
|
| 106 |
+
"model.layers.16.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
|
| 107 |
+
"model.layers.16.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
|
| 108 |
+
"model.layers.16.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
|
| 109 |
+
"model.layers.16.self_attn.k_proj.bias": "model-00001-of-00002.safetensors",
|
| 110 |
+
"model.layers.16.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
|
| 111 |
+
"model.layers.16.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
|
| 112 |
+
"model.layers.16.self_attn.q_proj.bias": "model-00001-of-00002.safetensors",
|
| 113 |
+
"model.layers.16.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
|
| 114 |
+
"model.layers.16.self_attn.v_proj.bias": "model-00001-of-00002.safetensors",
|
| 115 |
+
"model.layers.16.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
|
| 116 |
+
"model.layers.17.input_layernorm.weight": "model-00001-of-00002.safetensors",
|
| 117 |
+
"model.layers.17.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
|
| 118 |
+
"model.layers.17.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
|
| 119 |
+
"model.layers.17.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
|
| 120 |
+
"model.layers.17.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
|
| 121 |
+
"model.layers.17.self_attn.k_proj.bias": "model-00001-of-00002.safetensors",
|
| 122 |
+
"model.layers.17.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
|
| 123 |
+
"model.layers.17.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
|
| 124 |
+
"model.layers.17.self_attn.q_proj.bias": "model-00001-of-00002.safetensors",
|
| 125 |
+
"model.layers.17.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
|
| 126 |
+
"model.layers.17.self_attn.v_proj.bias": "model-00001-of-00002.safetensors",
|
| 127 |
+
"model.layers.17.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
|
| 128 |
+
"model.layers.18.input_layernorm.weight": "model-00001-of-00002.safetensors",
|
| 129 |
+
"model.layers.18.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
|
| 130 |
+
"model.layers.18.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
|
| 131 |
+
"model.layers.18.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
|
| 132 |
+
"model.layers.18.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
|
| 133 |
+
"model.layers.18.self_attn.k_proj.bias": "model-00001-of-00002.safetensors",
|
| 134 |
+
"model.layers.18.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
|
| 135 |
+
"model.layers.18.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
|
| 136 |
+
"model.layers.18.self_attn.q_proj.bias": "model-00001-of-00002.safetensors",
|
| 137 |
+
"model.layers.18.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
|
| 138 |
+
"model.layers.18.self_attn.v_proj.bias": "model-00001-of-00002.safetensors",
|
| 139 |
+
"model.layers.18.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
|
| 140 |
+
"model.layers.19.input_layernorm.weight": "model-00001-of-00002.safetensors",
|
| 141 |
+
"model.layers.19.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
|
| 142 |
+
"model.layers.19.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
|
| 143 |
+
"model.layers.19.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
|
| 144 |
+
"model.layers.19.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
|
| 145 |
+
"model.layers.19.self_attn.k_proj.bias": "model-00001-of-00002.safetensors",
|
| 146 |
+
"model.layers.19.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
|
| 147 |
+
"model.layers.19.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
|
| 148 |
+
"model.layers.19.self_attn.q_proj.bias": "model-00001-of-00002.safetensors",
|
| 149 |
+
"model.layers.19.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
|
| 150 |
+
"model.layers.19.self_attn.v_proj.bias": "model-00001-of-00002.safetensors",
|
| 151 |
+
"model.layers.19.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
|
| 152 |
+
"model.layers.2.input_layernorm.weight": "model-00001-of-00002.safetensors",
|
| 153 |
+
"model.layers.2.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
|
| 154 |
+
"model.layers.2.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
|
| 155 |
+
"model.layers.2.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
|
| 156 |
+
"model.layers.2.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
|
| 157 |
+
"model.layers.2.self_attn.k_proj.bias": "model-00001-of-00002.safetensors",
|
| 158 |
+
"model.layers.2.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
|
| 159 |
+
"model.layers.2.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
|
| 160 |
+
"model.layers.2.self_attn.q_proj.bias": "model-00001-of-00002.safetensors",
|
| 161 |
+
"model.layers.2.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
|
| 162 |
+
"model.layers.2.self_attn.v_proj.bias": "model-00001-of-00002.safetensors",
|
| 163 |
+
"model.layers.2.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
|
| 164 |
+
"model.layers.20.input_layernorm.weight": "model-00001-of-00002.safetensors",
|
| 165 |
+
"model.layers.20.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
|
| 166 |
+
"model.layers.20.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
|
| 167 |
+
"model.layers.20.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
|
| 168 |
+
"model.layers.20.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
|
| 169 |
+
"model.layers.20.self_attn.k_proj.bias": "model-00001-of-00002.safetensors",
|
| 170 |
+
"model.layers.20.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
|
| 171 |
+
"model.layers.20.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
|
| 172 |
+
"model.layers.20.self_attn.q_proj.bias": "model-00001-of-00002.safetensors",
|
| 173 |
+
"model.layers.20.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
|
| 174 |
+
"model.layers.20.self_attn.v_proj.bias": "model-00001-of-00002.safetensors",
|
| 175 |
+
"model.layers.20.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
|
| 176 |
+
"model.layers.21.input_layernorm.weight": "model-00001-of-00002.safetensors",
|
| 177 |
+
"model.layers.21.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
|
| 178 |
+
"model.layers.21.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
|
| 179 |
+
"model.layers.21.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
|
| 180 |
+
"model.layers.21.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
|
| 181 |
+
"model.layers.21.self_attn.k_proj.bias": "model-00001-of-00002.safetensors",
|
| 182 |
+
"model.layers.21.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
|
| 183 |
+
"model.layers.21.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
|
| 184 |
+
"model.layers.21.self_attn.q_proj.bias": "model-00001-of-00002.safetensors",
|
| 185 |
+
"model.layers.21.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
|
| 186 |
+
"model.layers.21.self_attn.v_proj.bias": "model-00001-of-00002.safetensors",
|
| 187 |
+
"model.layers.21.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
|
| 188 |
+
"model.layers.22.input_layernorm.weight": "model-00001-of-00002.safetensors",
|
| 189 |
+
"model.layers.22.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
|
| 190 |
+
"model.layers.22.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
|
| 191 |
+
"model.layers.22.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
|
| 192 |
+
"model.layers.22.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
|
| 193 |
+
"model.layers.22.self_attn.k_proj.bias": "model-00001-of-00002.safetensors",
|
| 194 |
+
"model.layers.22.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
|
| 195 |
+
"model.layers.22.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
|
| 196 |
+
"model.layers.22.self_attn.q_proj.bias": "model-00001-of-00002.safetensors",
|
| 197 |
+
"model.layers.22.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
|
| 198 |
+
"model.layers.22.self_attn.v_proj.bias": "model-00001-of-00002.safetensors",
|
| 199 |
+
"model.layers.22.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
|
| 200 |
+
"model.layers.23.input_layernorm.weight": "model-00001-of-00002.safetensors",
|
| 201 |
+
"model.layers.23.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
|
| 202 |
+
"model.layers.23.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
|
| 203 |
+
"model.layers.23.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
|
| 204 |
+
"model.layers.23.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
|
| 205 |
+
"model.layers.23.self_attn.k_proj.bias": "model-00001-of-00002.safetensors",
|
| 206 |
+
"model.layers.23.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
|
| 207 |
+
"model.layers.23.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
|
| 208 |
+
"model.layers.23.self_attn.q_proj.bias": "model-00001-of-00002.safetensors",
|
| 209 |
+
"model.layers.23.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
|
| 210 |
+
"model.layers.23.self_attn.v_proj.bias": "model-00001-of-00002.safetensors",
|
| 211 |
+
"model.layers.23.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
|
| 212 |
+
"model.layers.24.input_layernorm.weight": "model-00001-of-00002.safetensors",
|
| 213 |
+
"model.layers.24.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
|
| 214 |
+
"model.layers.24.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
|
| 215 |
+
"model.layers.24.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
|
| 216 |
+
"model.layers.24.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
|
| 217 |
+
"model.layers.24.self_attn.k_proj.bias": "model-00001-of-00002.safetensors",
|
| 218 |
+
"model.layers.24.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
|
| 219 |
+
"model.layers.24.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
|
| 220 |
+
"model.layers.24.self_attn.q_proj.bias": "model-00001-of-00002.safetensors",
|
| 221 |
+
"model.layers.24.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
|
| 222 |
+
"model.layers.24.self_attn.v_proj.bias": "model-00001-of-00002.safetensors",
|
| 223 |
+
"model.layers.24.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
|
| 224 |
+
"model.layers.25.input_layernorm.weight": "model-00001-of-00002.safetensors",
|
| 225 |
+
"model.layers.25.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
|
| 226 |
+
"model.layers.25.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
|
| 227 |
+
"model.layers.25.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
|
| 228 |
+
"model.layers.25.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
|
| 229 |
+
"model.layers.25.self_attn.k_proj.bias": "model-00001-of-00002.safetensors",
|
| 230 |
+
"model.layers.25.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
|
| 231 |
+
"model.layers.25.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
|
| 232 |
+
"model.layers.25.self_attn.q_proj.bias": "model-00001-of-00002.safetensors",
|
| 233 |
+
"model.layers.25.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
|
| 234 |
+
"model.layers.25.self_attn.v_proj.bias": "model-00001-of-00002.safetensors",
|
| 235 |
+
"model.layers.25.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
|
| 236 |
+
"model.layers.26.input_layernorm.weight": "model-00001-of-00002.safetensors",
|
| 237 |
+
"model.layers.26.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
|
| 238 |
+
"model.layers.26.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
|
| 239 |
+
"model.layers.26.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
|
| 240 |
+
"model.layers.26.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
|
| 241 |
+
"model.layers.26.self_attn.k_proj.bias": "model-00001-of-00002.safetensors",
|
| 242 |
+
"model.layers.26.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
|
| 243 |
+
"model.layers.26.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
|
| 244 |
+
"model.layers.26.self_attn.q_proj.bias": "model-00001-of-00002.safetensors",
|
| 245 |
+
"model.layers.26.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
|
| 246 |
+
"model.layers.26.self_attn.v_proj.bias": "model-00001-of-00002.safetensors",
|
| 247 |
+
"model.layers.26.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
|
| 248 |
+
"model.layers.27.input_layernorm.weight": "model-00001-of-00002.safetensors",
|
| 249 |
+
"model.layers.27.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
|
| 250 |
+
"model.layers.27.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
|
| 251 |
+
"model.layers.27.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
|
| 252 |
+
"model.layers.27.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
|
| 253 |
+
"model.layers.27.self_attn.k_proj.bias": "model-00001-of-00002.safetensors",
|
| 254 |
+
"model.layers.27.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
|
| 255 |
+
"model.layers.27.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
|
| 256 |
+
"model.layers.27.self_attn.q_proj.bias": "model-00001-of-00002.safetensors",
|
| 257 |
+
"model.layers.27.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
|
| 258 |
+
"model.layers.27.self_attn.v_proj.bias": "model-00001-of-00002.safetensors",
|
| 259 |
+
"model.layers.27.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
|
| 260 |
+
"model.layers.28.input_layernorm.weight": "model-00002-of-00002.safetensors",
|
| 261 |
+
"model.layers.28.mlp.down_proj.weight": "model-00002-of-00002.safetensors",
|
| 262 |
+
"model.layers.28.mlp.gate_proj.weight": "model-00002-of-00002.safetensors",
|
| 263 |
+
"model.layers.28.mlp.up_proj.weight": "model-00002-of-00002.safetensors",
|
| 264 |
+
"model.layers.28.post_attention_layernorm.weight": "model-00002-of-00002.safetensors",
|
| 265 |
+
"model.layers.28.self_attn.k_proj.bias": "model-00001-of-00002.safetensors",
|
| 266 |
+
"model.layers.28.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
|
| 267 |
+
"model.layers.28.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
|
| 268 |
+
"model.layers.28.self_attn.q_proj.bias": "model-00001-of-00002.safetensors",
|
| 269 |
+
"model.layers.28.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
|
| 270 |
+
"model.layers.28.self_attn.v_proj.bias": "model-00001-of-00002.safetensors",
|
| 271 |
+
"model.layers.28.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
|
| 272 |
+
"model.layers.29.input_layernorm.weight": "model-00002-of-00002.safetensors",
|
| 273 |
+
"model.layers.29.mlp.down_proj.weight": "model-00002-of-00002.safetensors",
|
| 274 |
+
"model.layers.29.mlp.gate_proj.weight": "model-00002-of-00002.safetensors",
|
| 275 |
+
"model.layers.29.mlp.up_proj.weight": "model-00002-of-00002.safetensors",
|
| 276 |
+
"model.layers.29.post_attention_layernorm.weight": "model-00002-of-00002.safetensors",
|
| 277 |
+
"model.layers.29.self_attn.k_proj.bias": "model-00002-of-00002.safetensors",
|
| 278 |
+
"model.layers.29.self_attn.k_proj.weight": "model-00002-of-00002.safetensors",
|
| 279 |
+
"model.layers.29.self_attn.o_proj.weight": "model-00002-of-00002.safetensors",
|
| 280 |
+
"model.layers.29.self_attn.q_proj.bias": "model-00002-of-00002.safetensors",
|
| 281 |
+
"model.layers.29.self_attn.q_proj.weight": "model-00002-of-00002.safetensors",
|
| 282 |
+
"model.layers.29.self_attn.v_proj.bias": "model-00002-of-00002.safetensors",
|
| 283 |
+
"model.layers.29.self_attn.v_proj.weight": "model-00002-of-00002.safetensors",
|
| 284 |
+
"model.layers.3.input_layernorm.weight": "model-00001-of-00002.safetensors",
|
| 285 |
+
"model.layers.3.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
|
| 286 |
+
"model.layers.3.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
|
| 287 |
+
"model.layers.3.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
|
| 288 |
+
"model.layers.3.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
|
| 289 |
+
"model.layers.3.self_attn.k_proj.bias": "model-00001-of-00002.safetensors",
|
| 290 |
+
"model.layers.3.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
|
| 291 |
+
"model.layers.3.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
|
| 292 |
+
"model.layers.3.self_attn.q_proj.bias": "model-00001-of-00002.safetensors",
|
| 293 |
+
"model.layers.3.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
|
| 294 |
+
"model.layers.3.self_attn.v_proj.bias": "model-00001-of-00002.safetensors",
|
| 295 |
+
"model.layers.3.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
|
| 296 |
+
"model.layers.30.input_layernorm.weight": "model-00002-of-00002.safetensors",
|
| 297 |
+
"model.layers.30.mlp.down_proj.weight": "model-00002-of-00002.safetensors",
|
| 298 |
+
"model.layers.30.mlp.gate_proj.weight": "model-00002-of-00002.safetensors",
|
| 299 |
+
"model.layers.30.mlp.up_proj.weight": "model-00002-of-00002.safetensors",
|
| 300 |
+
"model.layers.30.post_attention_layernorm.weight": "model-00002-of-00002.safetensors",
|
| 301 |
+
"model.layers.30.self_attn.k_proj.bias": "model-00002-of-00002.safetensors",
|
| 302 |
+
"model.layers.30.self_attn.k_proj.weight": "model-00002-of-00002.safetensors",
|
| 303 |
+
"model.layers.30.self_attn.o_proj.weight": "model-00002-of-00002.safetensors",
|
| 304 |
+
"model.layers.30.self_attn.q_proj.bias": "model-00002-of-00002.safetensors",
|
| 305 |
+
"model.layers.30.self_attn.q_proj.weight": "model-00002-of-00002.safetensors",
|
| 306 |
+
"model.layers.30.self_attn.v_proj.bias": "model-00002-of-00002.safetensors",
|
| 307 |
+
"model.layers.30.self_attn.v_proj.weight": "model-00002-of-00002.safetensors",
|
| 308 |
+
"model.layers.31.input_layernorm.weight": "model-00002-of-00002.safetensors",
|
| 309 |
+
"model.layers.31.mlp.down_proj.weight": "model-00002-of-00002.safetensors",
|
| 310 |
+
"model.layers.31.mlp.gate_proj.weight": "model-00002-of-00002.safetensors",
|
| 311 |
+
"model.layers.31.mlp.up_proj.weight": "model-00002-of-00002.safetensors",
|
| 312 |
+
"model.layers.31.post_attention_layernorm.weight": "model-00002-of-00002.safetensors",
|
| 313 |
+
"model.layers.31.self_attn.k_proj.bias": "model-00002-of-00002.safetensors",
|
| 314 |
+
"model.layers.31.self_attn.k_proj.weight": "model-00002-of-00002.safetensors",
|
| 315 |
+
"model.layers.31.self_attn.o_proj.weight": "model-00002-of-00002.safetensors",
|
| 316 |
+
"model.layers.31.self_attn.q_proj.bias": "model-00002-of-00002.safetensors",
|
| 317 |
+
"model.layers.31.self_attn.q_proj.weight": "model-00002-of-00002.safetensors",
|
| 318 |
+
"model.layers.31.self_attn.v_proj.bias": "model-00002-of-00002.safetensors",
|
| 319 |
+
"model.layers.31.self_attn.v_proj.weight": "model-00002-of-00002.safetensors",
|
| 320 |
+
"model.layers.32.input_layernorm.weight": "model-00002-of-00002.safetensors",
|
| 321 |
+
"model.layers.32.mlp.down_proj.weight": "model-00002-of-00002.safetensors",
|
| 322 |
+
"model.layers.32.mlp.gate_proj.weight": "model-00002-of-00002.safetensors",
|
| 323 |
+
"model.layers.32.mlp.up_proj.weight": "model-00002-of-00002.safetensors",
|
| 324 |
+
"model.layers.32.post_attention_layernorm.weight": "model-00002-of-00002.safetensors",
|
| 325 |
+
"model.layers.32.self_attn.k_proj.bias": "model-00002-of-00002.safetensors",
|
| 326 |
+
"model.layers.32.self_attn.k_proj.weight": "model-00002-of-00002.safetensors",
|
| 327 |
+
"model.layers.32.self_attn.o_proj.weight": "model-00002-of-00002.safetensors",
|
| 328 |
+
"model.layers.32.self_attn.q_proj.bias": "model-00002-of-00002.safetensors",
|
| 329 |
+
"model.layers.32.self_attn.q_proj.weight": "model-00002-of-00002.safetensors",
|
| 330 |
+
"model.layers.32.self_attn.v_proj.bias": "model-00002-of-00002.safetensors",
|
| 331 |
+
"model.layers.32.self_attn.v_proj.weight": "model-00002-of-00002.safetensors",
|
| 332 |
+
"model.layers.33.input_layernorm.weight": "model-00002-of-00002.safetensors",
|
| 333 |
+
"model.layers.33.mlp.down_proj.weight": "model-00002-of-00002.safetensors",
|
| 334 |
+
"model.layers.33.mlp.gate_proj.weight": "model-00002-of-00002.safetensors",
|
| 335 |
+
"model.layers.33.mlp.up_proj.weight": "model-00002-of-00002.safetensors",
|
| 336 |
+
"model.layers.33.post_attention_layernorm.weight": "model-00002-of-00002.safetensors",
|
| 337 |
+
"model.layers.33.self_attn.k_proj.bias": "model-00002-of-00002.safetensors",
|
| 338 |
+
"model.layers.33.self_attn.k_proj.weight": "model-00002-of-00002.safetensors",
|
| 339 |
+
"model.layers.33.self_attn.o_proj.weight": "model-00002-of-00002.safetensors",
|
| 340 |
+
"model.layers.33.self_attn.q_proj.bias": "model-00002-of-00002.safetensors",
|
| 341 |
+
"model.layers.33.self_attn.q_proj.weight": "model-00002-of-00002.safetensors",
|
| 342 |
+
"model.layers.33.self_attn.v_proj.bias": "model-00002-of-00002.safetensors",
|
| 343 |
+
"model.layers.33.self_attn.v_proj.weight": "model-00002-of-00002.safetensors",
|
| 344 |
+
"model.layers.34.input_layernorm.weight": "model-00002-of-00002.safetensors",
|
| 345 |
+
"model.layers.34.mlp.down_proj.weight": "model-00002-of-00002.safetensors",
|
| 346 |
+
"model.layers.34.mlp.gate_proj.weight": "model-00002-of-00002.safetensors",
|
| 347 |
+
"model.layers.34.mlp.up_proj.weight": "model-00002-of-00002.safetensors",
|
| 348 |
+
"model.layers.34.post_attention_layernorm.weight": "model-00002-of-00002.safetensors",
|
| 349 |
+
"model.layers.34.self_attn.k_proj.bias": "model-00002-of-00002.safetensors",
|
| 350 |
+
"model.layers.34.self_attn.k_proj.weight": "model-00002-of-00002.safetensors",
|
| 351 |
+
"model.layers.34.self_attn.o_proj.weight": "model-00002-of-00002.safetensors",
|
| 352 |
+
"model.layers.34.self_attn.q_proj.bias": "model-00002-of-00002.safetensors",
|
| 353 |
+
"model.layers.34.self_attn.q_proj.weight": "model-00002-of-00002.safetensors",
|
| 354 |
+
"model.layers.34.self_attn.v_proj.bias": "model-00002-of-00002.safetensors",
|
| 355 |
+
"model.layers.34.self_attn.v_proj.weight": "model-00002-of-00002.safetensors",
|
| 356 |
+
"model.layers.35.input_layernorm.weight": "model-00002-of-00002.safetensors",
|
| 357 |
+
"model.layers.35.mlp.down_proj.weight": "model-00002-of-00002.safetensors",
|
| 358 |
+
"model.layers.35.mlp.gate_proj.weight": "model-00002-of-00002.safetensors",
|
| 359 |
+
"model.layers.35.mlp.up_proj.weight": "model-00002-of-00002.safetensors",
|
| 360 |
+
"model.layers.35.post_attention_layernorm.weight": "model-00002-of-00002.safetensors",
|
| 361 |
+
"model.layers.35.self_attn.k_proj.bias": "model-00002-of-00002.safetensors",
|
| 362 |
+
"model.layers.35.self_attn.k_proj.weight": "model-00002-of-00002.safetensors",
|
| 363 |
+
"model.layers.35.self_attn.o_proj.weight": "model-00002-of-00002.safetensors",
|
| 364 |
+
"model.layers.35.self_attn.q_proj.bias": "model-00002-of-00002.safetensors",
|
| 365 |
+
"model.layers.35.self_attn.q_proj.weight": "model-00002-of-00002.safetensors",
|
| 366 |
+
"model.layers.35.self_attn.v_proj.bias": "model-00002-of-00002.safetensors",
|
| 367 |
+
"model.layers.35.self_attn.v_proj.weight": "model-00002-of-00002.safetensors",
|
| 368 |
+
"model.layers.4.input_layernorm.weight": "model-00001-of-00002.safetensors",
|
| 369 |
+
"model.layers.4.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
|
| 370 |
+
"model.layers.4.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
|
| 371 |
+
"model.layers.4.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
|
| 372 |
+
"model.layers.4.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
|
| 373 |
+
"model.layers.4.self_attn.k_proj.bias": "model-00001-of-00002.safetensors",
|
| 374 |
+
"model.layers.4.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
|
| 375 |
+
"model.layers.4.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
|
| 376 |
+
"model.layers.4.self_attn.q_proj.bias": "model-00001-of-00002.safetensors",
|
| 377 |
+
"model.layers.4.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
|
| 378 |
+
"model.layers.4.self_attn.v_proj.bias": "model-00001-of-00002.safetensors",
|
| 379 |
+
"model.layers.4.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
|
| 380 |
+
"model.layers.5.input_layernorm.weight": "model-00001-of-00002.safetensors",
|
| 381 |
+
"model.layers.5.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
|
| 382 |
+
"model.layers.5.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
|
| 383 |
+
"model.layers.5.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
|
| 384 |
+
"model.layers.5.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
|
| 385 |
+
"model.layers.5.self_attn.k_proj.bias": "model-00001-of-00002.safetensors",
|
| 386 |
+
"model.layers.5.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
|
| 387 |
+
"model.layers.5.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
|
| 388 |
+
"model.layers.5.self_attn.q_proj.bias": "model-00001-of-00002.safetensors",
|
| 389 |
+
"model.layers.5.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
|
| 390 |
+
"model.layers.5.self_attn.v_proj.bias": "model-00001-of-00002.safetensors",
|
| 391 |
+
"model.layers.5.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
|
| 392 |
+
"model.layers.6.input_layernorm.weight": "model-00001-of-00002.safetensors",
|
| 393 |
+
"model.layers.6.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
|
| 394 |
+
"model.layers.6.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
|
| 395 |
+
"model.layers.6.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
|
| 396 |
+
"model.layers.6.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
|
| 397 |
+
"model.layers.6.self_attn.k_proj.bias": "model-00001-of-00002.safetensors",
|
| 398 |
+
"model.layers.6.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
|
| 399 |
+
"model.layers.6.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
|
| 400 |
+
"model.layers.6.self_attn.q_proj.bias": "model-00001-of-00002.safetensors",
|
| 401 |
+
"model.layers.6.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
|
| 402 |
+
"model.layers.6.self_attn.v_proj.bias": "model-00001-of-00002.safetensors",
|
| 403 |
+
"model.layers.6.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
|
| 404 |
+
"model.layers.7.input_layernorm.weight": "model-00001-of-00002.safetensors",
|
| 405 |
+
"model.layers.7.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
|
| 406 |
+
"model.layers.7.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
|
| 407 |
+
"model.layers.7.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
|
| 408 |
+
"model.layers.7.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
|
| 409 |
+
"model.layers.7.self_attn.k_proj.bias": "model-00001-of-00002.safetensors",
|
| 410 |
+
"model.layers.7.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
|
| 411 |
+
"model.layers.7.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
|
| 412 |
+
"model.layers.7.self_attn.q_proj.bias": "model-00001-of-00002.safetensors",
|
| 413 |
+
"model.layers.7.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
|
| 414 |
+
"model.layers.7.self_attn.v_proj.bias": "model-00001-of-00002.safetensors",
|
| 415 |
+
"model.layers.7.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
|
| 416 |
+
"model.layers.8.input_layernorm.weight": "model-00001-of-00002.safetensors",
|
| 417 |
+
"model.layers.8.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
|
| 418 |
+
"model.layers.8.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
|
| 419 |
+
"model.layers.8.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
|
| 420 |
+
"model.layers.8.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
|
| 421 |
+
"model.layers.8.self_attn.k_proj.bias": "model-00001-of-00002.safetensors",
|
| 422 |
+
"model.layers.8.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
|
| 423 |
+
"model.layers.8.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
|
| 424 |
+
"model.layers.8.self_attn.q_proj.bias": "model-00001-of-00002.safetensors",
|
| 425 |
+
"model.layers.8.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
|
| 426 |
+
"model.layers.8.self_attn.v_proj.bias": "model-00001-of-00002.safetensors",
|
| 427 |
+
"model.layers.8.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
|
| 428 |
+
"model.layers.9.input_layernorm.weight": "model-00001-of-00002.safetensors",
|
| 429 |
+
"model.layers.9.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
|
| 430 |
+
"model.layers.9.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
|
| 431 |
+
"model.layers.9.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
|
| 432 |
+
"model.layers.9.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
|
| 433 |
+
"model.layers.9.self_attn.k_proj.bias": "model-00001-of-00002.safetensors",
|
| 434 |
+
"model.layers.9.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
|
| 435 |
+
"model.layers.9.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
|
| 436 |
+
"model.layers.9.self_attn.q_proj.bias": "model-00001-of-00002.safetensors",
|
| 437 |
+
"model.layers.9.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
|
| 438 |
+
"model.layers.9.self_attn.v_proj.bias": "model-00001-of-00002.safetensors",
|
| 439 |
+
"model.layers.9.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
|
| 440 |
+
"model.norm.weight": "model-00002-of-00002.safetensors"
|
| 441 |
+
}
|
| 442 |
+
}
|
3b-w-cot+/checkpoint-244/rng_state_0.pth
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:a9affc1541e7e94c18354d5173bc55400c5f07faf3d080c6d453d48e7a8d6ac3
|
| 3 |
+
size 14512
|
3b-w-cot+/checkpoint-244/rng_state_1.pth
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:4748c3ebf0e4c051c58b92e4a8c5b87cdb39d55cfdc2aec81a1baef0f02fc113
|
| 3 |
+
size 14512
|
3b-w-cot+/checkpoint-244/scheduler.pt
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:5cb186d02e42c19d881269361281b0d1dc724284e39baf6809ced6fd93070319
|
| 3 |
+
size 1064
|
3b-w-cot+/checkpoint-244/special_tokens_map.json
ADDED
|
@@ -0,0 +1,31 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"additional_special_tokens": [
|
| 3 |
+
"<|im_start|>",
|
| 4 |
+
"<|im_end|>",
|
| 5 |
+
"<|object_ref_start|>",
|
| 6 |
+
"<|object_ref_end|>",
|
| 7 |
+
"<|box_start|>",
|
| 8 |
+
"<|box_end|>",
|
| 9 |
+
"<|quad_start|>",
|
| 10 |
+
"<|quad_end|>",
|
| 11 |
+
"<|vision_start|>",
|
| 12 |
+
"<|vision_end|>",
|
| 13 |
+
"<|vision_pad|>",
|
| 14 |
+
"<|image_pad|>",
|
| 15 |
+
"<|video_pad|>"
|
| 16 |
+
],
|
| 17 |
+
"eos_token": {
|
| 18 |
+
"content": "<|im_end|>",
|
| 19 |
+
"lstrip": false,
|
| 20 |
+
"normalized": false,
|
| 21 |
+
"rstrip": false,
|
| 22 |
+
"single_word": false
|
| 23 |
+
},
|
| 24 |
+
"pad_token": {
|
| 25 |
+
"content": "<|endoftext|>",
|
| 26 |
+
"lstrip": false,
|
| 27 |
+
"normalized": false,
|
| 28 |
+
"rstrip": false,
|
| 29 |
+
"single_word": false
|
| 30 |
+
}
|
| 31 |
+
}
|
3b-w-cot+/checkpoint-244/tokenizer.json
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:9c5ae00e602b8860cbd784ba82a8aa14e8feecec692e7076590d014d7b7fdafa
|
| 3 |
+
size 11421896
|
3b-w-cot+/checkpoint-244/tokenizer_config.json
ADDED
|
@@ -0,0 +1,208 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"add_bos_token": false,
|
| 3 |
+
"add_prefix_space": false,
|
| 4 |
+
"added_tokens_decoder": {
|
| 5 |
+
"151643": {
|
| 6 |
+
"content": "<|endoftext|>",
|
| 7 |
+
"lstrip": false,
|
| 8 |
+
"normalized": false,
|
| 9 |
+
"rstrip": false,
|
| 10 |
+
"single_word": false,
|
| 11 |
+
"special": true
|
| 12 |
+
},
|
| 13 |
+
"151644": {
|
| 14 |
+
"content": "<|im_start|>",
|
| 15 |
+
"lstrip": false,
|
| 16 |
+
"normalized": false,
|
| 17 |
+
"rstrip": false,
|
| 18 |
+
"single_word": false,
|
| 19 |
+
"special": true
|
| 20 |
+
},
|
| 21 |
+
"151645": {
|
| 22 |
+
"content": "<|im_end|>",
|
| 23 |
+
"lstrip": false,
|
| 24 |
+
"normalized": false,
|
| 25 |
+
"rstrip": false,
|
| 26 |
+
"single_word": false,
|
| 27 |
+
"special": true
|
| 28 |
+
},
|
| 29 |
+
"151646": {
|
| 30 |
+
"content": "<|object_ref_start|>",
|
| 31 |
+
"lstrip": false,
|
| 32 |
+
"normalized": false,
|
| 33 |
+
"rstrip": false,
|
| 34 |
+
"single_word": false,
|
| 35 |
+
"special": true
|
| 36 |
+
},
|
| 37 |
+
"151647": {
|
| 38 |
+
"content": "<|object_ref_end|>",
|
| 39 |
+
"lstrip": false,
|
| 40 |
+
"normalized": false,
|
| 41 |
+
"rstrip": false,
|
| 42 |
+
"single_word": false,
|
| 43 |
+
"special": true
|
| 44 |
+
},
|
| 45 |
+
"151648": {
|
| 46 |
+
"content": "<|box_start|>",
|
| 47 |
+
"lstrip": false,
|
| 48 |
+
"normalized": false,
|
| 49 |
+
"rstrip": false,
|
| 50 |
+
"single_word": false,
|
| 51 |
+
"special": true
|
| 52 |
+
},
|
| 53 |
+
"151649": {
|
| 54 |
+
"content": "<|box_end|>",
|
| 55 |
+
"lstrip": false,
|
| 56 |
+
"normalized": false,
|
| 57 |
+
"rstrip": false,
|
| 58 |
+
"single_word": false,
|
| 59 |
+
"special": true
|
| 60 |
+
},
|
| 61 |
+
"151650": {
|
| 62 |
+
"content": "<|quad_start|>",
|
| 63 |
+
"lstrip": false,
|
| 64 |
+
"normalized": false,
|
| 65 |
+
"rstrip": false,
|
| 66 |
+
"single_word": false,
|
| 67 |
+
"special": true
|
| 68 |
+
},
|
| 69 |
+
"151651": {
|
| 70 |
+
"content": "<|quad_end|>",
|
| 71 |
+
"lstrip": false,
|
| 72 |
+
"normalized": false,
|
| 73 |
+
"rstrip": false,
|
| 74 |
+
"single_word": false,
|
| 75 |
+
"special": true
|
| 76 |
+
},
|
| 77 |
+
"151652": {
|
| 78 |
+
"content": "<|vision_start|>",
|
| 79 |
+
"lstrip": false,
|
| 80 |
+
"normalized": false,
|
| 81 |
+
"rstrip": false,
|
| 82 |
+
"single_word": false,
|
| 83 |
+
"special": true
|
| 84 |
+
},
|
| 85 |
+
"151653": {
|
| 86 |
+
"content": "<|vision_end|>",
|
| 87 |
+
"lstrip": false,
|
| 88 |
+
"normalized": false,
|
| 89 |
+
"rstrip": false,
|
| 90 |
+
"single_word": false,
|
| 91 |
+
"special": true
|
| 92 |
+
},
|
| 93 |
+
"151654": {
|
| 94 |
+
"content": "<|vision_pad|>",
|
| 95 |
+
"lstrip": false,
|
| 96 |
+
"normalized": false,
|
| 97 |
+
"rstrip": false,
|
| 98 |
+
"single_word": false,
|
| 99 |
+
"special": true
|
| 100 |
+
},
|
| 101 |
+
"151655": {
|
| 102 |
+
"content": "<|image_pad|>",
|
| 103 |
+
"lstrip": false,
|
| 104 |
+
"normalized": false,
|
| 105 |
+
"rstrip": false,
|
| 106 |
+
"single_word": false,
|
| 107 |
+
"special": true
|
| 108 |
+
},
|
| 109 |
+
"151656": {
|
| 110 |
+
"content": "<|video_pad|>",
|
| 111 |
+
"lstrip": false,
|
| 112 |
+
"normalized": false,
|
| 113 |
+
"rstrip": false,
|
| 114 |
+
"single_word": false,
|
| 115 |
+
"special": true
|
| 116 |
+
},
|
| 117 |
+
"151657": {
|
| 118 |
+
"content": "<tool_call>",
|
| 119 |
+
"lstrip": false,
|
| 120 |
+
"normalized": false,
|
| 121 |
+
"rstrip": false,
|
| 122 |
+
"single_word": false,
|
| 123 |
+
"special": false
|
| 124 |
+
},
|
| 125 |
+
"151658": {
|
| 126 |
+
"content": "</tool_call>",
|
| 127 |
+
"lstrip": false,
|
| 128 |
+
"normalized": false,
|
| 129 |
+
"rstrip": false,
|
| 130 |
+
"single_word": false,
|
| 131 |
+
"special": false
|
| 132 |
+
},
|
| 133 |
+
"151659": {
|
| 134 |
+
"content": "<|fim_prefix|>",
|
| 135 |
+
"lstrip": false,
|
| 136 |
+
"normalized": false,
|
| 137 |
+
"rstrip": false,
|
| 138 |
+
"single_word": false,
|
| 139 |
+
"special": false
|
| 140 |
+
},
|
| 141 |
+
"151660": {
|
| 142 |
+
"content": "<|fim_middle|>",
|
| 143 |
+
"lstrip": false,
|
| 144 |
+
"normalized": false,
|
| 145 |
+
"rstrip": false,
|
| 146 |
+
"single_word": false,
|
| 147 |
+
"special": false
|
| 148 |
+
},
|
| 149 |
+
"151661": {
|
| 150 |
+
"content": "<|fim_suffix|>",
|
| 151 |
+
"lstrip": false,
|
| 152 |
+
"normalized": false,
|
| 153 |
+
"rstrip": false,
|
| 154 |
+
"single_word": false,
|
| 155 |
+
"special": false
|
| 156 |
+
},
|
| 157 |
+
"151662": {
|
| 158 |
+
"content": "<|fim_pad|>",
|
| 159 |
+
"lstrip": false,
|
| 160 |
+
"normalized": false,
|
| 161 |
+
"rstrip": false,
|
| 162 |
+
"single_word": false,
|
| 163 |
+
"special": false
|
| 164 |
+
},
|
| 165 |
+
"151663": {
|
| 166 |
+
"content": "<|repo_name|>",
|
| 167 |
+
"lstrip": false,
|
| 168 |
+
"normalized": false,
|
| 169 |
+
"rstrip": false,
|
| 170 |
+
"single_word": false,
|
| 171 |
+
"special": false
|
| 172 |
+
},
|
| 173 |
+
"151664": {
|
| 174 |
+
"content": "<|file_sep|>",
|
| 175 |
+
"lstrip": false,
|
| 176 |
+
"normalized": false,
|
| 177 |
+
"rstrip": false,
|
| 178 |
+
"single_word": false,
|
| 179 |
+
"special": false
|
| 180 |
+
}
|
| 181 |
+
},
|
| 182 |
+
"additional_special_tokens": [
|
| 183 |
+
"<|im_start|>",
|
| 184 |
+
"<|im_end|>",
|
| 185 |
+
"<|object_ref_start|>",
|
| 186 |
+
"<|object_ref_end|>",
|
| 187 |
+
"<|box_start|>",
|
| 188 |
+
"<|box_end|>",
|
| 189 |
+
"<|quad_start|>",
|
| 190 |
+
"<|quad_end|>",
|
| 191 |
+
"<|vision_start|>",
|
| 192 |
+
"<|vision_end|>",
|
| 193 |
+
"<|vision_pad|>",
|
| 194 |
+
"<|image_pad|>",
|
| 195 |
+
"<|video_pad|>"
|
| 196 |
+
],
|
| 197 |
+
"bos_token": null,
|
| 198 |
+
"chat_template": "{%- if tools %}\n {{- '<|im_start|>system\\n' }}\n {%- if messages[0]['role'] == 'system' %}\n {{- messages[0]['content'] }}\n {%- else %}\n {{- 'You are Qwen, created by Alibaba Cloud. You are a helpful assistant.' }}\n {%- endif %}\n {{- \"\\n\\n# Tools\\n\\nYou may call one or more functions to assist with the user query.\\n\\nYou are provided with function signatures within <tools></tools> XML tags:\\n<tools>\" }}\n {%- for tool in tools %}\n {{- \"\\n\" }}\n {{- tool | tojson }}\n {%- endfor %}\n {{- \"\\n</tools>\\n\\nFor each function call, return a json object with function name and arguments within <tool_call></tool_call> XML tags:\\n<tool_call>\\n{\\\"name\\\": <function-name>, \\\"arguments\\\": <args-json-object>}\\n</tool_call><|im_end|>\\n\" }}\n{%- else %}\n {%- if messages[0]['role'] == 'system' %}\n {{- '<|im_start|>system\\n' + messages[0]['content'] + '<|im_end|>\\n' }}\n {%- else %}\n {{- '<|im_start|>system\\nYou are Qwen, created by Alibaba Cloud. You are a helpful assistant.<|im_end|>\\n' }}\n {%- endif %}\n{%- endif %}\n{%- for message in messages %}\n {%- if (message.role == \"user\") or (message.role == \"system\" and not loop.first) or (message.role == \"assistant\" and not message.tool_calls) %}\n {{- '<|im_start|>' + message.role + '\\n' + message.content + '<|im_end|>' + '\\n' }}\n {%- elif message.role == \"assistant\" %}\n {{- '<|im_start|>' + message.role }}\n {%- if message.content %}\n {{- '\\n' + message.content }}\n {%- endif %}\n {%- for tool_call in message.tool_calls %}\n {%- if tool_call.function is defined %}\n {%- set tool_call = tool_call.function %}\n {%- endif %}\n {{- '\\n<tool_call>\\n{\"name\": \"' }}\n {{- tool_call.name }}\n {{- '\", \"arguments\": ' }}\n {{- tool_call.arguments | tojson }}\n {{- '}\\n</tool_call>' }}\n {%- endfor %}\n {{- '<|im_end|>\\n' }}\n {%- elif message.role == \"tool\" %}\n {%- if (loop.index0 == 0) or (messages[loop.index0 - 1].role != \"tool\") %}\n {{- '<|im_start|>user' }}\n {%- endif %}\n {{- '\\n<tool_response>\\n' }}\n {{- message.content }}\n {{- '\\n</tool_response>' }}\n {%- if loop.last or (messages[loop.index0 + 1].role != \"tool\") %}\n {{- '<|im_end|>\\n' }}\n {%- endif %}\n {%- endif %}\n{%- endfor %}\n{%- if add_generation_prompt %}\n {{- '<|im_start|>assistant\\n' }}\n{%- endif %}\n",
|
| 199 |
+
"clean_up_tokenization_spaces": false,
|
| 200 |
+
"eos_token": "<|im_end|>",
|
| 201 |
+
"errors": "replace",
|
| 202 |
+
"extra_special_tokens": {},
|
| 203 |
+
"model_max_length": 131072,
|
| 204 |
+
"pad_token": "<|endoftext|>",
|
| 205 |
+
"split_special_tokens": false,
|
| 206 |
+
"tokenizer_class": "Qwen2Tokenizer",
|
| 207 |
+
"unk_token": null
|
| 208 |
+
}
|
3b-w-cot+/checkpoint-244/trainer_state.json
ADDED
|
@@ -0,0 +1,1765 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"best_metric": null,
|
| 3 |
+
"best_model_checkpoint": null,
|
| 4 |
+
"epoch": 0.9989764585465711,
|
| 5 |
+
"eval_steps": 82,
|
| 6 |
+
"global_step": 244,
|
| 7 |
+
"is_hyper_param_search": false,
|
| 8 |
+
"is_local_process_zero": true,
|
| 9 |
+
"is_world_process_zero": true,
|
| 10 |
+
"log_history": [
|
| 11 |
+
{
|
| 12 |
+
"epoch": 0.0040941658137154556,
|
| 13 |
+
"grad_norm": 8.007163047790527,
|
| 14 |
+
"learning_rate": 6.666666666666667e-07,
|
| 15 |
+
"loss": 0.477,
|
| 16 |
+
"step": 1
|
| 17 |
+
},
|
| 18 |
+
{
|
| 19 |
+
"epoch": 0.0040941658137154556,
|
| 20 |
+
"eval_loss": 0.8367487192153931,
|
| 21 |
+
"eval_runtime": 4.4844,
|
| 22 |
+
"eval_samples_per_second": 17.617,
|
| 23 |
+
"eval_steps_per_second": 2.23,
|
| 24 |
+
"step": 1
|
| 25 |
+
},
|
| 26 |
+
{
|
| 27 |
+
"epoch": 0.008188331627430911,
|
| 28 |
+
"grad_norm": 8.800883293151855,
|
| 29 |
+
"learning_rate": 1.3333333333333334e-06,
|
| 30 |
+
"loss": 0.6282,
|
| 31 |
+
"step": 2
|
| 32 |
+
},
|
| 33 |
+
{
|
| 34 |
+
"epoch": 0.012282497441146366,
|
| 35 |
+
"grad_norm": 9.306445121765137,
|
| 36 |
+
"learning_rate": 2.0000000000000003e-06,
|
| 37 |
+
"loss": 0.6202,
|
| 38 |
+
"step": 3
|
| 39 |
+
},
|
| 40 |
+
{
|
| 41 |
+
"epoch": 0.016376663254861822,
|
| 42 |
+
"grad_norm": 10.017245292663574,
|
| 43 |
+
"learning_rate": 2.666666666666667e-06,
|
| 44 |
+
"loss": 0.6161,
|
| 45 |
+
"step": 4
|
| 46 |
+
},
|
| 47 |
+
{
|
| 48 |
+
"epoch": 0.02047082906857728,
|
| 49 |
+
"grad_norm": 9.14148235321045,
|
| 50 |
+
"learning_rate": 3.3333333333333333e-06,
|
| 51 |
+
"loss": 0.6081,
|
| 52 |
+
"step": 5
|
| 53 |
+
},
|
| 54 |
+
{
|
| 55 |
+
"epoch": 0.02456499488229273,
|
| 56 |
+
"grad_norm": 8.813340187072754,
|
| 57 |
+
"learning_rate": 4.000000000000001e-06,
|
| 58 |
+
"loss": 0.5697,
|
| 59 |
+
"step": 6
|
| 60 |
+
},
|
| 61 |
+
{
|
| 62 |
+
"epoch": 0.028659160696008188,
|
| 63 |
+
"grad_norm": 6.7533745765686035,
|
| 64 |
+
"learning_rate": 4.666666666666667e-06,
|
| 65 |
+
"loss": 0.4834,
|
| 66 |
+
"step": 7
|
| 67 |
+
},
|
| 68 |
+
{
|
| 69 |
+
"epoch": 0.032753326509723645,
|
| 70 |
+
"grad_norm": 6.1987481117248535,
|
| 71 |
+
"learning_rate": 5.333333333333334e-06,
|
| 72 |
+
"loss": 0.4857,
|
| 73 |
+
"step": 8
|
| 74 |
+
},
|
| 75 |
+
{
|
| 76 |
+
"epoch": 0.0368474923234391,
|
| 77 |
+
"grad_norm": 2.4827005863189697,
|
| 78 |
+
"learning_rate": 6e-06,
|
| 79 |
+
"loss": 0.3713,
|
| 80 |
+
"step": 9
|
| 81 |
+
},
|
| 82 |
+
{
|
| 83 |
+
"epoch": 0.04094165813715456,
|
| 84 |
+
"grad_norm": 2.163064956665039,
|
| 85 |
+
"learning_rate": 6.666666666666667e-06,
|
| 86 |
+
"loss": 0.3284,
|
| 87 |
+
"step": 10
|
| 88 |
+
},
|
| 89 |
+
{
|
| 90 |
+
"epoch": 0.04503582395087001,
|
| 91 |
+
"grad_norm": 1.9997942447662354,
|
| 92 |
+
"learning_rate": 7.333333333333333e-06,
|
| 93 |
+
"loss": 0.3289,
|
| 94 |
+
"step": 11
|
| 95 |
+
},
|
| 96 |
+
{
|
| 97 |
+
"epoch": 0.04912998976458546,
|
| 98 |
+
"grad_norm": 2.7956204414367676,
|
| 99 |
+
"learning_rate": 8.000000000000001e-06,
|
| 100 |
+
"loss": 0.3208,
|
| 101 |
+
"step": 12
|
| 102 |
+
},
|
| 103 |
+
{
|
| 104 |
+
"epoch": 0.05322415557830092,
|
| 105 |
+
"grad_norm": 2.8886733055114746,
|
| 106 |
+
"learning_rate": 8.666666666666668e-06,
|
| 107 |
+
"loss": 0.3123,
|
| 108 |
+
"step": 13
|
| 109 |
+
},
|
| 110 |
+
{
|
| 111 |
+
"epoch": 0.057318321392016376,
|
| 112 |
+
"grad_norm": 2.217071771621704,
|
| 113 |
+
"learning_rate": 9.333333333333334e-06,
|
| 114 |
+
"loss": 0.2881,
|
| 115 |
+
"step": 14
|
| 116 |
+
},
|
| 117 |
+
{
|
| 118 |
+
"epoch": 0.06141248720573183,
|
| 119 |
+
"grad_norm": 1.9985229969024658,
|
| 120 |
+
"learning_rate": 1e-05,
|
| 121 |
+
"loss": 0.283,
|
| 122 |
+
"step": 15
|
| 123 |
+
},
|
| 124 |
+
{
|
| 125 |
+
"epoch": 0.06550665301944729,
|
| 126 |
+
"grad_norm": 1.8881174325942993,
|
| 127 |
+
"learning_rate": 1.0666666666666667e-05,
|
| 128 |
+
"loss": 0.2616,
|
| 129 |
+
"step": 16
|
| 130 |
+
},
|
| 131 |
+
{
|
| 132 |
+
"epoch": 0.06960081883316274,
|
| 133 |
+
"grad_norm": 1.9551236629486084,
|
| 134 |
+
"learning_rate": 1.1333333333333334e-05,
|
| 135 |
+
"loss": 0.2894,
|
| 136 |
+
"step": 17
|
| 137 |
+
},
|
| 138 |
+
{
|
| 139 |
+
"epoch": 0.0736949846468782,
|
| 140 |
+
"grad_norm": 1.8677968978881836,
|
| 141 |
+
"learning_rate": 1.2e-05,
|
| 142 |
+
"loss": 0.2328,
|
| 143 |
+
"step": 18
|
| 144 |
+
},
|
| 145 |
+
{
|
| 146 |
+
"epoch": 0.07778915046059365,
|
| 147 |
+
"grad_norm": 1.9170935153961182,
|
| 148 |
+
"learning_rate": 1.2666666666666667e-05,
|
| 149 |
+
"loss": 0.2577,
|
| 150 |
+
"step": 19
|
| 151 |
+
},
|
| 152 |
+
{
|
| 153 |
+
"epoch": 0.08188331627430911,
|
| 154 |
+
"grad_norm": 2.189279794692993,
|
| 155 |
+
"learning_rate": 1.3333333333333333e-05,
|
| 156 |
+
"loss": 0.2555,
|
| 157 |
+
"step": 20
|
| 158 |
+
},
|
| 159 |
+
{
|
| 160 |
+
"epoch": 0.08597748208802457,
|
| 161 |
+
"grad_norm": 3.202075242996216,
|
| 162 |
+
"learning_rate": 1.4e-05,
|
| 163 |
+
"loss": 0.2647,
|
| 164 |
+
"step": 21
|
| 165 |
+
},
|
| 166 |
+
{
|
| 167 |
+
"epoch": 0.09007164790174002,
|
| 168 |
+
"grad_norm": 2.774186372756958,
|
| 169 |
+
"learning_rate": 1.4666666666666666e-05,
|
| 170 |
+
"loss": 0.2531,
|
| 171 |
+
"step": 22
|
| 172 |
+
},
|
| 173 |
+
{
|
| 174 |
+
"epoch": 0.09416581371545547,
|
| 175 |
+
"grad_norm": 2.0601961612701416,
|
| 176 |
+
"learning_rate": 1.5333333333333334e-05,
|
| 177 |
+
"loss": 0.2654,
|
| 178 |
+
"step": 23
|
| 179 |
+
},
|
| 180 |
+
{
|
| 181 |
+
"epoch": 0.09825997952917093,
|
| 182 |
+
"grad_norm": 1.781900405883789,
|
| 183 |
+
"learning_rate": 1.6000000000000003e-05,
|
| 184 |
+
"loss": 0.2358,
|
| 185 |
+
"step": 24
|
| 186 |
+
},
|
| 187 |
+
{
|
| 188 |
+
"epoch": 0.1023541453428864,
|
| 189 |
+
"grad_norm": 1.8549216985702515,
|
| 190 |
+
"learning_rate": 1.6666666666666667e-05,
|
| 191 |
+
"loss": 0.2362,
|
| 192 |
+
"step": 25
|
| 193 |
+
},
|
| 194 |
+
{
|
| 195 |
+
"epoch": 0.10644831115660185,
|
| 196 |
+
"grad_norm": 2.1376802921295166,
|
| 197 |
+
"learning_rate": 1.7333333333333336e-05,
|
| 198 |
+
"loss": 0.2334,
|
| 199 |
+
"step": 26
|
| 200 |
+
},
|
| 201 |
+
{
|
| 202 |
+
"epoch": 0.1105424769703173,
|
| 203 |
+
"grad_norm": 2.134582281112671,
|
| 204 |
+
"learning_rate": 1.8e-05,
|
| 205 |
+
"loss": 0.267,
|
| 206 |
+
"step": 27
|
| 207 |
+
},
|
| 208 |
+
{
|
| 209 |
+
"epoch": 0.11463664278403275,
|
| 210 |
+
"grad_norm": 1.6425909996032715,
|
| 211 |
+
"learning_rate": 1.866666666666667e-05,
|
| 212 |
+
"loss": 0.2184,
|
| 213 |
+
"step": 28
|
| 214 |
+
},
|
| 215 |
+
{
|
| 216 |
+
"epoch": 0.1187308085977482,
|
| 217 |
+
"grad_norm": 1.601938009262085,
|
| 218 |
+
"learning_rate": 1.9333333333333333e-05,
|
| 219 |
+
"loss": 0.256,
|
| 220 |
+
"step": 29
|
| 221 |
+
},
|
| 222 |
+
{
|
| 223 |
+
"epoch": 0.12282497441146366,
|
| 224 |
+
"grad_norm": 1.626160740852356,
|
| 225 |
+
"learning_rate": 2e-05,
|
| 226 |
+
"loss": 0.2548,
|
| 227 |
+
"step": 30
|
| 228 |
+
},
|
| 229 |
+
{
|
| 230 |
+
"epoch": 0.1269191402251791,
|
| 231 |
+
"grad_norm": 1.6894042491912842,
|
| 232 |
+
"learning_rate": 1.999989986294826e-05,
|
| 233 |
+
"loss": 0.2438,
|
| 234 |
+
"step": 31
|
| 235 |
+
},
|
| 236 |
+
{
|
| 237 |
+
"epoch": 0.13101330603889458,
|
| 238 |
+
"grad_norm": 1.6300302743911743,
|
| 239 |
+
"learning_rate": 1.9999599453798523e-05,
|
| 240 |
+
"loss": 0.2273,
|
| 241 |
+
"step": 32
|
| 242 |
+
},
|
| 243 |
+
{
|
| 244 |
+
"epoch": 0.13510747185261002,
|
| 245 |
+
"grad_norm": 1.6301401853561401,
|
| 246 |
+
"learning_rate": 1.999909877856721e-05,
|
| 247 |
+
"loss": 0.2539,
|
| 248 |
+
"step": 33
|
| 249 |
+
},
|
| 250 |
+
{
|
| 251 |
+
"epoch": 0.13920163766632548,
|
| 252 |
+
"grad_norm": 1.6974273920059204,
|
| 253 |
+
"learning_rate": 1.9998397847281548e-05,
|
| 254 |
+
"loss": 0.256,
|
| 255 |
+
"step": 34
|
| 256 |
+
},
|
| 257 |
+
{
|
| 258 |
+
"epoch": 0.14329580348004095,
|
| 259 |
+
"grad_norm": 1.5356749296188354,
|
| 260 |
+
"learning_rate": 1.9997496673979375e-05,
|
| 261 |
+
"loss": 0.2278,
|
| 262 |
+
"step": 35
|
| 263 |
+
},
|
| 264 |
+
{
|
| 265 |
+
"epoch": 0.1473899692937564,
|
| 266 |
+
"grad_norm": 1.6304699182510376,
|
| 267 |
+
"learning_rate": 1.9996395276708856e-05,
|
| 268 |
+
"loss": 0.2488,
|
| 269 |
+
"step": 36
|
| 270 |
+
},
|
| 271 |
+
{
|
| 272 |
+
"epoch": 0.15148413510747186,
|
| 273 |
+
"grad_norm": 1.6241912841796875,
|
| 274 |
+
"learning_rate": 1.999509367752813e-05,
|
| 275 |
+
"loss": 0.2407,
|
| 276 |
+
"step": 37
|
| 277 |
+
},
|
| 278 |
+
{
|
| 279 |
+
"epoch": 0.1555783009211873,
|
| 280 |
+
"grad_norm": 1.6954501867294312,
|
| 281 |
+
"learning_rate": 1.9993591902504854e-05,
|
| 282 |
+
"loss": 0.2279,
|
| 283 |
+
"step": 38
|
| 284 |
+
},
|
| 285 |
+
{
|
| 286 |
+
"epoch": 0.15967246673490276,
|
| 287 |
+
"grad_norm": 1.5775200128555298,
|
| 288 |
+
"learning_rate": 1.9991889981715696e-05,
|
| 289 |
+
"loss": 0.2443,
|
| 290 |
+
"step": 39
|
| 291 |
+
},
|
| 292 |
+
{
|
| 293 |
+
"epoch": 0.16376663254861823,
|
| 294 |
+
"grad_norm": 1.6417704820632935,
|
| 295 |
+
"learning_rate": 1.9989987949245725e-05,
|
| 296 |
+
"loss": 0.2498,
|
| 297 |
+
"step": 40
|
| 298 |
+
},
|
| 299 |
+
{
|
| 300 |
+
"epoch": 0.16786079836233367,
|
| 301 |
+
"grad_norm": 1.6866360902786255,
|
| 302 |
+
"learning_rate": 1.9987885843187717e-05,
|
| 303 |
+
"loss": 0.2496,
|
| 304 |
+
"step": 41
|
| 305 |
+
},
|
| 306 |
+
{
|
| 307 |
+
"epoch": 0.17195496417604914,
|
| 308 |
+
"grad_norm": 1.6979321241378784,
|
| 309 |
+
"learning_rate": 1.9985583705641418e-05,
|
| 310 |
+
"loss": 0.2721,
|
| 311 |
+
"step": 42
|
| 312 |
+
},
|
| 313 |
+
{
|
| 314 |
+
"epoch": 0.17604912998976457,
|
| 315 |
+
"grad_norm": 1.676047682762146,
|
| 316 |
+
"learning_rate": 1.9983081582712684e-05,
|
| 317 |
+
"loss": 0.2506,
|
| 318 |
+
"step": 43
|
| 319 |
+
},
|
| 320 |
+
{
|
| 321 |
+
"epoch": 0.18014329580348004,
|
| 322 |
+
"grad_norm": 1.7262601852416992,
|
| 323 |
+
"learning_rate": 1.998037952451255e-05,
|
| 324 |
+
"loss": 0.2371,
|
| 325 |
+
"step": 44
|
| 326 |
+
},
|
| 327 |
+
{
|
| 328 |
+
"epoch": 0.1842374616171955,
|
| 329 |
+
"grad_norm": 1.4194152355194092,
|
| 330 |
+
"learning_rate": 1.9977477585156252e-05,
|
| 331 |
+
"loss": 0.2619,
|
| 332 |
+
"step": 45
|
| 333 |
+
},
|
| 334 |
+
{
|
| 335 |
+
"epoch": 0.18833162743091095,
|
| 336 |
+
"grad_norm": 1.5654889345169067,
|
| 337 |
+
"learning_rate": 1.9974375822762117e-05,
|
| 338 |
+
"loss": 0.2299,
|
| 339 |
+
"step": 46
|
| 340 |
+
},
|
| 341 |
+
{
|
| 342 |
+
"epoch": 0.19242579324462641,
|
| 343 |
+
"grad_norm": 1.844489336013794,
|
| 344 |
+
"learning_rate": 1.9971074299450414e-05,
|
| 345 |
+
"loss": 0.2692,
|
| 346 |
+
"step": 47
|
| 347 |
+
},
|
| 348 |
+
{
|
| 349 |
+
"epoch": 0.19651995905834185,
|
| 350 |
+
"grad_norm": 1.5128370523452759,
|
| 351 |
+
"learning_rate": 1.9967573081342103e-05,
|
| 352 |
+
"loss": 0.2589,
|
| 353 |
+
"step": 48
|
| 354 |
+
},
|
| 355 |
+
{
|
| 356 |
+
"epoch": 0.20061412487205732,
|
| 357 |
+
"grad_norm": 1.5005507469177246,
|
| 358 |
+
"learning_rate": 1.9963872238557516e-05,
|
| 359 |
+
"loss": 0.2578,
|
| 360 |
+
"step": 49
|
| 361 |
+
},
|
| 362 |
+
{
|
| 363 |
+
"epoch": 0.2047082906857728,
|
| 364 |
+
"grad_norm": 1.5974067449569702,
|
| 365 |
+
"learning_rate": 1.9959971845214953e-05,
|
| 366 |
+
"loss": 0.2494,
|
| 367 |
+
"step": 50
|
| 368 |
+
},
|
| 369 |
+
{
|
| 370 |
+
"epoch": 0.20880245649948823,
|
| 371 |
+
"grad_norm": 1.5728641748428345,
|
| 372 |
+
"learning_rate": 1.9955871979429188e-05,
|
| 373 |
+
"loss": 0.2496,
|
| 374 |
+
"step": 51
|
| 375 |
+
},
|
| 376 |
+
{
|
| 377 |
+
"epoch": 0.2128966223132037,
|
| 378 |
+
"grad_norm": 1.5953929424285889,
|
| 379 |
+
"learning_rate": 1.9951572723309918e-05,
|
| 380 |
+
"loss": 0.2429,
|
| 381 |
+
"step": 52
|
| 382 |
+
},
|
| 383 |
+
{
|
| 384 |
+
"epoch": 0.21699078812691913,
|
| 385 |
+
"grad_norm": 1.7769081592559814,
|
| 386 |
+
"learning_rate": 1.9947074162960113e-05,
|
| 387 |
+
"loss": 0.252,
|
| 388 |
+
"step": 53
|
| 389 |
+
},
|
| 390 |
+
{
|
| 391 |
+
"epoch": 0.2210849539406346,
|
| 392 |
+
"grad_norm": 1.6964116096496582,
|
| 393 |
+
"learning_rate": 1.9942376388474282e-05,
|
| 394 |
+
"loss": 0.2651,
|
| 395 |
+
"step": 54
|
| 396 |
+
},
|
| 397 |
+
{
|
| 398 |
+
"epoch": 0.22517911975435004,
|
| 399 |
+
"grad_norm": 1.5599926710128784,
|
| 400 |
+
"learning_rate": 1.993747949393668e-05,
|
| 401 |
+
"loss": 0.2193,
|
| 402 |
+
"step": 55
|
| 403 |
+
},
|
| 404 |
+
{
|
| 405 |
+
"epoch": 0.2292732855680655,
|
| 406 |
+
"grad_norm": 1.524835467338562,
|
| 407 |
+
"learning_rate": 1.9932383577419432e-05,
|
| 408 |
+
"loss": 0.2361,
|
| 409 |
+
"step": 56
|
| 410 |
+
},
|
| 411 |
+
{
|
| 412 |
+
"epoch": 0.23336745138178097,
|
| 413 |
+
"grad_norm": 1.6240477561950684,
|
| 414 |
+
"learning_rate": 1.992708874098054e-05,
|
| 415 |
+
"loss": 0.2563,
|
| 416 |
+
"step": 57
|
| 417 |
+
},
|
| 418 |
+
{
|
| 419 |
+
"epoch": 0.2374616171954964,
|
| 420 |
+
"grad_norm": 1.6357301473617554,
|
| 421 |
+
"learning_rate": 1.9921595090661872e-05,
|
| 422 |
+
"loss": 0.2456,
|
| 423 |
+
"step": 58
|
| 424 |
+
},
|
| 425 |
+
{
|
| 426 |
+
"epoch": 0.24155578300921188,
|
| 427 |
+
"grad_norm": 1.5650979280471802,
|
| 428 |
+
"learning_rate": 1.991590273648702e-05,
|
| 429 |
+
"loss": 0.2512,
|
| 430 |
+
"step": 59
|
| 431 |
+
},
|
| 432 |
+
{
|
| 433 |
+
"epoch": 0.24564994882292732,
|
| 434 |
+
"grad_norm": 1.4107614755630493,
|
| 435 |
+
"learning_rate": 1.9910011792459086e-05,
|
| 436 |
+
"loss": 0.2539,
|
| 437 |
+
"step": 60
|
| 438 |
+
},
|
| 439 |
+
{
|
| 440 |
+
"epoch": 0.24974411463664278,
|
| 441 |
+
"grad_norm": 1.3979556560516357,
|
| 442 |
+
"learning_rate": 1.9903922376558432e-05,
|
| 443 |
+
"loss": 0.2348,
|
| 444 |
+
"step": 61
|
| 445 |
+
},
|
| 446 |
+
{
|
| 447 |
+
"epoch": 0.2538382804503582,
|
| 448 |
+
"grad_norm": 1.4066411256790161,
|
| 449 |
+
"learning_rate": 1.989763461074029e-05,
|
| 450 |
+
"loss": 0.2419,
|
| 451 |
+
"step": 62
|
| 452 |
+
},
|
| 453 |
+
{
|
| 454 |
+
"epoch": 0.2579324462640737,
|
| 455 |
+
"grad_norm": 1.533858060836792,
|
| 456 |
+
"learning_rate": 1.989114862093232e-05,
|
| 457 |
+
"loss": 0.252,
|
| 458 |
+
"step": 63
|
| 459 |
+
},
|
| 460 |
+
{
|
| 461 |
+
"epoch": 0.26202661207778916,
|
| 462 |
+
"grad_norm": 1.4007140398025513,
|
| 463 |
+
"learning_rate": 1.9884464537032103e-05,
|
| 464 |
+
"loss": 0.2379,
|
| 465 |
+
"step": 64
|
| 466 |
+
},
|
| 467 |
+
{
|
| 468 |
+
"epoch": 0.2661207778915046,
|
| 469 |
+
"grad_norm": 1.3841203451156616,
|
| 470 |
+
"learning_rate": 1.9877582492904533e-05,
|
| 471 |
+
"loss": 0.2377,
|
| 472 |
+
"step": 65
|
| 473 |
+
},
|
| 474 |
+
{
|
| 475 |
+
"epoch": 0.27021494370522003,
|
| 476 |
+
"grad_norm": 1.274598479270935,
|
| 477 |
+
"learning_rate": 1.9870502626379127e-05,
|
| 478 |
+
"loss": 0.2364,
|
| 479 |
+
"step": 66
|
| 480 |
+
},
|
| 481 |
+
{
|
| 482 |
+
"epoch": 0.2743091095189355,
|
| 483 |
+
"grad_norm": 1.59529447555542,
|
| 484 |
+
"learning_rate": 1.9863225079247286e-05,
|
| 485 |
+
"loss": 0.2647,
|
| 486 |
+
"step": 67
|
| 487 |
+
},
|
| 488 |
+
{
|
| 489 |
+
"epoch": 0.27840327533265097,
|
| 490 |
+
"grad_norm": 1.4986138343811035,
|
| 491 |
+
"learning_rate": 1.985574999725943e-05,
|
| 492 |
+
"loss": 0.264,
|
| 493 |
+
"step": 68
|
| 494 |
+
},
|
| 495 |
+
{
|
| 496 |
+
"epoch": 0.28249744114636643,
|
| 497 |
+
"grad_norm": 1.4692142009735107,
|
| 498 |
+
"learning_rate": 1.9848077530122083e-05,
|
| 499 |
+
"loss": 0.2475,
|
| 500 |
+
"step": 69
|
| 501 |
+
},
|
| 502 |
+
{
|
| 503 |
+
"epoch": 0.2865916069600819,
|
| 504 |
+
"grad_norm": 1.5602682828903198,
|
| 505 |
+
"learning_rate": 1.9840207831494903e-05,
|
| 506 |
+
"loss": 0.244,
|
| 507 |
+
"step": 70
|
| 508 |
+
},
|
| 509 |
+
{
|
| 510 |
+
"epoch": 0.2906857727737973,
|
| 511 |
+
"grad_norm": 1.5084633827209473,
|
| 512 |
+
"learning_rate": 1.983214105898757e-05,
|
| 513 |
+
"loss": 0.2442,
|
| 514 |
+
"step": 71
|
| 515 |
+
},
|
| 516 |
+
{
|
| 517 |
+
"epoch": 0.2947799385875128,
|
| 518 |
+
"grad_norm": 1.451074242591858,
|
| 519 |
+
"learning_rate": 1.9823877374156647e-05,
|
| 520 |
+
"loss": 0.2673,
|
| 521 |
+
"step": 72
|
| 522 |
+
},
|
| 523 |
+
{
|
| 524 |
+
"epoch": 0.29887410440122825,
|
| 525 |
+
"grad_norm": 1.4784746170043945,
|
| 526 |
+
"learning_rate": 1.9815416942502346e-05,
|
| 527 |
+
"loss": 0.2441,
|
| 528 |
+
"step": 73
|
| 529 |
+
},
|
| 530 |
+
{
|
| 531 |
+
"epoch": 0.3029682702149437,
|
| 532 |
+
"grad_norm": 1.368421196937561,
|
| 533 |
+
"learning_rate": 1.98067599334652e-05,
|
| 534 |
+
"loss": 0.2439,
|
| 535 |
+
"step": 74
|
| 536 |
+
},
|
| 537 |
+
{
|
| 538 |
+
"epoch": 0.3070624360286592,
|
| 539 |
+
"grad_norm": 1.4379913806915283,
|
| 540 |
+
"learning_rate": 1.979790652042268e-05,
|
| 541 |
+
"loss": 0.2238,
|
| 542 |
+
"step": 75
|
| 543 |
+
},
|
| 544 |
+
{
|
| 545 |
+
"epoch": 0.3111566018423746,
|
| 546 |
+
"grad_norm": 1.5823594331741333,
|
| 547 |
+
"learning_rate": 1.978885688068572e-05,
|
| 548 |
+
"loss": 0.2725,
|
| 549 |
+
"step": 76
|
| 550 |
+
},
|
| 551 |
+
{
|
| 552 |
+
"epoch": 0.31525076765609006,
|
| 553 |
+
"grad_norm": 1.5007753372192383,
|
| 554 |
+
"learning_rate": 1.9779611195495177e-05,
|
| 555 |
+
"loss": 0.2375,
|
| 556 |
+
"step": 77
|
| 557 |
+
},
|
| 558 |
+
{
|
| 559 |
+
"epoch": 0.3193449334698055,
|
| 560 |
+
"grad_norm": 1.473763346672058,
|
| 561 |
+
"learning_rate": 1.977016965001817e-05,
|
| 562 |
+
"loss": 0.2611,
|
| 563 |
+
"step": 78
|
| 564 |
+
},
|
| 565 |
+
{
|
| 566 |
+
"epoch": 0.323439099283521,
|
| 567 |
+
"grad_norm": 1.7358968257904053,
|
| 568 |
+
"learning_rate": 1.976053243334442e-05,
|
| 569 |
+
"loss": 0.2623,
|
| 570 |
+
"step": 79
|
| 571 |
+
},
|
| 572 |
+
{
|
| 573 |
+
"epoch": 0.32753326509723646,
|
| 574 |
+
"grad_norm": 1.5595204830169678,
|
| 575 |
+
"learning_rate": 1.9750699738482403e-05,
|
| 576 |
+
"loss": 0.2676,
|
| 577 |
+
"step": 80
|
| 578 |
+
},
|
| 579 |
+
{
|
| 580 |
+
"epoch": 0.33162743091095187,
|
| 581 |
+
"grad_norm": 1.685775637626648,
|
| 582 |
+
"learning_rate": 1.9740671762355548e-05,
|
| 583 |
+
"loss": 0.267,
|
| 584 |
+
"step": 81
|
| 585 |
+
},
|
| 586 |
+
{
|
| 587 |
+
"epoch": 0.33572159672466734,
|
| 588 |
+
"grad_norm": 1.3360930681228638,
|
| 589 |
+
"learning_rate": 1.973044870579824e-05,
|
| 590 |
+
"loss": 0.2339,
|
| 591 |
+
"step": 82
|
| 592 |
+
},
|
| 593 |
+
{
|
| 594 |
+
"epoch": 0.33572159672466734,
|
| 595 |
+
"eval_loss": 0.27538755536079407,
|
| 596 |
+
"eval_runtime": 5.5418,
|
| 597 |
+
"eval_samples_per_second": 14.255,
|
| 598 |
+
"eval_steps_per_second": 1.804,
|
| 599 |
+
"step": 82
|
| 600 |
+
},
|
| 601 |
+
{
|
| 602 |
+
"epoch": 0.3398157625383828,
|
| 603 |
+
"grad_norm": 1.7223079204559326,
|
| 604 |
+
"learning_rate": 1.972003077355183e-05,
|
| 605 |
+
"loss": 0.2843,
|
| 606 |
+
"step": 83
|
| 607 |
+
},
|
| 608 |
+
{
|
| 609 |
+
"epoch": 0.34390992835209827,
|
| 610 |
+
"grad_norm": 1.5389612913131714,
|
| 611 |
+
"learning_rate": 1.9709418174260523e-05,
|
| 612 |
+
"loss": 0.2604,
|
| 613 |
+
"step": 84
|
| 614 |
+
},
|
| 615 |
+
{
|
| 616 |
+
"epoch": 0.34800409416581374,
|
| 617 |
+
"grad_norm": 1.3990126848220825,
|
| 618 |
+
"learning_rate": 1.9698611120467196e-05,
|
| 619 |
+
"loss": 0.2588,
|
| 620 |
+
"step": 85
|
| 621 |
+
},
|
| 622 |
+
{
|
| 623 |
+
"epoch": 0.35209825997952915,
|
| 624 |
+
"grad_norm": 1.3090544939041138,
|
| 625 |
+
"learning_rate": 1.9687609828609156e-05,
|
| 626 |
+
"loss": 0.2264,
|
| 627 |
+
"step": 86
|
| 628 |
+
},
|
| 629 |
+
{
|
| 630 |
+
"epoch": 0.3561924257932446,
|
| 631 |
+
"grad_norm": 1.3547587394714355,
|
| 632 |
+
"learning_rate": 1.9676414519013782e-05,
|
| 633 |
+
"loss": 0.2436,
|
| 634 |
+
"step": 87
|
| 635 |
+
},
|
| 636 |
+
{
|
| 637 |
+
"epoch": 0.3602865916069601,
|
| 638 |
+
"grad_norm": 1.7848924398422241,
|
| 639 |
+
"learning_rate": 1.966502541589414e-05,
|
| 640 |
+
"loss": 0.2617,
|
| 641 |
+
"step": 88
|
| 642 |
+
},
|
| 643 |
+
{
|
| 644 |
+
"epoch": 0.36438075742067555,
|
| 645 |
+
"grad_norm": 1.450150728225708,
|
| 646 |
+
"learning_rate": 1.965344274734447e-05,
|
| 647 |
+
"loss": 0.2456,
|
| 648 |
+
"step": 89
|
| 649 |
+
},
|
| 650 |
+
{
|
| 651 |
+
"epoch": 0.368474923234391,
|
| 652 |
+
"grad_norm": 1.5955520868301392,
|
| 653 |
+
"learning_rate": 1.9641666745335626e-05,
|
| 654 |
+
"loss": 0.2571,
|
| 655 |
+
"step": 90
|
| 656 |
+
},
|
| 657 |
+
{
|
| 658 |
+
"epoch": 0.3725690890481064,
|
| 659 |
+
"grad_norm": 1.4538159370422363,
|
| 660 |
+
"learning_rate": 1.9629697645710432e-05,
|
| 661 |
+
"loss": 0.2552,
|
| 662 |
+
"step": 91
|
| 663 |
+
},
|
| 664 |
+
{
|
| 665 |
+
"epoch": 0.3766632548618219,
|
| 666 |
+
"grad_norm": 1.4258908033370972,
|
| 667 |
+
"learning_rate": 1.961753568817896e-05,
|
| 668 |
+
"loss": 0.2402,
|
| 669 |
+
"step": 92
|
| 670 |
+
},
|
| 671 |
+
{
|
| 672 |
+
"epoch": 0.38075742067553736,
|
| 673 |
+
"grad_norm": 1.463593602180481,
|
| 674 |
+
"learning_rate": 1.9605181116313725e-05,
|
| 675 |
+
"loss": 0.2612,
|
| 676 |
+
"step": 93
|
| 677 |
+
},
|
| 678 |
+
{
|
| 679 |
+
"epoch": 0.38485158648925283,
|
| 680 |
+
"grad_norm": 1.4867630004882812,
|
| 681 |
+
"learning_rate": 1.9592634177544803e-05,
|
| 682 |
+
"loss": 0.2272,
|
| 683 |
+
"step": 94
|
| 684 |
+
},
|
| 685 |
+
{
|
| 686 |
+
"epoch": 0.3889457523029683,
|
| 687 |
+
"grad_norm": 1.4335721731185913,
|
| 688 |
+
"learning_rate": 1.957989512315489e-05,
|
| 689 |
+
"loss": 0.2562,
|
| 690 |
+
"step": 95
|
| 691 |
+
},
|
| 692 |
+
{
|
| 693 |
+
"epoch": 0.3930399181166837,
|
| 694 |
+
"grad_norm": 1.3976503610610962,
|
| 695 |
+
"learning_rate": 1.9566964208274254e-05,
|
| 696 |
+
"loss": 0.2527,
|
| 697 |
+
"step": 96
|
| 698 |
+
},
|
| 699 |
+
{
|
| 700 |
+
"epoch": 0.3971340839303992,
|
| 701 |
+
"grad_norm": 1.455560564994812,
|
| 702 |
+
"learning_rate": 1.9553841691875632e-05,
|
| 703 |
+
"loss": 0.2617,
|
| 704 |
+
"step": 97
|
| 705 |
+
},
|
| 706 |
+
{
|
| 707 |
+
"epoch": 0.40122824974411464,
|
| 708 |
+
"grad_norm": 1.319207787513733,
|
| 709 |
+
"learning_rate": 1.9540527836769047e-05,
|
| 710 |
+
"loss": 0.251,
|
| 711 |
+
"step": 98
|
| 712 |
+
},
|
| 713 |
+
{
|
| 714 |
+
"epoch": 0.4053224155578301,
|
| 715 |
+
"grad_norm": 1.3503410816192627,
|
| 716 |
+
"learning_rate": 1.9527022909596537e-05,
|
| 717 |
+
"loss": 0.253,
|
| 718 |
+
"step": 99
|
| 719 |
+
},
|
| 720 |
+
{
|
| 721 |
+
"epoch": 0.4094165813715456,
|
| 722 |
+
"grad_norm": 1.472091555595398,
|
| 723 |
+
"learning_rate": 1.951332718082682e-05,
|
| 724 |
+
"loss": 0.2935,
|
| 725 |
+
"step": 100
|
| 726 |
+
},
|
| 727 |
+
{
|
| 728 |
+
"epoch": 0.413510747185261,
|
| 729 |
+
"grad_norm": 1.4811311960220337,
|
| 730 |
+
"learning_rate": 1.9499440924749878e-05,
|
| 731 |
+
"loss": 0.261,
|
| 732 |
+
"step": 101
|
| 733 |
+
},
|
| 734 |
+
{
|
| 735 |
+
"epoch": 0.41760491299897645,
|
| 736 |
+
"grad_norm": 1.595140814781189,
|
| 737 |
+
"learning_rate": 1.9485364419471454e-05,
|
| 738 |
+
"loss": 0.2703,
|
| 739 |
+
"step": 102
|
| 740 |
+
},
|
| 741 |
+
{
|
| 742 |
+
"epoch": 0.4216990788126919,
|
| 743 |
+
"grad_norm": 1.3853557109832764,
|
| 744 |
+
"learning_rate": 1.9471097946907506e-05,
|
| 745 |
+
"loss": 0.2345,
|
| 746 |
+
"step": 103
|
| 747 |
+
},
|
| 748 |
+
{
|
| 749 |
+
"epoch": 0.4257932446264074,
|
| 750 |
+
"grad_norm": 1.5886335372924805,
|
| 751 |
+
"learning_rate": 1.9456641792778527e-05,
|
| 752 |
+
"loss": 0.269,
|
| 753 |
+
"step": 104
|
| 754 |
+
},
|
| 755 |
+
{
|
| 756 |
+
"epoch": 0.42988741044012285,
|
| 757 |
+
"grad_norm": 1.3403784036636353,
|
| 758 |
+
"learning_rate": 1.9441996246603848e-05,
|
| 759 |
+
"loss": 0.234,
|
| 760 |
+
"step": 105
|
| 761 |
+
},
|
| 762 |
+
{
|
| 763 |
+
"epoch": 0.43398157625383826,
|
| 764 |
+
"grad_norm": 1.4540488719940186,
|
| 765 |
+
"learning_rate": 1.9427161601695833e-05,
|
| 766 |
+
"loss": 0.246,
|
| 767 |
+
"step": 106
|
| 768 |
+
},
|
| 769 |
+
{
|
| 770 |
+
"epoch": 0.43807574206755373,
|
| 771 |
+
"grad_norm": 1.5493131875991821,
|
| 772 |
+
"learning_rate": 1.9412138155154e-05,
|
| 773 |
+
"loss": 0.2284,
|
| 774 |
+
"step": 107
|
| 775 |
+
},
|
| 776 |
+
{
|
| 777 |
+
"epoch": 0.4421699078812692,
|
| 778 |
+
"grad_norm": 1.290971279144287,
|
| 779 |
+
"learning_rate": 1.9396926207859085e-05,
|
| 780 |
+
"loss": 0.2392,
|
| 781 |
+
"step": 108
|
| 782 |
+
},
|
| 783 |
+
{
|
| 784 |
+
"epoch": 0.44626407369498466,
|
| 785 |
+
"grad_norm": 1.4140104055404663,
|
| 786 |
+
"learning_rate": 1.9381526064466995e-05,
|
| 787 |
+
"loss": 0.2554,
|
| 788 |
+
"step": 109
|
| 789 |
+
},
|
| 790 |
+
{
|
| 791 |
+
"epoch": 0.4503582395087001,
|
| 792 |
+
"grad_norm": 1.7200373411178589,
|
| 793 |
+
"learning_rate": 1.9365938033402715e-05,
|
| 794 |
+
"loss": 0.2359,
|
| 795 |
+
"step": 110
|
| 796 |
+
},
|
| 797 |
+
{
|
| 798 |
+
"epoch": 0.45445240532241554,
|
| 799 |
+
"grad_norm": 1.2797805070877075,
|
| 800 |
+
"learning_rate": 1.9350162426854152e-05,
|
| 801 |
+
"loss": 0.2321,
|
| 802 |
+
"step": 111
|
| 803 |
+
},
|
| 804 |
+
{
|
| 805 |
+
"epoch": 0.458546571136131,
|
| 806 |
+
"grad_norm": 1.326955795288086,
|
| 807 |
+
"learning_rate": 1.933419956076584e-05,
|
| 808 |
+
"loss": 0.2516,
|
| 809 |
+
"step": 112
|
| 810 |
+
},
|
| 811 |
+
{
|
| 812 |
+
"epoch": 0.4626407369498465,
|
| 813 |
+
"grad_norm": 1.510201334953308,
|
| 814 |
+
"learning_rate": 1.9318049754832656e-05,
|
| 815 |
+
"loss": 0.2467,
|
| 816 |
+
"step": 113
|
| 817 |
+
},
|
| 818 |
+
{
|
| 819 |
+
"epoch": 0.46673490276356194,
|
| 820 |
+
"grad_norm": 2.9965062141418457,
|
| 821 |
+
"learning_rate": 1.9301713332493386e-05,
|
| 822 |
+
"loss": 0.2587,
|
| 823 |
+
"step": 114
|
| 824 |
+
},
|
| 825 |
+
{
|
| 826 |
+
"epoch": 0.47082906857727735,
|
| 827 |
+
"grad_norm": 1.3663560152053833,
|
| 828 |
+
"learning_rate": 1.9285190620924267e-05,
|
| 829 |
+
"loss": 0.2535,
|
| 830 |
+
"step": 115
|
| 831 |
+
},
|
| 832 |
+
{
|
| 833 |
+
"epoch": 0.4749232343909928,
|
| 834 |
+
"grad_norm": 1.1917448043823242,
|
| 835 |
+
"learning_rate": 1.926848195103242e-05,
|
| 836 |
+
"loss": 0.2292,
|
| 837 |
+
"step": 116
|
| 838 |
+
},
|
| 839 |
+
{
|
| 840 |
+
"epoch": 0.4790174002047083,
|
| 841 |
+
"grad_norm": 1.3093336820602417,
|
| 842 |
+
"learning_rate": 1.925158765744924e-05,
|
| 843 |
+
"loss": 0.229,
|
| 844 |
+
"step": 117
|
| 845 |
+
},
|
| 846 |
+
{
|
| 847 |
+
"epoch": 0.48311156601842375,
|
| 848 |
+
"grad_norm": 1.5121235847473145,
|
| 849 |
+
"learning_rate": 1.923450807852367e-05,
|
| 850 |
+
"loss": 0.2527,
|
| 851 |
+
"step": 118
|
| 852 |
+
},
|
| 853 |
+
{
|
| 854 |
+
"epoch": 0.4872057318321392,
|
| 855 |
+
"grad_norm": 1.461378812789917,
|
| 856 |
+
"learning_rate": 1.9217243556315445e-05,
|
| 857 |
+
"loss": 0.2631,
|
| 858 |
+
"step": 119
|
| 859 |
+
},
|
| 860 |
+
{
|
| 861 |
+
"epoch": 0.49129989764585463,
|
| 862 |
+
"grad_norm": 1.4177104234695435,
|
| 863 |
+
"learning_rate": 1.9199794436588244e-05,
|
| 864 |
+
"loss": 0.2378,
|
| 865 |
+
"step": 120
|
| 866 |
+
},
|
| 867 |
+
{
|
| 868 |
+
"epoch": 0.4953940634595701,
|
| 869 |
+
"grad_norm": 1.5456838607788086,
|
| 870 |
+
"learning_rate": 1.9182161068802742e-05,
|
| 871 |
+
"loss": 0.2491,
|
| 872 |
+
"step": 121
|
| 873 |
+
},
|
| 874 |
+
{
|
| 875 |
+
"epoch": 0.49948822927328557,
|
| 876 |
+
"grad_norm": 1.554958701133728,
|
| 877 |
+
"learning_rate": 1.916434380610963e-05,
|
| 878 |
+
"loss": 0.2461,
|
| 879 |
+
"step": 122
|
| 880 |
+
},
|
| 881 |
+
{
|
| 882 |
+
"epoch": 0.503582395087001,
|
| 883 |
+
"grad_norm": 1.4894706010818481,
|
| 884 |
+
"learning_rate": 1.9146343005342546e-05,
|
| 885 |
+
"loss": 0.2823,
|
| 886 |
+
"step": 123
|
| 887 |
+
},
|
| 888 |
+
{
|
| 889 |
+
"epoch": 0.5076765609007164,
|
| 890 |
+
"grad_norm": 1.359287142753601,
|
| 891 |
+
"learning_rate": 1.912815902701091e-05,
|
| 892 |
+
"loss": 0.2366,
|
| 893 |
+
"step": 124
|
| 894 |
+
},
|
| 895 |
+
{
|
| 896 |
+
"epoch": 0.5117707267144319,
|
| 897 |
+
"grad_norm": 1.4244722127914429,
|
| 898 |
+
"learning_rate": 1.9109792235292715e-05,
|
| 899 |
+
"loss": 0.2398,
|
| 900 |
+
"step": 125
|
| 901 |
+
},
|
| 902 |
+
{
|
| 903 |
+
"epoch": 0.5158648925281474,
|
| 904 |
+
"grad_norm": 1.4032812118530273,
|
| 905 |
+
"learning_rate": 1.909124299802724e-05,
|
| 906 |
+
"loss": 0.2601,
|
| 907 |
+
"step": 126
|
| 908 |
+
},
|
| 909 |
+
{
|
| 910 |
+
"epoch": 0.5199590583418628,
|
| 911 |
+
"grad_norm": 1.5199010372161865,
|
| 912 |
+
"learning_rate": 1.9072511686707663e-05,
|
| 913 |
+
"loss": 0.2458,
|
| 914 |
+
"step": 127
|
| 915 |
+
},
|
| 916 |
+
{
|
| 917 |
+
"epoch": 0.5240532241555783,
|
| 918 |
+
"grad_norm": 1.4342416524887085,
|
| 919 |
+
"learning_rate": 1.9053598676473656e-05,
|
| 920 |
+
"loss": 0.241,
|
| 921 |
+
"step": 128
|
| 922 |
+
},
|
| 923 |
+
{
|
| 924 |
+
"epoch": 0.5281473899692938,
|
| 925 |
+
"grad_norm": 1.338181972503662,
|
| 926 |
+
"learning_rate": 1.9034504346103825e-05,
|
| 927 |
+
"loss": 0.2508,
|
| 928 |
+
"step": 129
|
| 929 |
+
},
|
| 930 |
+
{
|
| 931 |
+
"epoch": 0.5322415557830092,
|
| 932 |
+
"grad_norm": 1.492775559425354,
|
| 933 |
+
"learning_rate": 1.9015229078008163e-05,
|
| 934 |
+
"loss": 0.2626,
|
| 935 |
+
"step": 130
|
| 936 |
+
},
|
| 937 |
+
{
|
| 938 |
+
"epoch": 0.5363357215967247,
|
| 939 |
+
"grad_norm": 1.3123077154159546,
|
| 940 |
+
"learning_rate": 1.8995773258220374e-05,
|
| 941 |
+
"loss": 0.258,
|
| 942 |
+
"step": 131
|
| 943 |
+
},
|
| 944 |
+
{
|
| 945 |
+
"epoch": 0.5404298874104401,
|
| 946 |
+
"grad_norm": 1.4001896381378174,
|
| 947 |
+
"learning_rate": 1.8976137276390145e-05,
|
| 948 |
+
"loss": 0.2425,
|
| 949 |
+
"step": 132
|
| 950 |
+
},
|
| 951 |
+
{
|
| 952 |
+
"epoch": 0.5445240532241555,
|
| 953 |
+
"grad_norm": 1.3989671468734741,
|
| 954 |
+
"learning_rate": 1.8956321525775337e-05,
|
| 955 |
+
"loss": 0.2781,
|
| 956 |
+
"step": 133
|
| 957 |
+
},
|
| 958 |
+
{
|
| 959 |
+
"epoch": 0.548618219037871,
|
| 960 |
+
"grad_norm": 1.260289192199707,
|
| 961 |
+
"learning_rate": 1.8936326403234125e-05,
|
| 962 |
+
"loss": 0.2432,
|
| 963 |
+
"step": 134
|
| 964 |
+
},
|
| 965 |
+
{
|
| 966 |
+
"epoch": 0.5527123848515865,
|
| 967 |
+
"grad_norm": 1.308370590209961,
|
| 968 |
+
"learning_rate": 1.891615230921703e-05,
|
| 969 |
+
"loss": 0.2408,
|
| 970 |
+
"step": 135
|
| 971 |
+
},
|
| 972 |
+
{
|
| 973 |
+
"epoch": 0.5568065506653019,
|
| 974 |
+
"grad_norm": 1.2668206691741943,
|
| 975 |
+
"learning_rate": 1.8895799647758912e-05,
|
| 976 |
+
"loss": 0.2408,
|
| 977 |
+
"step": 136
|
| 978 |
+
},
|
| 979 |
+
{
|
| 980 |
+
"epoch": 0.5609007164790174,
|
| 981 |
+
"grad_norm": 1.4105634689331055,
|
| 982 |
+
"learning_rate": 1.8875268826470875e-05,
|
| 983 |
+
"loss": 0.2688,
|
| 984 |
+
"step": 137
|
| 985 |
+
},
|
| 986 |
+
{
|
| 987 |
+
"epoch": 0.5649948822927329,
|
| 988 |
+
"grad_norm": 1.3877664804458618,
|
| 989 |
+
"learning_rate": 1.8854560256532098e-05,
|
| 990 |
+
"loss": 0.2379,
|
| 991 |
+
"step": 138
|
| 992 |
+
},
|
| 993 |
+
{
|
| 994 |
+
"epoch": 0.5690890481064483,
|
| 995 |
+
"grad_norm": 1.2643476724624634,
|
| 996 |
+
"learning_rate": 1.8833674352681613e-05,
|
| 997 |
+
"loss": 0.2375,
|
| 998 |
+
"step": 139
|
| 999 |
+
},
|
| 1000 |
+
{
|
| 1001 |
+
"epoch": 0.5731832139201638,
|
| 1002 |
+
"grad_norm": 1.6310402154922485,
|
| 1003 |
+
"learning_rate": 1.881261153320999e-05,
|
| 1004 |
+
"loss": 0.2435,
|
| 1005 |
+
"step": 140
|
| 1006 |
+
},
|
| 1007 |
+
{
|
| 1008 |
+
"epoch": 0.5772773797338793,
|
| 1009 |
+
"grad_norm": 1.35072660446167,
|
| 1010 |
+
"learning_rate": 1.879137221995095e-05,
|
| 1011 |
+
"loss": 0.2293,
|
| 1012 |
+
"step": 141
|
| 1013 |
+
},
|
| 1014 |
+
{
|
| 1015 |
+
"epoch": 0.5813715455475946,
|
| 1016 |
+
"grad_norm": 1.409683346748352,
|
| 1017 |
+
"learning_rate": 1.8769956838272937e-05,
|
| 1018 |
+
"loss": 0.2584,
|
| 1019 |
+
"step": 142
|
| 1020 |
+
},
|
| 1021 |
+
{
|
| 1022 |
+
"epoch": 0.5854657113613101,
|
| 1023 |
+
"grad_norm": 1.4319274425506592,
|
| 1024 |
+
"learning_rate": 1.8748365817070586e-05,
|
| 1025 |
+
"loss": 0.2669,
|
| 1026 |
+
"step": 143
|
| 1027 |
+
},
|
| 1028 |
+
{
|
| 1029 |
+
"epoch": 0.5895598771750256,
|
| 1030 |
+
"grad_norm": 1.4259189367294312,
|
| 1031 |
+
"learning_rate": 1.8726599588756144e-05,
|
| 1032 |
+
"loss": 0.2447,
|
| 1033 |
+
"step": 144
|
| 1034 |
+
},
|
| 1035 |
+
{
|
| 1036 |
+
"epoch": 0.593654042988741,
|
| 1037 |
+
"grad_norm": 1.4267385005950928,
|
| 1038 |
+
"learning_rate": 1.8704658589250795e-05,
|
| 1039 |
+
"loss": 0.2567,
|
| 1040 |
+
"step": 145
|
| 1041 |
+
},
|
| 1042 |
+
{
|
| 1043 |
+
"epoch": 0.5977482088024565,
|
| 1044 |
+
"grad_norm": 1.4896032810211182,
|
| 1045 |
+
"learning_rate": 1.868254325797594e-05,
|
| 1046 |
+
"loss": 0.2363,
|
| 1047 |
+
"step": 146
|
| 1048 |
+
},
|
| 1049 |
+
{
|
| 1050 |
+
"epoch": 0.601842374616172,
|
| 1051 |
+
"grad_norm": 1.355659008026123,
|
| 1052 |
+
"learning_rate": 1.866025403784439e-05,
|
| 1053 |
+
"loss": 0.2481,
|
| 1054 |
+
"step": 147
|
| 1055 |
+
},
|
| 1056 |
+
{
|
| 1057 |
+
"epoch": 0.6059365404298874,
|
| 1058 |
+
"grad_norm": 1.2849416732788086,
|
| 1059 |
+
"learning_rate": 1.8637791375251505e-05,
|
| 1060 |
+
"loss": 0.2631,
|
| 1061 |
+
"step": 148
|
| 1062 |
+
},
|
| 1063 |
+
{
|
| 1064 |
+
"epoch": 0.6100307062436029,
|
| 1065 |
+
"grad_norm": 1.279733419418335,
|
| 1066 |
+
"learning_rate": 1.8615155720066247e-05,
|
| 1067 |
+
"loss": 0.2487,
|
| 1068 |
+
"step": 149
|
| 1069 |
+
},
|
| 1070 |
+
{
|
| 1071 |
+
"epoch": 0.6141248720573184,
|
| 1072 |
+
"grad_norm": 1.370506763458252,
|
| 1073 |
+
"learning_rate": 1.859234752562217e-05,
|
| 1074 |
+
"loss": 0.245,
|
| 1075 |
+
"step": 150
|
| 1076 |
+
},
|
| 1077 |
+
{
|
| 1078 |
+
"epoch": 0.6182190378710338,
|
| 1079 |
+
"grad_norm": 1.352271556854248,
|
| 1080 |
+
"learning_rate": 1.8569367248708343e-05,
|
| 1081 |
+
"loss": 0.227,
|
| 1082 |
+
"step": 151
|
| 1083 |
+
},
|
| 1084 |
+
{
|
| 1085 |
+
"epoch": 0.6223132036847492,
|
| 1086 |
+
"grad_norm": 1.3176748752593994,
|
| 1087 |
+
"learning_rate": 1.8546215349560204e-05,
|
| 1088 |
+
"loss": 0.2484,
|
| 1089 |
+
"step": 152
|
| 1090 |
+
},
|
| 1091 |
+
{
|
| 1092 |
+
"epoch": 0.6264073694984647,
|
| 1093 |
+
"grad_norm": 1.386770486831665,
|
| 1094 |
+
"learning_rate": 1.8522892291850335e-05,
|
| 1095 |
+
"loss": 0.257,
|
| 1096 |
+
"step": 153
|
| 1097 |
+
},
|
| 1098 |
+
{
|
| 1099 |
+
"epoch": 0.6305015353121801,
|
| 1100 |
+
"grad_norm": 1.5251948833465576,
|
| 1101 |
+
"learning_rate": 1.849939854267919e-05,
|
| 1102 |
+
"loss": 0.2727,
|
| 1103 |
+
"step": 154
|
| 1104 |
+
},
|
| 1105 |
+
{
|
| 1106 |
+
"epoch": 0.6345957011258956,
|
| 1107 |
+
"grad_norm": 1.378936767578125,
|
| 1108 |
+
"learning_rate": 1.847573457256571e-05,
|
| 1109 |
+
"loss": 0.2337,
|
| 1110 |
+
"step": 155
|
| 1111 |
+
},
|
| 1112 |
+
{
|
| 1113 |
+
"epoch": 0.638689866939611,
|
| 1114 |
+
"grad_norm": 1.3500293493270874,
|
| 1115 |
+
"learning_rate": 1.845190085543795e-05,
|
| 1116 |
+
"loss": 0.2618,
|
| 1117 |
+
"step": 156
|
| 1118 |
+
},
|
| 1119 |
+
{
|
| 1120 |
+
"epoch": 0.6427840327533265,
|
| 1121 |
+
"grad_norm": 1.4462950229644775,
|
| 1122 |
+
"learning_rate": 1.8427897868623535e-05,
|
| 1123 |
+
"loss": 0.2588,
|
| 1124 |
+
"step": 157
|
| 1125 |
+
},
|
| 1126 |
+
{
|
| 1127 |
+
"epoch": 0.646878198567042,
|
| 1128 |
+
"grad_norm": 1.2208290100097656,
|
| 1129 |
+
"learning_rate": 1.840372609284013e-05,
|
| 1130 |
+
"loss": 0.2927,
|
| 1131 |
+
"step": 158
|
| 1132 |
+
},
|
| 1133 |
+
{
|
| 1134 |
+
"epoch": 0.6509723643807575,
|
| 1135 |
+
"grad_norm": 1.3487396240234375,
|
| 1136 |
+
"learning_rate": 1.8379386012185813e-05,
|
| 1137 |
+
"loss": 0.2417,
|
| 1138 |
+
"step": 159
|
| 1139 |
+
},
|
| 1140 |
+
{
|
| 1141 |
+
"epoch": 0.6550665301944729,
|
| 1142 |
+
"grad_norm": 1.2655378580093384,
|
| 1143 |
+
"learning_rate": 1.8354878114129368e-05,
|
| 1144 |
+
"loss": 0.2428,
|
| 1145 |
+
"step": 160
|
| 1146 |
+
},
|
| 1147 |
+
{
|
| 1148 |
+
"epoch": 0.6591606960081884,
|
| 1149 |
+
"grad_norm": 1.181028962135315,
|
| 1150 |
+
"learning_rate": 1.8330202889500518e-05,
|
| 1151 |
+
"loss": 0.2397,
|
| 1152 |
+
"step": 161
|
| 1153 |
+
},
|
| 1154 |
+
{
|
| 1155 |
+
"epoch": 0.6632548618219037,
|
| 1156 |
+
"grad_norm": 1.3897309303283691,
|
| 1157 |
+
"learning_rate": 1.8305360832480118e-05,
|
| 1158 |
+
"loss": 0.2276,
|
| 1159 |
+
"step": 162
|
| 1160 |
+
},
|
| 1161 |
+
{
|
| 1162 |
+
"epoch": 0.6673490276356192,
|
| 1163 |
+
"grad_norm": 1.340640902519226,
|
| 1164 |
+
"learning_rate": 1.8280352440590236e-05,
|
| 1165 |
+
"loss": 0.2375,
|
| 1166 |
+
"step": 163
|
| 1167 |
+
},
|
| 1168 |
+
{
|
| 1169 |
+
"epoch": 0.6714431934493347,
|
| 1170 |
+
"grad_norm": 1.5388420820236206,
|
| 1171 |
+
"learning_rate": 1.82551782146842e-05,
|
| 1172 |
+
"loss": 0.2318,
|
| 1173 |
+
"step": 164
|
| 1174 |
+
},
|
| 1175 |
+
{
|
| 1176 |
+
"epoch": 0.6714431934493347,
|
| 1177 |
+
"eval_loss": 0.2667195796966553,
|
| 1178 |
+
"eval_runtime": 6.096,
|
| 1179 |
+
"eval_samples_per_second": 12.959,
|
| 1180 |
+
"eval_steps_per_second": 1.64,
|
| 1181 |
+
"step": 164
|
| 1182 |
+
},
|
| 1183 |
+
{
|
| 1184 |
+
"epoch": 0.6755373592630501,
|
| 1185 |
+
"grad_norm": 1.4711631536483765,
|
| 1186 |
+
"learning_rate": 1.8229838658936566e-05,
|
| 1187 |
+
"loss": 0.2367,
|
| 1188 |
+
"step": 165
|
| 1189 |
+
},
|
| 1190 |
+
{
|
| 1191 |
+
"epoch": 0.6796315250767656,
|
| 1192 |
+
"grad_norm": 1.3367588520050049,
|
| 1193 |
+
"learning_rate": 1.8204334280833005e-05,
|
| 1194 |
+
"loss": 0.2652,
|
| 1195 |
+
"step": 166
|
| 1196 |
+
},
|
| 1197 |
+
{
|
| 1198 |
+
"epoch": 0.6837256908904811,
|
| 1199 |
+
"grad_norm": 1.5473802089691162,
|
| 1200 |
+
"learning_rate": 1.817866559116017e-05,
|
| 1201 |
+
"loss": 0.2693,
|
| 1202 |
+
"step": 167
|
| 1203 |
+
},
|
| 1204 |
+
{
|
| 1205 |
+
"epoch": 0.6878198567041965,
|
| 1206 |
+
"grad_norm": 1.3539572954177856,
|
| 1207 |
+
"learning_rate": 1.8152833103995443e-05,
|
| 1208 |
+
"loss": 0.2431,
|
| 1209 |
+
"step": 168
|
| 1210 |
+
},
|
| 1211 |
+
{
|
| 1212 |
+
"epoch": 0.691914022517912,
|
| 1213 |
+
"grad_norm": 1.3012574911117554,
|
| 1214 |
+
"learning_rate": 1.8126837336696645e-05,
|
| 1215 |
+
"loss": 0.2602,
|
| 1216 |
+
"step": 169
|
| 1217 |
+
},
|
| 1218 |
+
{
|
| 1219 |
+
"epoch": 0.6960081883316275,
|
| 1220 |
+
"grad_norm": 1.3125128746032715,
|
| 1221 |
+
"learning_rate": 1.8100678809891668e-05,
|
| 1222 |
+
"loss": 0.2426,
|
| 1223 |
+
"step": 170
|
| 1224 |
+
},
|
| 1225 |
+
{
|
| 1226 |
+
"epoch": 0.7001023541453428,
|
| 1227 |
+
"grad_norm": 1.2353239059448242,
|
| 1228 |
+
"learning_rate": 1.807435804746807e-05,
|
| 1229 |
+
"loss": 0.2176,
|
| 1230 |
+
"step": 171
|
| 1231 |
+
},
|
| 1232 |
+
{
|
| 1233 |
+
"epoch": 0.7041965199590583,
|
| 1234 |
+
"grad_norm": 1.268622636795044,
|
| 1235 |
+
"learning_rate": 1.8047875576562556e-05,
|
| 1236 |
+
"loss": 0.2495,
|
| 1237 |
+
"step": 172
|
| 1238 |
+
},
|
| 1239 |
+
{
|
| 1240 |
+
"epoch": 0.7082906857727738,
|
| 1241 |
+
"grad_norm": 1.3845950365066528,
|
| 1242 |
+
"learning_rate": 1.802123192755044e-05,
|
| 1243 |
+
"loss": 0.2643,
|
| 1244 |
+
"step": 173
|
| 1245 |
+
},
|
| 1246 |
+
{
|
| 1247 |
+
"epoch": 0.7123848515864892,
|
| 1248 |
+
"grad_norm": 1.2450510263442993,
|
| 1249 |
+
"learning_rate": 1.7994427634035016e-05,
|
| 1250 |
+
"loss": 0.2445,
|
| 1251 |
+
"step": 174
|
| 1252 |
+
},
|
| 1253 |
+
{
|
| 1254 |
+
"epoch": 0.7164790174002047,
|
| 1255 |
+
"grad_norm": 1.545483946800232,
|
| 1256 |
+
"learning_rate": 1.796746323283686e-05,
|
| 1257 |
+
"loss": 0.2594,
|
| 1258 |
+
"step": 175
|
| 1259 |
+
},
|
| 1260 |
+
{
|
| 1261 |
+
"epoch": 0.7205731832139202,
|
| 1262 |
+
"grad_norm": 1.3044480085372925,
|
| 1263 |
+
"learning_rate": 1.7940339263983112e-05,
|
| 1264 |
+
"loss": 0.2563,
|
| 1265 |
+
"step": 176
|
| 1266 |
+
},
|
| 1267 |
+
{
|
| 1268 |
+
"epoch": 0.7246673490276356,
|
| 1269 |
+
"grad_norm": 1.288320779800415,
|
| 1270 |
+
"learning_rate": 1.791305627069662e-05,
|
| 1271 |
+
"loss": 0.2478,
|
| 1272 |
+
"step": 177
|
| 1273 |
+
},
|
| 1274 |
+
{
|
| 1275 |
+
"epoch": 0.7287615148413511,
|
| 1276 |
+
"grad_norm": 1.2802083492279053,
|
| 1277 |
+
"learning_rate": 1.7885614799385086e-05,
|
| 1278 |
+
"loss": 0.2331,
|
| 1279 |
+
"step": 178
|
| 1280 |
+
},
|
| 1281 |
+
{
|
| 1282 |
+
"epoch": 0.7328556806550666,
|
| 1283 |
+
"grad_norm": 1.3979520797729492,
|
| 1284 |
+
"learning_rate": 1.785801539963012e-05,
|
| 1285 |
+
"loss": 0.2458,
|
| 1286 |
+
"step": 179
|
| 1287 |
+
},
|
| 1288 |
+
{
|
| 1289 |
+
"epoch": 0.736949846468782,
|
| 1290 |
+
"grad_norm": 1.2247169017791748,
|
| 1291 |
+
"learning_rate": 1.7830258624176224e-05,
|
| 1292 |
+
"loss": 0.2132,
|
| 1293 |
+
"step": 180
|
| 1294 |
+
},
|
| 1295 |
+
{
|
| 1296 |
+
"epoch": 0.7410440122824974,
|
| 1297 |
+
"grad_norm": 1.4145004749298096,
|
| 1298 |
+
"learning_rate": 1.7802345028919728e-05,
|
| 1299 |
+
"loss": 0.2402,
|
| 1300 |
+
"step": 181
|
| 1301 |
+
},
|
| 1302 |
+
{
|
| 1303 |
+
"epoch": 0.7451381780962129,
|
| 1304 |
+
"grad_norm": 1.5720893144607544,
|
| 1305 |
+
"learning_rate": 1.777427517289766e-05,
|
| 1306 |
+
"loss": 0.258,
|
| 1307 |
+
"step": 182
|
| 1308 |
+
},
|
| 1309 |
+
{
|
| 1310 |
+
"epoch": 0.7492323439099283,
|
| 1311 |
+
"grad_norm": 1.272928237915039,
|
| 1312 |
+
"learning_rate": 1.7746049618276545e-05,
|
| 1313 |
+
"loss": 0.2501,
|
| 1314 |
+
"step": 183
|
| 1315 |
+
},
|
| 1316 |
+
{
|
| 1317 |
+
"epoch": 0.7533265097236438,
|
| 1318 |
+
"grad_norm": 1.4003905057907104,
|
| 1319 |
+
"learning_rate": 1.7717668930341152e-05,
|
| 1320 |
+
"loss": 0.2567,
|
| 1321 |
+
"step": 184
|
| 1322 |
+
},
|
| 1323 |
+
{
|
| 1324 |
+
"epoch": 0.7574206755373593,
|
| 1325 |
+
"grad_norm": 1.4310050010681152,
|
| 1326 |
+
"learning_rate": 1.768913367748316e-05,
|
| 1327 |
+
"loss": 0.2443,
|
| 1328 |
+
"step": 185
|
| 1329 |
+
},
|
| 1330 |
+
{
|
| 1331 |
+
"epoch": 0.7615148413510747,
|
| 1332 |
+
"grad_norm": 1.480718731880188,
|
| 1333 |
+
"learning_rate": 1.766044443118978e-05,
|
| 1334 |
+
"loss": 0.2564,
|
| 1335 |
+
"step": 186
|
| 1336 |
+
},
|
| 1337 |
+
{
|
| 1338 |
+
"epoch": 0.7656090071647902,
|
| 1339 |
+
"grad_norm": 1.331586480140686,
|
| 1340 |
+
"learning_rate": 1.7631601766032337e-05,
|
| 1341 |
+
"loss": 0.2467,
|
| 1342 |
+
"step": 187
|
| 1343 |
+
},
|
| 1344 |
+
{
|
| 1345 |
+
"epoch": 0.7697031729785057,
|
| 1346 |
+
"grad_norm": 1.2713260650634766,
|
| 1347 |
+
"learning_rate": 1.7602606259654704e-05,
|
| 1348 |
+
"loss": 0.2406,
|
| 1349 |
+
"step": 188
|
| 1350 |
+
},
|
| 1351 |
+
{
|
| 1352 |
+
"epoch": 0.7737973387922211,
|
| 1353 |
+
"grad_norm": 1.4929317235946655,
|
| 1354 |
+
"learning_rate": 1.7573458492761802e-05,
|
| 1355 |
+
"loss": 0.2515,
|
| 1356 |
+
"step": 189
|
| 1357 |
+
},
|
| 1358 |
+
{
|
| 1359 |
+
"epoch": 0.7778915046059366,
|
| 1360 |
+
"grad_norm": 1.117374062538147,
|
| 1361 |
+
"learning_rate": 1.7544159049107902e-05,
|
| 1362 |
+
"loss": 0.2165,
|
| 1363 |
+
"step": 190
|
| 1364 |
+
},
|
| 1365 |
+
{
|
| 1366 |
+
"epoch": 0.781985670419652,
|
| 1367 |
+
"grad_norm": 1.2868603467941284,
|
| 1368 |
+
"learning_rate": 1.7514708515485002e-05,
|
| 1369 |
+
"loss": 0.2469,
|
| 1370 |
+
"step": 191
|
| 1371 |
+
},
|
| 1372 |
+
{
|
| 1373 |
+
"epoch": 0.7860798362333674,
|
| 1374 |
+
"grad_norm": 1.3611894845962524,
|
| 1375 |
+
"learning_rate": 1.7485107481711014e-05,
|
| 1376 |
+
"loss": 0.2468,
|
| 1377 |
+
"step": 192
|
| 1378 |
+
},
|
| 1379 |
+
{
|
| 1380 |
+
"epoch": 0.7901740020470829,
|
| 1381 |
+
"grad_norm": 1.3682395219802856,
|
| 1382 |
+
"learning_rate": 1.7455356540617988e-05,
|
| 1383 |
+
"loss": 0.2548,
|
| 1384 |
+
"step": 193
|
| 1385 |
+
},
|
| 1386 |
+
{
|
| 1387 |
+
"epoch": 0.7942681678607983,
|
| 1388 |
+
"grad_norm": 1.2504215240478516,
|
| 1389 |
+
"learning_rate": 1.7425456288040236e-05,
|
| 1390 |
+
"loss": 0.2563,
|
| 1391 |
+
"step": 194
|
| 1392 |
+
},
|
| 1393 |
+
{
|
| 1394 |
+
"epoch": 0.7983623336745138,
|
| 1395 |
+
"grad_norm": 1.3082585334777832,
|
| 1396 |
+
"learning_rate": 1.7395407322802374e-05,
|
| 1397 |
+
"loss": 0.232,
|
| 1398 |
+
"step": 195
|
| 1399 |
+
},
|
| 1400 |
+
{
|
| 1401 |
+
"epoch": 0.8024564994882293,
|
| 1402 |
+
"grad_norm": 1.409508466720581,
|
| 1403 |
+
"learning_rate": 1.736521024670737e-05,
|
| 1404 |
+
"loss": 0.2438,
|
| 1405 |
+
"step": 196
|
| 1406 |
+
},
|
| 1407 |
+
{
|
| 1408 |
+
"epoch": 0.8065506653019447,
|
| 1409 |
+
"grad_norm": 1.1714893579483032,
|
| 1410 |
+
"learning_rate": 1.733486566452446e-05,
|
| 1411 |
+
"loss": 0.2201,
|
| 1412 |
+
"step": 197
|
| 1413 |
+
},
|
| 1414 |
+
{
|
| 1415 |
+
"epoch": 0.8106448311156602,
|
| 1416 |
+
"grad_norm": 1.3167288303375244,
|
| 1417 |
+
"learning_rate": 1.7304374183977032e-05,
|
| 1418 |
+
"loss": 0.2359,
|
| 1419 |
+
"step": 198
|
| 1420 |
+
},
|
| 1421 |
+
{
|
| 1422 |
+
"epoch": 0.8147389969293757,
|
| 1423 |
+
"grad_norm": 1.2892719507217407,
|
| 1424 |
+
"learning_rate": 1.7273736415730488e-05,
|
| 1425 |
+
"loss": 0.2373,
|
| 1426 |
+
"step": 199
|
| 1427 |
+
},
|
| 1428 |
+
{
|
| 1429 |
+
"epoch": 0.8188331627430911,
|
| 1430 |
+
"grad_norm": 1.2318534851074219,
|
| 1431 |
+
"learning_rate": 1.7242952973379983e-05,
|
| 1432 |
+
"loss": 0.2493,
|
| 1433 |
+
"step": 200
|
| 1434 |
+
},
|
| 1435 |
+
{
|
| 1436 |
+
"epoch": 0.8229273285568065,
|
| 1437 |
+
"grad_norm": 1.2666089534759521,
|
| 1438 |
+
"learning_rate": 1.7212024473438145e-05,
|
| 1439 |
+
"loss": 0.2335,
|
| 1440 |
+
"step": 201
|
| 1441 |
+
},
|
| 1442 |
+
{
|
| 1443 |
+
"epoch": 0.827021494370522,
|
| 1444 |
+
"grad_norm": 1.3021701574325562,
|
| 1445 |
+
"learning_rate": 1.7180951535322742e-05,
|
| 1446 |
+
"loss": 0.2457,
|
| 1447 |
+
"step": 202
|
| 1448 |
+
},
|
| 1449 |
+
{
|
| 1450 |
+
"epoch": 0.8311156601842374,
|
| 1451 |
+
"grad_norm": 1.2390035390853882,
|
| 1452 |
+
"learning_rate": 1.7149734781344247e-05,
|
| 1453 |
+
"loss": 0.2317,
|
| 1454 |
+
"step": 203
|
| 1455 |
+
},
|
| 1456 |
+
{
|
| 1457 |
+
"epoch": 0.8352098259979529,
|
| 1458 |
+
"grad_norm": 1.373651146888733,
|
| 1459 |
+
"learning_rate": 1.7118374836693407e-05,
|
| 1460 |
+
"loss": 0.2477,
|
| 1461 |
+
"step": 204
|
| 1462 |
+
},
|
| 1463 |
+
{
|
| 1464 |
+
"epoch": 0.8393039918116684,
|
| 1465 |
+
"grad_norm": 1.4125158786773682,
|
| 1466 |
+
"learning_rate": 1.7086872329428702e-05,
|
| 1467 |
+
"loss": 0.2716,
|
| 1468 |
+
"step": 205
|
| 1469 |
+
},
|
| 1470 |
+
{
|
| 1471 |
+
"epoch": 0.8433981576253838,
|
| 1472 |
+
"grad_norm": 1.3470803499221802,
|
| 1473 |
+
"learning_rate": 1.705522789046377e-05,
|
| 1474 |
+
"loss": 0.264,
|
| 1475 |
+
"step": 206
|
| 1476 |
+
},
|
| 1477 |
+
{
|
| 1478 |
+
"epoch": 0.8474923234390993,
|
| 1479 |
+
"grad_norm": 1.419498324394226,
|
| 1480 |
+
"learning_rate": 1.7023442153554776e-05,
|
| 1481 |
+
"loss": 0.2626,
|
| 1482 |
+
"step": 207
|
| 1483 |
+
},
|
| 1484 |
+
{
|
| 1485 |
+
"epoch": 0.8515864892528148,
|
| 1486 |
+
"grad_norm": 1.4023360013961792,
|
| 1487 |
+
"learning_rate": 1.6991515755287715e-05,
|
| 1488 |
+
"loss": 0.2786,
|
| 1489 |
+
"step": 208
|
| 1490 |
+
},
|
| 1491 |
+
{
|
| 1492 |
+
"epoch": 0.8556806550665302,
|
| 1493 |
+
"grad_norm": 1.3539841175079346,
|
| 1494 |
+
"learning_rate": 1.695944933506567e-05,
|
| 1495 |
+
"loss": 0.2623,
|
| 1496 |
+
"step": 209
|
| 1497 |
+
},
|
| 1498 |
+
{
|
| 1499 |
+
"epoch": 0.8597748208802457,
|
| 1500 |
+
"grad_norm": 1.4278448820114136,
|
| 1501 |
+
"learning_rate": 1.6927243535095995e-05,
|
| 1502 |
+
"loss": 0.2491,
|
| 1503 |
+
"step": 210
|
| 1504 |
+
},
|
| 1505 |
+
{
|
| 1506 |
+
"epoch": 0.8638689866939611,
|
| 1507 |
+
"grad_norm": 1.4281779527664185,
|
| 1508 |
+
"learning_rate": 1.6894899000377462e-05,
|
| 1509 |
+
"loss": 0.2303,
|
| 1510 |
+
"step": 211
|
| 1511 |
+
},
|
| 1512 |
+
{
|
| 1513 |
+
"epoch": 0.8679631525076765,
|
| 1514 |
+
"grad_norm": 1.2435628175735474,
|
| 1515 |
+
"learning_rate": 1.686241637868734e-05,
|
| 1516 |
+
"loss": 0.254,
|
| 1517 |
+
"step": 212
|
| 1518 |
+
},
|
| 1519 |
+
{
|
| 1520 |
+
"epoch": 0.872057318321392,
|
| 1521 |
+
"grad_norm": 1.2799077033996582,
|
| 1522 |
+
"learning_rate": 1.6829796320568416e-05,
|
| 1523 |
+
"loss": 0.2253,
|
| 1524 |
+
"step": 213
|
| 1525 |
+
},
|
| 1526 |
+
{
|
| 1527 |
+
"epoch": 0.8761514841351075,
|
| 1528 |
+
"grad_norm": 1.4002091884613037,
|
| 1529 |
+
"learning_rate": 1.6797039479315994e-05,
|
| 1530 |
+
"loss": 0.2568,
|
| 1531 |
+
"step": 214
|
| 1532 |
+
},
|
| 1533 |
+
{
|
| 1534 |
+
"epoch": 0.8802456499488229,
|
| 1535 |
+
"grad_norm": 1.2796311378479004,
|
| 1536 |
+
"learning_rate": 1.6764146510964762e-05,
|
| 1537 |
+
"loss": 0.2488,
|
| 1538 |
+
"step": 215
|
| 1539 |
+
},
|
| 1540 |
+
{
|
| 1541 |
+
"epoch": 0.8843398157625384,
|
| 1542 |
+
"grad_norm": 1.28677237033844,
|
| 1543 |
+
"learning_rate": 1.67311180742757e-05,
|
| 1544 |
+
"loss": 0.2619,
|
| 1545 |
+
"step": 216
|
| 1546 |
+
},
|
| 1547 |
+
{
|
| 1548 |
+
"epoch": 0.8884339815762539,
|
| 1549 |
+
"grad_norm": 1.5529658794403076,
|
| 1550 |
+
"learning_rate": 1.669795483072287e-05,
|
| 1551 |
+
"loss": 0.2312,
|
| 1552 |
+
"step": 217
|
| 1553 |
+
},
|
| 1554 |
+
{
|
| 1555 |
+
"epoch": 0.8925281473899693,
|
| 1556 |
+
"grad_norm": 1.2904109954833984,
|
| 1557 |
+
"learning_rate": 1.6664657444480145e-05,
|
| 1558 |
+
"loss": 0.2366,
|
| 1559 |
+
"step": 218
|
| 1560 |
+
},
|
| 1561 |
+
{
|
| 1562 |
+
"epoch": 0.8966223132036848,
|
| 1563 |
+
"grad_norm": 1.2689939737319946,
|
| 1564 |
+
"learning_rate": 1.6631226582407954e-05,
|
| 1565 |
+
"loss": 0.2446,
|
| 1566 |
+
"step": 219
|
| 1567 |
+
},
|
| 1568 |
+
{
|
| 1569 |
+
"epoch": 0.9007164790174002,
|
| 1570 |
+
"grad_norm": 1.2608931064605713,
|
| 1571 |
+
"learning_rate": 1.6597662914039885e-05,
|
| 1572 |
+
"loss": 0.2419,
|
| 1573 |
+
"step": 220
|
| 1574 |
+
},
|
| 1575 |
+
{
|
| 1576 |
+
"epoch": 0.9048106448311156,
|
| 1577 |
+
"grad_norm": 1.2563594579696655,
|
| 1578 |
+
"learning_rate": 1.65639671115693e-05,
|
| 1579 |
+
"loss": 0.2363,
|
| 1580 |
+
"step": 221
|
| 1581 |
+
},
|
| 1582 |
+
{
|
| 1583 |
+
"epoch": 0.9089048106448311,
|
| 1584 |
+
"grad_norm": 1.320057988166809,
|
| 1585 |
+
"learning_rate": 1.653013984983585e-05,
|
| 1586 |
+
"loss": 0.2508,
|
| 1587 |
+
"step": 222
|
| 1588 |
+
},
|
| 1589 |
+
{
|
| 1590 |
+
"epoch": 0.9129989764585466,
|
| 1591 |
+
"grad_norm": 1.2236367464065552,
|
| 1592 |
+
"learning_rate": 1.6496181806312005e-05,
|
| 1593 |
+
"loss": 0.2263,
|
| 1594 |
+
"step": 223
|
| 1595 |
+
},
|
| 1596 |
+
{
|
| 1597 |
+
"epoch": 0.917093142272262,
|
| 1598 |
+
"grad_norm": 1.293455958366394,
|
| 1599 |
+
"learning_rate": 1.6462093661089432e-05,
|
| 1600 |
+
"loss": 0.2504,
|
| 1601 |
+
"step": 224
|
| 1602 |
+
},
|
| 1603 |
+
{
|
| 1604 |
+
"epoch": 0.9211873080859775,
|
| 1605 |
+
"grad_norm": 1.3519924879074097,
|
| 1606 |
+
"learning_rate": 1.6427876096865394e-05,
|
| 1607 |
+
"loss": 0.2458,
|
| 1608 |
+
"step": 225
|
| 1609 |
+
},
|
| 1610 |
+
{
|
| 1611 |
+
"epoch": 0.925281473899693,
|
| 1612 |
+
"grad_norm": 1.1655514240264893,
|
| 1613 |
+
"learning_rate": 1.6393529798929103e-05,
|
| 1614 |
+
"loss": 0.249,
|
| 1615 |
+
"step": 226
|
| 1616 |
+
},
|
| 1617 |
+
{
|
| 1618 |
+
"epoch": 0.9293756397134084,
|
| 1619 |
+
"grad_norm": 1.3402174711227417,
|
| 1620 |
+
"learning_rate": 1.635905545514795e-05,
|
| 1621 |
+
"loss": 0.2426,
|
| 1622 |
+
"step": 227
|
| 1623 |
+
},
|
| 1624 |
+
{
|
| 1625 |
+
"epoch": 0.9334698055271239,
|
| 1626 |
+
"grad_norm": 1.3474458456039429,
|
| 1627 |
+
"learning_rate": 1.6324453755953772e-05,
|
| 1628 |
+
"loss": 0.2497,
|
| 1629 |
+
"step": 228
|
| 1630 |
+
},
|
| 1631 |
+
{
|
| 1632 |
+
"epoch": 0.9375639713408394,
|
| 1633 |
+
"grad_norm": 1.2284787893295288,
|
| 1634 |
+
"learning_rate": 1.6289725394328998e-05,
|
| 1635 |
+
"loss": 0.2438,
|
| 1636 |
+
"step": 229
|
| 1637 |
+
},
|
| 1638 |
+
{
|
| 1639 |
+
"epoch": 0.9416581371545547,
|
| 1640 |
+
"grad_norm": 1.2306231260299683,
|
| 1641 |
+
"learning_rate": 1.6254871065792776e-05,
|
| 1642 |
+
"loss": 0.248,
|
| 1643 |
+
"step": 230
|
| 1644 |
+
},
|
| 1645 |
+
{
|
| 1646 |
+
"epoch": 0.9457523029682702,
|
| 1647 |
+
"grad_norm": 1.3834123611450195,
|
| 1648 |
+
"learning_rate": 1.621989146838704e-05,
|
| 1649 |
+
"loss": 0.2798,
|
| 1650 |
+
"step": 231
|
| 1651 |
+
},
|
| 1652 |
+
{
|
| 1653 |
+
"epoch": 0.9498464687819856,
|
| 1654 |
+
"grad_norm": 1.333827257156372,
|
| 1655 |
+
"learning_rate": 1.618478730266255e-05,
|
| 1656 |
+
"loss": 0.2585,
|
| 1657 |
+
"step": 232
|
| 1658 |
+
},
|
| 1659 |
+
{
|
| 1660 |
+
"epoch": 0.9539406345957011,
|
| 1661 |
+
"grad_norm": 1.272150993347168,
|
| 1662 |
+
"learning_rate": 1.6149559271664835e-05,
|
| 1663 |
+
"loss": 0.2512,
|
| 1664 |
+
"step": 233
|
| 1665 |
+
},
|
| 1666 |
+
{
|
| 1667 |
+
"epoch": 0.9580348004094166,
|
| 1668 |
+
"grad_norm": 1.3800173997879028,
|
| 1669 |
+
"learning_rate": 1.6114208080920125e-05,
|
| 1670 |
+
"loss": 0.2483,
|
| 1671 |
+
"step": 234
|
| 1672 |
+
},
|
| 1673 |
+
{
|
| 1674 |
+
"epoch": 0.962128966223132,
|
| 1675 |
+
"grad_norm": 1.2623674869537354,
|
| 1676 |
+
"learning_rate": 1.607873443842122e-05,
|
| 1677 |
+
"loss": 0.2447,
|
| 1678 |
+
"step": 235
|
| 1679 |
+
},
|
| 1680 |
+
{
|
| 1681 |
+
"epoch": 0.9662231320368475,
|
| 1682 |
+
"grad_norm": 1.2797845602035522,
|
| 1683 |
+
"learning_rate": 1.6043139054613326e-05,
|
| 1684 |
+
"loss": 0.2258,
|
| 1685 |
+
"step": 236
|
| 1686 |
+
},
|
| 1687 |
+
{
|
| 1688 |
+
"epoch": 0.970317297850563,
|
| 1689 |
+
"grad_norm": 1.3689030408859253,
|
| 1690 |
+
"learning_rate": 1.600742264237979e-05,
|
| 1691 |
+
"loss": 0.247,
|
| 1692 |
+
"step": 237
|
| 1693 |
+
},
|
| 1694 |
+
{
|
| 1695 |
+
"epoch": 0.9744114636642784,
|
| 1696 |
+
"grad_norm": 1.3384076356887817,
|
| 1697 |
+
"learning_rate": 1.5971585917027864e-05,
|
| 1698 |
+
"loss": 0.2286,
|
| 1699 |
+
"step": 238
|
| 1700 |
+
},
|
| 1701 |
+
{
|
| 1702 |
+
"epoch": 0.9785056294779939,
|
| 1703 |
+
"grad_norm": 1.210942268371582,
|
| 1704 |
+
"learning_rate": 1.5935629596274345e-05,
|
| 1705 |
+
"loss": 0.2402,
|
| 1706 |
+
"step": 239
|
| 1707 |
+
},
|
| 1708 |
+
{
|
| 1709 |
+
"epoch": 0.9825997952917093,
|
| 1710 |
+
"grad_norm": 1.2547039985656738,
|
| 1711 |
+
"learning_rate": 1.5899554400231233e-05,
|
| 1712 |
+
"loss": 0.2386,
|
| 1713 |
+
"step": 240
|
| 1714 |
+
},
|
| 1715 |
+
{
|
| 1716 |
+
"epoch": 0.9866939611054247,
|
| 1717 |
+
"grad_norm": 1.337138056755066,
|
| 1718 |
+
"learning_rate": 1.586336105139127e-05,
|
| 1719 |
+
"loss": 0.2686,
|
| 1720 |
+
"step": 241
|
| 1721 |
+
},
|
| 1722 |
+
{
|
| 1723 |
+
"epoch": 0.9907881269191402,
|
| 1724 |
+
"grad_norm": 1.273237943649292,
|
| 1725 |
+
"learning_rate": 1.5827050274613512e-05,
|
| 1726 |
+
"loss": 0.2653,
|
| 1727 |
+
"step": 242
|
| 1728 |
+
},
|
| 1729 |
+
{
|
| 1730 |
+
"epoch": 0.9948822927328557,
|
| 1731 |
+
"grad_norm": 1.3556797504425049,
|
| 1732 |
+
"learning_rate": 1.579062279710879e-05,
|
| 1733 |
+
"loss": 0.2365,
|
| 1734 |
+
"step": 243
|
| 1735 |
+
},
|
| 1736 |
+
{
|
| 1737 |
+
"epoch": 0.9989764585465711,
|
| 1738 |
+
"grad_norm": 1.2234649658203125,
|
| 1739 |
+
"learning_rate": 1.5754079348425137e-05,
|
| 1740 |
+
"loss": 0.239,
|
| 1741 |
+
"step": 244
|
| 1742 |
+
}
|
| 1743 |
+
],
|
| 1744 |
+
"logging_steps": 1,
|
| 1745 |
+
"max_steps": 732,
|
| 1746 |
+
"num_input_tokens_seen": 0,
|
| 1747 |
+
"num_train_epochs": 3,
|
| 1748 |
+
"save_steps": 244,
|
| 1749 |
+
"stateful_callbacks": {
|
| 1750 |
+
"TrainerControl": {
|
| 1751 |
+
"args": {
|
| 1752 |
+
"should_epoch_stop": false,
|
| 1753 |
+
"should_evaluate": false,
|
| 1754 |
+
"should_log": false,
|
| 1755 |
+
"should_save": true,
|
| 1756 |
+
"should_training_stop": false
|
| 1757 |
+
},
|
| 1758 |
+
"attributes": {}
|
| 1759 |
+
}
|
| 1760 |
+
},
|
| 1761 |
+
"total_flos": 3.94188710905643e+17,
|
| 1762 |
+
"train_batch_size": 8,
|
| 1763 |
+
"trial_name": null,
|
| 1764 |
+
"trial_params": null
|
| 1765 |
+
}
|
3b-w-cot+/checkpoint-244/training_args.bin
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:632e641a15180cc852702434a272df94b8012efb84c5e296eb59b1554cdab170
|
| 3 |
+
size 10744
|
3b-w-cot+/checkpoint-244/vocab.json
ADDED
|
The diff for this file is too large to render.
See raw diff
|
|
|
3b-w-cot+/checkpoint-244/zero_to_fp32.py
ADDED
|
@@ -0,0 +1,760 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
#!/usr/bin/env python
|
| 2 |
+
|
| 3 |
+
# Copyright (c) Microsoft Corporation.
|
| 4 |
+
# SPDX-License-Identifier: Apache-2.0
|
| 5 |
+
|
| 6 |
+
# DeepSpeed Team
|
| 7 |
+
|
| 8 |
+
# This script extracts fp32 consolidated weights from a zero 1, 2 and 3 DeepSpeed checkpoints. It gets
|
| 9 |
+
# copied into the top level checkpoint dir, so the user can easily do the conversion at any point in
|
| 10 |
+
# the future. Once extracted, the weights don't require DeepSpeed and can be used in any
|
| 11 |
+
# application.
|
| 12 |
+
#
|
| 13 |
+
# example:
|
| 14 |
+
# python zero_to_fp32.py . output_dir/
|
| 15 |
+
# or
|
| 16 |
+
# python zero_to_fp32.py . output_dir/ --safe_serialization
|
| 17 |
+
|
| 18 |
+
import argparse
|
| 19 |
+
import torch
|
| 20 |
+
import glob
|
| 21 |
+
import math
|
| 22 |
+
import os
|
| 23 |
+
import re
|
| 24 |
+
import gc
|
| 25 |
+
import json
|
| 26 |
+
import numpy as np
|
| 27 |
+
from tqdm import tqdm
|
| 28 |
+
from collections import OrderedDict
|
| 29 |
+
from dataclasses import dataclass
|
| 30 |
+
|
| 31 |
+
# while this script doesn't use deepspeed to recover data, since the checkpoints are pickled with
|
| 32 |
+
# DeepSpeed data structures it has to be available in the current python environment.
|
| 33 |
+
from deepspeed.utils import logger
|
| 34 |
+
from deepspeed.checkpoint.constants import (DS_VERSION, OPTIMIZER_STATE_DICT, SINGLE_PARTITION_OF_FP32_GROUPS,
|
| 35 |
+
FP32_FLAT_GROUPS, ZERO_STAGE, PARTITION_COUNT, PARAM_SHAPES, BUFFER_NAMES,
|
| 36 |
+
FROZEN_PARAM_SHAPES, FROZEN_PARAM_FRAGMENTS)
|
| 37 |
+
|
| 38 |
+
|
| 39 |
+
@dataclass
|
| 40 |
+
class zero_model_state:
|
| 41 |
+
buffers: dict()
|
| 42 |
+
param_shapes: dict()
|
| 43 |
+
shared_params: list
|
| 44 |
+
ds_version: int
|
| 45 |
+
frozen_param_shapes: dict()
|
| 46 |
+
frozen_param_fragments: dict()
|
| 47 |
+
|
| 48 |
+
|
| 49 |
+
debug = 0
|
| 50 |
+
|
| 51 |
+
# load to cpu
|
| 52 |
+
device = torch.device('cpu')
|
| 53 |
+
|
| 54 |
+
|
| 55 |
+
def atoi(text):
|
| 56 |
+
return int(text) if text.isdigit() else text
|
| 57 |
+
|
| 58 |
+
|
| 59 |
+
def natural_keys(text):
|
| 60 |
+
'''
|
| 61 |
+
alist.sort(key=natural_keys) sorts in human order
|
| 62 |
+
http://nedbatchelder.com/blog/200712/human_sorting.html
|
| 63 |
+
(See Toothy's implementation in the comments)
|
| 64 |
+
'''
|
| 65 |
+
return [atoi(c) for c in re.split(r'(\d+)', text)]
|
| 66 |
+
|
| 67 |
+
|
| 68 |
+
def get_model_state_file(checkpoint_dir, zero_stage):
|
| 69 |
+
if not os.path.isdir(checkpoint_dir):
|
| 70 |
+
raise FileNotFoundError(f"Directory '{checkpoint_dir}' doesn't exist")
|
| 71 |
+
|
| 72 |
+
# there should be only one file
|
| 73 |
+
if zero_stage <= 2:
|
| 74 |
+
file = os.path.join(checkpoint_dir, "mp_rank_00_model_states.pt")
|
| 75 |
+
elif zero_stage == 3:
|
| 76 |
+
file = os.path.join(checkpoint_dir, "zero_pp_rank_0_mp_rank_00_model_states.pt")
|
| 77 |
+
|
| 78 |
+
if not os.path.exists(file):
|
| 79 |
+
raise FileNotFoundError(f"can't find model states file at '{file}'")
|
| 80 |
+
|
| 81 |
+
return file
|
| 82 |
+
|
| 83 |
+
|
| 84 |
+
def get_checkpoint_files(checkpoint_dir, glob_pattern):
|
| 85 |
+
# XXX: need to test that this simple glob rule works for multi-node setup too
|
| 86 |
+
ckpt_files = sorted(glob.glob(os.path.join(checkpoint_dir, glob_pattern)), key=natural_keys)
|
| 87 |
+
|
| 88 |
+
if len(ckpt_files) == 0:
|
| 89 |
+
raise FileNotFoundError(f"can't find {glob_pattern} files in directory '{checkpoint_dir}'")
|
| 90 |
+
|
| 91 |
+
return ckpt_files
|
| 92 |
+
|
| 93 |
+
|
| 94 |
+
def get_optim_files(checkpoint_dir):
|
| 95 |
+
return get_checkpoint_files(checkpoint_dir, "*_optim_states.pt")
|
| 96 |
+
|
| 97 |
+
|
| 98 |
+
def get_model_state_files(checkpoint_dir):
|
| 99 |
+
return get_checkpoint_files(checkpoint_dir, "*_model_states.pt")
|
| 100 |
+
|
| 101 |
+
|
| 102 |
+
def parse_model_states(files):
|
| 103 |
+
zero_model_states = []
|
| 104 |
+
for file in files:
|
| 105 |
+
state_dict = torch.load(file, map_location=device, weights_only=False)
|
| 106 |
+
|
| 107 |
+
if BUFFER_NAMES not in state_dict:
|
| 108 |
+
raise ValueError(f"{file} is not a model state checkpoint")
|
| 109 |
+
buffer_names = state_dict[BUFFER_NAMES]
|
| 110 |
+
if debug:
|
| 111 |
+
print("Found buffers:", buffer_names)
|
| 112 |
+
|
| 113 |
+
# recover just the buffers while restoring them to fp32 if they were saved in fp16
|
| 114 |
+
buffers = {k: v.float() for k, v in state_dict["module"].items() if k in buffer_names}
|
| 115 |
+
param_shapes = state_dict[PARAM_SHAPES]
|
| 116 |
+
|
| 117 |
+
# collect parameters that are included in param_shapes
|
| 118 |
+
param_names = []
|
| 119 |
+
for s in param_shapes:
|
| 120 |
+
for name in s.keys():
|
| 121 |
+
param_names.append(name)
|
| 122 |
+
|
| 123 |
+
# update with frozen parameters
|
| 124 |
+
frozen_param_shapes = state_dict.get(FROZEN_PARAM_SHAPES, None)
|
| 125 |
+
if frozen_param_shapes is not None:
|
| 126 |
+
if debug:
|
| 127 |
+
print(f"Found frozen_param_shapes: {frozen_param_shapes}")
|
| 128 |
+
param_names += list(frozen_param_shapes.keys())
|
| 129 |
+
|
| 130 |
+
# handle shared params
|
| 131 |
+
shared_params = [[k, v] for k, v in state_dict["shared_params"].items()]
|
| 132 |
+
|
| 133 |
+
ds_version = state_dict.get(DS_VERSION, None)
|
| 134 |
+
|
| 135 |
+
frozen_param_fragments = state_dict.get(FROZEN_PARAM_FRAGMENTS, None)
|
| 136 |
+
|
| 137 |
+
z_model_state = zero_model_state(buffers=buffers,
|
| 138 |
+
param_shapes=param_shapes,
|
| 139 |
+
shared_params=shared_params,
|
| 140 |
+
ds_version=ds_version,
|
| 141 |
+
frozen_param_shapes=frozen_param_shapes,
|
| 142 |
+
frozen_param_fragments=frozen_param_fragments)
|
| 143 |
+
zero_model_states.append(z_model_state)
|
| 144 |
+
|
| 145 |
+
return zero_model_states
|
| 146 |
+
|
| 147 |
+
|
| 148 |
+
def parse_optim_states(files, ds_checkpoint_dir):
|
| 149 |
+
total_files = len(files)
|
| 150 |
+
state_dicts = []
|
| 151 |
+
for f in tqdm(files, desc='Loading checkpoint shards'):
|
| 152 |
+
state_dict = torch.load(f, map_location=device, mmap=True, weights_only=False)
|
| 153 |
+
# immediately discard the potentially huge 2 optimizer states as we only care for fp32 master weights
|
| 154 |
+
# and also handle the case where it was already removed by another helper script
|
| 155 |
+
state_dict["optimizer_state_dict"].pop("optimizer_state_dict", None)
|
| 156 |
+
state_dicts.append(state_dict)
|
| 157 |
+
|
| 158 |
+
if not ZERO_STAGE in state_dicts[0][OPTIMIZER_STATE_DICT]:
|
| 159 |
+
raise ValueError(f"{files[0]} is not a zero checkpoint")
|
| 160 |
+
zero_stage = state_dicts[0][OPTIMIZER_STATE_DICT][ZERO_STAGE]
|
| 161 |
+
world_size = state_dicts[0][OPTIMIZER_STATE_DICT][PARTITION_COUNT]
|
| 162 |
+
|
| 163 |
+
# For ZeRO-2 each param group can have different partition_count as data parallelism for expert
|
| 164 |
+
# parameters can be different from data parallelism for non-expert parameters. So we can just
|
| 165 |
+
# use the max of the partition_count to get the dp world_size.
|
| 166 |
+
|
| 167 |
+
if type(world_size) is list:
|
| 168 |
+
world_size = max(world_size)
|
| 169 |
+
|
| 170 |
+
if world_size != total_files:
|
| 171 |
+
raise ValueError(
|
| 172 |
+
f"Expected {world_size} of '*_optim_states.pt' under '{ds_checkpoint_dir}' but found {total_files} files. "
|
| 173 |
+
"Possibly due to an overwrite of an old checkpoint, or a checkpoint didn't get saved by one or more processes."
|
| 174 |
+
)
|
| 175 |
+
|
| 176 |
+
# the groups are named differently in each stage
|
| 177 |
+
if zero_stage <= 2:
|
| 178 |
+
fp32_groups_key = SINGLE_PARTITION_OF_FP32_GROUPS
|
| 179 |
+
elif zero_stage == 3:
|
| 180 |
+
fp32_groups_key = FP32_FLAT_GROUPS
|
| 181 |
+
else:
|
| 182 |
+
raise ValueError(f"unknown zero stage {zero_stage}")
|
| 183 |
+
|
| 184 |
+
fp32_flat_groups = [state_dicts[i][OPTIMIZER_STATE_DICT][fp32_groups_key] for i in range(len(state_dicts))]
|
| 185 |
+
return zero_stage, world_size, fp32_flat_groups
|
| 186 |
+
|
| 187 |
+
|
| 188 |
+
def _get_fp32_state_dict_from_zero_checkpoint(ds_checkpoint_dir, exclude_frozen_parameters):
|
| 189 |
+
"""
|
| 190 |
+
Returns fp32 state_dict reconstructed from ds checkpoint
|
| 191 |
+
|
| 192 |
+
Args:
|
| 193 |
+
- ``ds_checkpoint_dir``: path to the deepspeed checkpoint folder (where the optimizer files are)
|
| 194 |
+
|
| 195 |
+
"""
|
| 196 |
+
print(f"Processing zero checkpoint '{ds_checkpoint_dir}'")
|
| 197 |
+
|
| 198 |
+
optim_files = get_optim_files(ds_checkpoint_dir)
|
| 199 |
+
zero_stage, world_size, fp32_flat_groups = parse_optim_states(optim_files, ds_checkpoint_dir)
|
| 200 |
+
print(f"Detected checkpoint of type zero stage {zero_stage}, world_size: {world_size}")
|
| 201 |
+
|
| 202 |
+
model_files = get_model_state_files(ds_checkpoint_dir)
|
| 203 |
+
|
| 204 |
+
zero_model_states = parse_model_states(model_files)
|
| 205 |
+
print(f'Parsing checkpoint created by deepspeed=={zero_model_states[0].ds_version}')
|
| 206 |
+
|
| 207 |
+
if zero_stage <= 2:
|
| 208 |
+
return _get_fp32_state_dict_from_zero2_checkpoint(world_size, fp32_flat_groups, zero_model_states,
|
| 209 |
+
exclude_frozen_parameters)
|
| 210 |
+
elif zero_stage == 3:
|
| 211 |
+
return _get_fp32_state_dict_from_zero3_checkpoint(world_size, fp32_flat_groups, zero_model_states,
|
| 212 |
+
exclude_frozen_parameters)
|
| 213 |
+
|
| 214 |
+
|
| 215 |
+
def _zero2_merge_frozen_params(state_dict, zero_model_states):
|
| 216 |
+
if zero_model_states[0].frozen_param_shapes is None or len(zero_model_states[0].frozen_param_shapes) == 0:
|
| 217 |
+
return
|
| 218 |
+
|
| 219 |
+
frozen_param_shapes = zero_model_states[0].frozen_param_shapes
|
| 220 |
+
frozen_param_fragments = zero_model_states[0].frozen_param_fragments
|
| 221 |
+
|
| 222 |
+
if debug:
|
| 223 |
+
num_elem = sum(s.numel() for s in frozen_param_shapes.values())
|
| 224 |
+
print(f'rank 0: {FROZEN_PARAM_SHAPES}.numel = {num_elem}')
|
| 225 |
+
|
| 226 |
+
wanted_params = len(frozen_param_shapes)
|
| 227 |
+
wanted_numel = sum(s.numel() for s in frozen_param_shapes.values())
|
| 228 |
+
avail_numel = sum([p.numel() for p in frozen_param_fragments.values()])
|
| 229 |
+
print(f'Frozen params: Have {avail_numel} numels to process.')
|
| 230 |
+
print(f'Frozen params: Need {wanted_numel} numels in {wanted_params} params')
|
| 231 |
+
|
| 232 |
+
total_params = 0
|
| 233 |
+
total_numel = 0
|
| 234 |
+
for name, shape in frozen_param_shapes.items():
|
| 235 |
+
total_params += 1
|
| 236 |
+
unpartitioned_numel = shape.numel()
|
| 237 |
+
total_numel += unpartitioned_numel
|
| 238 |
+
|
| 239 |
+
state_dict[name] = frozen_param_fragments[name]
|
| 240 |
+
|
| 241 |
+
if debug:
|
| 242 |
+
print(f"{name} full shape: {shape} unpartitioned numel {unpartitioned_numel} ")
|
| 243 |
+
|
| 244 |
+
print(f"Reconstructed Frozen fp32 state dict with {total_params} params {total_numel} elements")
|
| 245 |
+
|
| 246 |
+
|
| 247 |
+
def _has_callable(obj, fn):
|
| 248 |
+
attr = getattr(obj, fn, None)
|
| 249 |
+
return callable(attr)
|
| 250 |
+
|
| 251 |
+
|
| 252 |
+
def _zero2_merge_trainable_params(state_dict, world_size, fp32_flat_groups, zero_model_states):
|
| 253 |
+
param_shapes = zero_model_states[0].param_shapes
|
| 254 |
+
|
| 255 |
+
# Reconstruction protocol:
|
| 256 |
+
#
|
| 257 |
+
# XXX: document this
|
| 258 |
+
|
| 259 |
+
if debug:
|
| 260 |
+
for i in range(world_size):
|
| 261 |
+
for j in range(len(fp32_flat_groups[0])):
|
| 262 |
+
print(f"{FP32_FLAT_GROUPS}[{i}][{j}].shape={fp32_flat_groups[i][j].shape}")
|
| 263 |
+
|
| 264 |
+
# XXX: memory usage doubles here (zero2)
|
| 265 |
+
num_param_groups = len(fp32_flat_groups[0])
|
| 266 |
+
merged_single_partition_of_fp32_groups = []
|
| 267 |
+
for i in range(num_param_groups):
|
| 268 |
+
merged_partitions = [sd[i] for sd in fp32_flat_groups]
|
| 269 |
+
full_single_fp32_vector = torch.cat(merged_partitions, 0)
|
| 270 |
+
merged_single_partition_of_fp32_groups.append(full_single_fp32_vector)
|
| 271 |
+
avail_numel = sum(
|
| 272 |
+
[full_single_fp32_vector.numel() for full_single_fp32_vector in merged_single_partition_of_fp32_groups])
|
| 273 |
+
|
| 274 |
+
if debug:
|
| 275 |
+
wanted_params = sum([len(shapes) for shapes in param_shapes])
|
| 276 |
+
wanted_numel = sum([sum(shape.numel() for shape in shapes.values()) for shapes in param_shapes])
|
| 277 |
+
# not asserting if there is a mismatch due to possible padding
|
| 278 |
+
print(f"Have {avail_numel} numels to process.")
|
| 279 |
+
print(f"Need {wanted_numel} numels in {wanted_params} params.")
|
| 280 |
+
|
| 281 |
+
# params
|
| 282 |
+
# XXX: for huge models that can't fit into the host's RAM we will have to recode this to support
|
| 283 |
+
# out-of-core computing solution
|
| 284 |
+
total_numel = 0
|
| 285 |
+
total_params = 0
|
| 286 |
+
for shapes, full_single_fp32_vector in zip(param_shapes, merged_single_partition_of_fp32_groups):
|
| 287 |
+
offset = 0
|
| 288 |
+
avail_numel = full_single_fp32_vector.numel()
|
| 289 |
+
for name, shape in shapes.items():
|
| 290 |
+
|
| 291 |
+
unpartitioned_numel = shape.numel() if _has_callable(shape, 'numel') else math.prod(shape)
|
| 292 |
+
total_numel += unpartitioned_numel
|
| 293 |
+
total_params += 1
|
| 294 |
+
|
| 295 |
+
if debug:
|
| 296 |
+
print(f"{name} full shape: {shape} unpartitioned numel {unpartitioned_numel} ")
|
| 297 |
+
state_dict[name] = full_single_fp32_vector.narrow(0, offset, unpartitioned_numel).view(shape)
|
| 298 |
+
offset += unpartitioned_numel
|
| 299 |
+
|
| 300 |
+
# Z2 started to align to 2*world_size to improve nccl performance. Therefore both offset and
|
| 301 |
+
# avail_numel can differ by anywhere between 0..2*world_size. Due to two unrelated complex
|
| 302 |
+
# paddings performed in the code it's almost impossible to predict the exact numbers w/o the
|
| 303 |
+
# live optimizer object, so we are checking that the numbers are within the right range
|
| 304 |
+
align_to = 2 * world_size
|
| 305 |
+
|
| 306 |
+
def zero2_align(x):
|
| 307 |
+
return align_to * math.ceil(x / align_to)
|
| 308 |
+
|
| 309 |
+
if debug:
|
| 310 |
+
print(f"original offset={offset}, avail_numel={avail_numel}")
|
| 311 |
+
|
| 312 |
+
offset = zero2_align(offset)
|
| 313 |
+
avail_numel = zero2_align(avail_numel)
|
| 314 |
+
|
| 315 |
+
if debug:
|
| 316 |
+
print(f"aligned offset={offset}, avail_numel={avail_numel}")
|
| 317 |
+
|
| 318 |
+
# Sanity check
|
| 319 |
+
if offset != avail_numel:
|
| 320 |
+
raise ValueError(f"consumed {offset} numels out of {avail_numel} - something is wrong")
|
| 321 |
+
|
| 322 |
+
print(f"Reconstructed fp32 state dict with {total_params} params {total_numel} elements")
|
| 323 |
+
|
| 324 |
+
|
| 325 |
+
def _get_fp32_state_dict_from_zero2_checkpoint(world_size, fp32_flat_groups, zero_model_states,
|
| 326 |
+
exclude_frozen_parameters):
|
| 327 |
+
state_dict = OrderedDict()
|
| 328 |
+
|
| 329 |
+
# buffers
|
| 330 |
+
buffers = zero_model_states[0].buffers
|
| 331 |
+
state_dict.update(buffers)
|
| 332 |
+
if debug:
|
| 333 |
+
print(f"added {len(buffers)} buffers")
|
| 334 |
+
|
| 335 |
+
if not exclude_frozen_parameters:
|
| 336 |
+
_zero2_merge_frozen_params(state_dict, zero_model_states)
|
| 337 |
+
|
| 338 |
+
_zero2_merge_trainable_params(state_dict, world_size, fp32_flat_groups, zero_model_states)
|
| 339 |
+
|
| 340 |
+
# recover shared parameters
|
| 341 |
+
for pair in zero_model_states[0].shared_params:
|
| 342 |
+
if pair[1] in state_dict:
|
| 343 |
+
state_dict[pair[0]] = state_dict[pair[1]]
|
| 344 |
+
|
| 345 |
+
return state_dict
|
| 346 |
+
|
| 347 |
+
|
| 348 |
+
def zero3_partitioned_param_info(unpartitioned_numel, world_size):
|
| 349 |
+
remainder = unpartitioned_numel % world_size
|
| 350 |
+
padding_numel = (world_size - remainder) if remainder else 0
|
| 351 |
+
partitioned_numel = math.ceil(unpartitioned_numel / world_size)
|
| 352 |
+
return partitioned_numel, padding_numel
|
| 353 |
+
|
| 354 |
+
|
| 355 |
+
def _zero3_merge_frozen_params(state_dict, world_size, zero_model_states):
|
| 356 |
+
if zero_model_states[0].frozen_param_shapes is None or len(zero_model_states[0].frozen_param_shapes) == 0:
|
| 357 |
+
return
|
| 358 |
+
|
| 359 |
+
if debug:
|
| 360 |
+
for i in range(world_size):
|
| 361 |
+
num_elem = sum(s.numel() for s in zero_model_states[i].frozen_param_fragments.values())
|
| 362 |
+
print(f'rank {i}: {FROZEN_PARAM_SHAPES}.numel = {num_elem}')
|
| 363 |
+
|
| 364 |
+
frozen_param_shapes = zero_model_states[0].frozen_param_shapes
|
| 365 |
+
wanted_params = len(frozen_param_shapes)
|
| 366 |
+
wanted_numel = sum(s.numel() for s in frozen_param_shapes.values())
|
| 367 |
+
avail_numel = sum([p.numel() for p in zero_model_states[0].frozen_param_fragments.values()]) * world_size
|
| 368 |
+
print(f'Frozen params: Have {avail_numel} numels to process.')
|
| 369 |
+
print(f'Frozen params: Need {wanted_numel} numels in {wanted_params} params')
|
| 370 |
+
|
| 371 |
+
total_params = 0
|
| 372 |
+
total_numel = 0
|
| 373 |
+
for name, shape in zero_model_states[0].frozen_param_shapes.items():
|
| 374 |
+
total_params += 1
|
| 375 |
+
unpartitioned_numel = shape.numel()
|
| 376 |
+
total_numel += unpartitioned_numel
|
| 377 |
+
|
| 378 |
+
param_frags = tuple(model_state.frozen_param_fragments[name] for model_state in zero_model_states)
|
| 379 |
+
state_dict[name] = torch.cat(param_frags, 0).narrow(0, 0, unpartitioned_numel).view(shape)
|
| 380 |
+
|
| 381 |
+
partitioned_numel, partitioned_padding_numel = zero3_partitioned_param_info(unpartitioned_numel, world_size)
|
| 382 |
+
|
| 383 |
+
if debug:
|
| 384 |
+
print(
|
| 385 |
+
f"Frozen params: {total_params} {name} full shape: {shape} partition0 numel={partitioned_numel} partitioned_padding_numel={partitioned_padding_numel}"
|
| 386 |
+
)
|
| 387 |
+
|
| 388 |
+
print(f"Reconstructed Frozen fp32 state dict with {total_params} params {total_numel} elements")
|
| 389 |
+
|
| 390 |
+
|
| 391 |
+
class GatheredTensor:
|
| 392 |
+
"""
|
| 393 |
+
A pseudo tensor that collects partitioned weights.
|
| 394 |
+
It is more memory efficient when there are multiple groups.
|
| 395 |
+
"""
|
| 396 |
+
|
| 397 |
+
def __init__(self, flat_groups, flat_groups_offset, offset, partitioned_numel, shape):
|
| 398 |
+
self.flat_groups = flat_groups
|
| 399 |
+
self.flat_groups_offset = flat_groups_offset
|
| 400 |
+
self.offset = offset
|
| 401 |
+
self.partitioned_numel = partitioned_numel
|
| 402 |
+
self.shape = shape
|
| 403 |
+
self.dtype = self.flat_groups[0][0].dtype
|
| 404 |
+
|
| 405 |
+
def contiguous(self):
|
| 406 |
+
"""
|
| 407 |
+
Merge partitioned weights from flat_groups into a single tensor.
|
| 408 |
+
"""
|
| 409 |
+
end_idx = self.offset + self.partitioned_numel
|
| 410 |
+
world_size = len(self.flat_groups)
|
| 411 |
+
pad_flat_param_chunks = []
|
| 412 |
+
|
| 413 |
+
for rank_i in range(world_size):
|
| 414 |
+
# for each rank, we need to collect weights from related group/groups
|
| 415 |
+
flat_groups_at_rank_i = self.flat_groups[rank_i]
|
| 416 |
+
start_group_id = None
|
| 417 |
+
end_group_id = None
|
| 418 |
+
for group_id in range(len(self.flat_groups_offset)):
|
| 419 |
+
if self.flat_groups_offset[group_id] <= self.offset < self.flat_groups_offset[group_id + 1]:
|
| 420 |
+
start_group_id = group_id
|
| 421 |
+
if self.flat_groups_offset[group_id] < end_idx <= self.flat_groups_offset[group_id + 1]:
|
| 422 |
+
end_group_id = group_id
|
| 423 |
+
break
|
| 424 |
+
# collect weights from related group/groups
|
| 425 |
+
for group_id in range(start_group_id, end_group_id + 1):
|
| 426 |
+
flat_tensor = flat_groups_at_rank_i[group_id]
|
| 427 |
+
start_offset = self.offset - self.flat_groups_offset[group_id]
|
| 428 |
+
end_offset = min(end_idx, self.flat_groups_offset[group_id + 1]) - self.flat_groups_offset[group_id]
|
| 429 |
+
pad_flat_param_chunks.append(flat_tensor[start_offset:end_offset])
|
| 430 |
+
|
| 431 |
+
# collect weights from all ranks
|
| 432 |
+
pad_flat_param = torch.cat(pad_flat_param_chunks, dim=0)
|
| 433 |
+
param = pad_flat_param[:self.shape.numel()].view(self.shape).contiguous()
|
| 434 |
+
return param
|
| 435 |
+
|
| 436 |
+
|
| 437 |
+
def _zero3_merge_trainable_params(state_dict, world_size, fp32_flat_groups, zero_model_states):
|
| 438 |
+
param_shapes = zero_model_states[0].param_shapes
|
| 439 |
+
avail_numel = sum([flat_group.numel() for flat_group in fp32_flat_groups[0]]) * world_size
|
| 440 |
+
|
| 441 |
+
# Reconstruction protocol: For zero3 we need to zip the partitions together at boundary of each
|
| 442 |
+
# param, re-consolidating each param, while dealing with padding if any
|
| 443 |
+
|
| 444 |
+
# merge list of dicts, preserving order
|
| 445 |
+
param_shapes = {k: v for d in param_shapes for k, v in d.items()}
|
| 446 |
+
|
| 447 |
+
if debug:
|
| 448 |
+
for i in range(world_size):
|
| 449 |
+
print(f"{FP32_FLAT_GROUPS}[{i}].shape={fp32_flat_groups[i].shape}")
|
| 450 |
+
|
| 451 |
+
wanted_params = len(param_shapes)
|
| 452 |
+
wanted_numel = sum(shape.numel() for shape in param_shapes.values())
|
| 453 |
+
# not asserting if there is a mismatch due to possible padding
|
| 454 |
+
avail_numel = fp32_flat_groups[0].numel() * world_size
|
| 455 |
+
print(f"Trainable params: Have {avail_numel} numels to process.")
|
| 456 |
+
print(f"Trainable params: Need {wanted_numel} numels in {wanted_params} params.")
|
| 457 |
+
|
| 458 |
+
# params
|
| 459 |
+
# XXX: for huge models that can't fit into the host's RAM we will have to recode this to support
|
| 460 |
+
# out-of-core computing solution
|
| 461 |
+
offset = 0
|
| 462 |
+
total_numel = 0
|
| 463 |
+
total_params = 0
|
| 464 |
+
flat_groups_offset = [0] + list(np.cumsum([flat_tensor.numel() for flat_tensor in fp32_flat_groups[0]]))
|
| 465 |
+
for name, shape in tqdm(param_shapes.items(), desc='Gathering sharded weights'):
|
| 466 |
+
unpartitioned_numel = shape.numel()
|
| 467 |
+
total_numel += unpartitioned_numel
|
| 468 |
+
total_params += 1
|
| 469 |
+
partitioned_numel, partitioned_padding_numel = zero3_partitioned_param_info(unpartitioned_numel, world_size)
|
| 470 |
+
|
| 471 |
+
if debug:
|
| 472 |
+
print(
|
| 473 |
+
f"Trainable params: {total_params} {name} full shape: {shape} partition0 numel={partitioned_numel} partitioned_padding_numel={partitioned_padding_numel}"
|
| 474 |
+
)
|
| 475 |
+
|
| 476 |
+
# memory efficient tensor
|
| 477 |
+
tensor = GatheredTensor(fp32_flat_groups, flat_groups_offset, offset, partitioned_numel, shape)
|
| 478 |
+
state_dict[name] = tensor
|
| 479 |
+
offset += partitioned_numel
|
| 480 |
+
|
| 481 |
+
offset *= world_size
|
| 482 |
+
|
| 483 |
+
# Sanity check
|
| 484 |
+
if offset != avail_numel:
|
| 485 |
+
raise ValueError(f"consumed {offset} numels out of {avail_numel} - something is wrong")
|
| 486 |
+
|
| 487 |
+
print(f"Reconstructed Trainable fp32 state dict with {total_params} params {total_numel} elements")
|
| 488 |
+
|
| 489 |
+
|
| 490 |
+
def _get_fp32_state_dict_from_zero3_checkpoint(world_size, fp32_flat_groups, zero_model_states,
|
| 491 |
+
exclude_frozen_parameters):
|
| 492 |
+
state_dict = OrderedDict()
|
| 493 |
+
|
| 494 |
+
# buffers
|
| 495 |
+
buffers = zero_model_states[0].buffers
|
| 496 |
+
state_dict.update(buffers)
|
| 497 |
+
if debug:
|
| 498 |
+
print(f"added {len(buffers)} buffers")
|
| 499 |
+
|
| 500 |
+
if not exclude_frozen_parameters:
|
| 501 |
+
_zero3_merge_frozen_params(state_dict, world_size, zero_model_states)
|
| 502 |
+
|
| 503 |
+
_zero3_merge_trainable_params(state_dict, world_size, fp32_flat_groups, zero_model_states)
|
| 504 |
+
|
| 505 |
+
# recover shared parameters
|
| 506 |
+
for pair in zero_model_states[0].shared_params:
|
| 507 |
+
if pair[1] in state_dict:
|
| 508 |
+
state_dict[pair[0]] = state_dict[pair[1]]
|
| 509 |
+
|
| 510 |
+
return state_dict
|
| 511 |
+
|
| 512 |
+
|
| 513 |
+
def to_torch_tensor(state_dict, return_empty_tensor=False):
|
| 514 |
+
"""
|
| 515 |
+
Convert state_dict of GatheredTensor to torch tensor
|
| 516 |
+
"""
|
| 517 |
+
torch_state_dict = {}
|
| 518 |
+
converted_tensors = {}
|
| 519 |
+
for name, tensor in state_dict.items():
|
| 520 |
+
tensor_id = id(tensor)
|
| 521 |
+
if tensor_id in converted_tensors: # shared tensors
|
| 522 |
+
shared_tensor = torch_state_dict[converted_tensors[tensor_id]]
|
| 523 |
+
torch_state_dict[name] = shared_tensor
|
| 524 |
+
else:
|
| 525 |
+
converted_tensors[tensor_id] = name
|
| 526 |
+
if return_empty_tensor:
|
| 527 |
+
torch_state_dict[name] = torch.empty(tensor.shape, dtype=tensor.dtype)
|
| 528 |
+
else:
|
| 529 |
+
torch_state_dict[name] = tensor.contiguous()
|
| 530 |
+
return torch_state_dict
|
| 531 |
+
|
| 532 |
+
|
| 533 |
+
def get_fp32_state_dict_from_zero_checkpoint(checkpoint_dir,
|
| 534 |
+
tag=None,
|
| 535 |
+
exclude_frozen_parameters=False,
|
| 536 |
+
lazy_mode=False):
|
| 537 |
+
"""
|
| 538 |
+
Convert ZeRO 2 or 3 checkpoint into a single fp32 consolidated state_dict that can be loaded with
|
| 539 |
+
``load_state_dict()`` and used for training without DeepSpeed or shared with others, for example
|
| 540 |
+
via a model hub.
|
| 541 |
+
|
| 542 |
+
Args:
|
| 543 |
+
- ``checkpoint_dir``: path to the desired checkpoint folder
|
| 544 |
+
- ``tag``: checkpoint tag used as a unique identifier for checkpoint. If not provided will attempt to load tag in 'latest' file. e.g., ``global_step14``
|
| 545 |
+
- ``exclude_frozen_parameters``: exclude frozen parameters
|
| 546 |
+
- ``lazy_mode``: get state_dict in lazy mode. It returns a dict of pesduo tensor instead of torch tensor, which is more memory efficient.
|
| 547 |
+
Convert the pesduo tensor to torch tensor by ``.contiguous()``
|
| 548 |
+
|
| 549 |
+
Returns:
|
| 550 |
+
- pytorch ``state_dict``
|
| 551 |
+
|
| 552 |
+
A typical usage might be ::
|
| 553 |
+
|
| 554 |
+
from deepspeed.utils.zero_to_fp32 import get_fp32_state_dict_from_zero_checkpoint
|
| 555 |
+
# do the training and checkpoint saving
|
| 556 |
+
state_dict = get_fp32_state_dict_from_zero_checkpoint(checkpoint_dir) # already on cpu
|
| 557 |
+
model = model.cpu() # move to cpu
|
| 558 |
+
model.load_state_dict(state_dict)
|
| 559 |
+
# submit to model hub or save the model to share with others
|
| 560 |
+
|
| 561 |
+
In this example the ``model`` will no longer be usable in the deepspeed context of the same
|
| 562 |
+
application. i.e. you will need to re-initialize the deepspeed engine, since
|
| 563 |
+
``model.load_state_dict(state_dict)`` will remove all the deepspeed magic from it.
|
| 564 |
+
|
| 565 |
+
If you want it all done for you, use ``load_state_dict_from_zero_checkpoint`` instead.
|
| 566 |
+
|
| 567 |
+
Note: the above usage may not work if your application doesn't have sufficient free CPU memory.
|
| 568 |
+
You may need to use the offline approach using the ``zero_to_fp32.py`` script that is saved with
|
| 569 |
+
the checkpoint. Or you can load state_dict in lazy mode ::
|
| 570 |
+
|
| 571 |
+
from deepspeed.utils.zero_to_fp32 import get_fp32_state_dict_from_zero_checkpoint
|
| 572 |
+
state_dict = get_fp32_state_dict_from_zero_checkpoint(checkpoint_dir, lazy_mode=True) # not on cpu
|
| 573 |
+
for name, lazy_tensor in state_dict.item():
|
| 574 |
+
tensor = lazy_tensor.contiguous() # to cpu
|
| 575 |
+
print(name, tensor)
|
| 576 |
+
# del tensor to release memory if it no longer in use
|
| 577 |
+
"""
|
| 578 |
+
if tag is None:
|
| 579 |
+
latest_path = os.path.join(checkpoint_dir, 'latest')
|
| 580 |
+
if os.path.isfile(latest_path):
|
| 581 |
+
with open(latest_path, 'r') as fd:
|
| 582 |
+
tag = fd.read().strip()
|
| 583 |
+
else:
|
| 584 |
+
raise ValueError(f"Unable to find 'latest' file at {latest_path}")
|
| 585 |
+
|
| 586 |
+
ds_checkpoint_dir = os.path.join(checkpoint_dir, tag)
|
| 587 |
+
|
| 588 |
+
if not os.path.isdir(ds_checkpoint_dir):
|
| 589 |
+
raise FileNotFoundError(f"Directory '{ds_checkpoint_dir}' doesn't exist")
|
| 590 |
+
|
| 591 |
+
state_dict = _get_fp32_state_dict_from_zero_checkpoint(ds_checkpoint_dir, exclude_frozen_parameters)
|
| 592 |
+
if lazy_mode:
|
| 593 |
+
return state_dict
|
| 594 |
+
else:
|
| 595 |
+
return to_torch_tensor(state_dict)
|
| 596 |
+
|
| 597 |
+
|
| 598 |
+
def convert_zero_checkpoint_to_fp32_state_dict(checkpoint_dir,
|
| 599 |
+
output_dir,
|
| 600 |
+
max_shard_size="5GB",
|
| 601 |
+
safe_serialization=False,
|
| 602 |
+
tag=None,
|
| 603 |
+
exclude_frozen_parameters=False):
|
| 604 |
+
"""
|
| 605 |
+
Convert ZeRO 2 or 3 checkpoint into a single fp32 consolidated ``state_dict`` file that can be
|
| 606 |
+
loaded with ``torch.load(file)`` + ``load_state_dict()`` and used for training without DeepSpeed.
|
| 607 |
+
|
| 608 |
+
Args:
|
| 609 |
+
- ``checkpoint_dir``: path to the desired checkpoint folder. (one that contains the tag-folder, like ``global_step14``)
|
| 610 |
+
- ``output_dir``: directory to the pytorch fp32 state_dict output files
|
| 611 |
+
- ``max_shard_size``: the maximum size for a checkpoint before being sharded, default value is 5GB
|
| 612 |
+
- ``safe_serialization``: whether to save the model using `safetensors` or the traditional PyTorch way (that uses `pickle`).
|
| 613 |
+
- ``tag``: checkpoint tag used as a unique identifier for checkpoint. If not provided will attempt to load tag in the file named ``latest`` in the checkpoint folder, e.g., ``global_step14``
|
| 614 |
+
- ``exclude_frozen_parameters``: exclude frozen parameters
|
| 615 |
+
"""
|
| 616 |
+
|
| 617 |
+
# Dependency pre-check
|
| 618 |
+
if safe_serialization:
|
| 619 |
+
try:
|
| 620 |
+
from safetensors.torch import save_file
|
| 621 |
+
except ImportError:
|
| 622 |
+
print('If you want to use `safe_serialization`, please `pip install safetensors`')
|
| 623 |
+
raise
|
| 624 |
+
if max_shard_size is not None:
|
| 625 |
+
try:
|
| 626 |
+
from huggingface_hub import split_torch_state_dict_into_shards
|
| 627 |
+
except ImportError:
|
| 628 |
+
print('If you want to use `max_shard_size`, please `pip install huggingface_hub`')
|
| 629 |
+
raise
|
| 630 |
+
|
| 631 |
+
# Convert zero checkpoint to state_dict
|
| 632 |
+
state_dict = get_fp32_state_dict_from_zero_checkpoint(checkpoint_dir,
|
| 633 |
+
tag,
|
| 634 |
+
exclude_frozen_parameters,
|
| 635 |
+
lazy_mode=True)
|
| 636 |
+
|
| 637 |
+
# Shard the model if it is too big.
|
| 638 |
+
weights_name = "model.safetensors" if safe_serialization else "pytorch_model.bin"
|
| 639 |
+
if max_shard_size is not None:
|
| 640 |
+
filename_pattern = weights_name.replace(".bin", "{suffix}.bin").replace(".safetensors", "{suffix}.safetensors")
|
| 641 |
+
# an memory-efficient approach for sharding
|
| 642 |
+
empty_state_dict = to_torch_tensor(state_dict, return_empty_tensor=True)
|
| 643 |
+
state_dict_split = split_torch_state_dict_into_shards(empty_state_dict,
|
| 644 |
+
filename_pattern=filename_pattern,
|
| 645 |
+
max_shard_size=max_shard_size)
|
| 646 |
+
else:
|
| 647 |
+
from collections import namedtuple
|
| 648 |
+
StateDictSplit = namedtuple("StateDictSplit", ["is_sharded", "filename_to_tensors"])
|
| 649 |
+
state_dict_split = StateDictSplit(is_sharded=False,
|
| 650 |
+
filename_to_tensors={weights_name: list(state_dict.keys())})
|
| 651 |
+
|
| 652 |
+
# Save the model by shard
|
| 653 |
+
os.makedirs(output_dir, exist_ok=True)
|
| 654 |
+
filename_to_tensors = state_dict_split.filename_to_tensors.items()
|
| 655 |
+
for shard_file, tensors in tqdm(filename_to_tensors, desc="Saving checkpoint shards"):
|
| 656 |
+
shard_state_dict = {tensor_name: state_dict[tensor_name] for tensor_name in tensors}
|
| 657 |
+
shard_state_dict = to_torch_tensor(shard_state_dict)
|
| 658 |
+
output_path = os.path.join(output_dir, shard_file)
|
| 659 |
+
if safe_serialization:
|
| 660 |
+
save_file(shard_state_dict, output_path, metadata={"format": "pt"})
|
| 661 |
+
else:
|
| 662 |
+
torch.save(shard_state_dict, output_path)
|
| 663 |
+
# release the memory of current shard
|
| 664 |
+
for tensor_name in list(shard_state_dict.keys()):
|
| 665 |
+
del state_dict[tensor_name]
|
| 666 |
+
del shard_state_dict[tensor_name]
|
| 667 |
+
del shard_state_dict
|
| 668 |
+
gc.collect()
|
| 669 |
+
|
| 670 |
+
# Save index if sharded
|
| 671 |
+
if state_dict_split.is_sharded:
|
| 672 |
+
index = {
|
| 673 |
+
"metadata": state_dict_split.metadata,
|
| 674 |
+
"weight_map": state_dict_split.tensor_to_filename,
|
| 675 |
+
}
|
| 676 |
+
save_index_file = "model.safetensors.index.json" if safe_serialization else "pytorch_model.bin.index.json"
|
| 677 |
+
save_index_file = os.path.join(output_dir, save_index_file)
|
| 678 |
+
with open(save_index_file, "w", encoding="utf-8") as f:
|
| 679 |
+
content = json.dumps(index, indent=2, sort_keys=True) + "\n"
|
| 680 |
+
f.write(content)
|
| 681 |
+
|
| 682 |
+
|
| 683 |
+
def load_state_dict_from_zero_checkpoint(model, checkpoint_dir, tag=None):
|
| 684 |
+
"""
|
| 685 |
+
1. Put the provided model to cpu
|
| 686 |
+
2. Convert ZeRO 2 or 3 checkpoint into a single fp32 consolidated ``state_dict``
|
| 687 |
+
3. Load it into the provided model
|
| 688 |
+
|
| 689 |
+
Args:
|
| 690 |
+
- ``model``: the model object to update
|
| 691 |
+
- ``checkpoint_dir``: path to the desired checkpoint folder. (one that contains the tag-folder, like ``global_step14``)
|
| 692 |
+
- ``tag``: checkpoint tag used as a unique identifier for checkpoint. If not provided will attempt to load tag in the file named ``latest`` in the checkpoint folder, e.g., ``global_step14``
|
| 693 |
+
|
| 694 |
+
Returns:
|
| 695 |
+
- ``model`: modified model
|
| 696 |
+
|
| 697 |
+
Make sure you have plenty of CPU memory available before you call this function. If you don't
|
| 698 |
+
have enough use the ``zero_to_fp32.py`` utility to do the conversion. You will find it
|
| 699 |
+
conveniently placed for you in the checkpoint folder.
|
| 700 |
+
|
| 701 |
+
A typical usage might be ::
|
| 702 |
+
|
| 703 |
+
from deepspeed.utils.zero_to_fp32 import load_state_dict_from_zero_checkpoint
|
| 704 |
+
model = load_state_dict_from_zero_checkpoint(trainer.model, checkpoint_dir)
|
| 705 |
+
# submit to model hub or save the model to share with others
|
| 706 |
+
|
| 707 |
+
Note, that once this was run, the ``model`` will no longer be usable in the deepspeed context
|
| 708 |
+
of the same application. i.e. you will need to re-initialize the deepspeed engine, since
|
| 709 |
+
``model.load_state_dict(state_dict)`` will remove all the deepspeed magic from it.
|
| 710 |
+
|
| 711 |
+
"""
|
| 712 |
+
logger.info(f"Extracting fp32 weights")
|
| 713 |
+
state_dict = get_fp32_state_dict_from_zero_checkpoint(checkpoint_dir, tag)
|
| 714 |
+
|
| 715 |
+
logger.info(f"Overwriting model with fp32 weights")
|
| 716 |
+
model = model.cpu()
|
| 717 |
+
model.load_state_dict(state_dict, strict=False)
|
| 718 |
+
|
| 719 |
+
return model
|
| 720 |
+
|
| 721 |
+
|
| 722 |
+
if __name__ == "__main__":
|
| 723 |
+
parser = argparse.ArgumentParser()
|
| 724 |
+
parser.add_argument("checkpoint_dir",
|
| 725 |
+
type=str,
|
| 726 |
+
help="path to the desired checkpoint folder, e.g., path/checkpoint-12")
|
| 727 |
+
parser.add_argument("output_dir",
|
| 728 |
+
type=str,
|
| 729 |
+
help="directory to the pytorch fp32 state_dict output files"
|
| 730 |
+
"(e.g. path/checkpoint-12-output/)")
|
| 731 |
+
parser.add_argument(
|
| 732 |
+
"--max_shard_size",
|
| 733 |
+
type=str,
|
| 734 |
+
default="5GB",
|
| 735 |
+
help="The maximum size for a checkpoint before being sharded. Checkpoints shard will then be each of size"
|
| 736 |
+
"lower than this size. If expressed as a string, needs to be digits followed by a unit (like `5MB`"
|
| 737 |
+
"We default it to 5GB in order for models to be able to run easily on free-tier google colab instances"
|
| 738 |
+
"without CPU OOM issues.")
|
| 739 |
+
parser.add_argument(
|
| 740 |
+
"--safe_serialization",
|
| 741 |
+
default=False,
|
| 742 |
+
action='store_true',
|
| 743 |
+
help="Whether to save the model using `safetensors` or the traditional PyTorch way (that uses `pickle`).")
|
| 744 |
+
parser.add_argument("-t",
|
| 745 |
+
"--tag",
|
| 746 |
+
type=str,
|
| 747 |
+
default=None,
|
| 748 |
+
help="checkpoint tag used as a unique identifier for checkpoint. e.g., global_step1")
|
| 749 |
+
parser.add_argument("--exclude_frozen_parameters", action='store_true', help="exclude frozen parameters")
|
| 750 |
+
parser.add_argument("-d", "--debug", action='store_true', help="enable debug")
|
| 751 |
+
args = parser.parse_args()
|
| 752 |
+
|
| 753 |
+
debug = args.debug
|
| 754 |
+
|
| 755 |
+
convert_zero_checkpoint_to_fp32_state_dict(args.checkpoint_dir,
|
| 756 |
+
args.output_dir,
|
| 757 |
+
max_shard_size=args.max_shard_size,
|
| 758 |
+
safe_serialization=args.safe_serialization,
|
| 759 |
+
tag=args.tag,
|
| 760 |
+
exclude_frozen_parameters=args.exclude_frozen_parameters)
|
3b-w-cot+/checkpoint-488/added_tokens.json
ADDED
|
@@ -0,0 +1,24 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"</tool_call>": 151658,
|
| 3 |
+
"<tool_call>": 151657,
|
| 4 |
+
"<|box_end|>": 151649,
|
| 5 |
+
"<|box_start|>": 151648,
|
| 6 |
+
"<|endoftext|>": 151643,
|
| 7 |
+
"<|file_sep|>": 151664,
|
| 8 |
+
"<|fim_middle|>": 151660,
|
| 9 |
+
"<|fim_pad|>": 151662,
|
| 10 |
+
"<|fim_prefix|>": 151659,
|
| 11 |
+
"<|fim_suffix|>": 151661,
|
| 12 |
+
"<|im_end|>": 151645,
|
| 13 |
+
"<|im_start|>": 151644,
|
| 14 |
+
"<|image_pad|>": 151655,
|
| 15 |
+
"<|object_ref_end|>": 151647,
|
| 16 |
+
"<|object_ref_start|>": 151646,
|
| 17 |
+
"<|quad_end|>": 151651,
|
| 18 |
+
"<|quad_start|>": 151650,
|
| 19 |
+
"<|repo_name|>": 151663,
|
| 20 |
+
"<|video_pad|>": 151656,
|
| 21 |
+
"<|vision_end|>": 151653,
|
| 22 |
+
"<|vision_pad|>": 151654,
|
| 23 |
+
"<|vision_start|>": 151652
|
| 24 |
+
}
|
3b-w-cot+/checkpoint-488/config.json
ADDED
|
@@ -0,0 +1,28 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"_name_or_path": "ckpt/3b-w-cot/checkpoint-747",
|
| 3 |
+
"architectures": [
|
| 4 |
+
"Qwen2ForCausalLM"
|
| 5 |
+
],
|
| 6 |
+
"attention_dropout": 0.0,
|
| 7 |
+
"eos_token_id": 151645,
|
| 8 |
+
"hidden_act": "silu",
|
| 9 |
+
"hidden_size": 2048,
|
| 10 |
+
"initializer_range": 0.02,
|
| 11 |
+
"intermediate_size": 11008,
|
| 12 |
+
"max_position_embeddings": 32768,
|
| 13 |
+
"max_window_layers": 70,
|
| 14 |
+
"model_type": "qwen2",
|
| 15 |
+
"num_attention_heads": 16,
|
| 16 |
+
"num_hidden_layers": 36,
|
| 17 |
+
"num_key_value_heads": 2,
|
| 18 |
+
"rms_norm_eps": 1e-06,
|
| 19 |
+
"rope_scaling": null,
|
| 20 |
+
"rope_theta": 1000000.0,
|
| 21 |
+
"sliding_window": null,
|
| 22 |
+
"tie_word_embeddings": true,
|
| 23 |
+
"torch_dtype": "bfloat16",
|
| 24 |
+
"transformers_version": "4.49.0",
|
| 25 |
+
"use_cache": false,
|
| 26 |
+
"use_sliding_window": false,
|
| 27 |
+
"vocab_size": 151936
|
| 28 |
+
}
|
3b-w-cot+/checkpoint-488/generation_config.json
ADDED
|
@@ -0,0 +1,14 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"bos_token_id": 151643,
|
| 3 |
+
"do_sample": true,
|
| 4 |
+
"eos_token_id": [
|
| 5 |
+
151645,
|
| 6 |
+
151643
|
| 7 |
+
],
|
| 8 |
+
"pad_token_id": 151643,
|
| 9 |
+
"repetition_penalty": 1.05,
|
| 10 |
+
"temperature": 0.7,
|
| 11 |
+
"top_k": 20,
|
| 12 |
+
"top_p": 0.8,
|
| 13 |
+
"transformers_version": "4.49.0"
|
| 14 |
+
}
|
3b-w-cot+/checkpoint-488/global_step487/bf16_zero_pp_rank_0_mp_rank_00_optim_states.pt
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:42d46bdbf299711fbd8125eb8acb726e12a4f88d9fcccb46d9547f789bc6ba13
|
| 3 |
+
size 9306058322
|
3b-w-cot+/checkpoint-488/global_step487/bf16_zero_pp_rank_1_mp_rank_00_optim_states.pt
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:e1187b7d477a60d412e23458de4b2cd75b8c1b327e898b5ad66e98b037b7be12
|
| 3 |
+
size 9306060690
|
3b-w-cot+/checkpoint-488/global_step487/mp_rank_00_model_states.pt
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:6483efeebfee3a33c5ad10ecf28e2cf27546b77b1c2be25e152137ec67effc6f
|
| 3 |
+
size 6171993592
|
3b-w-cot+/checkpoint-488/latest
ADDED
|
@@ -0,0 +1 @@
|
|
|
|
|
|
|
| 1 |
+
global_step487
|
3b-w-cot+/checkpoint-488/merges.txt
ADDED
|
The diff for this file is too large to render.
See raw diff
|
|
|
3b-w-cot+/checkpoint-488/model-00001-of-00002.safetensors
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:fe067b847f63d4cf5dc966e0b39c3c0ae6b5c580b4fc58449eeca26fa528b266
|
| 3 |
+
size 4957560304
|
3b-w-cot+/checkpoint-488/model-00002-of-00002.safetensors
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:b2297c2359849d5acc982147817db1c90cf1170f8f42c305f65c42e9a49bf56e
|
| 3 |
+
size 1836696752
|
3b-w-cot+/checkpoint-488/model.safetensors.index.json
ADDED
|
@@ -0,0 +1,442 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"metadata": {
|
| 3 |
+
"total_size": 6794207232
|
| 4 |
+
},
|
| 5 |
+
"weight_map": {
|
| 6 |
+
"lm_head.weight": "model-00002-of-00002.safetensors",
|
| 7 |
+
"model.embed_tokens.weight": "model-00001-of-00002.safetensors",
|
| 8 |
+
"model.layers.0.input_layernorm.weight": "model-00001-of-00002.safetensors",
|
| 9 |
+
"model.layers.0.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
|
| 10 |
+
"model.layers.0.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
|
| 11 |
+
"model.layers.0.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
|
| 12 |
+
"model.layers.0.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
|
| 13 |
+
"model.layers.0.self_attn.k_proj.bias": "model-00001-of-00002.safetensors",
|
| 14 |
+
"model.layers.0.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
|
| 15 |
+
"model.layers.0.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
|
| 16 |
+
"model.layers.0.self_attn.q_proj.bias": "model-00001-of-00002.safetensors",
|
| 17 |
+
"model.layers.0.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
|
| 18 |
+
"model.layers.0.self_attn.v_proj.bias": "model-00001-of-00002.safetensors",
|
| 19 |
+
"model.layers.0.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
|
| 20 |
+
"model.layers.1.input_layernorm.weight": "model-00001-of-00002.safetensors",
|
| 21 |
+
"model.layers.1.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
|
| 22 |
+
"model.layers.1.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
|
| 23 |
+
"model.layers.1.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
|
| 24 |
+
"model.layers.1.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
|
| 25 |
+
"model.layers.1.self_attn.k_proj.bias": "model-00001-of-00002.safetensors",
|
| 26 |
+
"model.layers.1.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
|
| 27 |
+
"model.layers.1.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
|
| 28 |
+
"model.layers.1.self_attn.q_proj.bias": "model-00001-of-00002.safetensors",
|
| 29 |
+
"model.layers.1.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
|
| 30 |
+
"model.layers.1.self_attn.v_proj.bias": "model-00001-of-00002.safetensors",
|
| 31 |
+
"model.layers.1.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
|
| 32 |
+
"model.layers.10.input_layernorm.weight": "model-00001-of-00002.safetensors",
|
| 33 |
+
"model.layers.10.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
|
| 34 |
+
"model.layers.10.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
|
| 35 |
+
"model.layers.10.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
|
| 36 |
+
"model.layers.10.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
|
| 37 |
+
"model.layers.10.self_attn.k_proj.bias": "model-00001-of-00002.safetensors",
|
| 38 |
+
"model.layers.10.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
|
| 39 |
+
"model.layers.10.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
|
| 40 |
+
"model.layers.10.self_attn.q_proj.bias": "model-00001-of-00002.safetensors",
|
| 41 |
+
"model.layers.10.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
|
| 42 |
+
"model.layers.10.self_attn.v_proj.bias": "model-00001-of-00002.safetensors",
|
| 43 |
+
"model.layers.10.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
|
| 44 |
+
"model.layers.11.input_layernorm.weight": "model-00001-of-00002.safetensors",
|
| 45 |
+
"model.layers.11.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
|
| 46 |
+
"model.layers.11.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
|
| 47 |
+
"model.layers.11.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
|
| 48 |
+
"model.layers.11.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
|
| 49 |
+
"model.layers.11.self_attn.k_proj.bias": "model-00001-of-00002.safetensors",
|
| 50 |
+
"model.layers.11.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
|
| 51 |
+
"model.layers.11.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
|
| 52 |
+
"model.layers.11.self_attn.q_proj.bias": "model-00001-of-00002.safetensors",
|
| 53 |
+
"model.layers.11.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
|
| 54 |
+
"model.layers.11.self_attn.v_proj.bias": "model-00001-of-00002.safetensors",
|
| 55 |
+
"model.layers.11.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
|
| 56 |
+
"model.layers.12.input_layernorm.weight": "model-00001-of-00002.safetensors",
|
| 57 |
+
"model.layers.12.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
|
| 58 |
+
"model.layers.12.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
|
| 59 |
+
"model.layers.12.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
|
| 60 |
+
"model.layers.12.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
|
| 61 |
+
"model.layers.12.self_attn.k_proj.bias": "model-00001-of-00002.safetensors",
|
| 62 |
+
"model.layers.12.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
|
| 63 |
+
"model.layers.12.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
|
| 64 |
+
"model.layers.12.self_attn.q_proj.bias": "model-00001-of-00002.safetensors",
|
| 65 |
+
"model.layers.12.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
|
| 66 |
+
"model.layers.12.self_attn.v_proj.bias": "model-00001-of-00002.safetensors",
|
| 67 |
+
"model.layers.12.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
|
| 68 |
+
"model.layers.13.input_layernorm.weight": "model-00001-of-00002.safetensors",
|
| 69 |
+
"model.layers.13.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
|
| 70 |
+
"model.layers.13.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
|
| 71 |
+
"model.layers.13.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
|
| 72 |
+
"model.layers.13.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
|
| 73 |
+
"model.layers.13.self_attn.k_proj.bias": "model-00001-of-00002.safetensors",
|
| 74 |
+
"model.layers.13.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
|
| 75 |
+
"model.layers.13.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
|
| 76 |
+
"model.layers.13.self_attn.q_proj.bias": "model-00001-of-00002.safetensors",
|
| 77 |
+
"model.layers.13.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
|
| 78 |
+
"model.layers.13.self_attn.v_proj.bias": "model-00001-of-00002.safetensors",
|
| 79 |
+
"model.layers.13.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
|
| 80 |
+
"model.layers.14.input_layernorm.weight": "model-00001-of-00002.safetensors",
|
| 81 |
+
"model.layers.14.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
|
| 82 |
+
"model.layers.14.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
|
| 83 |
+
"model.layers.14.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
|
| 84 |
+
"model.layers.14.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
|
| 85 |
+
"model.layers.14.self_attn.k_proj.bias": "model-00001-of-00002.safetensors",
|
| 86 |
+
"model.layers.14.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
|
| 87 |
+
"model.layers.14.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
|
| 88 |
+
"model.layers.14.self_attn.q_proj.bias": "model-00001-of-00002.safetensors",
|
| 89 |
+
"model.layers.14.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
|
| 90 |
+
"model.layers.14.self_attn.v_proj.bias": "model-00001-of-00002.safetensors",
|
| 91 |
+
"model.layers.14.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
|
| 92 |
+
"model.layers.15.input_layernorm.weight": "model-00001-of-00002.safetensors",
|
| 93 |
+
"model.layers.15.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
|
| 94 |
+
"model.layers.15.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
|
| 95 |
+
"model.layers.15.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
|
| 96 |
+
"model.layers.15.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
|
| 97 |
+
"model.layers.15.self_attn.k_proj.bias": "model-00001-of-00002.safetensors",
|
| 98 |
+
"model.layers.15.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
|
| 99 |
+
"model.layers.15.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
|
| 100 |
+
"model.layers.15.self_attn.q_proj.bias": "model-00001-of-00002.safetensors",
|
| 101 |
+
"model.layers.15.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
|
| 102 |
+
"model.layers.15.self_attn.v_proj.bias": "model-00001-of-00002.safetensors",
|
| 103 |
+
"model.layers.15.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
|
| 104 |
+
"model.layers.16.input_layernorm.weight": "model-00001-of-00002.safetensors",
|
| 105 |
+
"model.layers.16.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
|
| 106 |
+
"model.layers.16.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
|
| 107 |
+
"model.layers.16.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
|
| 108 |
+
"model.layers.16.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
|
| 109 |
+
"model.layers.16.self_attn.k_proj.bias": "model-00001-of-00002.safetensors",
|
| 110 |
+
"model.layers.16.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
|
| 111 |
+
"model.layers.16.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
|
| 112 |
+
"model.layers.16.self_attn.q_proj.bias": "model-00001-of-00002.safetensors",
|
| 113 |
+
"model.layers.16.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
|
| 114 |
+
"model.layers.16.self_attn.v_proj.bias": "model-00001-of-00002.safetensors",
|
| 115 |
+
"model.layers.16.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
|
| 116 |
+
"model.layers.17.input_layernorm.weight": "model-00001-of-00002.safetensors",
|
| 117 |
+
"model.layers.17.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
|
| 118 |
+
"model.layers.17.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
|
| 119 |
+
"model.layers.17.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
|
| 120 |
+
"model.layers.17.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
|
| 121 |
+
"model.layers.17.self_attn.k_proj.bias": "model-00001-of-00002.safetensors",
|
| 122 |
+
"model.layers.17.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
|
| 123 |
+
"model.layers.17.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
|
| 124 |
+
"model.layers.17.self_attn.q_proj.bias": "model-00001-of-00002.safetensors",
|
| 125 |
+
"model.layers.17.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
|
| 126 |
+
"model.layers.17.self_attn.v_proj.bias": "model-00001-of-00002.safetensors",
|
| 127 |
+
"model.layers.17.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
|
| 128 |
+
"model.layers.18.input_layernorm.weight": "model-00001-of-00002.safetensors",
|
| 129 |
+
"model.layers.18.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
|
| 130 |
+
"model.layers.18.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
|
| 131 |
+
"model.layers.18.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
|
| 132 |
+
"model.layers.18.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
|
| 133 |
+
"model.layers.18.self_attn.k_proj.bias": "model-00001-of-00002.safetensors",
|
| 134 |
+
"model.layers.18.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
|
| 135 |
+
"model.layers.18.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
|
| 136 |
+
"model.layers.18.self_attn.q_proj.bias": "model-00001-of-00002.safetensors",
|
| 137 |
+
"model.layers.18.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
|
| 138 |
+
"model.layers.18.self_attn.v_proj.bias": "model-00001-of-00002.safetensors",
|
| 139 |
+
"model.layers.18.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
|
| 140 |
+
"model.layers.19.input_layernorm.weight": "model-00001-of-00002.safetensors",
|
| 141 |
+
"model.layers.19.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
|
| 142 |
+
"model.layers.19.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
|
| 143 |
+
"model.layers.19.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
|
| 144 |
+
"model.layers.19.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
|
| 145 |
+
"model.layers.19.self_attn.k_proj.bias": "model-00001-of-00002.safetensors",
|
| 146 |
+
"model.layers.19.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
|
| 147 |
+
"model.layers.19.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
|
| 148 |
+
"model.layers.19.self_attn.q_proj.bias": "model-00001-of-00002.safetensors",
|
| 149 |
+
"model.layers.19.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
|
| 150 |
+
"model.layers.19.self_attn.v_proj.bias": "model-00001-of-00002.safetensors",
|
| 151 |
+
"model.layers.19.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
|
| 152 |
+
"model.layers.2.input_layernorm.weight": "model-00001-of-00002.safetensors",
|
| 153 |
+
"model.layers.2.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
|
| 154 |
+
"model.layers.2.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
|
| 155 |
+
"model.layers.2.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
|
| 156 |
+
"model.layers.2.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
|
| 157 |
+
"model.layers.2.self_attn.k_proj.bias": "model-00001-of-00002.safetensors",
|
| 158 |
+
"model.layers.2.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
|
| 159 |
+
"model.layers.2.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
|
| 160 |
+
"model.layers.2.self_attn.q_proj.bias": "model-00001-of-00002.safetensors",
|
| 161 |
+
"model.layers.2.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
|
| 162 |
+
"model.layers.2.self_attn.v_proj.bias": "model-00001-of-00002.safetensors",
|
| 163 |
+
"model.layers.2.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
|
| 164 |
+
"model.layers.20.input_layernorm.weight": "model-00001-of-00002.safetensors",
|
| 165 |
+
"model.layers.20.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
|
| 166 |
+
"model.layers.20.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
|
| 167 |
+
"model.layers.20.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
|
| 168 |
+
"model.layers.20.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
|
| 169 |
+
"model.layers.20.self_attn.k_proj.bias": "model-00001-of-00002.safetensors",
|
| 170 |
+
"model.layers.20.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
|
| 171 |
+
"model.layers.20.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
|
| 172 |
+
"model.layers.20.self_attn.q_proj.bias": "model-00001-of-00002.safetensors",
|
| 173 |
+
"model.layers.20.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
|
| 174 |
+
"model.layers.20.self_attn.v_proj.bias": "model-00001-of-00002.safetensors",
|
| 175 |
+
"model.layers.20.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
|
| 176 |
+
"model.layers.21.input_layernorm.weight": "model-00001-of-00002.safetensors",
|
| 177 |
+
"model.layers.21.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
|
| 178 |
+
"model.layers.21.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
|
| 179 |
+
"model.layers.21.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
|
| 180 |
+
"model.layers.21.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
|
| 181 |
+
"model.layers.21.self_attn.k_proj.bias": "model-00001-of-00002.safetensors",
|
| 182 |
+
"model.layers.21.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
|
| 183 |
+
"model.layers.21.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
|
| 184 |
+
"model.layers.21.self_attn.q_proj.bias": "model-00001-of-00002.safetensors",
|
| 185 |
+
"model.layers.21.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
|
| 186 |
+
"model.layers.21.self_attn.v_proj.bias": "model-00001-of-00002.safetensors",
|
| 187 |
+
"model.layers.21.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
|
| 188 |
+
"model.layers.22.input_layernorm.weight": "model-00001-of-00002.safetensors",
|
| 189 |
+
"model.layers.22.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
|
| 190 |
+
"model.layers.22.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
|
| 191 |
+
"model.layers.22.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
|
| 192 |
+
"model.layers.22.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
|
| 193 |
+
"model.layers.22.self_attn.k_proj.bias": "model-00001-of-00002.safetensors",
|
| 194 |
+
"model.layers.22.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
|
| 195 |
+
"model.layers.22.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
|
| 196 |
+
"model.layers.22.self_attn.q_proj.bias": "model-00001-of-00002.safetensors",
|
| 197 |
+
"model.layers.22.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
|
| 198 |
+
"model.layers.22.self_attn.v_proj.bias": "model-00001-of-00002.safetensors",
|
| 199 |
+
"model.layers.22.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
|
| 200 |
+
"model.layers.23.input_layernorm.weight": "model-00001-of-00002.safetensors",
|
| 201 |
+
"model.layers.23.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
|
| 202 |
+
"model.layers.23.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
|
| 203 |
+
"model.layers.23.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
|
| 204 |
+
"model.layers.23.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
|
| 205 |
+
"model.layers.23.self_attn.k_proj.bias": "model-00001-of-00002.safetensors",
|
| 206 |
+
"model.layers.23.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
|
| 207 |
+
"model.layers.23.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
|
| 208 |
+
"model.layers.23.self_attn.q_proj.bias": "model-00001-of-00002.safetensors",
|
| 209 |
+
"model.layers.23.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
|
| 210 |
+
"model.layers.23.self_attn.v_proj.bias": "model-00001-of-00002.safetensors",
|
| 211 |
+
"model.layers.23.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
|
| 212 |
+
"model.layers.24.input_layernorm.weight": "model-00001-of-00002.safetensors",
|
| 213 |
+
"model.layers.24.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
|
| 214 |
+
"model.layers.24.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
|
| 215 |
+
"model.layers.24.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
|
| 216 |
+
"model.layers.24.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
|
| 217 |
+
"model.layers.24.self_attn.k_proj.bias": "model-00001-of-00002.safetensors",
|
| 218 |
+
"model.layers.24.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
|
| 219 |
+
"model.layers.24.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
|
| 220 |
+
"model.layers.24.self_attn.q_proj.bias": "model-00001-of-00002.safetensors",
|
| 221 |
+
"model.layers.24.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
|
| 222 |
+
"model.layers.24.self_attn.v_proj.bias": "model-00001-of-00002.safetensors",
|
| 223 |
+
"model.layers.24.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
|
| 224 |
+
"model.layers.25.input_layernorm.weight": "model-00001-of-00002.safetensors",
|
| 225 |
+
"model.layers.25.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
|
| 226 |
+
"model.layers.25.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
|
| 227 |
+
"model.layers.25.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
|
| 228 |
+
"model.layers.25.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
|
| 229 |
+
"model.layers.25.self_attn.k_proj.bias": "model-00001-of-00002.safetensors",
|
| 230 |
+
"model.layers.25.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
|
| 231 |
+
"model.layers.25.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
|
| 232 |
+
"model.layers.25.self_attn.q_proj.bias": "model-00001-of-00002.safetensors",
|
| 233 |
+
"model.layers.25.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
|
| 234 |
+
"model.layers.25.self_attn.v_proj.bias": "model-00001-of-00002.safetensors",
|
| 235 |
+
"model.layers.25.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
|
| 236 |
+
"model.layers.26.input_layernorm.weight": "model-00001-of-00002.safetensors",
|
| 237 |
+
"model.layers.26.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
|
| 238 |
+
"model.layers.26.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
|
| 239 |
+
"model.layers.26.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
|
| 240 |
+
"model.layers.26.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
|
| 241 |
+
"model.layers.26.self_attn.k_proj.bias": "model-00001-of-00002.safetensors",
|
| 242 |
+
"model.layers.26.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
|
| 243 |
+
"model.layers.26.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
|
| 244 |
+
"model.layers.26.self_attn.q_proj.bias": "model-00001-of-00002.safetensors",
|
| 245 |
+
"model.layers.26.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
|
| 246 |
+
"model.layers.26.self_attn.v_proj.bias": "model-00001-of-00002.safetensors",
|
| 247 |
+
"model.layers.26.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
|
| 248 |
+
"model.layers.27.input_layernorm.weight": "model-00001-of-00002.safetensors",
|
| 249 |
+
"model.layers.27.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
|
| 250 |
+
"model.layers.27.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
|
| 251 |
+
"model.layers.27.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
|
| 252 |
+
"model.layers.27.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
|
| 253 |
+
"model.layers.27.self_attn.k_proj.bias": "model-00001-of-00002.safetensors",
|
| 254 |
+
"model.layers.27.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
|
| 255 |
+
"model.layers.27.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
|
| 256 |
+
"model.layers.27.self_attn.q_proj.bias": "model-00001-of-00002.safetensors",
|
| 257 |
+
"model.layers.27.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
|
| 258 |
+
"model.layers.27.self_attn.v_proj.bias": "model-00001-of-00002.safetensors",
|
| 259 |
+
"model.layers.27.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
|
| 260 |
+
"model.layers.28.input_layernorm.weight": "model-00002-of-00002.safetensors",
|
| 261 |
+
"model.layers.28.mlp.down_proj.weight": "model-00002-of-00002.safetensors",
|
| 262 |
+
"model.layers.28.mlp.gate_proj.weight": "model-00002-of-00002.safetensors",
|
| 263 |
+
"model.layers.28.mlp.up_proj.weight": "model-00002-of-00002.safetensors",
|
| 264 |
+
"model.layers.28.post_attention_layernorm.weight": "model-00002-of-00002.safetensors",
|
| 265 |
+
"model.layers.28.self_attn.k_proj.bias": "model-00001-of-00002.safetensors",
|
| 266 |
+
"model.layers.28.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
|
| 267 |
+
"model.layers.28.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
|
| 268 |
+
"model.layers.28.self_attn.q_proj.bias": "model-00001-of-00002.safetensors",
|
| 269 |
+
"model.layers.28.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
|
| 270 |
+
"model.layers.28.self_attn.v_proj.bias": "model-00001-of-00002.safetensors",
|
| 271 |
+
"model.layers.28.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
|
| 272 |
+
"model.layers.29.input_layernorm.weight": "model-00002-of-00002.safetensors",
|
| 273 |
+
"model.layers.29.mlp.down_proj.weight": "model-00002-of-00002.safetensors",
|
| 274 |
+
"model.layers.29.mlp.gate_proj.weight": "model-00002-of-00002.safetensors",
|
| 275 |
+
"model.layers.29.mlp.up_proj.weight": "model-00002-of-00002.safetensors",
|
| 276 |
+
"model.layers.29.post_attention_layernorm.weight": "model-00002-of-00002.safetensors",
|
| 277 |
+
"model.layers.29.self_attn.k_proj.bias": "model-00002-of-00002.safetensors",
|
| 278 |
+
"model.layers.29.self_attn.k_proj.weight": "model-00002-of-00002.safetensors",
|
| 279 |
+
"model.layers.29.self_attn.o_proj.weight": "model-00002-of-00002.safetensors",
|
| 280 |
+
"model.layers.29.self_attn.q_proj.bias": "model-00002-of-00002.safetensors",
|
| 281 |
+
"model.layers.29.self_attn.q_proj.weight": "model-00002-of-00002.safetensors",
|
| 282 |
+
"model.layers.29.self_attn.v_proj.bias": "model-00002-of-00002.safetensors",
|
| 283 |
+
"model.layers.29.self_attn.v_proj.weight": "model-00002-of-00002.safetensors",
|
| 284 |
+
"model.layers.3.input_layernorm.weight": "model-00001-of-00002.safetensors",
|
| 285 |
+
"model.layers.3.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
|
| 286 |
+
"model.layers.3.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
|
| 287 |
+
"model.layers.3.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
|
| 288 |
+
"model.layers.3.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
|
| 289 |
+
"model.layers.3.self_attn.k_proj.bias": "model-00001-of-00002.safetensors",
|
| 290 |
+
"model.layers.3.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
|
| 291 |
+
"model.layers.3.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
|
| 292 |
+
"model.layers.3.self_attn.q_proj.bias": "model-00001-of-00002.safetensors",
|
| 293 |
+
"model.layers.3.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
|
| 294 |
+
"model.layers.3.self_attn.v_proj.bias": "model-00001-of-00002.safetensors",
|
| 295 |
+
"model.layers.3.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
|
| 296 |
+
"model.layers.30.input_layernorm.weight": "model-00002-of-00002.safetensors",
|
| 297 |
+
"model.layers.30.mlp.down_proj.weight": "model-00002-of-00002.safetensors",
|
| 298 |
+
"model.layers.30.mlp.gate_proj.weight": "model-00002-of-00002.safetensors",
|
| 299 |
+
"model.layers.30.mlp.up_proj.weight": "model-00002-of-00002.safetensors",
|
| 300 |
+
"model.layers.30.post_attention_layernorm.weight": "model-00002-of-00002.safetensors",
|
| 301 |
+
"model.layers.30.self_attn.k_proj.bias": "model-00002-of-00002.safetensors",
|
| 302 |
+
"model.layers.30.self_attn.k_proj.weight": "model-00002-of-00002.safetensors",
|
| 303 |
+
"model.layers.30.self_attn.o_proj.weight": "model-00002-of-00002.safetensors",
|
| 304 |
+
"model.layers.30.self_attn.q_proj.bias": "model-00002-of-00002.safetensors",
|
| 305 |
+
"model.layers.30.self_attn.q_proj.weight": "model-00002-of-00002.safetensors",
|
| 306 |
+
"model.layers.30.self_attn.v_proj.bias": "model-00002-of-00002.safetensors",
|
| 307 |
+
"model.layers.30.self_attn.v_proj.weight": "model-00002-of-00002.safetensors",
|
| 308 |
+
"model.layers.31.input_layernorm.weight": "model-00002-of-00002.safetensors",
|
| 309 |
+
"model.layers.31.mlp.down_proj.weight": "model-00002-of-00002.safetensors",
|
| 310 |
+
"model.layers.31.mlp.gate_proj.weight": "model-00002-of-00002.safetensors",
|
| 311 |
+
"model.layers.31.mlp.up_proj.weight": "model-00002-of-00002.safetensors",
|
| 312 |
+
"model.layers.31.post_attention_layernorm.weight": "model-00002-of-00002.safetensors",
|
| 313 |
+
"model.layers.31.self_attn.k_proj.bias": "model-00002-of-00002.safetensors",
|
| 314 |
+
"model.layers.31.self_attn.k_proj.weight": "model-00002-of-00002.safetensors",
|
| 315 |
+
"model.layers.31.self_attn.o_proj.weight": "model-00002-of-00002.safetensors",
|
| 316 |
+
"model.layers.31.self_attn.q_proj.bias": "model-00002-of-00002.safetensors",
|
| 317 |
+
"model.layers.31.self_attn.q_proj.weight": "model-00002-of-00002.safetensors",
|
| 318 |
+
"model.layers.31.self_attn.v_proj.bias": "model-00002-of-00002.safetensors",
|
| 319 |
+
"model.layers.31.self_attn.v_proj.weight": "model-00002-of-00002.safetensors",
|
| 320 |
+
"model.layers.32.input_layernorm.weight": "model-00002-of-00002.safetensors",
|
| 321 |
+
"model.layers.32.mlp.down_proj.weight": "model-00002-of-00002.safetensors",
|
| 322 |
+
"model.layers.32.mlp.gate_proj.weight": "model-00002-of-00002.safetensors",
|
| 323 |
+
"model.layers.32.mlp.up_proj.weight": "model-00002-of-00002.safetensors",
|
| 324 |
+
"model.layers.32.post_attention_layernorm.weight": "model-00002-of-00002.safetensors",
|
| 325 |
+
"model.layers.32.self_attn.k_proj.bias": "model-00002-of-00002.safetensors",
|
| 326 |
+
"model.layers.32.self_attn.k_proj.weight": "model-00002-of-00002.safetensors",
|
| 327 |
+
"model.layers.32.self_attn.o_proj.weight": "model-00002-of-00002.safetensors",
|
| 328 |
+
"model.layers.32.self_attn.q_proj.bias": "model-00002-of-00002.safetensors",
|
| 329 |
+
"model.layers.32.self_attn.q_proj.weight": "model-00002-of-00002.safetensors",
|
| 330 |
+
"model.layers.32.self_attn.v_proj.bias": "model-00002-of-00002.safetensors",
|
| 331 |
+
"model.layers.32.self_attn.v_proj.weight": "model-00002-of-00002.safetensors",
|
| 332 |
+
"model.layers.33.input_layernorm.weight": "model-00002-of-00002.safetensors",
|
| 333 |
+
"model.layers.33.mlp.down_proj.weight": "model-00002-of-00002.safetensors",
|
| 334 |
+
"model.layers.33.mlp.gate_proj.weight": "model-00002-of-00002.safetensors",
|
| 335 |
+
"model.layers.33.mlp.up_proj.weight": "model-00002-of-00002.safetensors",
|
| 336 |
+
"model.layers.33.post_attention_layernorm.weight": "model-00002-of-00002.safetensors",
|
| 337 |
+
"model.layers.33.self_attn.k_proj.bias": "model-00002-of-00002.safetensors",
|
| 338 |
+
"model.layers.33.self_attn.k_proj.weight": "model-00002-of-00002.safetensors",
|
| 339 |
+
"model.layers.33.self_attn.o_proj.weight": "model-00002-of-00002.safetensors",
|
| 340 |
+
"model.layers.33.self_attn.q_proj.bias": "model-00002-of-00002.safetensors",
|
| 341 |
+
"model.layers.33.self_attn.q_proj.weight": "model-00002-of-00002.safetensors",
|
| 342 |
+
"model.layers.33.self_attn.v_proj.bias": "model-00002-of-00002.safetensors",
|
| 343 |
+
"model.layers.33.self_attn.v_proj.weight": "model-00002-of-00002.safetensors",
|
| 344 |
+
"model.layers.34.input_layernorm.weight": "model-00002-of-00002.safetensors",
|
| 345 |
+
"model.layers.34.mlp.down_proj.weight": "model-00002-of-00002.safetensors",
|
| 346 |
+
"model.layers.34.mlp.gate_proj.weight": "model-00002-of-00002.safetensors",
|
| 347 |
+
"model.layers.34.mlp.up_proj.weight": "model-00002-of-00002.safetensors",
|
| 348 |
+
"model.layers.34.post_attention_layernorm.weight": "model-00002-of-00002.safetensors",
|
| 349 |
+
"model.layers.34.self_attn.k_proj.bias": "model-00002-of-00002.safetensors",
|
| 350 |
+
"model.layers.34.self_attn.k_proj.weight": "model-00002-of-00002.safetensors",
|
| 351 |
+
"model.layers.34.self_attn.o_proj.weight": "model-00002-of-00002.safetensors",
|
| 352 |
+
"model.layers.34.self_attn.q_proj.bias": "model-00002-of-00002.safetensors",
|
| 353 |
+
"model.layers.34.self_attn.q_proj.weight": "model-00002-of-00002.safetensors",
|
| 354 |
+
"model.layers.34.self_attn.v_proj.bias": "model-00002-of-00002.safetensors",
|
| 355 |
+
"model.layers.34.self_attn.v_proj.weight": "model-00002-of-00002.safetensors",
|
| 356 |
+
"model.layers.35.input_layernorm.weight": "model-00002-of-00002.safetensors",
|
| 357 |
+
"model.layers.35.mlp.down_proj.weight": "model-00002-of-00002.safetensors",
|
| 358 |
+
"model.layers.35.mlp.gate_proj.weight": "model-00002-of-00002.safetensors",
|
| 359 |
+
"model.layers.35.mlp.up_proj.weight": "model-00002-of-00002.safetensors",
|
| 360 |
+
"model.layers.35.post_attention_layernorm.weight": "model-00002-of-00002.safetensors",
|
| 361 |
+
"model.layers.35.self_attn.k_proj.bias": "model-00002-of-00002.safetensors",
|
| 362 |
+
"model.layers.35.self_attn.k_proj.weight": "model-00002-of-00002.safetensors",
|
| 363 |
+
"model.layers.35.self_attn.o_proj.weight": "model-00002-of-00002.safetensors",
|
| 364 |
+
"model.layers.35.self_attn.q_proj.bias": "model-00002-of-00002.safetensors",
|
| 365 |
+
"model.layers.35.self_attn.q_proj.weight": "model-00002-of-00002.safetensors",
|
| 366 |
+
"model.layers.35.self_attn.v_proj.bias": "model-00002-of-00002.safetensors",
|
| 367 |
+
"model.layers.35.self_attn.v_proj.weight": "model-00002-of-00002.safetensors",
|
| 368 |
+
"model.layers.4.input_layernorm.weight": "model-00001-of-00002.safetensors",
|
| 369 |
+
"model.layers.4.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
|
| 370 |
+
"model.layers.4.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
|
| 371 |
+
"model.layers.4.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
|
| 372 |
+
"model.layers.4.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
|
| 373 |
+
"model.layers.4.self_attn.k_proj.bias": "model-00001-of-00002.safetensors",
|
| 374 |
+
"model.layers.4.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
|
| 375 |
+
"model.layers.4.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
|
| 376 |
+
"model.layers.4.self_attn.q_proj.bias": "model-00001-of-00002.safetensors",
|
| 377 |
+
"model.layers.4.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
|
| 378 |
+
"model.layers.4.self_attn.v_proj.bias": "model-00001-of-00002.safetensors",
|
| 379 |
+
"model.layers.4.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
|
| 380 |
+
"model.layers.5.input_layernorm.weight": "model-00001-of-00002.safetensors",
|
| 381 |
+
"model.layers.5.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
|
| 382 |
+
"model.layers.5.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
|
| 383 |
+
"model.layers.5.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
|
| 384 |
+
"model.layers.5.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
|
| 385 |
+
"model.layers.5.self_attn.k_proj.bias": "model-00001-of-00002.safetensors",
|
| 386 |
+
"model.layers.5.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
|
| 387 |
+
"model.layers.5.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
|
| 388 |
+
"model.layers.5.self_attn.q_proj.bias": "model-00001-of-00002.safetensors",
|
| 389 |
+
"model.layers.5.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
|
| 390 |
+
"model.layers.5.self_attn.v_proj.bias": "model-00001-of-00002.safetensors",
|
| 391 |
+
"model.layers.5.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
|
| 392 |
+
"model.layers.6.input_layernorm.weight": "model-00001-of-00002.safetensors",
|
| 393 |
+
"model.layers.6.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
|
| 394 |
+
"model.layers.6.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
|
| 395 |
+
"model.layers.6.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
|
| 396 |
+
"model.layers.6.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
|
| 397 |
+
"model.layers.6.self_attn.k_proj.bias": "model-00001-of-00002.safetensors",
|
| 398 |
+
"model.layers.6.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
|
| 399 |
+
"model.layers.6.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
|
| 400 |
+
"model.layers.6.self_attn.q_proj.bias": "model-00001-of-00002.safetensors",
|
| 401 |
+
"model.layers.6.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
|
| 402 |
+
"model.layers.6.self_attn.v_proj.bias": "model-00001-of-00002.safetensors",
|
| 403 |
+
"model.layers.6.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
|
| 404 |
+
"model.layers.7.input_layernorm.weight": "model-00001-of-00002.safetensors",
|
| 405 |
+
"model.layers.7.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
|
| 406 |
+
"model.layers.7.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
|
| 407 |
+
"model.layers.7.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
|
| 408 |
+
"model.layers.7.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
|
| 409 |
+
"model.layers.7.self_attn.k_proj.bias": "model-00001-of-00002.safetensors",
|
| 410 |
+
"model.layers.7.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
|
| 411 |
+
"model.layers.7.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
|
| 412 |
+
"model.layers.7.self_attn.q_proj.bias": "model-00001-of-00002.safetensors",
|
| 413 |
+
"model.layers.7.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
|
| 414 |
+
"model.layers.7.self_attn.v_proj.bias": "model-00001-of-00002.safetensors",
|
| 415 |
+
"model.layers.7.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
|
| 416 |
+
"model.layers.8.input_layernorm.weight": "model-00001-of-00002.safetensors",
|
| 417 |
+
"model.layers.8.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
|
| 418 |
+
"model.layers.8.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
|
| 419 |
+
"model.layers.8.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
|
| 420 |
+
"model.layers.8.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
|
| 421 |
+
"model.layers.8.self_attn.k_proj.bias": "model-00001-of-00002.safetensors",
|
| 422 |
+
"model.layers.8.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
|
| 423 |
+
"model.layers.8.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
|
| 424 |
+
"model.layers.8.self_attn.q_proj.bias": "model-00001-of-00002.safetensors",
|
| 425 |
+
"model.layers.8.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
|
| 426 |
+
"model.layers.8.self_attn.v_proj.bias": "model-00001-of-00002.safetensors",
|
| 427 |
+
"model.layers.8.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
|
| 428 |
+
"model.layers.9.input_layernorm.weight": "model-00001-of-00002.safetensors",
|
| 429 |
+
"model.layers.9.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
|
| 430 |
+
"model.layers.9.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
|
| 431 |
+
"model.layers.9.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
|
| 432 |
+
"model.layers.9.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
|
| 433 |
+
"model.layers.9.self_attn.k_proj.bias": "model-00001-of-00002.safetensors",
|
| 434 |
+
"model.layers.9.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
|
| 435 |
+
"model.layers.9.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
|
| 436 |
+
"model.layers.9.self_attn.q_proj.bias": "model-00001-of-00002.safetensors",
|
| 437 |
+
"model.layers.9.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
|
| 438 |
+
"model.layers.9.self_attn.v_proj.bias": "model-00001-of-00002.safetensors",
|
| 439 |
+
"model.layers.9.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
|
| 440 |
+
"model.norm.weight": "model-00002-of-00002.safetensors"
|
| 441 |
+
}
|
| 442 |
+
}
|
3b-w-cot+/checkpoint-488/rng_state_0.pth
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:3dcb161b22b2558dbf7e3f8c871050cec383d11a40423fab11f18d5e630639bf
|
| 3 |
+
size 14512
|
3b-w-cot+/checkpoint-488/rng_state_1.pth
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:d50af6aef769414a6f28fa1b1bc51ce707dc8ecd15474e03f99a2f10fde086be
|
| 3 |
+
size 14512
|
3b-w-cot+/checkpoint-488/scheduler.pt
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:6d8b2a59c30f5e09b1d7ce944fea889fdfc7000e147a68a8ad08ea9263213eb2
|
| 3 |
+
size 1064
|
3b-w-cot+/checkpoint-488/special_tokens_map.json
ADDED
|
@@ -0,0 +1,31 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"additional_special_tokens": [
|
| 3 |
+
"<|im_start|>",
|
| 4 |
+
"<|im_end|>",
|
| 5 |
+
"<|object_ref_start|>",
|
| 6 |
+
"<|object_ref_end|>",
|
| 7 |
+
"<|box_start|>",
|
| 8 |
+
"<|box_end|>",
|
| 9 |
+
"<|quad_start|>",
|
| 10 |
+
"<|quad_end|>",
|
| 11 |
+
"<|vision_start|>",
|
| 12 |
+
"<|vision_end|>",
|
| 13 |
+
"<|vision_pad|>",
|
| 14 |
+
"<|image_pad|>",
|
| 15 |
+
"<|video_pad|>"
|
| 16 |
+
],
|
| 17 |
+
"eos_token": {
|
| 18 |
+
"content": "<|im_end|>",
|
| 19 |
+
"lstrip": false,
|
| 20 |
+
"normalized": false,
|
| 21 |
+
"rstrip": false,
|
| 22 |
+
"single_word": false
|
| 23 |
+
},
|
| 24 |
+
"pad_token": {
|
| 25 |
+
"content": "<|endoftext|>",
|
| 26 |
+
"lstrip": false,
|
| 27 |
+
"normalized": false,
|
| 28 |
+
"rstrip": false,
|
| 29 |
+
"single_word": false
|
| 30 |
+
}
|
| 31 |
+
}
|
3b-w-cot+/checkpoint-488/tokenizer.json
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:9c5ae00e602b8860cbd784ba82a8aa14e8feecec692e7076590d014d7b7fdafa
|
| 3 |
+
size 11421896
|
3b-w-cot+/checkpoint-488/tokenizer_config.json
ADDED
|
@@ -0,0 +1,208 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"add_bos_token": false,
|
| 3 |
+
"add_prefix_space": false,
|
| 4 |
+
"added_tokens_decoder": {
|
| 5 |
+
"151643": {
|
| 6 |
+
"content": "<|endoftext|>",
|
| 7 |
+
"lstrip": false,
|
| 8 |
+
"normalized": false,
|
| 9 |
+
"rstrip": false,
|
| 10 |
+
"single_word": false,
|
| 11 |
+
"special": true
|
| 12 |
+
},
|
| 13 |
+
"151644": {
|
| 14 |
+
"content": "<|im_start|>",
|
| 15 |
+
"lstrip": false,
|
| 16 |
+
"normalized": false,
|
| 17 |
+
"rstrip": false,
|
| 18 |
+
"single_word": false,
|
| 19 |
+
"special": true
|
| 20 |
+
},
|
| 21 |
+
"151645": {
|
| 22 |
+
"content": "<|im_end|>",
|
| 23 |
+
"lstrip": false,
|
| 24 |
+
"normalized": false,
|
| 25 |
+
"rstrip": false,
|
| 26 |
+
"single_word": false,
|
| 27 |
+
"special": true
|
| 28 |
+
},
|
| 29 |
+
"151646": {
|
| 30 |
+
"content": "<|object_ref_start|>",
|
| 31 |
+
"lstrip": false,
|
| 32 |
+
"normalized": false,
|
| 33 |
+
"rstrip": false,
|
| 34 |
+
"single_word": false,
|
| 35 |
+
"special": true
|
| 36 |
+
},
|
| 37 |
+
"151647": {
|
| 38 |
+
"content": "<|object_ref_end|>",
|
| 39 |
+
"lstrip": false,
|
| 40 |
+
"normalized": false,
|
| 41 |
+
"rstrip": false,
|
| 42 |
+
"single_word": false,
|
| 43 |
+
"special": true
|
| 44 |
+
},
|
| 45 |
+
"151648": {
|
| 46 |
+
"content": "<|box_start|>",
|
| 47 |
+
"lstrip": false,
|
| 48 |
+
"normalized": false,
|
| 49 |
+
"rstrip": false,
|
| 50 |
+
"single_word": false,
|
| 51 |
+
"special": true
|
| 52 |
+
},
|
| 53 |
+
"151649": {
|
| 54 |
+
"content": "<|box_end|>",
|
| 55 |
+
"lstrip": false,
|
| 56 |
+
"normalized": false,
|
| 57 |
+
"rstrip": false,
|
| 58 |
+
"single_word": false,
|
| 59 |
+
"special": true
|
| 60 |
+
},
|
| 61 |
+
"151650": {
|
| 62 |
+
"content": "<|quad_start|>",
|
| 63 |
+
"lstrip": false,
|
| 64 |
+
"normalized": false,
|
| 65 |
+
"rstrip": false,
|
| 66 |
+
"single_word": false,
|
| 67 |
+
"special": true
|
| 68 |
+
},
|
| 69 |
+
"151651": {
|
| 70 |
+
"content": "<|quad_end|>",
|
| 71 |
+
"lstrip": false,
|
| 72 |
+
"normalized": false,
|
| 73 |
+
"rstrip": false,
|
| 74 |
+
"single_word": false,
|
| 75 |
+
"special": true
|
| 76 |
+
},
|
| 77 |
+
"151652": {
|
| 78 |
+
"content": "<|vision_start|>",
|
| 79 |
+
"lstrip": false,
|
| 80 |
+
"normalized": false,
|
| 81 |
+
"rstrip": false,
|
| 82 |
+
"single_word": false,
|
| 83 |
+
"special": true
|
| 84 |
+
},
|
| 85 |
+
"151653": {
|
| 86 |
+
"content": "<|vision_end|>",
|
| 87 |
+
"lstrip": false,
|
| 88 |
+
"normalized": false,
|
| 89 |
+
"rstrip": false,
|
| 90 |
+
"single_word": false,
|
| 91 |
+
"special": true
|
| 92 |
+
},
|
| 93 |
+
"151654": {
|
| 94 |
+
"content": "<|vision_pad|>",
|
| 95 |
+
"lstrip": false,
|
| 96 |
+
"normalized": false,
|
| 97 |
+
"rstrip": false,
|
| 98 |
+
"single_word": false,
|
| 99 |
+
"special": true
|
| 100 |
+
},
|
| 101 |
+
"151655": {
|
| 102 |
+
"content": "<|image_pad|>",
|
| 103 |
+
"lstrip": false,
|
| 104 |
+
"normalized": false,
|
| 105 |
+
"rstrip": false,
|
| 106 |
+
"single_word": false,
|
| 107 |
+
"special": true
|
| 108 |
+
},
|
| 109 |
+
"151656": {
|
| 110 |
+
"content": "<|video_pad|>",
|
| 111 |
+
"lstrip": false,
|
| 112 |
+
"normalized": false,
|
| 113 |
+
"rstrip": false,
|
| 114 |
+
"single_word": false,
|
| 115 |
+
"special": true
|
| 116 |
+
},
|
| 117 |
+
"151657": {
|
| 118 |
+
"content": "<tool_call>",
|
| 119 |
+
"lstrip": false,
|
| 120 |
+
"normalized": false,
|
| 121 |
+
"rstrip": false,
|
| 122 |
+
"single_word": false,
|
| 123 |
+
"special": false
|
| 124 |
+
},
|
| 125 |
+
"151658": {
|
| 126 |
+
"content": "</tool_call>",
|
| 127 |
+
"lstrip": false,
|
| 128 |
+
"normalized": false,
|
| 129 |
+
"rstrip": false,
|
| 130 |
+
"single_word": false,
|
| 131 |
+
"special": false
|
| 132 |
+
},
|
| 133 |
+
"151659": {
|
| 134 |
+
"content": "<|fim_prefix|>",
|
| 135 |
+
"lstrip": false,
|
| 136 |
+
"normalized": false,
|
| 137 |
+
"rstrip": false,
|
| 138 |
+
"single_word": false,
|
| 139 |
+
"special": false
|
| 140 |
+
},
|
| 141 |
+
"151660": {
|
| 142 |
+
"content": "<|fim_middle|>",
|
| 143 |
+
"lstrip": false,
|
| 144 |
+
"normalized": false,
|
| 145 |
+
"rstrip": false,
|
| 146 |
+
"single_word": false,
|
| 147 |
+
"special": false
|
| 148 |
+
},
|
| 149 |
+
"151661": {
|
| 150 |
+
"content": "<|fim_suffix|>",
|
| 151 |
+
"lstrip": false,
|
| 152 |
+
"normalized": false,
|
| 153 |
+
"rstrip": false,
|
| 154 |
+
"single_word": false,
|
| 155 |
+
"special": false
|
| 156 |
+
},
|
| 157 |
+
"151662": {
|
| 158 |
+
"content": "<|fim_pad|>",
|
| 159 |
+
"lstrip": false,
|
| 160 |
+
"normalized": false,
|
| 161 |
+
"rstrip": false,
|
| 162 |
+
"single_word": false,
|
| 163 |
+
"special": false
|
| 164 |
+
},
|
| 165 |
+
"151663": {
|
| 166 |
+
"content": "<|repo_name|>",
|
| 167 |
+
"lstrip": false,
|
| 168 |
+
"normalized": false,
|
| 169 |
+
"rstrip": false,
|
| 170 |
+
"single_word": false,
|
| 171 |
+
"special": false
|
| 172 |
+
},
|
| 173 |
+
"151664": {
|
| 174 |
+
"content": "<|file_sep|>",
|
| 175 |
+
"lstrip": false,
|
| 176 |
+
"normalized": false,
|
| 177 |
+
"rstrip": false,
|
| 178 |
+
"single_word": false,
|
| 179 |
+
"special": false
|
| 180 |
+
}
|
| 181 |
+
},
|
| 182 |
+
"additional_special_tokens": [
|
| 183 |
+
"<|im_start|>",
|
| 184 |
+
"<|im_end|>",
|
| 185 |
+
"<|object_ref_start|>",
|
| 186 |
+
"<|object_ref_end|>",
|
| 187 |
+
"<|box_start|>",
|
| 188 |
+
"<|box_end|>",
|
| 189 |
+
"<|quad_start|>",
|
| 190 |
+
"<|quad_end|>",
|
| 191 |
+
"<|vision_start|>",
|
| 192 |
+
"<|vision_end|>",
|
| 193 |
+
"<|vision_pad|>",
|
| 194 |
+
"<|image_pad|>",
|
| 195 |
+
"<|video_pad|>"
|
| 196 |
+
],
|
| 197 |
+
"bos_token": null,
|
| 198 |
+
"chat_template": "{%- if tools %}\n {{- '<|im_start|>system\\n' }}\n {%- if messages[0]['role'] == 'system' %}\n {{- messages[0]['content'] }}\n {%- else %}\n {{- 'You are Qwen, created by Alibaba Cloud. You are a helpful assistant.' }}\n {%- endif %}\n {{- \"\\n\\n# Tools\\n\\nYou may call one or more functions to assist with the user query.\\n\\nYou are provided with function signatures within <tools></tools> XML tags:\\n<tools>\" }}\n {%- for tool in tools %}\n {{- \"\\n\" }}\n {{- tool | tojson }}\n {%- endfor %}\n {{- \"\\n</tools>\\n\\nFor each function call, return a json object with function name and arguments within <tool_call></tool_call> XML tags:\\n<tool_call>\\n{\\\"name\\\": <function-name>, \\\"arguments\\\": <args-json-object>}\\n</tool_call><|im_end|>\\n\" }}\n{%- else %}\n {%- if messages[0]['role'] == 'system' %}\n {{- '<|im_start|>system\\n' + messages[0]['content'] + '<|im_end|>\\n' }}\n {%- else %}\n {{- '<|im_start|>system\\nYou are Qwen, created by Alibaba Cloud. You are a helpful assistant.<|im_end|>\\n' }}\n {%- endif %}\n{%- endif %}\n{%- for message in messages %}\n {%- if (message.role == \"user\") or (message.role == \"system\" and not loop.first) or (message.role == \"assistant\" and not message.tool_calls) %}\n {{- '<|im_start|>' + message.role + '\\n' + message.content + '<|im_end|>' + '\\n' }}\n {%- elif message.role == \"assistant\" %}\n {{- '<|im_start|>' + message.role }}\n {%- if message.content %}\n {{- '\\n' + message.content }}\n {%- endif %}\n {%- for tool_call in message.tool_calls %}\n {%- if tool_call.function is defined %}\n {%- set tool_call = tool_call.function %}\n {%- endif %}\n {{- '\\n<tool_call>\\n{\"name\": \"' }}\n {{- tool_call.name }}\n {{- '\", \"arguments\": ' }}\n {{- tool_call.arguments | tojson }}\n {{- '}\\n</tool_call>' }}\n {%- endfor %}\n {{- '<|im_end|>\\n' }}\n {%- elif message.role == \"tool\" %}\n {%- if (loop.index0 == 0) or (messages[loop.index0 - 1].role != \"tool\") %}\n {{- '<|im_start|>user' }}\n {%- endif %}\n {{- '\\n<tool_response>\\n' }}\n {{- message.content }}\n {{- '\\n</tool_response>' }}\n {%- if loop.last or (messages[loop.index0 + 1].role != \"tool\") %}\n {{- '<|im_end|>\\n' }}\n {%- endif %}\n {%- endif %}\n{%- endfor %}\n{%- if add_generation_prompt %}\n {{- '<|im_start|>assistant\\n' }}\n{%- endif %}\n",
|
| 199 |
+
"clean_up_tokenization_spaces": false,
|
| 200 |
+
"eos_token": "<|im_end|>",
|
| 201 |
+
"errors": "replace",
|
| 202 |
+
"extra_special_tokens": {},
|
| 203 |
+
"model_max_length": 131072,
|
| 204 |
+
"pad_token": "<|endoftext|>",
|
| 205 |
+
"split_special_tokens": false,
|
| 206 |
+
"tokenizer_class": "Qwen2Tokenizer",
|
| 207 |
+
"unk_token": null
|
| 208 |
+
}
|
3b-w-cot+/checkpoint-488/trainer_state.json
ADDED
|
@@ -0,0 +1,3497 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"best_metric": null,
|
| 3 |
+
"best_model_checkpoint": null,
|
| 4 |
+
"epoch": 1.9948822927328558,
|
| 5 |
+
"eval_steps": 82,
|
| 6 |
+
"global_step": 488,
|
| 7 |
+
"is_hyper_param_search": false,
|
| 8 |
+
"is_local_process_zero": true,
|
| 9 |
+
"is_world_process_zero": true,
|
| 10 |
+
"log_history": [
|
| 11 |
+
{
|
| 12 |
+
"epoch": 0.0040941658137154556,
|
| 13 |
+
"grad_norm": 8.007163047790527,
|
| 14 |
+
"learning_rate": 6.666666666666667e-07,
|
| 15 |
+
"loss": 0.477,
|
| 16 |
+
"step": 1
|
| 17 |
+
},
|
| 18 |
+
{
|
| 19 |
+
"epoch": 0.0040941658137154556,
|
| 20 |
+
"eval_loss": 0.8367487192153931,
|
| 21 |
+
"eval_runtime": 4.4844,
|
| 22 |
+
"eval_samples_per_second": 17.617,
|
| 23 |
+
"eval_steps_per_second": 2.23,
|
| 24 |
+
"step": 1
|
| 25 |
+
},
|
| 26 |
+
{
|
| 27 |
+
"epoch": 0.008188331627430911,
|
| 28 |
+
"grad_norm": 8.800883293151855,
|
| 29 |
+
"learning_rate": 1.3333333333333334e-06,
|
| 30 |
+
"loss": 0.6282,
|
| 31 |
+
"step": 2
|
| 32 |
+
},
|
| 33 |
+
{
|
| 34 |
+
"epoch": 0.012282497441146366,
|
| 35 |
+
"grad_norm": 9.306445121765137,
|
| 36 |
+
"learning_rate": 2.0000000000000003e-06,
|
| 37 |
+
"loss": 0.6202,
|
| 38 |
+
"step": 3
|
| 39 |
+
},
|
| 40 |
+
{
|
| 41 |
+
"epoch": 0.016376663254861822,
|
| 42 |
+
"grad_norm": 10.017245292663574,
|
| 43 |
+
"learning_rate": 2.666666666666667e-06,
|
| 44 |
+
"loss": 0.6161,
|
| 45 |
+
"step": 4
|
| 46 |
+
},
|
| 47 |
+
{
|
| 48 |
+
"epoch": 0.02047082906857728,
|
| 49 |
+
"grad_norm": 9.14148235321045,
|
| 50 |
+
"learning_rate": 3.3333333333333333e-06,
|
| 51 |
+
"loss": 0.6081,
|
| 52 |
+
"step": 5
|
| 53 |
+
},
|
| 54 |
+
{
|
| 55 |
+
"epoch": 0.02456499488229273,
|
| 56 |
+
"grad_norm": 8.813340187072754,
|
| 57 |
+
"learning_rate": 4.000000000000001e-06,
|
| 58 |
+
"loss": 0.5697,
|
| 59 |
+
"step": 6
|
| 60 |
+
},
|
| 61 |
+
{
|
| 62 |
+
"epoch": 0.028659160696008188,
|
| 63 |
+
"grad_norm": 6.7533745765686035,
|
| 64 |
+
"learning_rate": 4.666666666666667e-06,
|
| 65 |
+
"loss": 0.4834,
|
| 66 |
+
"step": 7
|
| 67 |
+
},
|
| 68 |
+
{
|
| 69 |
+
"epoch": 0.032753326509723645,
|
| 70 |
+
"grad_norm": 6.1987481117248535,
|
| 71 |
+
"learning_rate": 5.333333333333334e-06,
|
| 72 |
+
"loss": 0.4857,
|
| 73 |
+
"step": 8
|
| 74 |
+
},
|
| 75 |
+
{
|
| 76 |
+
"epoch": 0.0368474923234391,
|
| 77 |
+
"grad_norm": 2.4827005863189697,
|
| 78 |
+
"learning_rate": 6e-06,
|
| 79 |
+
"loss": 0.3713,
|
| 80 |
+
"step": 9
|
| 81 |
+
},
|
| 82 |
+
{
|
| 83 |
+
"epoch": 0.04094165813715456,
|
| 84 |
+
"grad_norm": 2.163064956665039,
|
| 85 |
+
"learning_rate": 6.666666666666667e-06,
|
| 86 |
+
"loss": 0.3284,
|
| 87 |
+
"step": 10
|
| 88 |
+
},
|
| 89 |
+
{
|
| 90 |
+
"epoch": 0.04503582395087001,
|
| 91 |
+
"grad_norm": 1.9997942447662354,
|
| 92 |
+
"learning_rate": 7.333333333333333e-06,
|
| 93 |
+
"loss": 0.3289,
|
| 94 |
+
"step": 11
|
| 95 |
+
},
|
| 96 |
+
{
|
| 97 |
+
"epoch": 0.04912998976458546,
|
| 98 |
+
"grad_norm": 2.7956204414367676,
|
| 99 |
+
"learning_rate": 8.000000000000001e-06,
|
| 100 |
+
"loss": 0.3208,
|
| 101 |
+
"step": 12
|
| 102 |
+
},
|
| 103 |
+
{
|
| 104 |
+
"epoch": 0.05322415557830092,
|
| 105 |
+
"grad_norm": 2.8886733055114746,
|
| 106 |
+
"learning_rate": 8.666666666666668e-06,
|
| 107 |
+
"loss": 0.3123,
|
| 108 |
+
"step": 13
|
| 109 |
+
},
|
| 110 |
+
{
|
| 111 |
+
"epoch": 0.057318321392016376,
|
| 112 |
+
"grad_norm": 2.217071771621704,
|
| 113 |
+
"learning_rate": 9.333333333333334e-06,
|
| 114 |
+
"loss": 0.2881,
|
| 115 |
+
"step": 14
|
| 116 |
+
},
|
| 117 |
+
{
|
| 118 |
+
"epoch": 0.06141248720573183,
|
| 119 |
+
"grad_norm": 1.9985229969024658,
|
| 120 |
+
"learning_rate": 1e-05,
|
| 121 |
+
"loss": 0.283,
|
| 122 |
+
"step": 15
|
| 123 |
+
},
|
| 124 |
+
{
|
| 125 |
+
"epoch": 0.06550665301944729,
|
| 126 |
+
"grad_norm": 1.8881174325942993,
|
| 127 |
+
"learning_rate": 1.0666666666666667e-05,
|
| 128 |
+
"loss": 0.2616,
|
| 129 |
+
"step": 16
|
| 130 |
+
},
|
| 131 |
+
{
|
| 132 |
+
"epoch": 0.06960081883316274,
|
| 133 |
+
"grad_norm": 1.9551236629486084,
|
| 134 |
+
"learning_rate": 1.1333333333333334e-05,
|
| 135 |
+
"loss": 0.2894,
|
| 136 |
+
"step": 17
|
| 137 |
+
},
|
| 138 |
+
{
|
| 139 |
+
"epoch": 0.0736949846468782,
|
| 140 |
+
"grad_norm": 1.8677968978881836,
|
| 141 |
+
"learning_rate": 1.2e-05,
|
| 142 |
+
"loss": 0.2328,
|
| 143 |
+
"step": 18
|
| 144 |
+
},
|
| 145 |
+
{
|
| 146 |
+
"epoch": 0.07778915046059365,
|
| 147 |
+
"grad_norm": 1.9170935153961182,
|
| 148 |
+
"learning_rate": 1.2666666666666667e-05,
|
| 149 |
+
"loss": 0.2577,
|
| 150 |
+
"step": 19
|
| 151 |
+
},
|
| 152 |
+
{
|
| 153 |
+
"epoch": 0.08188331627430911,
|
| 154 |
+
"grad_norm": 2.189279794692993,
|
| 155 |
+
"learning_rate": 1.3333333333333333e-05,
|
| 156 |
+
"loss": 0.2555,
|
| 157 |
+
"step": 20
|
| 158 |
+
},
|
| 159 |
+
{
|
| 160 |
+
"epoch": 0.08597748208802457,
|
| 161 |
+
"grad_norm": 3.202075242996216,
|
| 162 |
+
"learning_rate": 1.4e-05,
|
| 163 |
+
"loss": 0.2647,
|
| 164 |
+
"step": 21
|
| 165 |
+
},
|
| 166 |
+
{
|
| 167 |
+
"epoch": 0.09007164790174002,
|
| 168 |
+
"grad_norm": 2.774186372756958,
|
| 169 |
+
"learning_rate": 1.4666666666666666e-05,
|
| 170 |
+
"loss": 0.2531,
|
| 171 |
+
"step": 22
|
| 172 |
+
},
|
| 173 |
+
{
|
| 174 |
+
"epoch": 0.09416581371545547,
|
| 175 |
+
"grad_norm": 2.0601961612701416,
|
| 176 |
+
"learning_rate": 1.5333333333333334e-05,
|
| 177 |
+
"loss": 0.2654,
|
| 178 |
+
"step": 23
|
| 179 |
+
},
|
| 180 |
+
{
|
| 181 |
+
"epoch": 0.09825997952917093,
|
| 182 |
+
"grad_norm": 1.781900405883789,
|
| 183 |
+
"learning_rate": 1.6000000000000003e-05,
|
| 184 |
+
"loss": 0.2358,
|
| 185 |
+
"step": 24
|
| 186 |
+
},
|
| 187 |
+
{
|
| 188 |
+
"epoch": 0.1023541453428864,
|
| 189 |
+
"grad_norm": 1.8549216985702515,
|
| 190 |
+
"learning_rate": 1.6666666666666667e-05,
|
| 191 |
+
"loss": 0.2362,
|
| 192 |
+
"step": 25
|
| 193 |
+
},
|
| 194 |
+
{
|
| 195 |
+
"epoch": 0.10644831115660185,
|
| 196 |
+
"grad_norm": 2.1376802921295166,
|
| 197 |
+
"learning_rate": 1.7333333333333336e-05,
|
| 198 |
+
"loss": 0.2334,
|
| 199 |
+
"step": 26
|
| 200 |
+
},
|
| 201 |
+
{
|
| 202 |
+
"epoch": 0.1105424769703173,
|
| 203 |
+
"grad_norm": 2.134582281112671,
|
| 204 |
+
"learning_rate": 1.8e-05,
|
| 205 |
+
"loss": 0.267,
|
| 206 |
+
"step": 27
|
| 207 |
+
},
|
| 208 |
+
{
|
| 209 |
+
"epoch": 0.11463664278403275,
|
| 210 |
+
"grad_norm": 1.6425909996032715,
|
| 211 |
+
"learning_rate": 1.866666666666667e-05,
|
| 212 |
+
"loss": 0.2184,
|
| 213 |
+
"step": 28
|
| 214 |
+
},
|
| 215 |
+
{
|
| 216 |
+
"epoch": 0.1187308085977482,
|
| 217 |
+
"grad_norm": 1.601938009262085,
|
| 218 |
+
"learning_rate": 1.9333333333333333e-05,
|
| 219 |
+
"loss": 0.256,
|
| 220 |
+
"step": 29
|
| 221 |
+
},
|
| 222 |
+
{
|
| 223 |
+
"epoch": 0.12282497441146366,
|
| 224 |
+
"grad_norm": 1.626160740852356,
|
| 225 |
+
"learning_rate": 2e-05,
|
| 226 |
+
"loss": 0.2548,
|
| 227 |
+
"step": 30
|
| 228 |
+
},
|
| 229 |
+
{
|
| 230 |
+
"epoch": 0.1269191402251791,
|
| 231 |
+
"grad_norm": 1.6894042491912842,
|
| 232 |
+
"learning_rate": 1.999989986294826e-05,
|
| 233 |
+
"loss": 0.2438,
|
| 234 |
+
"step": 31
|
| 235 |
+
},
|
| 236 |
+
{
|
| 237 |
+
"epoch": 0.13101330603889458,
|
| 238 |
+
"grad_norm": 1.6300302743911743,
|
| 239 |
+
"learning_rate": 1.9999599453798523e-05,
|
| 240 |
+
"loss": 0.2273,
|
| 241 |
+
"step": 32
|
| 242 |
+
},
|
| 243 |
+
{
|
| 244 |
+
"epoch": 0.13510747185261002,
|
| 245 |
+
"grad_norm": 1.6301401853561401,
|
| 246 |
+
"learning_rate": 1.999909877856721e-05,
|
| 247 |
+
"loss": 0.2539,
|
| 248 |
+
"step": 33
|
| 249 |
+
},
|
| 250 |
+
{
|
| 251 |
+
"epoch": 0.13920163766632548,
|
| 252 |
+
"grad_norm": 1.6974273920059204,
|
| 253 |
+
"learning_rate": 1.9998397847281548e-05,
|
| 254 |
+
"loss": 0.256,
|
| 255 |
+
"step": 34
|
| 256 |
+
},
|
| 257 |
+
{
|
| 258 |
+
"epoch": 0.14329580348004095,
|
| 259 |
+
"grad_norm": 1.5356749296188354,
|
| 260 |
+
"learning_rate": 1.9997496673979375e-05,
|
| 261 |
+
"loss": 0.2278,
|
| 262 |
+
"step": 35
|
| 263 |
+
},
|
| 264 |
+
{
|
| 265 |
+
"epoch": 0.1473899692937564,
|
| 266 |
+
"grad_norm": 1.6304699182510376,
|
| 267 |
+
"learning_rate": 1.9996395276708856e-05,
|
| 268 |
+
"loss": 0.2488,
|
| 269 |
+
"step": 36
|
| 270 |
+
},
|
| 271 |
+
{
|
| 272 |
+
"epoch": 0.15148413510747186,
|
| 273 |
+
"grad_norm": 1.6241912841796875,
|
| 274 |
+
"learning_rate": 1.999509367752813e-05,
|
| 275 |
+
"loss": 0.2407,
|
| 276 |
+
"step": 37
|
| 277 |
+
},
|
| 278 |
+
{
|
| 279 |
+
"epoch": 0.1555783009211873,
|
| 280 |
+
"grad_norm": 1.6954501867294312,
|
| 281 |
+
"learning_rate": 1.9993591902504854e-05,
|
| 282 |
+
"loss": 0.2279,
|
| 283 |
+
"step": 38
|
| 284 |
+
},
|
| 285 |
+
{
|
| 286 |
+
"epoch": 0.15967246673490276,
|
| 287 |
+
"grad_norm": 1.5775200128555298,
|
| 288 |
+
"learning_rate": 1.9991889981715696e-05,
|
| 289 |
+
"loss": 0.2443,
|
| 290 |
+
"step": 39
|
| 291 |
+
},
|
| 292 |
+
{
|
| 293 |
+
"epoch": 0.16376663254861823,
|
| 294 |
+
"grad_norm": 1.6417704820632935,
|
| 295 |
+
"learning_rate": 1.9989987949245725e-05,
|
| 296 |
+
"loss": 0.2498,
|
| 297 |
+
"step": 40
|
| 298 |
+
},
|
| 299 |
+
{
|
| 300 |
+
"epoch": 0.16786079836233367,
|
| 301 |
+
"grad_norm": 1.6866360902786255,
|
| 302 |
+
"learning_rate": 1.9987885843187717e-05,
|
| 303 |
+
"loss": 0.2496,
|
| 304 |
+
"step": 41
|
| 305 |
+
},
|
| 306 |
+
{
|
| 307 |
+
"epoch": 0.17195496417604914,
|
| 308 |
+
"grad_norm": 1.6979321241378784,
|
| 309 |
+
"learning_rate": 1.9985583705641418e-05,
|
| 310 |
+
"loss": 0.2721,
|
| 311 |
+
"step": 42
|
| 312 |
+
},
|
| 313 |
+
{
|
| 314 |
+
"epoch": 0.17604912998976457,
|
| 315 |
+
"grad_norm": 1.676047682762146,
|
| 316 |
+
"learning_rate": 1.9983081582712684e-05,
|
| 317 |
+
"loss": 0.2506,
|
| 318 |
+
"step": 43
|
| 319 |
+
},
|
| 320 |
+
{
|
| 321 |
+
"epoch": 0.18014329580348004,
|
| 322 |
+
"grad_norm": 1.7262601852416992,
|
| 323 |
+
"learning_rate": 1.998037952451255e-05,
|
| 324 |
+
"loss": 0.2371,
|
| 325 |
+
"step": 44
|
| 326 |
+
},
|
| 327 |
+
{
|
| 328 |
+
"epoch": 0.1842374616171955,
|
| 329 |
+
"grad_norm": 1.4194152355194092,
|
| 330 |
+
"learning_rate": 1.9977477585156252e-05,
|
| 331 |
+
"loss": 0.2619,
|
| 332 |
+
"step": 45
|
| 333 |
+
},
|
| 334 |
+
{
|
| 335 |
+
"epoch": 0.18833162743091095,
|
| 336 |
+
"grad_norm": 1.5654889345169067,
|
| 337 |
+
"learning_rate": 1.9974375822762117e-05,
|
| 338 |
+
"loss": 0.2299,
|
| 339 |
+
"step": 46
|
| 340 |
+
},
|
| 341 |
+
{
|
| 342 |
+
"epoch": 0.19242579324462641,
|
| 343 |
+
"grad_norm": 1.844489336013794,
|
| 344 |
+
"learning_rate": 1.9971074299450414e-05,
|
| 345 |
+
"loss": 0.2692,
|
| 346 |
+
"step": 47
|
| 347 |
+
},
|
| 348 |
+
{
|
| 349 |
+
"epoch": 0.19651995905834185,
|
| 350 |
+
"grad_norm": 1.5128370523452759,
|
| 351 |
+
"learning_rate": 1.9967573081342103e-05,
|
| 352 |
+
"loss": 0.2589,
|
| 353 |
+
"step": 48
|
| 354 |
+
},
|
| 355 |
+
{
|
| 356 |
+
"epoch": 0.20061412487205732,
|
| 357 |
+
"grad_norm": 1.5005507469177246,
|
| 358 |
+
"learning_rate": 1.9963872238557516e-05,
|
| 359 |
+
"loss": 0.2578,
|
| 360 |
+
"step": 49
|
| 361 |
+
},
|
| 362 |
+
{
|
| 363 |
+
"epoch": 0.2047082906857728,
|
| 364 |
+
"grad_norm": 1.5974067449569702,
|
| 365 |
+
"learning_rate": 1.9959971845214953e-05,
|
| 366 |
+
"loss": 0.2494,
|
| 367 |
+
"step": 50
|
| 368 |
+
},
|
| 369 |
+
{
|
| 370 |
+
"epoch": 0.20880245649948823,
|
| 371 |
+
"grad_norm": 1.5728641748428345,
|
| 372 |
+
"learning_rate": 1.9955871979429188e-05,
|
| 373 |
+
"loss": 0.2496,
|
| 374 |
+
"step": 51
|
| 375 |
+
},
|
| 376 |
+
{
|
| 377 |
+
"epoch": 0.2128966223132037,
|
| 378 |
+
"grad_norm": 1.5953929424285889,
|
| 379 |
+
"learning_rate": 1.9951572723309918e-05,
|
| 380 |
+
"loss": 0.2429,
|
| 381 |
+
"step": 52
|
| 382 |
+
},
|
| 383 |
+
{
|
| 384 |
+
"epoch": 0.21699078812691913,
|
| 385 |
+
"grad_norm": 1.7769081592559814,
|
| 386 |
+
"learning_rate": 1.9947074162960113e-05,
|
| 387 |
+
"loss": 0.252,
|
| 388 |
+
"step": 53
|
| 389 |
+
},
|
| 390 |
+
{
|
| 391 |
+
"epoch": 0.2210849539406346,
|
| 392 |
+
"grad_norm": 1.6964116096496582,
|
| 393 |
+
"learning_rate": 1.9942376388474282e-05,
|
| 394 |
+
"loss": 0.2651,
|
| 395 |
+
"step": 54
|
| 396 |
+
},
|
| 397 |
+
{
|
| 398 |
+
"epoch": 0.22517911975435004,
|
| 399 |
+
"grad_norm": 1.5599926710128784,
|
| 400 |
+
"learning_rate": 1.993747949393668e-05,
|
| 401 |
+
"loss": 0.2193,
|
| 402 |
+
"step": 55
|
| 403 |
+
},
|
| 404 |
+
{
|
| 405 |
+
"epoch": 0.2292732855680655,
|
| 406 |
+
"grad_norm": 1.524835467338562,
|
| 407 |
+
"learning_rate": 1.9932383577419432e-05,
|
| 408 |
+
"loss": 0.2361,
|
| 409 |
+
"step": 56
|
| 410 |
+
},
|
| 411 |
+
{
|
| 412 |
+
"epoch": 0.23336745138178097,
|
| 413 |
+
"grad_norm": 1.6240477561950684,
|
| 414 |
+
"learning_rate": 1.992708874098054e-05,
|
| 415 |
+
"loss": 0.2563,
|
| 416 |
+
"step": 57
|
| 417 |
+
},
|
| 418 |
+
{
|
| 419 |
+
"epoch": 0.2374616171954964,
|
| 420 |
+
"grad_norm": 1.6357301473617554,
|
| 421 |
+
"learning_rate": 1.9921595090661872e-05,
|
| 422 |
+
"loss": 0.2456,
|
| 423 |
+
"step": 58
|
| 424 |
+
},
|
| 425 |
+
{
|
| 426 |
+
"epoch": 0.24155578300921188,
|
| 427 |
+
"grad_norm": 1.5650979280471802,
|
| 428 |
+
"learning_rate": 1.991590273648702e-05,
|
| 429 |
+
"loss": 0.2512,
|
| 430 |
+
"step": 59
|
| 431 |
+
},
|
| 432 |
+
{
|
| 433 |
+
"epoch": 0.24564994882292732,
|
| 434 |
+
"grad_norm": 1.4107614755630493,
|
| 435 |
+
"learning_rate": 1.9910011792459086e-05,
|
| 436 |
+
"loss": 0.2539,
|
| 437 |
+
"step": 60
|
| 438 |
+
},
|
| 439 |
+
{
|
| 440 |
+
"epoch": 0.24974411463664278,
|
| 441 |
+
"grad_norm": 1.3979556560516357,
|
| 442 |
+
"learning_rate": 1.9903922376558432e-05,
|
| 443 |
+
"loss": 0.2348,
|
| 444 |
+
"step": 61
|
| 445 |
+
},
|
| 446 |
+
{
|
| 447 |
+
"epoch": 0.2538382804503582,
|
| 448 |
+
"grad_norm": 1.4066411256790161,
|
| 449 |
+
"learning_rate": 1.989763461074029e-05,
|
| 450 |
+
"loss": 0.2419,
|
| 451 |
+
"step": 62
|
| 452 |
+
},
|
| 453 |
+
{
|
| 454 |
+
"epoch": 0.2579324462640737,
|
| 455 |
+
"grad_norm": 1.533858060836792,
|
| 456 |
+
"learning_rate": 1.989114862093232e-05,
|
| 457 |
+
"loss": 0.252,
|
| 458 |
+
"step": 63
|
| 459 |
+
},
|
| 460 |
+
{
|
| 461 |
+
"epoch": 0.26202661207778916,
|
| 462 |
+
"grad_norm": 1.4007140398025513,
|
| 463 |
+
"learning_rate": 1.9884464537032103e-05,
|
| 464 |
+
"loss": 0.2379,
|
| 465 |
+
"step": 64
|
| 466 |
+
},
|
| 467 |
+
{
|
| 468 |
+
"epoch": 0.2661207778915046,
|
| 469 |
+
"grad_norm": 1.3841203451156616,
|
| 470 |
+
"learning_rate": 1.9877582492904533e-05,
|
| 471 |
+
"loss": 0.2377,
|
| 472 |
+
"step": 65
|
| 473 |
+
},
|
| 474 |
+
{
|
| 475 |
+
"epoch": 0.27021494370522003,
|
| 476 |
+
"grad_norm": 1.274598479270935,
|
| 477 |
+
"learning_rate": 1.9870502626379127e-05,
|
| 478 |
+
"loss": 0.2364,
|
| 479 |
+
"step": 66
|
| 480 |
+
},
|
| 481 |
+
{
|
| 482 |
+
"epoch": 0.2743091095189355,
|
| 483 |
+
"grad_norm": 1.59529447555542,
|
| 484 |
+
"learning_rate": 1.9863225079247286e-05,
|
| 485 |
+
"loss": 0.2647,
|
| 486 |
+
"step": 67
|
| 487 |
+
},
|
| 488 |
+
{
|
| 489 |
+
"epoch": 0.27840327533265097,
|
| 490 |
+
"grad_norm": 1.4986138343811035,
|
| 491 |
+
"learning_rate": 1.985574999725943e-05,
|
| 492 |
+
"loss": 0.264,
|
| 493 |
+
"step": 68
|
| 494 |
+
},
|
| 495 |
+
{
|
| 496 |
+
"epoch": 0.28249744114636643,
|
| 497 |
+
"grad_norm": 1.4692142009735107,
|
| 498 |
+
"learning_rate": 1.9848077530122083e-05,
|
| 499 |
+
"loss": 0.2475,
|
| 500 |
+
"step": 69
|
| 501 |
+
},
|
| 502 |
+
{
|
| 503 |
+
"epoch": 0.2865916069600819,
|
| 504 |
+
"grad_norm": 1.5602682828903198,
|
| 505 |
+
"learning_rate": 1.9840207831494903e-05,
|
| 506 |
+
"loss": 0.244,
|
| 507 |
+
"step": 70
|
| 508 |
+
},
|
| 509 |
+
{
|
| 510 |
+
"epoch": 0.2906857727737973,
|
| 511 |
+
"grad_norm": 1.5084633827209473,
|
| 512 |
+
"learning_rate": 1.983214105898757e-05,
|
| 513 |
+
"loss": 0.2442,
|
| 514 |
+
"step": 71
|
| 515 |
+
},
|
| 516 |
+
{
|
| 517 |
+
"epoch": 0.2947799385875128,
|
| 518 |
+
"grad_norm": 1.451074242591858,
|
| 519 |
+
"learning_rate": 1.9823877374156647e-05,
|
| 520 |
+
"loss": 0.2673,
|
| 521 |
+
"step": 72
|
| 522 |
+
},
|
| 523 |
+
{
|
| 524 |
+
"epoch": 0.29887410440122825,
|
| 525 |
+
"grad_norm": 1.4784746170043945,
|
| 526 |
+
"learning_rate": 1.9815416942502346e-05,
|
| 527 |
+
"loss": 0.2441,
|
| 528 |
+
"step": 73
|
| 529 |
+
},
|
| 530 |
+
{
|
| 531 |
+
"epoch": 0.3029682702149437,
|
| 532 |
+
"grad_norm": 1.368421196937561,
|
| 533 |
+
"learning_rate": 1.98067599334652e-05,
|
| 534 |
+
"loss": 0.2439,
|
| 535 |
+
"step": 74
|
| 536 |
+
},
|
| 537 |
+
{
|
| 538 |
+
"epoch": 0.3070624360286592,
|
| 539 |
+
"grad_norm": 1.4379913806915283,
|
| 540 |
+
"learning_rate": 1.979790652042268e-05,
|
| 541 |
+
"loss": 0.2238,
|
| 542 |
+
"step": 75
|
| 543 |
+
},
|
| 544 |
+
{
|
| 545 |
+
"epoch": 0.3111566018423746,
|
| 546 |
+
"grad_norm": 1.5823594331741333,
|
| 547 |
+
"learning_rate": 1.978885688068572e-05,
|
| 548 |
+
"loss": 0.2725,
|
| 549 |
+
"step": 76
|
| 550 |
+
},
|
| 551 |
+
{
|
| 552 |
+
"epoch": 0.31525076765609006,
|
| 553 |
+
"grad_norm": 1.5007753372192383,
|
| 554 |
+
"learning_rate": 1.9779611195495177e-05,
|
| 555 |
+
"loss": 0.2375,
|
| 556 |
+
"step": 77
|
| 557 |
+
},
|
| 558 |
+
{
|
| 559 |
+
"epoch": 0.3193449334698055,
|
| 560 |
+
"grad_norm": 1.473763346672058,
|
| 561 |
+
"learning_rate": 1.977016965001817e-05,
|
| 562 |
+
"loss": 0.2611,
|
| 563 |
+
"step": 78
|
| 564 |
+
},
|
| 565 |
+
{
|
| 566 |
+
"epoch": 0.323439099283521,
|
| 567 |
+
"grad_norm": 1.7358968257904053,
|
| 568 |
+
"learning_rate": 1.976053243334442e-05,
|
| 569 |
+
"loss": 0.2623,
|
| 570 |
+
"step": 79
|
| 571 |
+
},
|
| 572 |
+
{
|
| 573 |
+
"epoch": 0.32753326509723646,
|
| 574 |
+
"grad_norm": 1.5595204830169678,
|
| 575 |
+
"learning_rate": 1.9750699738482403e-05,
|
| 576 |
+
"loss": 0.2676,
|
| 577 |
+
"step": 80
|
| 578 |
+
},
|
| 579 |
+
{
|
| 580 |
+
"epoch": 0.33162743091095187,
|
| 581 |
+
"grad_norm": 1.685775637626648,
|
| 582 |
+
"learning_rate": 1.9740671762355548e-05,
|
| 583 |
+
"loss": 0.267,
|
| 584 |
+
"step": 81
|
| 585 |
+
},
|
| 586 |
+
{
|
| 587 |
+
"epoch": 0.33572159672466734,
|
| 588 |
+
"grad_norm": 1.3360930681228638,
|
| 589 |
+
"learning_rate": 1.973044870579824e-05,
|
| 590 |
+
"loss": 0.2339,
|
| 591 |
+
"step": 82
|
| 592 |
+
},
|
| 593 |
+
{
|
| 594 |
+
"epoch": 0.33572159672466734,
|
| 595 |
+
"eval_loss": 0.27538755536079407,
|
| 596 |
+
"eval_runtime": 5.5418,
|
| 597 |
+
"eval_samples_per_second": 14.255,
|
| 598 |
+
"eval_steps_per_second": 1.804,
|
| 599 |
+
"step": 82
|
| 600 |
+
},
|
| 601 |
+
{
|
| 602 |
+
"epoch": 0.3398157625383828,
|
| 603 |
+
"grad_norm": 1.7223079204559326,
|
| 604 |
+
"learning_rate": 1.972003077355183e-05,
|
| 605 |
+
"loss": 0.2843,
|
| 606 |
+
"step": 83
|
| 607 |
+
},
|
| 608 |
+
{
|
| 609 |
+
"epoch": 0.34390992835209827,
|
| 610 |
+
"grad_norm": 1.5389612913131714,
|
| 611 |
+
"learning_rate": 1.9709418174260523e-05,
|
| 612 |
+
"loss": 0.2604,
|
| 613 |
+
"step": 84
|
| 614 |
+
},
|
| 615 |
+
{
|
| 616 |
+
"epoch": 0.34800409416581374,
|
| 617 |
+
"grad_norm": 1.3990126848220825,
|
| 618 |
+
"learning_rate": 1.9698611120467196e-05,
|
| 619 |
+
"loss": 0.2588,
|
| 620 |
+
"step": 85
|
| 621 |
+
},
|
| 622 |
+
{
|
| 623 |
+
"epoch": 0.35209825997952915,
|
| 624 |
+
"grad_norm": 1.3090544939041138,
|
| 625 |
+
"learning_rate": 1.9687609828609156e-05,
|
| 626 |
+
"loss": 0.2264,
|
| 627 |
+
"step": 86
|
| 628 |
+
},
|
| 629 |
+
{
|
| 630 |
+
"epoch": 0.3561924257932446,
|
| 631 |
+
"grad_norm": 1.3547587394714355,
|
| 632 |
+
"learning_rate": 1.9676414519013782e-05,
|
| 633 |
+
"loss": 0.2436,
|
| 634 |
+
"step": 87
|
| 635 |
+
},
|
| 636 |
+
{
|
| 637 |
+
"epoch": 0.3602865916069601,
|
| 638 |
+
"grad_norm": 1.7848924398422241,
|
| 639 |
+
"learning_rate": 1.966502541589414e-05,
|
| 640 |
+
"loss": 0.2617,
|
| 641 |
+
"step": 88
|
| 642 |
+
},
|
| 643 |
+
{
|
| 644 |
+
"epoch": 0.36438075742067555,
|
| 645 |
+
"grad_norm": 1.450150728225708,
|
| 646 |
+
"learning_rate": 1.965344274734447e-05,
|
| 647 |
+
"loss": 0.2456,
|
| 648 |
+
"step": 89
|
| 649 |
+
},
|
| 650 |
+
{
|
| 651 |
+
"epoch": 0.368474923234391,
|
| 652 |
+
"grad_norm": 1.5955520868301392,
|
| 653 |
+
"learning_rate": 1.9641666745335626e-05,
|
| 654 |
+
"loss": 0.2571,
|
| 655 |
+
"step": 90
|
| 656 |
+
},
|
| 657 |
+
{
|
| 658 |
+
"epoch": 0.3725690890481064,
|
| 659 |
+
"grad_norm": 1.4538159370422363,
|
| 660 |
+
"learning_rate": 1.9629697645710432e-05,
|
| 661 |
+
"loss": 0.2552,
|
| 662 |
+
"step": 91
|
| 663 |
+
},
|
| 664 |
+
{
|
| 665 |
+
"epoch": 0.3766632548618219,
|
| 666 |
+
"grad_norm": 1.4258908033370972,
|
| 667 |
+
"learning_rate": 1.961753568817896e-05,
|
| 668 |
+
"loss": 0.2402,
|
| 669 |
+
"step": 92
|
| 670 |
+
},
|
| 671 |
+
{
|
| 672 |
+
"epoch": 0.38075742067553736,
|
| 673 |
+
"grad_norm": 1.463593602180481,
|
| 674 |
+
"learning_rate": 1.9605181116313725e-05,
|
| 675 |
+
"loss": 0.2612,
|
| 676 |
+
"step": 93
|
| 677 |
+
},
|
| 678 |
+
{
|
| 679 |
+
"epoch": 0.38485158648925283,
|
| 680 |
+
"grad_norm": 1.4867630004882812,
|
| 681 |
+
"learning_rate": 1.9592634177544803e-05,
|
| 682 |
+
"loss": 0.2272,
|
| 683 |
+
"step": 94
|
| 684 |
+
},
|
| 685 |
+
{
|
| 686 |
+
"epoch": 0.3889457523029683,
|
| 687 |
+
"grad_norm": 1.4335721731185913,
|
| 688 |
+
"learning_rate": 1.957989512315489e-05,
|
| 689 |
+
"loss": 0.2562,
|
| 690 |
+
"step": 95
|
| 691 |
+
},
|
| 692 |
+
{
|
| 693 |
+
"epoch": 0.3930399181166837,
|
| 694 |
+
"grad_norm": 1.3976503610610962,
|
| 695 |
+
"learning_rate": 1.9566964208274254e-05,
|
| 696 |
+
"loss": 0.2527,
|
| 697 |
+
"step": 96
|
| 698 |
+
},
|
| 699 |
+
{
|
| 700 |
+
"epoch": 0.3971340839303992,
|
| 701 |
+
"grad_norm": 1.455560564994812,
|
| 702 |
+
"learning_rate": 1.9553841691875632e-05,
|
| 703 |
+
"loss": 0.2617,
|
| 704 |
+
"step": 97
|
| 705 |
+
},
|
| 706 |
+
{
|
| 707 |
+
"epoch": 0.40122824974411464,
|
| 708 |
+
"grad_norm": 1.319207787513733,
|
| 709 |
+
"learning_rate": 1.9540527836769047e-05,
|
| 710 |
+
"loss": 0.251,
|
| 711 |
+
"step": 98
|
| 712 |
+
},
|
| 713 |
+
{
|
| 714 |
+
"epoch": 0.4053224155578301,
|
| 715 |
+
"grad_norm": 1.3503410816192627,
|
| 716 |
+
"learning_rate": 1.9527022909596537e-05,
|
| 717 |
+
"loss": 0.253,
|
| 718 |
+
"step": 99
|
| 719 |
+
},
|
| 720 |
+
{
|
| 721 |
+
"epoch": 0.4094165813715456,
|
| 722 |
+
"grad_norm": 1.472091555595398,
|
| 723 |
+
"learning_rate": 1.951332718082682e-05,
|
| 724 |
+
"loss": 0.2935,
|
| 725 |
+
"step": 100
|
| 726 |
+
},
|
| 727 |
+
{
|
| 728 |
+
"epoch": 0.413510747185261,
|
| 729 |
+
"grad_norm": 1.4811311960220337,
|
| 730 |
+
"learning_rate": 1.9499440924749878e-05,
|
| 731 |
+
"loss": 0.261,
|
| 732 |
+
"step": 101
|
| 733 |
+
},
|
| 734 |
+
{
|
| 735 |
+
"epoch": 0.41760491299897645,
|
| 736 |
+
"grad_norm": 1.595140814781189,
|
| 737 |
+
"learning_rate": 1.9485364419471454e-05,
|
| 738 |
+
"loss": 0.2703,
|
| 739 |
+
"step": 102
|
| 740 |
+
},
|
| 741 |
+
{
|
| 742 |
+
"epoch": 0.4216990788126919,
|
| 743 |
+
"grad_norm": 1.3853557109832764,
|
| 744 |
+
"learning_rate": 1.9471097946907506e-05,
|
| 745 |
+
"loss": 0.2345,
|
| 746 |
+
"step": 103
|
| 747 |
+
},
|
| 748 |
+
{
|
| 749 |
+
"epoch": 0.4257932446264074,
|
| 750 |
+
"grad_norm": 1.5886335372924805,
|
| 751 |
+
"learning_rate": 1.9456641792778527e-05,
|
| 752 |
+
"loss": 0.269,
|
| 753 |
+
"step": 104
|
| 754 |
+
},
|
| 755 |
+
{
|
| 756 |
+
"epoch": 0.42988741044012285,
|
| 757 |
+
"grad_norm": 1.3403784036636353,
|
| 758 |
+
"learning_rate": 1.9441996246603848e-05,
|
| 759 |
+
"loss": 0.234,
|
| 760 |
+
"step": 105
|
| 761 |
+
},
|
| 762 |
+
{
|
| 763 |
+
"epoch": 0.43398157625383826,
|
| 764 |
+
"grad_norm": 1.4540488719940186,
|
| 765 |
+
"learning_rate": 1.9427161601695833e-05,
|
| 766 |
+
"loss": 0.246,
|
| 767 |
+
"step": 106
|
| 768 |
+
},
|
| 769 |
+
{
|
| 770 |
+
"epoch": 0.43807574206755373,
|
| 771 |
+
"grad_norm": 1.5493131875991821,
|
| 772 |
+
"learning_rate": 1.9412138155154e-05,
|
| 773 |
+
"loss": 0.2284,
|
| 774 |
+
"step": 107
|
| 775 |
+
},
|
| 776 |
+
{
|
| 777 |
+
"epoch": 0.4421699078812692,
|
| 778 |
+
"grad_norm": 1.290971279144287,
|
| 779 |
+
"learning_rate": 1.9396926207859085e-05,
|
| 780 |
+
"loss": 0.2392,
|
| 781 |
+
"step": 108
|
| 782 |
+
},
|
| 783 |
+
{
|
| 784 |
+
"epoch": 0.44626407369498466,
|
| 785 |
+
"grad_norm": 1.4140104055404663,
|
| 786 |
+
"learning_rate": 1.9381526064466995e-05,
|
| 787 |
+
"loss": 0.2554,
|
| 788 |
+
"step": 109
|
| 789 |
+
},
|
| 790 |
+
{
|
| 791 |
+
"epoch": 0.4503582395087001,
|
| 792 |
+
"grad_norm": 1.7200373411178589,
|
| 793 |
+
"learning_rate": 1.9365938033402715e-05,
|
| 794 |
+
"loss": 0.2359,
|
| 795 |
+
"step": 110
|
| 796 |
+
},
|
| 797 |
+
{
|
| 798 |
+
"epoch": 0.45445240532241554,
|
| 799 |
+
"grad_norm": 1.2797805070877075,
|
| 800 |
+
"learning_rate": 1.9350162426854152e-05,
|
| 801 |
+
"loss": 0.2321,
|
| 802 |
+
"step": 111
|
| 803 |
+
},
|
| 804 |
+
{
|
| 805 |
+
"epoch": 0.458546571136131,
|
| 806 |
+
"grad_norm": 1.326955795288086,
|
| 807 |
+
"learning_rate": 1.933419956076584e-05,
|
| 808 |
+
"loss": 0.2516,
|
| 809 |
+
"step": 112
|
| 810 |
+
},
|
| 811 |
+
{
|
| 812 |
+
"epoch": 0.4626407369498465,
|
| 813 |
+
"grad_norm": 1.510201334953308,
|
| 814 |
+
"learning_rate": 1.9318049754832656e-05,
|
| 815 |
+
"loss": 0.2467,
|
| 816 |
+
"step": 113
|
| 817 |
+
},
|
| 818 |
+
{
|
| 819 |
+
"epoch": 0.46673490276356194,
|
| 820 |
+
"grad_norm": 2.9965062141418457,
|
| 821 |
+
"learning_rate": 1.9301713332493386e-05,
|
| 822 |
+
"loss": 0.2587,
|
| 823 |
+
"step": 114
|
| 824 |
+
},
|
| 825 |
+
{
|
| 826 |
+
"epoch": 0.47082906857727735,
|
| 827 |
+
"grad_norm": 1.3663560152053833,
|
| 828 |
+
"learning_rate": 1.9285190620924267e-05,
|
| 829 |
+
"loss": 0.2535,
|
| 830 |
+
"step": 115
|
| 831 |
+
},
|
| 832 |
+
{
|
| 833 |
+
"epoch": 0.4749232343909928,
|
| 834 |
+
"grad_norm": 1.1917448043823242,
|
| 835 |
+
"learning_rate": 1.926848195103242e-05,
|
| 836 |
+
"loss": 0.2292,
|
| 837 |
+
"step": 116
|
| 838 |
+
},
|
| 839 |
+
{
|
| 840 |
+
"epoch": 0.4790174002047083,
|
| 841 |
+
"grad_norm": 1.3093336820602417,
|
| 842 |
+
"learning_rate": 1.925158765744924e-05,
|
| 843 |
+
"loss": 0.229,
|
| 844 |
+
"step": 117
|
| 845 |
+
},
|
| 846 |
+
{
|
| 847 |
+
"epoch": 0.48311156601842375,
|
| 848 |
+
"grad_norm": 1.5121235847473145,
|
| 849 |
+
"learning_rate": 1.923450807852367e-05,
|
| 850 |
+
"loss": 0.2527,
|
| 851 |
+
"step": 118
|
| 852 |
+
},
|
| 853 |
+
{
|
| 854 |
+
"epoch": 0.4872057318321392,
|
| 855 |
+
"grad_norm": 1.461378812789917,
|
| 856 |
+
"learning_rate": 1.9217243556315445e-05,
|
| 857 |
+
"loss": 0.2631,
|
| 858 |
+
"step": 119
|
| 859 |
+
},
|
| 860 |
+
{
|
| 861 |
+
"epoch": 0.49129989764585463,
|
| 862 |
+
"grad_norm": 1.4177104234695435,
|
| 863 |
+
"learning_rate": 1.9199794436588244e-05,
|
| 864 |
+
"loss": 0.2378,
|
| 865 |
+
"step": 120
|
| 866 |
+
},
|
| 867 |
+
{
|
| 868 |
+
"epoch": 0.4953940634595701,
|
| 869 |
+
"grad_norm": 1.5456838607788086,
|
| 870 |
+
"learning_rate": 1.9182161068802742e-05,
|
| 871 |
+
"loss": 0.2491,
|
| 872 |
+
"step": 121
|
| 873 |
+
},
|
| 874 |
+
{
|
| 875 |
+
"epoch": 0.49948822927328557,
|
| 876 |
+
"grad_norm": 1.554958701133728,
|
| 877 |
+
"learning_rate": 1.916434380610963e-05,
|
| 878 |
+
"loss": 0.2461,
|
| 879 |
+
"step": 122
|
| 880 |
+
},
|
| 881 |
+
{
|
| 882 |
+
"epoch": 0.503582395087001,
|
| 883 |
+
"grad_norm": 1.4894706010818481,
|
| 884 |
+
"learning_rate": 1.9146343005342546e-05,
|
| 885 |
+
"loss": 0.2823,
|
| 886 |
+
"step": 123
|
| 887 |
+
},
|
| 888 |
+
{
|
| 889 |
+
"epoch": 0.5076765609007164,
|
| 890 |
+
"grad_norm": 1.359287142753601,
|
| 891 |
+
"learning_rate": 1.912815902701091e-05,
|
| 892 |
+
"loss": 0.2366,
|
| 893 |
+
"step": 124
|
| 894 |
+
},
|
| 895 |
+
{
|
| 896 |
+
"epoch": 0.5117707267144319,
|
| 897 |
+
"grad_norm": 1.4244722127914429,
|
| 898 |
+
"learning_rate": 1.9109792235292715e-05,
|
| 899 |
+
"loss": 0.2398,
|
| 900 |
+
"step": 125
|
| 901 |
+
},
|
| 902 |
+
{
|
| 903 |
+
"epoch": 0.5158648925281474,
|
| 904 |
+
"grad_norm": 1.4032812118530273,
|
| 905 |
+
"learning_rate": 1.909124299802724e-05,
|
| 906 |
+
"loss": 0.2601,
|
| 907 |
+
"step": 126
|
| 908 |
+
},
|
| 909 |
+
{
|
| 910 |
+
"epoch": 0.5199590583418628,
|
| 911 |
+
"grad_norm": 1.5199010372161865,
|
| 912 |
+
"learning_rate": 1.9072511686707663e-05,
|
| 913 |
+
"loss": 0.2458,
|
| 914 |
+
"step": 127
|
| 915 |
+
},
|
| 916 |
+
{
|
| 917 |
+
"epoch": 0.5240532241555783,
|
| 918 |
+
"grad_norm": 1.4342416524887085,
|
| 919 |
+
"learning_rate": 1.9053598676473656e-05,
|
| 920 |
+
"loss": 0.241,
|
| 921 |
+
"step": 128
|
| 922 |
+
},
|
| 923 |
+
{
|
| 924 |
+
"epoch": 0.5281473899692938,
|
| 925 |
+
"grad_norm": 1.338181972503662,
|
| 926 |
+
"learning_rate": 1.9034504346103825e-05,
|
| 927 |
+
"loss": 0.2508,
|
| 928 |
+
"step": 129
|
| 929 |
+
},
|
| 930 |
+
{
|
| 931 |
+
"epoch": 0.5322415557830092,
|
| 932 |
+
"grad_norm": 1.492775559425354,
|
| 933 |
+
"learning_rate": 1.9015229078008163e-05,
|
| 934 |
+
"loss": 0.2626,
|
| 935 |
+
"step": 130
|
| 936 |
+
},
|
| 937 |
+
{
|
| 938 |
+
"epoch": 0.5363357215967247,
|
| 939 |
+
"grad_norm": 1.3123077154159546,
|
| 940 |
+
"learning_rate": 1.8995773258220374e-05,
|
| 941 |
+
"loss": 0.258,
|
| 942 |
+
"step": 131
|
| 943 |
+
},
|
| 944 |
+
{
|
| 945 |
+
"epoch": 0.5404298874104401,
|
| 946 |
+
"grad_norm": 1.4001896381378174,
|
| 947 |
+
"learning_rate": 1.8976137276390145e-05,
|
| 948 |
+
"loss": 0.2425,
|
| 949 |
+
"step": 132
|
| 950 |
+
},
|
| 951 |
+
{
|
| 952 |
+
"epoch": 0.5445240532241555,
|
| 953 |
+
"grad_norm": 1.3989671468734741,
|
| 954 |
+
"learning_rate": 1.8956321525775337e-05,
|
| 955 |
+
"loss": 0.2781,
|
| 956 |
+
"step": 133
|
| 957 |
+
},
|
| 958 |
+
{
|
| 959 |
+
"epoch": 0.548618219037871,
|
| 960 |
+
"grad_norm": 1.260289192199707,
|
| 961 |
+
"learning_rate": 1.8936326403234125e-05,
|
| 962 |
+
"loss": 0.2432,
|
| 963 |
+
"step": 134
|
| 964 |
+
},
|
| 965 |
+
{
|
| 966 |
+
"epoch": 0.5527123848515865,
|
| 967 |
+
"grad_norm": 1.308370590209961,
|
| 968 |
+
"learning_rate": 1.891615230921703e-05,
|
| 969 |
+
"loss": 0.2408,
|
| 970 |
+
"step": 135
|
| 971 |
+
},
|
| 972 |
+
{
|
| 973 |
+
"epoch": 0.5568065506653019,
|
| 974 |
+
"grad_norm": 1.2668206691741943,
|
| 975 |
+
"learning_rate": 1.8895799647758912e-05,
|
| 976 |
+
"loss": 0.2408,
|
| 977 |
+
"step": 136
|
| 978 |
+
},
|
| 979 |
+
{
|
| 980 |
+
"epoch": 0.5609007164790174,
|
| 981 |
+
"grad_norm": 1.4105634689331055,
|
| 982 |
+
"learning_rate": 1.8875268826470875e-05,
|
| 983 |
+
"loss": 0.2688,
|
| 984 |
+
"step": 137
|
| 985 |
+
},
|
| 986 |
+
{
|
| 987 |
+
"epoch": 0.5649948822927329,
|
| 988 |
+
"grad_norm": 1.3877664804458618,
|
| 989 |
+
"learning_rate": 1.8854560256532098e-05,
|
| 990 |
+
"loss": 0.2379,
|
| 991 |
+
"step": 138
|
| 992 |
+
},
|
| 993 |
+
{
|
| 994 |
+
"epoch": 0.5690890481064483,
|
| 995 |
+
"grad_norm": 1.2643476724624634,
|
| 996 |
+
"learning_rate": 1.8833674352681613e-05,
|
| 997 |
+
"loss": 0.2375,
|
| 998 |
+
"step": 139
|
| 999 |
+
},
|
| 1000 |
+
{
|
| 1001 |
+
"epoch": 0.5731832139201638,
|
| 1002 |
+
"grad_norm": 1.6310402154922485,
|
| 1003 |
+
"learning_rate": 1.881261153320999e-05,
|
| 1004 |
+
"loss": 0.2435,
|
| 1005 |
+
"step": 140
|
| 1006 |
+
},
|
| 1007 |
+
{
|
| 1008 |
+
"epoch": 0.5772773797338793,
|
| 1009 |
+
"grad_norm": 1.35072660446167,
|
| 1010 |
+
"learning_rate": 1.879137221995095e-05,
|
| 1011 |
+
"loss": 0.2293,
|
| 1012 |
+
"step": 141
|
| 1013 |
+
},
|
| 1014 |
+
{
|
| 1015 |
+
"epoch": 0.5813715455475946,
|
| 1016 |
+
"grad_norm": 1.409683346748352,
|
| 1017 |
+
"learning_rate": 1.8769956838272937e-05,
|
| 1018 |
+
"loss": 0.2584,
|
| 1019 |
+
"step": 142
|
| 1020 |
+
},
|
| 1021 |
+
{
|
| 1022 |
+
"epoch": 0.5854657113613101,
|
| 1023 |
+
"grad_norm": 1.4319274425506592,
|
| 1024 |
+
"learning_rate": 1.8748365817070586e-05,
|
| 1025 |
+
"loss": 0.2669,
|
| 1026 |
+
"step": 143
|
| 1027 |
+
},
|
| 1028 |
+
{
|
| 1029 |
+
"epoch": 0.5895598771750256,
|
| 1030 |
+
"grad_norm": 1.4259189367294312,
|
| 1031 |
+
"learning_rate": 1.8726599588756144e-05,
|
| 1032 |
+
"loss": 0.2447,
|
| 1033 |
+
"step": 144
|
| 1034 |
+
},
|
| 1035 |
+
{
|
| 1036 |
+
"epoch": 0.593654042988741,
|
| 1037 |
+
"grad_norm": 1.4267385005950928,
|
| 1038 |
+
"learning_rate": 1.8704658589250795e-05,
|
| 1039 |
+
"loss": 0.2567,
|
| 1040 |
+
"step": 145
|
| 1041 |
+
},
|
| 1042 |
+
{
|
| 1043 |
+
"epoch": 0.5977482088024565,
|
| 1044 |
+
"grad_norm": 1.4896032810211182,
|
| 1045 |
+
"learning_rate": 1.868254325797594e-05,
|
| 1046 |
+
"loss": 0.2363,
|
| 1047 |
+
"step": 146
|
| 1048 |
+
},
|
| 1049 |
+
{
|
| 1050 |
+
"epoch": 0.601842374616172,
|
| 1051 |
+
"grad_norm": 1.355659008026123,
|
| 1052 |
+
"learning_rate": 1.866025403784439e-05,
|
| 1053 |
+
"loss": 0.2481,
|
| 1054 |
+
"step": 147
|
| 1055 |
+
},
|
| 1056 |
+
{
|
| 1057 |
+
"epoch": 0.6059365404298874,
|
| 1058 |
+
"grad_norm": 1.2849416732788086,
|
| 1059 |
+
"learning_rate": 1.8637791375251505e-05,
|
| 1060 |
+
"loss": 0.2631,
|
| 1061 |
+
"step": 148
|
| 1062 |
+
},
|
| 1063 |
+
{
|
| 1064 |
+
"epoch": 0.6100307062436029,
|
| 1065 |
+
"grad_norm": 1.279733419418335,
|
| 1066 |
+
"learning_rate": 1.8615155720066247e-05,
|
| 1067 |
+
"loss": 0.2487,
|
| 1068 |
+
"step": 149
|
| 1069 |
+
},
|
| 1070 |
+
{
|
| 1071 |
+
"epoch": 0.6141248720573184,
|
| 1072 |
+
"grad_norm": 1.370506763458252,
|
| 1073 |
+
"learning_rate": 1.859234752562217e-05,
|
| 1074 |
+
"loss": 0.245,
|
| 1075 |
+
"step": 150
|
| 1076 |
+
},
|
| 1077 |
+
{
|
| 1078 |
+
"epoch": 0.6182190378710338,
|
| 1079 |
+
"grad_norm": 1.352271556854248,
|
| 1080 |
+
"learning_rate": 1.8569367248708343e-05,
|
| 1081 |
+
"loss": 0.227,
|
| 1082 |
+
"step": 151
|
| 1083 |
+
},
|
| 1084 |
+
{
|
| 1085 |
+
"epoch": 0.6223132036847492,
|
| 1086 |
+
"grad_norm": 1.3176748752593994,
|
| 1087 |
+
"learning_rate": 1.8546215349560204e-05,
|
| 1088 |
+
"loss": 0.2484,
|
| 1089 |
+
"step": 152
|
| 1090 |
+
},
|
| 1091 |
+
{
|
| 1092 |
+
"epoch": 0.6264073694984647,
|
| 1093 |
+
"grad_norm": 1.386770486831665,
|
| 1094 |
+
"learning_rate": 1.8522892291850335e-05,
|
| 1095 |
+
"loss": 0.257,
|
| 1096 |
+
"step": 153
|
| 1097 |
+
},
|
| 1098 |
+
{
|
| 1099 |
+
"epoch": 0.6305015353121801,
|
| 1100 |
+
"grad_norm": 1.5251948833465576,
|
| 1101 |
+
"learning_rate": 1.849939854267919e-05,
|
| 1102 |
+
"loss": 0.2727,
|
| 1103 |
+
"step": 154
|
| 1104 |
+
},
|
| 1105 |
+
{
|
| 1106 |
+
"epoch": 0.6345957011258956,
|
| 1107 |
+
"grad_norm": 1.378936767578125,
|
| 1108 |
+
"learning_rate": 1.847573457256571e-05,
|
| 1109 |
+
"loss": 0.2337,
|
| 1110 |
+
"step": 155
|
| 1111 |
+
},
|
| 1112 |
+
{
|
| 1113 |
+
"epoch": 0.638689866939611,
|
| 1114 |
+
"grad_norm": 1.3500293493270874,
|
| 1115 |
+
"learning_rate": 1.845190085543795e-05,
|
| 1116 |
+
"loss": 0.2618,
|
| 1117 |
+
"step": 156
|
| 1118 |
+
},
|
| 1119 |
+
{
|
| 1120 |
+
"epoch": 0.6427840327533265,
|
| 1121 |
+
"grad_norm": 1.4462950229644775,
|
| 1122 |
+
"learning_rate": 1.8427897868623535e-05,
|
| 1123 |
+
"loss": 0.2588,
|
| 1124 |
+
"step": 157
|
| 1125 |
+
},
|
| 1126 |
+
{
|
| 1127 |
+
"epoch": 0.646878198567042,
|
| 1128 |
+
"grad_norm": 1.2208290100097656,
|
| 1129 |
+
"learning_rate": 1.840372609284013e-05,
|
| 1130 |
+
"loss": 0.2927,
|
| 1131 |
+
"step": 158
|
| 1132 |
+
},
|
| 1133 |
+
{
|
| 1134 |
+
"epoch": 0.6509723643807575,
|
| 1135 |
+
"grad_norm": 1.3487396240234375,
|
| 1136 |
+
"learning_rate": 1.8379386012185813e-05,
|
| 1137 |
+
"loss": 0.2417,
|
| 1138 |
+
"step": 159
|
| 1139 |
+
},
|
| 1140 |
+
{
|
| 1141 |
+
"epoch": 0.6550665301944729,
|
| 1142 |
+
"grad_norm": 1.2655378580093384,
|
| 1143 |
+
"learning_rate": 1.8354878114129368e-05,
|
| 1144 |
+
"loss": 0.2428,
|
| 1145 |
+
"step": 160
|
| 1146 |
+
},
|
| 1147 |
+
{
|
| 1148 |
+
"epoch": 0.6591606960081884,
|
| 1149 |
+
"grad_norm": 1.181028962135315,
|
| 1150 |
+
"learning_rate": 1.8330202889500518e-05,
|
| 1151 |
+
"loss": 0.2397,
|
| 1152 |
+
"step": 161
|
| 1153 |
+
},
|
| 1154 |
+
{
|
| 1155 |
+
"epoch": 0.6632548618219037,
|
| 1156 |
+
"grad_norm": 1.3897309303283691,
|
| 1157 |
+
"learning_rate": 1.8305360832480118e-05,
|
| 1158 |
+
"loss": 0.2276,
|
| 1159 |
+
"step": 162
|
| 1160 |
+
},
|
| 1161 |
+
{
|
| 1162 |
+
"epoch": 0.6673490276356192,
|
| 1163 |
+
"grad_norm": 1.340640902519226,
|
| 1164 |
+
"learning_rate": 1.8280352440590236e-05,
|
| 1165 |
+
"loss": 0.2375,
|
| 1166 |
+
"step": 163
|
| 1167 |
+
},
|
| 1168 |
+
{
|
| 1169 |
+
"epoch": 0.6714431934493347,
|
| 1170 |
+
"grad_norm": 1.5388420820236206,
|
| 1171 |
+
"learning_rate": 1.82551782146842e-05,
|
| 1172 |
+
"loss": 0.2318,
|
| 1173 |
+
"step": 164
|
| 1174 |
+
},
|
| 1175 |
+
{
|
| 1176 |
+
"epoch": 0.6714431934493347,
|
| 1177 |
+
"eval_loss": 0.2667195796966553,
|
| 1178 |
+
"eval_runtime": 6.096,
|
| 1179 |
+
"eval_samples_per_second": 12.959,
|
| 1180 |
+
"eval_steps_per_second": 1.64,
|
| 1181 |
+
"step": 164
|
| 1182 |
+
},
|
| 1183 |
+
{
|
| 1184 |
+
"epoch": 0.6755373592630501,
|
| 1185 |
+
"grad_norm": 1.4711631536483765,
|
| 1186 |
+
"learning_rate": 1.8229838658936566e-05,
|
| 1187 |
+
"loss": 0.2367,
|
| 1188 |
+
"step": 165
|
| 1189 |
+
},
|
| 1190 |
+
{
|
| 1191 |
+
"epoch": 0.6796315250767656,
|
| 1192 |
+
"grad_norm": 1.3367588520050049,
|
| 1193 |
+
"learning_rate": 1.8204334280833005e-05,
|
| 1194 |
+
"loss": 0.2652,
|
| 1195 |
+
"step": 166
|
| 1196 |
+
},
|
| 1197 |
+
{
|
| 1198 |
+
"epoch": 0.6837256908904811,
|
| 1199 |
+
"grad_norm": 1.5473802089691162,
|
| 1200 |
+
"learning_rate": 1.817866559116017e-05,
|
| 1201 |
+
"loss": 0.2693,
|
| 1202 |
+
"step": 167
|
| 1203 |
+
},
|
| 1204 |
+
{
|
| 1205 |
+
"epoch": 0.6878198567041965,
|
| 1206 |
+
"grad_norm": 1.3539572954177856,
|
| 1207 |
+
"learning_rate": 1.8152833103995443e-05,
|
| 1208 |
+
"loss": 0.2431,
|
| 1209 |
+
"step": 168
|
| 1210 |
+
},
|
| 1211 |
+
{
|
| 1212 |
+
"epoch": 0.691914022517912,
|
| 1213 |
+
"grad_norm": 1.3012574911117554,
|
| 1214 |
+
"learning_rate": 1.8126837336696645e-05,
|
| 1215 |
+
"loss": 0.2602,
|
| 1216 |
+
"step": 169
|
| 1217 |
+
},
|
| 1218 |
+
{
|
| 1219 |
+
"epoch": 0.6960081883316275,
|
| 1220 |
+
"grad_norm": 1.3125128746032715,
|
| 1221 |
+
"learning_rate": 1.8100678809891668e-05,
|
| 1222 |
+
"loss": 0.2426,
|
| 1223 |
+
"step": 170
|
| 1224 |
+
},
|
| 1225 |
+
{
|
| 1226 |
+
"epoch": 0.7001023541453428,
|
| 1227 |
+
"grad_norm": 1.2353239059448242,
|
| 1228 |
+
"learning_rate": 1.807435804746807e-05,
|
| 1229 |
+
"loss": 0.2176,
|
| 1230 |
+
"step": 171
|
| 1231 |
+
},
|
| 1232 |
+
{
|
| 1233 |
+
"epoch": 0.7041965199590583,
|
| 1234 |
+
"grad_norm": 1.268622636795044,
|
| 1235 |
+
"learning_rate": 1.8047875576562556e-05,
|
| 1236 |
+
"loss": 0.2495,
|
| 1237 |
+
"step": 172
|
| 1238 |
+
},
|
| 1239 |
+
{
|
| 1240 |
+
"epoch": 0.7082906857727738,
|
| 1241 |
+
"grad_norm": 1.3845950365066528,
|
| 1242 |
+
"learning_rate": 1.802123192755044e-05,
|
| 1243 |
+
"loss": 0.2643,
|
| 1244 |
+
"step": 173
|
| 1245 |
+
},
|
| 1246 |
+
{
|
| 1247 |
+
"epoch": 0.7123848515864892,
|
| 1248 |
+
"grad_norm": 1.2450510263442993,
|
| 1249 |
+
"learning_rate": 1.7994427634035016e-05,
|
| 1250 |
+
"loss": 0.2445,
|
| 1251 |
+
"step": 174
|
| 1252 |
+
},
|
| 1253 |
+
{
|
| 1254 |
+
"epoch": 0.7164790174002047,
|
| 1255 |
+
"grad_norm": 1.545483946800232,
|
| 1256 |
+
"learning_rate": 1.796746323283686e-05,
|
| 1257 |
+
"loss": 0.2594,
|
| 1258 |
+
"step": 175
|
| 1259 |
+
},
|
| 1260 |
+
{
|
| 1261 |
+
"epoch": 0.7205731832139202,
|
| 1262 |
+
"grad_norm": 1.3044480085372925,
|
| 1263 |
+
"learning_rate": 1.7940339263983112e-05,
|
| 1264 |
+
"loss": 0.2563,
|
| 1265 |
+
"step": 176
|
| 1266 |
+
},
|
| 1267 |
+
{
|
| 1268 |
+
"epoch": 0.7246673490276356,
|
| 1269 |
+
"grad_norm": 1.288320779800415,
|
| 1270 |
+
"learning_rate": 1.791305627069662e-05,
|
| 1271 |
+
"loss": 0.2478,
|
| 1272 |
+
"step": 177
|
| 1273 |
+
},
|
| 1274 |
+
{
|
| 1275 |
+
"epoch": 0.7287615148413511,
|
| 1276 |
+
"grad_norm": 1.2802083492279053,
|
| 1277 |
+
"learning_rate": 1.7885614799385086e-05,
|
| 1278 |
+
"loss": 0.2331,
|
| 1279 |
+
"step": 178
|
| 1280 |
+
},
|
| 1281 |
+
{
|
| 1282 |
+
"epoch": 0.7328556806550666,
|
| 1283 |
+
"grad_norm": 1.3979520797729492,
|
| 1284 |
+
"learning_rate": 1.785801539963012e-05,
|
| 1285 |
+
"loss": 0.2458,
|
| 1286 |
+
"step": 179
|
| 1287 |
+
},
|
| 1288 |
+
{
|
| 1289 |
+
"epoch": 0.736949846468782,
|
| 1290 |
+
"grad_norm": 1.2247169017791748,
|
| 1291 |
+
"learning_rate": 1.7830258624176224e-05,
|
| 1292 |
+
"loss": 0.2132,
|
| 1293 |
+
"step": 180
|
| 1294 |
+
},
|
| 1295 |
+
{
|
| 1296 |
+
"epoch": 0.7410440122824974,
|
| 1297 |
+
"grad_norm": 1.4145004749298096,
|
| 1298 |
+
"learning_rate": 1.7802345028919728e-05,
|
| 1299 |
+
"loss": 0.2402,
|
| 1300 |
+
"step": 181
|
| 1301 |
+
},
|
| 1302 |
+
{
|
| 1303 |
+
"epoch": 0.7451381780962129,
|
| 1304 |
+
"grad_norm": 1.5720893144607544,
|
| 1305 |
+
"learning_rate": 1.777427517289766e-05,
|
| 1306 |
+
"loss": 0.258,
|
| 1307 |
+
"step": 182
|
| 1308 |
+
},
|
| 1309 |
+
{
|
| 1310 |
+
"epoch": 0.7492323439099283,
|
| 1311 |
+
"grad_norm": 1.272928237915039,
|
| 1312 |
+
"learning_rate": 1.7746049618276545e-05,
|
| 1313 |
+
"loss": 0.2501,
|
| 1314 |
+
"step": 183
|
| 1315 |
+
},
|
| 1316 |
+
{
|
| 1317 |
+
"epoch": 0.7533265097236438,
|
| 1318 |
+
"grad_norm": 1.4003905057907104,
|
| 1319 |
+
"learning_rate": 1.7717668930341152e-05,
|
| 1320 |
+
"loss": 0.2567,
|
| 1321 |
+
"step": 184
|
| 1322 |
+
},
|
| 1323 |
+
{
|
| 1324 |
+
"epoch": 0.7574206755373593,
|
| 1325 |
+
"grad_norm": 1.4310050010681152,
|
| 1326 |
+
"learning_rate": 1.768913367748316e-05,
|
| 1327 |
+
"loss": 0.2443,
|
| 1328 |
+
"step": 185
|
| 1329 |
+
},
|
| 1330 |
+
{
|
| 1331 |
+
"epoch": 0.7615148413510747,
|
| 1332 |
+
"grad_norm": 1.480718731880188,
|
| 1333 |
+
"learning_rate": 1.766044443118978e-05,
|
| 1334 |
+
"loss": 0.2564,
|
| 1335 |
+
"step": 186
|
| 1336 |
+
},
|
| 1337 |
+
{
|
| 1338 |
+
"epoch": 0.7656090071647902,
|
| 1339 |
+
"grad_norm": 1.331586480140686,
|
| 1340 |
+
"learning_rate": 1.7631601766032337e-05,
|
| 1341 |
+
"loss": 0.2467,
|
| 1342 |
+
"step": 187
|
| 1343 |
+
},
|
| 1344 |
+
{
|
| 1345 |
+
"epoch": 0.7697031729785057,
|
| 1346 |
+
"grad_norm": 1.2713260650634766,
|
| 1347 |
+
"learning_rate": 1.7602606259654704e-05,
|
| 1348 |
+
"loss": 0.2406,
|
| 1349 |
+
"step": 188
|
| 1350 |
+
},
|
| 1351 |
+
{
|
| 1352 |
+
"epoch": 0.7737973387922211,
|
| 1353 |
+
"grad_norm": 1.4929317235946655,
|
| 1354 |
+
"learning_rate": 1.7573458492761802e-05,
|
| 1355 |
+
"loss": 0.2515,
|
| 1356 |
+
"step": 189
|
| 1357 |
+
},
|
| 1358 |
+
{
|
| 1359 |
+
"epoch": 0.7778915046059366,
|
| 1360 |
+
"grad_norm": 1.117374062538147,
|
| 1361 |
+
"learning_rate": 1.7544159049107902e-05,
|
| 1362 |
+
"loss": 0.2165,
|
| 1363 |
+
"step": 190
|
| 1364 |
+
},
|
| 1365 |
+
{
|
| 1366 |
+
"epoch": 0.781985670419652,
|
| 1367 |
+
"grad_norm": 1.2868603467941284,
|
| 1368 |
+
"learning_rate": 1.7514708515485002e-05,
|
| 1369 |
+
"loss": 0.2469,
|
| 1370 |
+
"step": 191
|
| 1371 |
+
},
|
| 1372 |
+
{
|
| 1373 |
+
"epoch": 0.7860798362333674,
|
| 1374 |
+
"grad_norm": 1.3611894845962524,
|
| 1375 |
+
"learning_rate": 1.7485107481711014e-05,
|
| 1376 |
+
"loss": 0.2468,
|
| 1377 |
+
"step": 192
|
| 1378 |
+
},
|
| 1379 |
+
{
|
| 1380 |
+
"epoch": 0.7901740020470829,
|
| 1381 |
+
"grad_norm": 1.3682395219802856,
|
| 1382 |
+
"learning_rate": 1.7455356540617988e-05,
|
| 1383 |
+
"loss": 0.2548,
|
| 1384 |
+
"step": 193
|
| 1385 |
+
},
|
| 1386 |
+
{
|
| 1387 |
+
"epoch": 0.7942681678607983,
|
| 1388 |
+
"grad_norm": 1.2504215240478516,
|
| 1389 |
+
"learning_rate": 1.7425456288040236e-05,
|
| 1390 |
+
"loss": 0.2563,
|
| 1391 |
+
"step": 194
|
| 1392 |
+
},
|
| 1393 |
+
{
|
| 1394 |
+
"epoch": 0.7983623336745138,
|
| 1395 |
+
"grad_norm": 1.3082585334777832,
|
| 1396 |
+
"learning_rate": 1.7395407322802374e-05,
|
| 1397 |
+
"loss": 0.232,
|
| 1398 |
+
"step": 195
|
| 1399 |
+
},
|
| 1400 |
+
{
|
| 1401 |
+
"epoch": 0.8024564994882293,
|
| 1402 |
+
"grad_norm": 1.409508466720581,
|
| 1403 |
+
"learning_rate": 1.736521024670737e-05,
|
| 1404 |
+
"loss": 0.2438,
|
| 1405 |
+
"step": 196
|
| 1406 |
+
},
|
| 1407 |
+
{
|
| 1408 |
+
"epoch": 0.8065506653019447,
|
| 1409 |
+
"grad_norm": 1.1714893579483032,
|
| 1410 |
+
"learning_rate": 1.733486566452446e-05,
|
| 1411 |
+
"loss": 0.2201,
|
| 1412 |
+
"step": 197
|
| 1413 |
+
},
|
| 1414 |
+
{
|
| 1415 |
+
"epoch": 0.8106448311156602,
|
| 1416 |
+
"grad_norm": 1.3167288303375244,
|
| 1417 |
+
"learning_rate": 1.7304374183977032e-05,
|
| 1418 |
+
"loss": 0.2359,
|
| 1419 |
+
"step": 198
|
| 1420 |
+
},
|
| 1421 |
+
{
|
| 1422 |
+
"epoch": 0.8147389969293757,
|
| 1423 |
+
"grad_norm": 1.2892719507217407,
|
| 1424 |
+
"learning_rate": 1.7273736415730488e-05,
|
| 1425 |
+
"loss": 0.2373,
|
| 1426 |
+
"step": 199
|
| 1427 |
+
},
|
| 1428 |
+
{
|
| 1429 |
+
"epoch": 0.8188331627430911,
|
| 1430 |
+
"grad_norm": 1.2318534851074219,
|
| 1431 |
+
"learning_rate": 1.7242952973379983e-05,
|
| 1432 |
+
"loss": 0.2493,
|
| 1433 |
+
"step": 200
|
| 1434 |
+
},
|
| 1435 |
+
{
|
| 1436 |
+
"epoch": 0.8229273285568065,
|
| 1437 |
+
"grad_norm": 1.2666089534759521,
|
| 1438 |
+
"learning_rate": 1.7212024473438145e-05,
|
| 1439 |
+
"loss": 0.2335,
|
| 1440 |
+
"step": 201
|
| 1441 |
+
},
|
| 1442 |
+
{
|
| 1443 |
+
"epoch": 0.827021494370522,
|
| 1444 |
+
"grad_norm": 1.3021701574325562,
|
| 1445 |
+
"learning_rate": 1.7180951535322742e-05,
|
| 1446 |
+
"loss": 0.2457,
|
| 1447 |
+
"step": 202
|
| 1448 |
+
},
|
| 1449 |
+
{
|
| 1450 |
+
"epoch": 0.8311156601842374,
|
| 1451 |
+
"grad_norm": 1.2390035390853882,
|
| 1452 |
+
"learning_rate": 1.7149734781344247e-05,
|
| 1453 |
+
"loss": 0.2317,
|
| 1454 |
+
"step": 203
|
| 1455 |
+
},
|
| 1456 |
+
{
|
| 1457 |
+
"epoch": 0.8352098259979529,
|
| 1458 |
+
"grad_norm": 1.373651146888733,
|
| 1459 |
+
"learning_rate": 1.7118374836693407e-05,
|
| 1460 |
+
"loss": 0.2477,
|
| 1461 |
+
"step": 204
|
| 1462 |
+
},
|
| 1463 |
+
{
|
| 1464 |
+
"epoch": 0.8393039918116684,
|
| 1465 |
+
"grad_norm": 1.4125158786773682,
|
| 1466 |
+
"learning_rate": 1.7086872329428702e-05,
|
| 1467 |
+
"loss": 0.2716,
|
| 1468 |
+
"step": 205
|
| 1469 |
+
},
|
| 1470 |
+
{
|
| 1471 |
+
"epoch": 0.8433981576253838,
|
| 1472 |
+
"grad_norm": 1.3470803499221802,
|
| 1473 |
+
"learning_rate": 1.705522789046377e-05,
|
| 1474 |
+
"loss": 0.264,
|
| 1475 |
+
"step": 206
|
| 1476 |
+
},
|
| 1477 |
+
{
|
| 1478 |
+
"epoch": 0.8474923234390993,
|
| 1479 |
+
"grad_norm": 1.419498324394226,
|
| 1480 |
+
"learning_rate": 1.7023442153554776e-05,
|
| 1481 |
+
"loss": 0.2626,
|
| 1482 |
+
"step": 207
|
| 1483 |
+
},
|
| 1484 |
+
{
|
| 1485 |
+
"epoch": 0.8515864892528148,
|
| 1486 |
+
"grad_norm": 1.4023360013961792,
|
| 1487 |
+
"learning_rate": 1.6991515755287715e-05,
|
| 1488 |
+
"loss": 0.2786,
|
| 1489 |
+
"step": 208
|
| 1490 |
+
},
|
| 1491 |
+
{
|
| 1492 |
+
"epoch": 0.8556806550665302,
|
| 1493 |
+
"grad_norm": 1.3539841175079346,
|
| 1494 |
+
"learning_rate": 1.695944933506567e-05,
|
| 1495 |
+
"loss": 0.2623,
|
| 1496 |
+
"step": 209
|
| 1497 |
+
},
|
| 1498 |
+
{
|
| 1499 |
+
"epoch": 0.8597748208802457,
|
| 1500 |
+
"grad_norm": 1.4278448820114136,
|
| 1501 |
+
"learning_rate": 1.6927243535095995e-05,
|
| 1502 |
+
"loss": 0.2491,
|
| 1503 |
+
"step": 210
|
| 1504 |
+
},
|
| 1505 |
+
{
|
| 1506 |
+
"epoch": 0.8638689866939611,
|
| 1507 |
+
"grad_norm": 1.4281779527664185,
|
| 1508 |
+
"learning_rate": 1.6894899000377462e-05,
|
| 1509 |
+
"loss": 0.2303,
|
| 1510 |
+
"step": 211
|
| 1511 |
+
},
|
| 1512 |
+
{
|
| 1513 |
+
"epoch": 0.8679631525076765,
|
| 1514 |
+
"grad_norm": 1.2435628175735474,
|
| 1515 |
+
"learning_rate": 1.686241637868734e-05,
|
| 1516 |
+
"loss": 0.254,
|
| 1517 |
+
"step": 212
|
| 1518 |
+
},
|
| 1519 |
+
{
|
| 1520 |
+
"epoch": 0.872057318321392,
|
| 1521 |
+
"grad_norm": 1.2799077033996582,
|
| 1522 |
+
"learning_rate": 1.6829796320568416e-05,
|
| 1523 |
+
"loss": 0.2253,
|
| 1524 |
+
"step": 213
|
| 1525 |
+
},
|
| 1526 |
+
{
|
| 1527 |
+
"epoch": 0.8761514841351075,
|
| 1528 |
+
"grad_norm": 1.4002091884613037,
|
| 1529 |
+
"learning_rate": 1.6797039479315994e-05,
|
| 1530 |
+
"loss": 0.2568,
|
| 1531 |
+
"step": 214
|
| 1532 |
+
},
|
| 1533 |
+
{
|
| 1534 |
+
"epoch": 0.8802456499488229,
|
| 1535 |
+
"grad_norm": 1.2796311378479004,
|
| 1536 |
+
"learning_rate": 1.6764146510964762e-05,
|
| 1537 |
+
"loss": 0.2488,
|
| 1538 |
+
"step": 215
|
| 1539 |
+
},
|
| 1540 |
+
{
|
| 1541 |
+
"epoch": 0.8843398157625384,
|
| 1542 |
+
"grad_norm": 1.28677237033844,
|
| 1543 |
+
"learning_rate": 1.67311180742757e-05,
|
| 1544 |
+
"loss": 0.2619,
|
| 1545 |
+
"step": 216
|
| 1546 |
+
},
|
| 1547 |
+
{
|
| 1548 |
+
"epoch": 0.8884339815762539,
|
| 1549 |
+
"grad_norm": 1.5529658794403076,
|
| 1550 |
+
"learning_rate": 1.669795483072287e-05,
|
| 1551 |
+
"loss": 0.2312,
|
| 1552 |
+
"step": 217
|
| 1553 |
+
},
|
| 1554 |
+
{
|
| 1555 |
+
"epoch": 0.8925281473899693,
|
| 1556 |
+
"grad_norm": 1.2904109954833984,
|
| 1557 |
+
"learning_rate": 1.6664657444480145e-05,
|
| 1558 |
+
"loss": 0.2366,
|
| 1559 |
+
"step": 218
|
| 1560 |
+
},
|
| 1561 |
+
{
|
| 1562 |
+
"epoch": 0.8966223132036848,
|
| 1563 |
+
"grad_norm": 1.2689939737319946,
|
| 1564 |
+
"learning_rate": 1.6631226582407954e-05,
|
| 1565 |
+
"loss": 0.2446,
|
| 1566 |
+
"step": 219
|
| 1567 |
+
},
|
| 1568 |
+
{
|
| 1569 |
+
"epoch": 0.9007164790174002,
|
| 1570 |
+
"grad_norm": 1.2608931064605713,
|
| 1571 |
+
"learning_rate": 1.6597662914039885e-05,
|
| 1572 |
+
"loss": 0.2419,
|
| 1573 |
+
"step": 220
|
| 1574 |
+
},
|
| 1575 |
+
{
|
| 1576 |
+
"epoch": 0.9048106448311156,
|
| 1577 |
+
"grad_norm": 1.2563594579696655,
|
| 1578 |
+
"learning_rate": 1.65639671115693e-05,
|
| 1579 |
+
"loss": 0.2363,
|
| 1580 |
+
"step": 221
|
| 1581 |
+
},
|
| 1582 |
+
{
|
| 1583 |
+
"epoch": 0.9089048106448311,
|
| 1584 |
+
"grad_norm": 1.320057988166809,
|
| 1585 |
+
"learning_rate": 1.653013984983585e-05,
|
| 1586 |
+
"loss": 0.2508,
|
| 1587 |
+
"step": 222
|
| 1588 |
+
},
|
| 1589 |
+
{
|
| 1590 |
+
"epoch": 0.9129989764585466,
|
| 1591 |
+
"grad_norm": 1.2236367464065552,
|
| 1592 |
+
"learning_rate": 1.6496181806312005e-05,
|
| 1593 |
+
"loss": 0.2263,
|
| 1594 |
+
"step": 223
|
| 1595 |
+
},
|
| 1596 |
+
{
|
| 1597 |
+
"epoch": 0.917093142272262,
|
| 1598 |
+
"grad_norm": 1.293455958366394,
|
| 1599 |
+
"learning_rate": 1.6462093661089432e-05,
|
| 1600 |
+
"loss": 0.2504,
|
| 1601 |
+
"step": 224
|
| 1602 |
+
},
|
| 1603 |
+
{
|
| 1604 |
+
"epoch": 0.9211873080859775,
|
| 1605 |
+
"grad_norm": 1.3519924879074097,
|
| 1606 |
+
"learning_rate": 1.6427876096865394e-05,
|
| 1607 |
+
"loss": 0.2458,
|
| 1608 |
+
"step": 225
|
| 1609 |
+
},
|
| 1610 |
+
{
|
| 1611 |
+
"epoch": 0.925281473899693,
|
| 1612 |
+
"grad_norm": 1.1655514240264893,
|
| 1613 |
+
"learning_rate": 1.6393529798929103e-05,
|
| 1614 |
+
"loss": 0.249,
|
| 1615 |
+
"step": 226
|
| 1616 |
+
},
|
| 1617 |
+
{
|
| 1618 |
+
"epoch": 0.9293756397134084,
|
| 1619 |
+
"grad_norm": 1.3402174711227417,
|
| 1620 |
+
"learning_rate": 1.635905545514795e-05,
|
| 1621 |
+
"loss": 0.2426,
|
| 1622 |
+
"step": 227
|
| 1623 |
+
},
|
| 1624 |
+
{
|
| 1625 |
+
"epoch": 0.9334698055271239,
|
| 1626 |
+
"grad_norm": 1.3474458456039429,
|
| 1627 |
+
"learning_rate": 1.6324453755953772e-05,
|
| 1628 |
+
"loss": 0.2497,
|
| 1629 |
+
"step": 228
|
| 1630 |
+
},
|
| 1631 |
+
{
|
| 1632 |
+
"epoch": 0.9375639713408394,
|
| 1633 |
+
"grad_norm": 1.2284787893295288,
|
| 1634 |
+
"learning_rate": 1.6289725394328998e-05,
|
| 1635 |
+
"loss": 0.2438,
|
| 1636 |
+
"step": 229
|
| 1637 |
+
},
|
| 1638 |
+
{
|
| 1639 |
+
"epoch": 0.9416581371545547,
|
| 1640 |
+
"grad_norm": 1.2306231260299683,
|
| 1641 |
+
"learning_rate": 1.6254871065792776e-05,
|
| 1642 |
+
"loss": 0.248,
|
| 1643 |
+
"step": 230
|
| 1644 |
+
},
|
| 1645 |
+
{
|
| 1646 |
+
"epoch": 0.9457523029682702,
|
| 1647 |
+
"grad_norm": 1.3834123611450195,
|
| 1648 |
+
"learning_rate": 1.621989146838704e-05,
|
| 1649 |
+
"loss": 0.2798,
|
| 1650 |
+
"step": 231
|
| 1651 |
+
},
|
| 1652 |
+
{
|
| 1653 |
+
"epoch": 0.9498464687819856,
|
| 1654 |
+
"grad_norm": 1.333827257156372,
|
| 1655 |
+
"learning_rate": 1.618478730266255e-05,
|
| 1656 |
+
"loss": 0.2585,
|
| 1657 |
+
"step": 232
|
| 1658 |
+
},
|
| 1659 |
+
{
|
| 1660 |
+
"epoch": 0.9539406345957011,
|
| 1661 |
+
"grad_norm": 1.272150993347168,
|
| 1662 |
+
"learning_rate": 1.6149559271664835e-05,
|
| 1663 |
+
"loss": 0.2512,
|
| 1664 |
+
"step": 233
|
| 1665 |
+
},
|
| 1666 |
+
{
|
| 1667 |
+
"epoch": 0.9580348004094166,
|
| 1668 |
+
"grad_norm": 1.3800173997879028,
|
| 1669 |
+
"learning_rate": 1.6114208080920125e-05,
|
| 1670 |
+
"loss": 0.2483,
|
| 1671 |
+
"step": 234
|
| 1672 |
+
},
|
| 1673 |
+
{
|
| 1674 |
+
"epoch": 0.962128966223132,
|
| 1675 |
+
"grad_norm": 1.2623674869537354,
|
| 1676 |
+
"learning_rate": 1.607873443842122e-05,
|
| 1677 |
+
"loss": 0.2447,
|
| 1678 |
+
"step": 235
|
| 1679 |
+
},
|
| 1680 |
+
{
|
| 1681 |
+
"epoch": 0.9662231320368475,
|
| 1682 |
+
"grad_norm": 1.2797845602035522,
|
| 1683 |
+
"learning_rate": 1.6043139054613326e-05,
|
| 1684 |
+
"loss": 0.2258,
|
| 1685 |
+
"step": 236
|
| 1686 |
+
},
|
| 1687 |
+
{
|
| 1688 |
+
"epoch": 0.970317297850563,
|
| 1689 |
+
"grad_norm": 1.3689030408859253,
|
| 1690 |
+
"learning_rate": 1.600742264237979e-05,
|
| 1691 |
+
"loss": 0.247,
|
| 1692 |
+
"step": 237
|
| 1693 |
+
},
|
| 1694 |
+
{
|
| 1695 |
+
"epoch": 0.9744114636642784,
|
| 1696 |
+
"grad_norm": 1.3384076356887817,
|
| 1697 |
+
"learning_rate": 1.5971585917027864e-05,
|
| 1698 |
+
"loss": 0.2286,
|
| 1699 |
+
"step": 238
|
| 1700 |
+
},
|
| 1701 |
+
{
|
| 1702 |
+
"epoch": 0.9785056294779939,
|
| 1703 |
+
"grad_norm": 1.210942268371582,
|
| 1704 |
+
"learning_rate": 1.5935629596274345e-05,
|
| 1705 |
+
"loss": 0.2402,
|
| 1706 |
+
"step": 239
|
| 1707 |
+
},
|
| 1708 |
+
{
|
| 1709 |
+
"epoch": 0.9825997952917093,
|
| 1710 |
+
"grad_norm": 1.2547039985656738,
|
| 1711 |
+
"learning_rate": 1.5899554400231233e-05,
|
| 1712 |
+
"loss": 0.2386,
|
| 1713 |
+
"step": 240
|
| 1714 |
+
},
|
| 1715 |
+
{
|
| 1716 |
+
"epoch": 0.9866939611054247,
|
| 1717 |
+
"grad_norm": 1.337138056755066,
|
| 1718 |
+
"learning_rate": 1.586336105139127e-05,
|
| 1719 |
+
"loss": 0.2686,
|
| 1720 |
+
"step": 241
|
| 1721 |
+
},
|
| 1722 |
+
{
|
| 1723 |
+
"epoch": 0.9907881269191402,
|
| 1724 |
+
"grad_norm": 1.273237943649292,
|
| 1725 |
+
"learning_rate": 1.5827050274613512e-05,
|
| 1726 |
+
"loss": 0.2653,
|
| 1727 |
+
"step": 242
|
| 1728 |
+
},
|
| 1729 |
+
{
|
| 1730 |
+
"epoch": 0.9948822927328557,
|
| 1731 |
+
"grad_norm": 1.3556797504425049,
|
| 1732 |
+
"learning_rate": 1.579062279710879e-05,
|
| 1733 |
+
"loss": 0.2365,
|
| 1734 |
+
"step": 243
|
| 1735 |
+
},
|
| 1736 |
+
{
|
| 1737 |
+
"epoch": 0.9989764585465711,
|
| 1738 |
+
"grad_norm": 1.2234649658203125,
|
| 1739 |
+
"learning_rate": 1.5754079348425137e-05,
|
| 1740 |
+
"loss": 0.239,
|
| 1741 |
+
"step": 244
|
| 1742 |
+
},
|
| 1743 |
+
{
|
| 1744 |
+
"epoch": 1.0,
|
| 1745 |
+
"grad_norm": 1.2234649658203125,
|
| 1746 |
+
"learning_rate": 1.57174206604332e-05,
|
| 1747 |
+
"loss": 0.1857,
|
| 1748 |
+
"step": 245
|
| 1749 |
+
},
|
| 1750 |
+
{
|
| 1751 |
+
"epoch": 1.0040941658137155,
|
| 1752 |
+
"grad_norm": 0.9376870393753052,
|
| 1753 |
+
"learning_rate": 1.568064746731156e-05,
|
| 1754 |
+
"loss": 0.1688,
|
| 1755 |
+
"step": 246
|
| 1756 |
+
},
|
| 1757 |
+
{
|
| 1758 |
+
"epoch": 1.0040941658137155,
|
| 1759 |
+
"eval_loss": 0.26177823543548584,
|
| 1760 |
+
"eval_runtime": 5.0735,
|
| 1761 |
+
"eval_samples_per_second": 15.571,
|
| 1762 |
+
"eval_steps_per_second": 1.971,
|
| 1763 |
+
"step": 246
|
| 1764 |
+
},
|
| 1765 |
+
{
|
| 1766 |
+
"epoch": 1.008188331627431,
|
| 1767 |
+
"grad_norm": 0.8188478350639343,
|
| 1768 |
+
"learning_rate": 1.564376050553205e-05,
|
| 1769 |
+
"loss": 0.1587,
|
| 1770 |
+
"step": 247
|
| 1771 |
+
},
|
| 1772 |
+
{
|
| 1773 |
+
"epoch": 1.0122824974411464,
|
| 1774 |
+
"grad_norm": 1.0571590662002563,
|
| 1775 |
+
"learning_rate": 1.560676051384499e-05,
|
| 1776 |
+
"loss": 0.1842,
|
| 1777 |
+
"step": 248
|
| 1778 |
+
},
|
| 1779 |
+
{
|
| 1780 |
+
"epoch": 1.0163766632548619,
|
| 1781 |
+
"grad_norm": 0.8216506242752075,
|
| 1782 |
+
"learning_rate": 1.5569648233264395e-05,
|
| 1783 |
+
"loss": 0.1591,
|
| 1784 |
+
"step": 249
|
| 1785 |
+
},
|
| 1786 |
+
{
|
| 1787 |
+
"epoch": 1.0204708290685773,
|
| 1788 |
+
"grad_norm": 0.8552656769752502,
|
| 1789 |
+
"learning_rate": 1.553242440705314e-05,
|
| 1790 |
+
"loss": 0.1574,
|
| 1791 |
+
"step": 250
|
| 1792 |
+
},
|
| 1793 |
+
{
|
| 1794 |
+
"epoch": 1.0245649948822928,
|
| 1795 |
+
"grad_norm": 0.958118200302124,
|
| 1796 |
+
"learning_rate": 1.5495089780708062e-05,
|
| 1797 |
+
"loss": 0.1543,
|
| 1798 |
+
"step": 251
|
| 1799 |
+
},
|
| 1800 |
+
{
|
| 1801 |
+
"epoch": 1.0286591606960083,
|
| 1802 |
+
"grad_norm": 0.8587727546691895,
|
| 1803 |
+
"learning_rate": 1.5457645101945046e-05,
|
| 1804 |
+
"loss": 0.1647,
|
| 1805 |
+
"step": 252
|
| 1806 |
+
},
|
| 1807 |
+
{
|
| 1808 |
+
"epoch": 1.0327533265097237,
|
| 1809 |
+
"grad_norm": 0.9147894978523254,
|
| 1810 |
+
"learning_rate": 1.5420091120684042e-05,
|
| 1811 |
+
"loss": 0.1594,
|
| 1812 |
+
"step": 253
|
| 1813 |
+
},
|
| 1814 |
+
{
|
| 1815 |
+
"epoch": 1.0368474923234392,
|
| 1816 |
+
"grad_norm": 0.9051440358161926,
|
| 1817 |
+
"learning_rate": 1.538242858903404e-05,
|
| 1818 |
+
"loss": 0.1598,
|
| 1819 |
+
"step": 254
|
| 1820 |
+
},
|
| 1821 |
+
{
|
| 1822 |
+
"epoch": 1.0409416581371547,
|
| 1823 |
+
"grad_norm": 0.9272040128707886,
|
| 1824 |
+
"learning_rate": 1.5344658261278013e-05,
|
| 1825 |
+
"loss": 0.1435,
|
| 1826 |
+
"step": 255
|
| 1827 |
+
},
|
| 1828 |
+
{
|
| 1829 |
+
"epoch": 1.04503582395087,
|
| 1830 |
+
"grad_norm": 0.9846145510673523,
|
| 1831 |
+
"learning_rate": 1.530678089385782e-05,
|
| 1832 |
+
"loss": 0.1566,
|
| 1833 |
+
"step": 256
|
| 1834 |
+
},
|
| 1835 |
+
{
|
| 1836 |
+
"epoch": 1.0491299897645854,
|
| 1837 |
+
"grad_norm": 1.080641269683838,
|
| 1838 |
+
"learning_rate": 1.5268797245359035e-05,
|
| 1839 |
+
"loss": 0.1659,
|
| 1840 |
+
"step": 257
|
| 1841 |
+
},
|
| 1842 |
+
{
|
| 1843 |
+
"epoch": 1.0532241555783008,
|
| 1844 |
+
"grad_norm": 1.1138889789581299,
|
| 1845 |
+
"learning_rate": 1.5230708076495777e-05,
|
| 1846 |
+
"loss": 0.1633,
|
| 1847 |
+
"step": 258
|
| 1848 |
+
},
|
| 1849 |
+
{
|
| 1850 |
+
"epoch": 1.0573183213920163,
|
| 1851 |
+
"grad_norm": 1.0673142671585083,
|
| 1852 |
+
"learning_rate": 1.519251415009546e-05,
|
| 1853 |
+
"loss": 0.1719,
|
| 1854 |
+
"step": 259
|
| 1855 |
+
},
|
| 1856 |
+
{
|
| 1857 |
+
"epoch": 1.0614124872057318,
|
| 1858 |
+
"grad_norm": 0.9915375113487244,
|
| 1859 |
+
"learning_rate": 1.5154216231083522e-05,
|
| 1860 |
+
"loss": 0.1391,
|
| 1861 |
+
"step": 260
|
| 1862 |
+
},
|
| 1863 |
+
{
|
| 1864 |
+
"epoch": 1.0655066530194472,
|
| 1865 |
+
"grad_norm": 1.13100004196167,
|
| 1866 |
+
"learning_rate": 1.5115815086468103e-05,
|
| 1867 |
+
"loss": 0.1795,
|
| 1868 |
+
"step": 261
|
| 1869 |
+
},
|
| 1870 |
+
{
|
| 1871 |
+
"epoch": 1.0696008188331627,
|
| 1872 |
+
"grad_norm": 1.2729498147964478,
|
| 1873 |
+
"learning_rate": 1.507731148532468e-05,
|
| 1874 |
+
"loss": 0.1563,
|
| 1875 |
+
"step": 262
|
| 1876 |
+
},
|
| 1877 |
+
{
|
| 1878 |
+
"epoch": 1.0736949846468782,
|
| 1879 |
+
"grad_norm": 1.0953161716461182,
|
| 1880 |
+
"learning_rate": 1.5038706198780673e-05,
|
| 1881 |
+
"loss": 0.1698,
|
| 1882 |
+
"step": 263
|
| 1883 |
+
},
|
| 1884 |
+
{
|
| 1885 |
+
"epoch": 1.0777891504605936,
|
| 1886 |
+
"grad_norm": 1.047824501991272,
|
| 1887 |
+
"learning_rate": 1.5000000000000002e-05,
|
| 1888 |
+
"loss": 0.1746,
|
| 1889 |
+
"step": 264
|
| 1890 |
+
},
|
| 1891 |
+
{
|
| 1892 |
+
"epoch": 1.0818833162743091,
|
| 1893 |
+
"grad_norm": 1.0675163269042969,
|
| 1894 |
+
"learning_rate": 1.496119366416759e-05,
|
| 1895 |
+
"loss": 0.1683,
|
| 1896 |
+
"step": 265
|
| 1897 |
+
},
|
| 1898 |
+
{
|
| 1899 |
+
"epoch": 1.0859774820880246,
|
| 1900 |
+
"grad_norm": 0.9779859185218811,
|
| 1901 |
+
"learning_rate": 1.492228796847385e-05,
|
| 1902 |
+
"loss": 0.1768,
|
| 1903 |
+
"step": 266
|
| 1904 |
+
},
|
| 1905 |
+
{
|
| 1906 |
+
"epoch": 1.09007164790174,
|
| 1907 |
+
"grad_norm": 1.0177017450332642,
|
| 1908 |
+
"learning_rate": 1.4883283692099114e-05,
|
| 1909 |
+
"loss": 0.1609,
|
| 1910 |
+
"step": 267
|
| 1911 |
+
},
|
| 1912 |
+
{
|
| 1913 |
+
"epoch": 1.0941658137154555,
|
| 1914 |
+
"grad_norm": 1.0419244766235352,
|
| 1915 |
+
"learning_rate": 1.4844181616198028e-05,
|
| 1916 |
+
"loss": 0.1555,
|
| 1917 |
+
"step": 268
|
| 1918 |
+
},
|
| 1919 |
+
{
|
| 1920 |
+
"epoch": 1.098259979529171,
|
| 1921 |
+
"grad_norm": 1.1818829774856567,
|
| 1922 |
+
"learning_rate": 1.4804982523883915e-05,
|
| 1923 |
+
"loss": 0.1582,
|
| 1924 |
+
"step": 269
|
| 1925 |
+
},
|
| 1926 |
+
{
|
| 1927 |
+
"epoch": 1.1023541453428864,
|
| 1928 |
+
"grad_norm": 0.8959009051322937,
|
| 1929 |
+
"learning_rate": 1.4765687200213079e-05,
|
| 1930 |
+
"loss": 0.1408,
|
| 1931 |
+
"step": 270
|
| 1932 |
+
},
|
| 1933 |
+
{
|
| 1934 |
+
"epoch": 1.106448311156602,
|
| 1935 |
+
"grad_norm": 1.008933424949646,
|
| 1936 |
+
"learning_rate": 1.4726296432169095e-05,
|
| 1937 |
+
"loss": 0.1518,
|
| 1938 |
+
"step": 271
|
| 1939 |
+
},
|
| 1940 |
+
{
|
| 1941 |
+
"epoch": 1.1105424769703174,
|
| 1942 |
+
"grad_norm": 0.9755818843841553,
|
| 1943 |
+
"learning_rate": 1.4686811008647037e-05,
|
| 1944 |
+
"loss": 0.1513,
|
| 1945 |
+
"step": 272
|
| 1946 |
+
},
|
| 1947 |
+
{
|
| 1948 |
+
"epoch": 1.1146366427840328,
|
| 1949 |
+
"grad_norm": 1.0435041189193726,
|
| 1950 |
+
"learning_rate": 1.4647231720437687e-05,
|
| 1951 |
+
"loss": 0.1673,
|
| 1952 |
+
"step": 273
|
| 1953 |
+
},
|
| 1954 |
+
{
|
| 1955 |
+
"epoch": 1.118730808597748,
|
| 1956 |
+
"grad_norm": 0.9561364054679871,
|
| 1957 |
+
"learning_rate": 1.4607559360211688e-05,
|
| 1958 |
+
"loss": 0.1575,
|
| 1959 |
+
"step": 274
|
| 1960 |
+
},
|
| 1961 |
+
{
|
| 1962 |
+
"epoch": 1.1228249744114636,
|
| 1963 |
+
"grad_norm": 1.0000271797180176,
|
| 1964 |
+
"learning_rate": 1.456779472250368e-05,
|
| 1965 |
+
"loss": 0.1677,
|
| 1966 |
+
"step": 275
|
| 1967 |
+
},
|
| 1968 |
+
{
|
| 1969 |
+
"epoch": 1.126919140225179,
|
| 1970 |
+
"grad_norm": 1.1137831211090088,
|
| 1971 |
+
"learning_rate": 1.4527938603696376e-05,
|
| 1972 |
+
"loss": 0.1601,
|
| 1973 |
+
"step": 276
|
| 1974 |
+
},
|
| 1975 |
+
{
|
| 1976 |
+
"epoch": 1.1310133060388945,
|
| 1977 |
+
"grad_norm": 0.9575244188308716,
|
| 1978 |
+
"learning_rate": 1.4487991802004625e-05,
|
| 1979 |
+
"loss": 0.1591,
|
| 1980 |
+
"step": 277
|
| 1981 |
+
},
|
| 1982 |
+
{
|
| 1983 |
+
"epoch": 1.13510747185261,
|
| 1984 |
+
"grad_norm": 0.9593146443367004,
|
| 1985 |
+
"learning_rate": 1.4447955117459414e-05,
|
| 1986 |
+
"loss": 0.174,
|
| 1987 |
+
"step": 278
|
| 1988 |
+
},
|
| 1989 |
+
{
|
| 1990 |
+
"epoch": 1.1392016376663254,
|
| 1991 |
+
"grad_norm": 1.0342645645141602,
|
| 1992 |
+
"learning_rate": 1.4407829351891858e-05,
|
| 1993 |
+
"loss": 0.1808,
|
| 1994 |
+
"step": 279
|
| 1995 |
+
},
|
| 1996 |
+
{
|
| 1997 |
+
"epoch": 1.143295803480041,
|
| 1998 |
+
"grad_norm": 0.908888578414917,
|
| 1999 |
+
"learning_rate": 1.436761530891713e-05,
|
| 2000 |
+
"loss": 0.1587,
|
| 2001 |
+
"step": 280
|
| 2002 |
+
},
|
| 2003 |
+
{
|
| 2004 |
+
"epoch": 1.1473899692937564,
|
| 2005 |
+
"grad_norm": 0.8734580874443054,
|
| 2006 |
+
"learning_rate": 1.4327313793918362e-05,
|
| 2007 |
+
"loss": 0.1364,
|
| 2008 |
+
"step": 281
|
| 2009 |
+
},
|
| 2010 |
+
{
|
| 2011 |
+
"epoch": 1.1514841351074718,
|
| 2012 |
+
"grad_norm": 1.0717835426330566,
|
| 2013 |
+
"learning_rate": 1.4286925614030542e-05,
|
| 2014 |
+
"loss": 0.1673,
|
| 2015 |
+
"step": 282
|
| 2016 |
+
},
|
| 2017 |
+
{
|
| 2018 |
+
"epoch": 1.1555783009211873,
|
| 2019 |
+
"grad_norm": 1.099330186843872,
|
| 2020 |
+
"learning_rate": 1.4246451578124321e-05,
|
| 2021 |
+
"loss": 0.1783,
|
| 2022 |
+
"step": 283
|
| 2023 |
+
},
|
| 2024 |
+
{
|
| 2025 |
+
"epoch": 1.1596724667349028,
|
| 2026 |
+
"grad_norm": 1.0060065984725952,
|
| 2027 |
+
"learning_rate": 1.4205892496789816e-05,
|
| 2028 |
+
"loss": 0.1613,
|
| 2029 |
+
"step": 284
|
| 2030 |
+
},
|
| 2031 |
+
{
|
| 2032 |
+
"epoch": 1.1637666325486182,
|
| 2033 |
+
"grad_norm": 1.0185686349868774,
|
| 2034 |
+
"learning_rate": 1.4165249182320401e-05,
|
| 2035 |
+
"loss": 0.153,
|
| 2036 |
+
"step": 285
|
| 2037 |
+
},
|
| 2038 |
+
{
|
| 2039 |
+
"epoch": 1.1678607983623337,
|
| 2040 |
+
"grad_norm": 1.0007094144821167,
|
| 2041 |
+
"learning_rate": 1.4124522448696407e-05,
|
| 2042 |
+
"loss": 0.1681,
|
| 2043 |
+
"step": 286
|
| 2044 |
+
},
|
| 2045 |
+
{
|
| 2046 |
+
"epoch": 1.1719549641760492,
|
| 2047 |
+
"grad_norm": 0.886319637298584,
|
| 2048 |
+
"learning_rate": 1.4083713111568841e-05,
|
| 2049 |
+
"loss": 0.1712,
|
| 2050 |
+
"step": 287
|
| 2051 |
+
},
|
| 2052 |
+
{
|
| 2053 |
+
"epoch": 1.1760491299897646,
|
| 2054 |
+
"grad_norm": 0.8676832914352417,
|
| 2055 |
+
"learning_rate": 1.404282198824305e-05,
|
| 2056 |
+
"loss": 0.1458,
|
| 2057 |
+
"step": 288
|
| 2058 |
+
},
|
| 2059 |
+
{
|
| 2060 |
+
"epoch": 1.18014329580348,
|
| 2061 |
+
"grad_norm": 0.9190279841423035,
|
| 2062 |
+
"learning_rate": 1.4001849897662337e-05,
|
| 2063 |
+
"loss": 0.1468,
|
| 2064 |
+
"step": 289
|
| 2065 |
+
},
|
| 2066 |
+
{
|
| 2067 |
+
"epoch": 1.1842374616171956,
|
| 2068 |
+
"grad_norm": 0.931041419506073,
|
| 2069 |
+
"learning_rate": 1.396079766039157e-05,
|
| 2070 |
+
"loss": 0.16,
|
| 2071 |
+
"step": 290
|
| 2072 |
+
},
|
| 2073 |
+
{
|
| 2074 |
+
"epoch": 1.188331627430911,
|
| 2075 |
+
"grad_norm": 0.9734114408493042,
|
| 2076 |
+
"learning_rate": 1.3919666098600753e-05,
|
| 2077 |
+
"loss": 0.1545,
|
| 2078 |
+
"step": 291
|
| 2079 |
+
},
|
| 2080 |
+
{
|
| 2081 |
+
"epoch": 1.1924257932446265,
|
| 2082 |
+
"grad_norm": 0.933809757232666,
|
| 2083 |
+
"learning_rate": 1.387845603604855e-05,
|
| 2084 |
+
"loss": 0.156,
|
| 2085 |
+
"step": 292
|
| 2086 |
+
},
|
| 2087 |
+
{
|
| 2088 |
+
"epoch": 1.196519959058342,
|
| 2089 |
+
"grad_norm": 0.9046220779418945,
|
| 2090 |
+
"learning_rate": 1.3837168298065798e-05,
|
| 2091 |
+
"loss": 0.1378,
|
| 2092 |
+
"step": 293
|
| 2093 |
+
},
|
| 2094 |
+
{
|
| 2095 |
+
"epoch": 1.2006141248720574,
|
| 2096 |
+
"grad_norm": 0.9085408449172974,
|
| 2097 |
+
"learning_rate": 1.3795803711538966e-05,
|
| 2098 |
+
"loss": 0.1616,
|
| 2099 |
+
"step": 294
|
| 2100 |
+
},
|
| 2101 |
+
{
|
| 2102 |
+
"epoch": 1.204708290685773,
|
| 2103 |
+
"grad_norm": 0.9923974275588989,
|
| 2104 |
+
"learning_rate": 1.37543631048936e-05,
|
| 2105 |
+
"loss": 0.1797,
|
| 2106 |
+
"step": 295
|
| 2107 |
+
},
|
| 2108 |
+
{
|
| 2109 |
+
"epoch": 1.2088024564994881,
|
| 2110 |
+
"grad_norm": 0.9671124219894409,
|
| 2111 |
+
"learning_rate": 1.3712847308077737e-05,
|
| 2112 |
+
"loss": 0.1558,
|
| 2113 |
+
"step": 296
|
| 2114 |
+
},
|
| 2115 |
+
{
|
| 2116 |
+
"epoch": 1.2128966223132036,
|
| 2117 |
+
"grad_norm": 1.1265525817871094,
|
| 2118 |
+
"learning_rate": 1.3671257152545277e-05,
|
| 2119 |
+
"loss": 0.1582,
|
| 2120 |
+
"step": 297
|
| 2121 |
+
},
|
| 2122 |
+
{
|
| 2123 |
+
"epoch": 1.216990788126919,
|
| 2124 |
+
"grad_norm": 1.066918969154358,
|
| 2125 |
+
"learning_rate": 1.3629593471239328e-05,
|
| 2126 |
+
"loss": 0.1552,
|
| 2127 |
+
"step": 298
|
| 2128 |
+
},
|
| 2129 |
+
{
|
| 2130 |
+
"epoch": 1.2210849539406345,
|
| 2131 |
+
"grad_norm": 0.9553365111351013,
|
| 2132 |
+
"learning_rate": 1.3587857098575534e-05,
|
| 2133 |
+
"loss": 0.1614,
|
| 2134 |
+
"step": 299
|
| 2135 |
+
},
|
| 2136 |
+
{
|
| 2137 |
+
"epoch": 1.22517911975435,
|
| 2138 |
+
"grad_norm": 1.0191755294799805,
|
| 2139 |
+
"learning_rate": 1.3546048870425356e-05,
|
| 2140 |
+
"loss": 0.1661,
|
| 2141 |
+
"step": 300
|
| 2142 |
+
},
|
| 2143 |
+
{
|
| 2144 |
+
"epoch": 1.2292732855680655,
|
| 2145 |
+
"grad_norm": 0.8861321806907654,
|
| 2146 |
+
"learning_rate": 1.350416962409934e-05,
|
| 2147 |
+
"loss": 0.1383,
|
| 2148 |
+
"step": 301
|
| 2149 |
+
},
|
| 2150 |
+
{
|
| 2151 |
+
"epoch": 1.233367451381781,
|
| 2152 |
+
"grad_norm": 0.9416659474372864,
|
| 2153 |
+
"learning_rate": 1.346222019833033e-05,
|
| 2154 |
+
"loss": 0.1429,
|
| 2155 |
+
"step": 302
|
| 2156 |
+
},
|
| 2157 |
+
{
|
| 2158 |
+
"epoch": 1.2374616171954964,
|
| 2159 |
+
"grad_norm": 1.0216457843780518,
|
| 2160 |
+
"learning_rate": 1.342020143325669e-05,
|
| 2161 |
+
"loss": 0.1503,
|
| 2162 |
+
"step": 303
|
| 2163 |
+
},
|
| 2164 |
+
{
|
| 2165 |
+
"epoch": 1.2415557830092119,
|
| 2166 |
+
"grad_norm": 1.08574378490448,
|
| 2167 |
+
"learning_rate": 1.3378114170405473e-05,
|
| 2168 |
+
"loss": 0.1685,
|
| 2169 |
+
"step": 304
|
| 2170 |
+
},
|
| 2171 |
+
{
|
| 2172 |
+
"epoch": 1.2456499488229273,
|
| 2173 |
+
"grad_norm": 0.926025390625,
|
| 2174 |
+
"learning_rate": 1.3335959252675566e-05,
|
| 2175 |
+
"loss": 0.159,
|
| 2176 |
+
"step": 305
|
| 2177 |
+
},
|
| 2178 |
+
{
|
| 2179 |
+
"epoch": 1.2497441146366428,
|
| 2180 |
+
"grad_norm": 1.0333497524261475,
|
| 2181 |
+
"learning_rate": 1.3293737524320798e-05,
|
| 2182 |
+
"loss": 0.142,
|
| 2183 |
+
"step": 306
|
| 2184 |
+
},
|
| 2185 |
+
{
|
| 2186 |
+
"epoch": 1.2538382804503583,
|
| 2187 |
+
"grad_norm": 0.9234523773193359,
|
| 2188 |
+
"learning_rate": 1.3251449830933052e-05,
|
| 2189 |
+
"loss": 0.1512,
|
| 2190 |
+
"step": 307
|
| 2191 |
+
},
|
| 2192 |
+
{
|
| 2193 |
+
"epoch": 1.2579324462640737,
|
| 2194 |
+
"grad_norm": 0.9113657474517822,
|
| 2195 |
+
"learning_rate": 1.3209097019425317e-05,
|
| 2196 |
+
"loss": 0.162,
|
| 2197 |
+
"step": 308
|
| 2198 |
+
},
|
| 2199 |
+
{
|
| 2200 |
+
"epoch": 1.2620266120777892,
|
| 2201 |
+
"grad_norm": 0.9163710474967957,
|
| 2202 |
+
"learning_rate": 1.3166679938014728e-05,
|
| 2203 |
+
"loss": 0.1676,
|
| 2204 |
+
"step": 309
|
| 2205 |
+
},
|
| 2206 |
+
{
|
| 2207 |
+
"epoch": 1.2661207778915047,
|
| 2208 |
+
"grad_norm": 0.8762107491493225,
|
| 2209 |
+
"learning_rate": 1.3124199436205575e-05,
|
| 2210 |
+
"loss": 0.1564,
|
| 2211 |
+
"step": 310
|
| 2212 |
+
},
|
| 2213 |
+
{
|
| 2214 |
+
"epoch": 1.27021494370522,
|
| 2215 |
+
"grad_norm": 0.9909912943840027,
|
| 2216 |
+
"learning_rate": 1.3081656364772308e-05,
|
| 2217 |
+
"loss": 0.162,
|
| 2218 |
+
"step": 311
|
| 2219 |
+
},
|
| 2220 |
+
{
|
| 2221 |
+
"epoch": 1.2743091095189354,
|
| 2222 |
+
"grad_norm": 1.0118768215179443,
|
| 2223 |
+
"learning_rate": 1.303905157574247e-05,
|
| 2224 |
+
"loss": 0.1573,
|
| 2225 |
+
"step": 312
|
| 2226 |
+
},
|
| 2227 |
+
{
|
| 2228 |
+
"epoch": 1.2784032753326509,
|
| 2229 |
+
"grad_norm": 0.9785376191139221,
|
| 2230 |
+
"learning_rate": 1.2996385922379657e-05,
|
| 2231 |
+
"loss": 0.1695,
|
| 2232 |
+
"step": 313
|
| 2233 |
+
},
|
| 2234 |
+
{
|
| 2235 |
+
"epoch": 1.2824974411463663,
|
| 2236 |
+
"grad_norm": 1.0604181289672852,
|
| 2237 |
+
"learning_rate": 1.2953660259166413e-05,
|
| 2238 |
+
"loss": 0.1817,
|
| 2239 |
+
"step": 314
|
| 2240 |
+
},
|
| 2241 |
+
{
|
| 2242 |
+
"epoch": 1.2865916069600818,
|
| 2243 |
+
"grad_norm": 0.909048318862915,
|
| 2244 |
+
"learning_rate": 1.291087544178713e-05,
|
| 2245 |
+
"loss": 0.1599,
|
| 2246 |
+
"step": 315
|
| 2247 |
+
},
|
| 2248 |
+
{
|
| 2249 |
+
"epoch": 1.2906857727737973,
|
| 2250 |
+
"grad_norm": 0.988167405128479,
|
| 2251 |
+
"learning_rate": 1.2868032327110904e-05,
|
| 2252 |
+
"loss": 0.1586,
|
| 2253 |
+
"step": 316
|
| 2254 |
+
},
|
| 2255 |
+
{
|
| 2256 |
+
"epoch": 1.2947799385875127,
|
| 2257 |
+
"grad_norm": 1.0076347589492798,
|
| 2258 |
+
"learning_rate": 1.2825131773174371e-05,
|
| 2259 |
+
"loss": 0.1791,
|
| 2260 |
+
"step": 317
|
| 2261 |
+
},
|
| 2262 |
+
{
|
| 2263 |
+
"epoch": 1.2988741044012282,
|
| 2264 |
+
"grad_norm": 1.09652841091156,
|
| 2265 |
+
"learning_rate": 1.2782174639164528e-05,
|
| 2266 |
+
"loss": 0.1585,
|
| 2267 |
+
"step": 318
|
| 2268 |
+
},
|
| 2269 |
+
{
|
| 2270 |
+
"epoch": 1.3029682702149437,
|
| 2271 |
+
"grad_norm": 1.0916470289230347,
|
| 2272 |
+
"learning_rate": 1.2739161785401525e-05,
|
| 2273 |
+
"loss": 0.1782,
|
| 2274 |
+
"step": 319
|
| 2275 |
+
},
|
| 2276 |
+
{
|
| 2277 |
+
"epoch": 1.3070624360286591,
|
| 2278 |
+
"grad_norm": 1.0601223707199097,
|
| 2279 |
+
"learning_rate": 1.269609407332144e-05,
|
| 2280 |
+
"loss": 0.1654,
|
| 2281 |
+
"step": 320
|
| 2282 |
+
},
|
| 2283 |
+
{
|
| 2284 |
+
"epoch": 1.3111566018423746,
|
| 2285 |
+
"grad_norm": 1.1371649503707886,
|
| 2286 |
+
"learning_rate": 1.2652972365459008e-05,
|
| 2287 |
+
"loss": 0.1763,
|
| 2288 |
+
"step": 321
|
| 2289 |
+
},
|
| 2290 |
+
{
|
| 2291 |
+
"epoch": 1.31525076765609,
|
| 2292 |
+
"grad_norm": 1.0163546800613403,
|
| 2293 |
+
"learning_rate": 1.2609797525430374e-05,
|
| 2294 |
+
"loss": 0.17,
|
| 2295 |
+
"step": 322
|
| 2296 |
+
},
|
| 2297 |
+
{
|
| 2298 |
+
"epoch": 1.3193449334698055,
|
| 2299 |
+
"grad_norm": 0.9880717396736145,
|
| 2300 |
+
"learning_rate": 1.2566570417915769e-05,
|
| 2301 |
+
"loss": 0.1691,
|
| 2302 |
+
"step": 323
|
| 2303 |
+
},
|
| 2304 |
+
{
|
| 2305 |
+
"epoch": 1.323439099283521,
|
| 2306 |
+
"grad_norm": 0.8969373106956482,
|
| 2307 |
+
"learning_rate": 1.2523291908642219e-05,
|
| 2308 |
+
"loss": 0.1625,
|
| 2309 |
+
"step": 324
|
| 2310 |
+
},
|
| 2311 |
+
{
|
| 2312 |
+
"epoch": 1.3275332650972365,
|
| 2313 |
+
"grad_norm": 1.0454288721084595,
|
| 2314 |
+
"learning_rate": 1.2479962864366186e-05,
|
| 2315 |
+
"loss": 0.1669,
|
| 2316 |
+
"step": 325
|
| 2317 |
+
},
|
| 2318 |
+
{
|
| 2319 |
+
"epoch": 1.331627430910952,
|
| 2320 |
+
"grad_norm": 1.0298652648925781,
|
| 2321 |
+
"learning_rate": 1.243658415285622e-05,
|
| 2322 |
+
"loss": 0.1822,
|
| 2323 |
+
"step": 326
|
| 2324 |
+
},
|
| 2325 |
+
{
|
| 2326 |
+
"epoch": 1.3357215967246674,
|
| 2327 |
+
"grad_norm": 0.9368167519569397,
|
| 2328 |
+
"learning_rate": 1.2393156642875579e-05,
|
| 2329 |
+
"loss": 0.1614,
|
| 2330 |
+
"step": 327
|
| 2331 |
+
},
|
| 2332 |
+
{
|
| 2333 |
+
"epoch": 1.3398157625383829,
|
| 2334 |
+
"grad_norm": 0.9903757572174072,
|
| 2335 |
+
"learning_rate": 1.2349681204164823e-05,
|
| 2336 |
+
"loss": 0.1467,
|
| 2337 |
+
"step": 328
|
| 2338 |
+
},
|
| 2339 |
+
{
|
| 2340 |
+
"epoch": 1.3398157625383829,
|
| 2341 |
+
"eval_loss": 0.26726678013801575,
|
| 2342 |
+
"eval_runtime": 5.839,
|
| 2343 |
+
"eval_samples_per_second": 13.53,
|
| 2344 |
+
"eval_steps_per_second": 1.713,
|
| 2345 |
+
"step": 328
|
| 2346 |
+
},
|
| 2347 |
+
{
|
| 2348 |
+
"epoch": 1.3439099283520983,
|
| 2349 |
+
"grad_norm": 0.9085035920143127,
|
| 2350 |
+
"learning_rate": 1.2306158707424402e-05,
|
| 2351 |
+
"loss": 0.1486,
|
| 2352 |
+
"step": 329
|
| 2353 |
+
},
|
| 2354 |
+
{
|
| 2355 |
+
"epoch": 1.3480040941658138,
|
| 2356 |
+
"grad_norm": 0.9950000643730164,
|
| 2357 |
+
"learning_rate": 1.2262590024297226e-05,
|
| 2358 |
+
"loss": 0.1586,
|
| 2359 |
+
"step": 330
|
| 2360 |
+
},
|
| 2361 |
+
{
|
| 2362 |
+
"epoch": 1.3520982599795293,
|
| 2363 |
+
"grad_norm": 0.963299572467804,
|
| 2364 |
+
"learning_rate": 1.2218976027351177e-05,
|
| 2365 |
+
"loss": 0.1508,
|
| 2366 |
+
"step": 331
|
| 2367 |
+
},
|
| 2368 |
+
{
|
| 2369 |
+
"epoch": 1.3561924257932447,
|
| 2370 |
+
"grad_norm": 0.9706941246986389,
|
| 2371 |
+
"learning_rate": 1.2175317590061676e-05,
|
| 2372 |
+
"loss": 0.1576,
|
| 2373 |
+
"step": 332
|
| 2374 |
+
},
|
| 2375 |
+
{
|
| 2376 |
+
"epoch": 1.3602865916069602,
|
| 2377 |
+
"grad_norm": 1.1053946018218994,
|
| 2378 |
+
"learning_rate": 1.2131615586794162e-05,
|
| 2379 |
+
"loss": 0.1632,
|
| 2380 |
+
"step": 333
|
| 2381 |
+
},
|
| 2382 |
+
{
|
| 2383 |
+
"epoch": 1.3643807574206757,
|
| 2384 |
+
"grad_norm": 0.9622719287872314,
|
| 2385 |
+
"learning_rate": 1.2087870892786588e-05,
|
| 2386 |
+
"loss": 0.1629,
|
| 2387 |
+
"step": 334
|
| 2388 |
+
},
|
| 2389 |
+
{
|
| 2390 |
+
"epoch": 1.3684749232343911,
|
| 2391 |
+
"grad_norm": 0.9611127972602844,
|
| 2392 |
+
"learning_rate": 1.2044084384131891e-05,
|
| 2393 |
+
"loss": 0.1517,
|
| 2394 |
+
"step": 335
|
| 2395 |
+
},
|
| 2396 |
+
{
|
| 2397 |
+
"epoch": 1.3725690890481064,
|
| 2398 |
+
"grad_norm": 0.9548255801200867,
|
| 2399 |
+
"learning_rate": 1.2000256937760446e-05,
|
| 2400 |
+
"loss": 0.1527,
|
| 2401 |
+
"step": 336
|
| 2402 |
+
},
|
| 2403 |
+
{
|
| 2404 |
+
"epoch": 1.3766632548618218,
|
| 2405 |
+
"grad_norm": 0.9860974550247192,
|
| 2406 |
+
"learning_rate": 1.1956389431422508e-05,
|
| 2407 |
+
"loss": 0.1729,
|
| 2408 |
+
"step": 337
|
| 2409 |
+
},
|
| 2410 |
+
{
|
| 2411 |
+
"epoch": 1.3807574206755373,
|
| 2412 |
+
"grad_norm": 1.0746179819107056,
|
| 2413 |
+
"learning_rate": 1.1912482743670624e-05,
|
| 2414 |
+
"loss": 0.1713,
|
| 2415 |
+
"step": 338
|
| 2416 |
+
},
|
| 2417 |
+
{
|
| 2418 |
+
"epoch": 1.3848515864892528,
|
| 2419 |
+
"grad_norm": 0.8706703782081604,
|
| 2420 |
+
"learning_rate": 1.1868537753842052e-05,
|
| 2421 |
+
"loss": 0.1521,
|
| 2422 |
+
"step": 339
|
| 2423 |
+
},
|
| 2424 |
+
{
|
| 2425 |
+
"epoch": 1.3889457523029682,
|
| 2426 |
+
"grad_norm": 0.9581889510154724,
|
| 2427 |
+
"learning_rate": 1.1824555342041129e-05,
|
| 2428 |
+
"loss": 0.1401,
|
| 2429 |
+
"step": 340
|
| 2430 |
+
},
|
| 2431 |
+
{
|
| 2432 |
+
"epoch": 1.3930399181166837,
|
| 2433 |
+
"grad_norm": 0.9390183091163635,
|
| 2434 |
+
"learning_rate": 1.1780536389121668e-05,
|
| 2435 |
+
"loss": 0.1391,
|
| 2436 |
+
"step": 341
|
| 2437 |
+
},
|
| 2438 |
+
{
|
| 2439 |
+
"epoch": 1.3971340839303992,
|
| 2440 |
+
"grad_norm": 0.9149916768074036,
|
| 2441 |
+
"learning_rate": 1.1736481776669307e-05,
|
| 2442 |
+
"loss": 0.1492,
|
| 2443 |
+
"step": 342
|
| 2444 |
+
},
|
| 2445 |
+
{
|
| 2446 |
+
"epoch": 1.4012282497441146,
|
| 2447 |
+
"grad_norm": 0.9424813389778137,
|
| 2448 |
+
"learning_rate": 1.1692392386983837e-05,
|
| 2449 |
+
"loss": 0.1716,
|
| 2450 |
+
"step": 343
|
| 2451 |
+
},
|
| 2452 |
+
{
|
| 2453 |
+
"epoch": 1.40532241555783,
|
| 2454 |
+
"grad_norm": 0.9241910576820374,
|
| 2455 |
+
"learning_rate": 1.1648269103061567e-05,
|
| 2456 |
+
"loss": 0.166,
|
| 2457 |
+
"step": 344
|
| 2458 |
+
},
|
| 2459 |
+
{
|
| 2460 |
+
"epoch": 1.4094165813715456,
|
| 2461 |
+
"grad_norm": 1.0855869054794312,
|
| 2462 |
+
"learning_rate": 1.1604112808577603e-05,
|
| 2463 |
+
"loss": 0.1653,
|
| 2464 |
+
"step": 345
|
| 2465 |
+
},
|
| 2466 |
+
{
|
| 2467 |
+
"epoch": 1.413510747185261,
|
| 2468 |
+
"grad_norm": 0.9882118105888367,
|
| 2469 |
+
"learning_rate": 1.155992438786818e-05,
|
| 2470 |
+
"loss": 0.1578,
|
| 2471 |
+
"step": 346
|
| 2472 |
+
},
|
| 2473 |
+
{
|
| 2474 |
+
"epoch": 1.4176049129989765,
|
| 2475 |
+
"grad_norm": 0.9933427572250366,
|
| 2476 |
+
"learning_rate": 1.1515704725912926e-05,
|
| 2477 |
+
"loss": 0.1506,
|
| 2478 |
+
"step": 347
|
| 2479 |
+
},
|
| 2480 |
+
{
|
| 2481 |
+
"epoch": 1.421699078812692,
|
| 2482 |
+
"grad_norm": 0.9362509250640869,
|
| 2483 |
+
"learning_rate": 1.1471454708317163e-05,
|
| 2484 |
+
"loss": 0.1704,
|
| 2485 |
+
"step": 348
|
| 2486 |
+
},
|
| 2487 |
+
{
|
| 2488 |
+
"epoch": 1.4257932446264074,
|
| 2489 |
+
"grad_norm": 0.9945564866065979,
|
| 2490 |
+
"learning_rate": 1.1427175221294145e-05,
|
| 2491 |
+
"loss": 0.1619,
|
| 2492 |
+
"step": 349
|
| 2493 |
+
},
|
| 2494 |
+
{
|
| 2495 |
+
"epoch": 1.429887410440123,
|
| 2496 |
+
"grad_norm": 1.0308408737182617,
|
| 2497 |
+
"learning_rate": 1.1382867151647333e-05,
|
| 2498 |
+
"loss": 0.1485,
|
| 2499 |
+
"step": 350
|
| 2500 |
+
},
|
| 2501 |
+
{
|
| 2502 |
+
"epoch": 1.4339815762538382,
|
| 2503 |
+
"grad_norm": 0.9077311158180237,
|
| 2504 |
+
"learning_rate": 1.1338531386752618e-05,
|
| 2505 |
+
"loss": 0.1472,
|
| 2506 |
+
"step": 351
|
| 2507 |
+
},
|
| 2508 |
+
{
|
| 2509 |
+
"epoch": 1.4380757420675536,
|
| 2510 |
+
"grad_norm": 1.0163536071777344,
|
| 2511 |
+
"learning_rate": 1.1294168814540554e-05,
|
| 2512 |
+
"loss": 0.169,
|
| 2513 |
+
"step": 352
|
| 2514 |
+
},
|
| 2515 |
+
{
|
| 2516 |
+
"epoch": 1.442169907881269,
|
| 2517 |
+
"grad_norm": 1.095957636833191,
|
| 2518 |
+
"learning_rate": 1.1249780323478585e-05,
|
| 2519 |
+
"loss": 0.1687,
|
| 2520 |
+
"step": 353
|
| 2521 |
+
},
|
| 2522 |
+
{
|
| 2523 |
+
"epoch": 1.4462640736949846,
|
| 2524 |
+
"grad_norm": 1.0116571187973022,
|
| 2525 |
+
"learning_rate": 1.1205366802553231e-05,
|
| 2526 |
+
"loss": 0.1687,
|
| 2527 |
+
"step": 354
|
| 2528 |
+
},
|
| 2529 |
+
{
|
| 2530 |
+
"epoch": 1.4503582395087,
|
| 2531 |
+
"grad_norm": 0.893722653388977,
|
| 2532 |
+
"learning_rate": 1.1160929141252303e-05,
|
| 2533 |
+
"loss": 0.1483,
|
| 2534 |
+
"step": 355
|
| 2535 |
+
},
|
| 2536 |
+
{
|
| 2537 |
+
"epoch": 1.4544524053224155,
|
| 2538 |
+
"grad_norm": 1.1401066780090332,
|
| 2539 |
+
"learning_rate": 1.1116468229547079e-05,
|
| 2540 |
+
"loss": 0.171,
|
| 2541 |
+
"step": 356
|
| 2542 |
+
},
|
| 2543 |
+
{
|
| 2544 |
+
"epoch": 1.458546571136131,
|
| 2545 |
+
"grad_norm": 0.9569492340087891,
|
| 2546 |
+
"learning_rate": 1.107198495787448e-05,
|
| 2547 |
+
"loss": 0.1573,
|
| 2548 |
+
"step": 357
|
| 2549 |
+
},
|
| 2550 |
+
{
|
| 2551 |
+
"epoch": 1.4626407369498464,
|
| 2552 |
+
"grad_norm": 0.9641392230987549,
|
| 2553 |
+
"learning_rate": 1.1027480217119245e-05,
|
| 2554 |
+
"loss": 0.1518,
|
| 2555 |
+
"step": 358
|
| 2556 |
+
},
|
| 2557 |
+
{
|
| 2558 |
+
"epoch": 1.4667349027635619,
|
| 2559 |
+
"grad_norm": 0.986418604850769,
|
| 2560 |
+
"learning_rate": 1.0982954898596072e-05,
|
| 2561 |
+
"loss": 0.1637,
|
| 2562 |
+
"step": 359
|
| 2563 |
+
},
|
| 2564 |
+
{
|
| 2565 |
+
"epoch": 1.4708290685772774,
|
| 2566 |
+
"grad_norm": 0.9645577073097229,
|
| 2567 |
+
"learning_rate": 1.0938409894031793e-05,
|
| 2568 |
+
"loss": 0.1398,
|
| 2569 |
+
"step": 360
|
| 2570 |
+
},
|
| 2571 |
+
{
|
| 2572 |
+
"epoch": 1.4749232343909928,
|
| 2573 |
+
"grad_norm": 1.0230332612991333,
|
| 2574 |
+
"learning_rate": 1.0893846095547493e-05,
|
| 2575 |
+
"loss": 0.1491,
|
| 2576 |
+
"step": 361
|
| 2577 |
+
},
|
| 2578 |
+
{
|
| 2579 |
+
"epoch": 1.4790174002047083,
|
| 2580 |
+
"grad_norm": 0.9442994594573975,
|
| 2581 |
+
"learning_rate": 1.084926439564065e-05,
|
| 2582 |
+
"loss": 0.1593,
|
| 2583 |
+
"step": 362
|
| 2584 |
+
},
|
| 2585 |
+
{
|
| 2586 |
+
"epoch": 1.4831115660184238,
|
| 2587 |
+
"grad_norm": 0.8560605645179749,
|
| 2588 |
+
"learning_rate": 1.0804665687167262e-05,
|
| 2589 |
+
"loss": 0.1594,
|
| 2590 |
+
"step": 363
|
| 2591 |
+
},
|
| 2592 |
+
{
|
| 2593 |
+
"epoch": 1.4872057318321392,
|
| 2594 |
+
"grad_norm": 1.018290400505066,
|
| 2595 |
+
"learning_rate": 1.0760050863323961e-05,
|
| 2596 |
+
"loss": 0.1604,
|
| 2597 |
+
"step": 364
|
| 2598 |
+
},
|
| 2599 |
+
{
|
| 2600 |
+
"epoch": 1.4912998976458547,
|
| 2601 |
+
"grad_norm": 0.8661187291145325,
|
| 2602 |
+
"learning_rate": 1.0715420817630137e-05,
|
| 2603 |
+
"loss": 0.1432,
|
| 2604 |
+
"step": 365
|
| 2605 |
+
},
|
| 2606 |
+
{
|
| 2607 |
+
"epoch": 1.4953940634595702,
|
| 2608 |
+
"grad_norm": 0.9243437647819519,
|
| 2609 |
+
"learning_rate": 1.0670776443910024e-05,
|
| 2610 |
+
"loss": 0.151,
|
| 2611 |
+
"step": 366
|
| 2612 |
+
},
|
| 2613 |
+
{
|
| 2614 |
+
"epoch": 1.4994882292732856,
|
| 2615 |
+
"grad_norm": 0.9546313285827637,
|
| 2616 |
+
"learning_rate": 1.062611863627482e-05,
|
| 2617 |
+
"loss": 0.1519,
|
| 2618 |
+
"step": 367
|
| 2619 |
+
},
|
| 2620 |
+
{
|
| 2621 |
+
"epoch": 1.503582395087001,
|
| 2622 |
+
"grad_norm": 0.9470425248146057,
|
| 2623 |
+
"learning_rate": 1.0581448289104759e-05,
|
| 2624 |
+
"loss": 0.1463,
|
| 2625 |
+
"step": 368
|
| 2626 |
+
},
|
| 2627 |
+
{
|
| 2628 |
+
"epoch": 1.5076765609007166,
|
| 2629 |
+
"grad_norm": 1.0364755392074585,
|
| 2630 |
+
"learning_rate": 1.0536766297031216e-05,
|
| 2631 |
+
"loss": 0.1695,
|
| 2632 |
+
"step": 369
|
| 2633 |
+
},
|
| 2634 |
+
{
|
| 2635 |
+
"epoch": 1.511770726714432,
|
| 2636 |
+
"grad_norm": 0.9163882732391357,
|
| 2637 |
+
"learning_rate": 1.0492073554918782e-05,
|
| 2638 |
+
"loss": 0.1549,
|
| 2639 |
+
"step": 370
|
| 2640 |
+
},
|
| 2641 |
+
{
|
| 2642 |
+
"epoch": 1.5158648925281475,
|
| 2643 |
+
"grad_norm": 1.1011639833450317,
|
| 2644 |
+
"learning_rate": 1.0447370957847343e-05,
|
| 2645 |
+
"loss": 0.154,
|
| 2646 |
+
"step": 371
|
| 2647 |
+
},
|
| 2648 |
+
{
|
| 2649 |
+
"epoch": 1.519959058341863,
|
| 2650 |
+
"grad_norm": 0.8807597160339355,
|
| 2651 |
+
"learning_rate": 1.0402659401094154e-05,
|
| 2652 |
+
"loss": 0.1364,
|
| 2653 |
+
"step": 372
|
| 2654 |
+
},
|
| 2655 |
+
{
|
| 2656 |
+
"epoch": 1.5240532241555784,
|
| 2657 |
+
"grad_norm": 0.9387779831886292,
|
| 2658 |
+
"learning_rate": 1.0357939780115906e-05,
|
| 2659 |
+
"loss": 0.1593,
|
| 2660 |
+
"step": 373
|
| 2661 |
+
},
|
| 2662 |
+
{
|
| 2663 |
+
"epoch": 1.528147389969294,
|
| 2664 |
+
"grad_norm": 1.1142334938049316,
|
| 2665 |
+
"learning_rate": 1.0313212990530804e-05,
|
| 2666 |
+
"loss": 0.1547,
|
| 2667 |
+
"step": 374
|
| 2668 |
+
},
|
| 2669 |
+
{
|
| 2670 |
+
"epoch": 1.5322415557830094,
|
| 2671 |
+
"grad_norm": 1.0406149625778198,
|
| 2672 |
+
"learning_rate": 1.0268479928100615e-05,
|
| 2673 |
+
"loss": 0.1639,
|
| 2674 |
+
"step": 375
|
| 2675 |
+
},
|
| 2676 |
+
{
|
| 2677 |
+
"epoch": 1.5363357215967248,
|
| 2678 |
+
"grad_norm": 0.8890196084976196,
|
| 2679 |
+
"learning_rate": 1.0223741488712732e-05,
|
| 2680 |
+
"loss": 0.1357,
|
| 2681 |
+
"step": 376
|
| 2682 |
+
},
|
| 2683 |
+
{
|
| 2684 |
+
"epoch": 1.54042988741044,
|
| 2685 |
+
"grad_norm": 0.8725599050521851,
|
| 2686 |
+
"learning_rate": 1.0178998568362243e-05,
|
| 2687 |
+
"loss": 0.1334,
|
| 2688 |
+
"step": 377
|
| 2689 |
+
},
|
| 2690 |
+
{
|
| 2691 |
+
"epoch": 1.5445240532241555,
|
| 2692 |
+
"grad_norm": 1.0039124488830566,
|
| 2693 |
+
"learning_rate": 1.0134252063133976e-05,
|
| 2694 |
+
"loss": 0.1544,
|
| 2695 |
+
"step": 378
|
| 2696 |
+
},
|
| 2697 |
+
{
|
| 2698 |
+
"epoch": 1.548618219037871,
|
| 2699 |
+
"grad_norm": 0.9957043528556824,
|
| 2700 |
+
"learning_rate": 1.0089502869184549e-05,
|
| 2701 |
+
"loss": 0.1578,
|
| 2702 |
+
"step": 379
|
| 2703 |
+
},
|
| 2704 |
+
{
|
| 2705 |
+
"epoch": 1.5527123848515865,
|
| 2706 |
+
"grad_norm": 0.8412466049194336,
|
| 2707 |
+
"learning_rate": 1.0044751882724436e-05,
|
| 2708 |
+
"loss": 0.1328,
|
| 2709 |
+
"step": 380
|
| 2710 |
+
},
|
| 2711 |
+
{
|
| 2712 |
+
"epoch": 1.556806550665302,
|
| 2713 |
+
"grad_norm": 0.9724802374839783,
|
| 2714 |
+
"learning_rate": 1e-05,
|
| 2715 |
+
"loss": 0.1494,
|
| 2716 |
+
"step": 381
|
| 2717 |
+
},
|
| 2718 |
+
{
|
| 2719 |
+
"epoch": 1.5609007164790174,
|
| 2720 |
+
"grad_norm": 0.8915446996688843,
|
| 2721 |
+
"learning_rate": 9.955248117275566e-06,
|
| 2722 |
+
"loss": 0.1528,
|
| 2723 |
+
"step": 382
|
| 2724 |
+
},
|
| 2725 |
+
{
|
| 2726 |
+
"epoch": 1.5649948822927329,
|
| 2727 |
+
"grad_norm": 0.8682056069374084,
|
| 2728 |
+
"learning_rate": 9.910497130815454e-06,
|
| 2729 |
+
"loss": 0.1378,
|
| 2730 |
+
"step": 383
|
| 2731 |
+
},
|
| 2732 |
+
{
|
| 2733 |
+
"epoch": 1.5690890481064483,
|
| 2734 |
+
"grad_norm": 0.9853907227516174,
|
| 2735 |
+
"learning_rate": 9.865747936866027e-06,
|
| 2736 |
+
"loss": 0.1521,
|
| 2737 |
+
"step": 384
|
| 2738 |
+
},
|
| 2739 |
+
{
|
| 2740 |
+
"epoch": 1.5731832139201638,
|
| 2741 |
+
"grad_norm": 1.1003942489624023,
|
| 2742 |
+
"learning_rate": 9.821001431637759e-06,
|
| 2743 |
+
"loss": 0.1592,
|
| 2744 |
+
"step": 385
|
| 2745 |
+
},
|
| 2746 |
+
{
|
| 2747 |
+
"epoch": 1.5772773797338793,
|
| 2748 |
+
"grad_norm": 0.9457170367240906,
|
| 2749 |
+
"learning_rate": 9.776258511287271e-06,
|
| 2750 |
+
"loss": 0.1404,
|
| 2751 |
+
"step": 386
|
| 2752 |
+
},
|
| 2753 |
+
{
|
| 2754 |
+
"epoch": 1.5813715455475945,
|
| 2755 |
+
"grad_norm": 1.0267016887664795,
|
| 2756 |
+
"learning_rate": 9.73152007189939e-06,
|
| 2757 |
+
"loss": 0.1631,
|
| 2758 |
+
"step": 387
|
| 2759 |
+
},
|
| 2760 |
+
{
|
| 2761 |
+
"epoch": 1.58546571136131,
|
| 2762 |
+
"grad_norm": 0.899929940700531,
|
| 2763 |
+
"learning_rate": 9.6867870094692e-06,
|
| 2764 |
+
"loss": 0.1596,
|
| 2765 |
+
"step": 388
|
| 2766 |
+
},
|
| 2767 |
+
{
|
| 2768 |
+
"epoch": 1.5895598771750254,
|
| 2769 |
+
"grad_norm": 0.904625415802002,
|
| 2770 |
+
"learning_rate": 9.642060219884096e-06,
|
| 2771 |
+
"loss": 0.1431,
|
| 2772 |
+
"step": 389
|
| 2773 |
+
},
|
| 2774 |
+
{
|
| 2775 |
+
"epoch": 1.593654042988741,
|
| 2776 |
+
"grad_norm": 1.0200403928756714,
|
| 2777 |
+
"learning_rate": 9.597340598905851e-06,
|
| 2778 |
+
"loss": 0.1475,
|
| 2779 |
+
"step": 390
|
| 2780 |
+
},
|
| 2781 |
+
{
|
| 2782 |
+
"epoch": 1.5977482088024564,
|
| 2783 |
+
"grad_norm": 0.8861089944839478,
|
| 2784 |
+
"learning_rate": 9.55262904215266e-06,
|
| 2785 |
+
"loss": 0.1495,
|
| 2786 |
+
"step": 391
|
| 2787 |
+
},
|
| 2788 |
+
{
|
| 2789 |
+
"epoch": 1.6018423746161718,
|
| 2790 |
+
"grad_norm": 0.9779448509216309,
|
| 2791 |
+
"learning_rate": 9.50792644508122e-06,
|
| 2792 |
+
"loss": 0.1514,
|
| 2793 |
+
"step": 392
|
| 2794 |
+
},
|
| 2795 |
+
{
|
| 2796 |
+
"epoch": 1.6059365404298873,
|
| 2797 |
+
"grad_norm": 0.8129394054412842,
|
| 2798 |
+
"learning_rate": 9.463233702968784e-06,
|
| 2799 |
+
"loss": 0.1482,
|
| 2800 |
+
"step": 393
|
| 2801 |
+
},
|
| 2802 |
+
{
|
| 2803 |
+
"epoch": 1.6100307062436028,
|
| 2804 |
+
"grad_norm": 0.8793542385101318,
|
| 2805 |
+
"learning_rate": 9.418551710895243e-06,
|
| 2806 |
+
"loss": 0.1505,
|
| 2807 |
+
"step": 394
|
| 2808 |
+
},
|
| 2809 |
+
{
|
| 2810 |
+
"epoch": 1.6141248720573182,
|
| 2811 |
+
"grad_norm": 0.9809761643409729,
|
| 2812 |
+
"learning_rate": 9.373881363725182e-06,
|
| 2813 |
+
"loss": 0.1548,
|
| 2814 |
+
"step": 395
|
| 2815 |
+
},
|
| 2816 |
+
{
|
| 2817 |
+
"epoch": 1.6182190378710337,
|
| 2818 |
+
"grad_norm": 0.9904576539993286,
|
| 2819 |
+
"learning_rate": 9.329223556089976e-06,
|
| 2820 |
+
"loss": 0.1579,
|
| 2821 |
+
"step": 396
|
| 2822 |
+
},
|
| 2823 |
+
{
|
| 2824 |
+
"epoch": 1.6223132036847492,
|
| 2825 |
+
"grad_norm": 0.8856755495071411,
|
| 2826 |
+
"learning_rate": 9.284579182369868e-06,
|
| 2827 |
+
"loss": 0.1524,
|
| 2828 |
+
"step": 397
|
| 2829 |
+
},
|
| 2830 |
+
{
|
| 2831 |
+
"epoch": 1.6264073694984647,
|
| 2832 |
+
"grad_norm": 1.0314946174621582,
|
| 2833 |
+
"learning_rate": 9.239949136676042e-06,
|
| 2834 |
+
"loss": 0.162,
|
| 2835 |
+
"step": 398
|
| 2836 |
+
},
|
| 2837 |
+
{
|
| 2838 |
+
"epoch": 1.6305015353121801,
|
| 2839 |
+
"grad_norm": 0.9784588813781738,
|
| 2840 |
+
"learning_rate": 9.195334312832742e-06,
|
| 2841 |
+
"loss": 0.1463,
|
| 2842 |
+
"step": 399
|
| 2843 |
+
},
|
| 2844 |
+
{
|
| 2845 |
+
"epoch": 1.6345957011258956,
|
| 2846 |
+
"grad_norm": 0.8726085424423218,
|
| 2847 |
+
"learning_rate": 9.15073560435935e-06,
|
| 2848 |
+
"loss": 0.1324,
|
| 2849 |
+
"step": 400
|
| 2850 |
+
},
|
| 2851 |
+
{
|
| 2852 |
+
"epoch": 1.638689866939611,
|
| 2853 |
+
"grad_norm": 0.9043903946876526,
|
| 2854 |
+
"learning_rate": 9.10615390445251e-06,
|
| 2855 |
+
"loss": 0.1482,
|
| 2856 |
+
"step": 401
|
| 2857 |
+
},
|
| 2858 |
+
{
|
| 2859 |
+
"epoch": 1.6427840327533265,
|
| 2860 |
+
"grad_norm": 0.9523571729660034,
|
| 2861 |
+
"learning_rate": 9.061590105968208e-06,
|
| 2862 |
+
"loss": 0.1404,
|
| 2863 |
+
"step": 402
|
| 2864 |
+
},
|
| 2865 |
+
{
|
| 2866 |
+
"epoch": 1.646878198567042,
|
| 2867 |
+
"grad_norm": 0.9627721905708313,
|
| 2868 |
+
"learning_rate": 9.01704510140393e-06,
|
| 2869 |
+
"loss": 0.1367,
|
| 2870 |
+
"step": 403
|
| 2871 |
+
},
|
| 2872 |
+
{
|
| 2873 |
+
"epoch": 1.6509723643807575,
|
| 2874 |
+
"grad_norm": 0.9449582695960999,
|
| 2875 |
+
"learning_rate": 8.97251978288076e-06,
|
| 2876 |
+
"loss": 0.1557,
|
| 2877 |
+
"step": 404
|
| 2878 |
+
},
|
| 2879 |
+
{
|
| 2880 |
+
"epoch": 1.655066530194473,
|
| 2881 |
+
"grad_norm": 1.0399394035339355,
|
| 2882 |
+
"learning_rate": 8.928015042125523e-06,
|
| 2883 |
+
"loss": 0.153,
|
| 2884 |
+
"step": 405
|
| 2885 |
+
},
|
| 2886 |
+
{
|
| 2887 |
+
"epoch": 1.6591606960081884,
|
| 2888 |
+
"grad_norm": 0.9468371868133545,
|
| 2889 |
+
"learning_rate": 8.883531770452924e-06,
|
| 2890 |
+
"loss": 0.1544,
|
| 2891 |
+
"step": 406
|
| 2892 |
+
},
|
| 2893 |
+
{
|
| 2894 |
+
"epoch": 1.6632548618219039,
|
| 2895 |
+
"grad_norm": 0.9178614020347595,
|
| 2896 |
+
"learning_rate": 8.839070858747697e-06,
|
| 2897 |
+
"loss": 0.1451,
|
| 2898 |
+
"step": 407
|
| 2899 |
+
},
|
| 2900 |
+
{
|
| 2901 |
+
"epoch": 1.6673490276356193,
|
| 2902 |
+
"grad_norm": 0.8932563662528992,
|
| 2903 |
+
"learning_rate": 8.79463319744677e-06,
|
| 2904 |
+
"loss": 0.1495,
|
| 2905 |
+
"step": 408
|
| 2906 |
+
},
|
| 2907 |
+
{
|
| 2908 |
+
"epoch": 1.6714431934493348,
|
| 2909 |
+
"grad_norm": 0.9476360082626343,
|
| 2910 |
+
"learning_rate": 8.750219676521417e-06,
|
| 2911 |
+
"loss": 0.1402,
|
| 2912 |
+
"step": 409
|
| 2913 |
+
},
|
| 2914 |
+
{
|
| 2915 |
+
"epoch": 1.6755373592630503,
|
| 2916 |
+
"grad_norm": 1.1400271654129028,
|
| 2917 |
+
"learning_rate": 8.705831185459446e-06,
|
| 2918 |
+
"loss": 0.1605,
|
| 2919 |
+
"step": 410
|
| 2920 |
+
},
|
| 2921 |
+
{
|
| 2922 |
+
"epoch": 1.6755373592630503,
|
| 2923 |
+
"eval_loss": 0.2577343285083771,
|
| 2924 |
+
"eval_runtime": 5.9021,
|
| 2925 |
+
"eval_samples_per_second": 13.385,
|
| 2926 |
+
"eval_steps_per_second": 1.694,
|
| 2927 |
+
"step": 410
|
| 2928 |
+
},
|
| 2929 |
+
{
|
| 2930 |
+
"epoch": 1.6796315250767657,
|
| 2931 |
+
"grad_norm": 1.0324385166168213,
|
| 2932 |
+
"learning_rate": 8.661468613247387e-06,
|
| 2933 |
+
"loss": 0.155,
|
| 2934 |
+
"step": 411
|
| 2935 |
+
},
|
| 2936 |
+
{
|
| 2937 |
+
"epoch": 1.6837256908904812,
|
| 2938 |
+
"grad_norm": 0.8972249031066895,
|
| 2939 |
+
"learning_rate": 8.617132848352672e-06,
|
| 2940 |
+
"loss": 0.1493,
|
| 2941 |
+
"step": 412
|
| 2942 |
+
},
|
| 2943 |
+
{
|
| 2944 |
+
"epoch": 1.6878198567041967,
|
| 2945 |
+
"grad_norm": 0.9417198896408081,
|
| 2946 |
+
"learning_rate": 8.572824778705858e-06,
|
| 2947 |
+
"loss": 0.1446,
|
| 2948 |
+
"step": 413
|
| 2949 |
+
},
|
| 2950 |
+
{
|
| 2951 |
+
"epoch": 1.6919140225179121,
|
| 2952 |
+
"grad_norm": 0.9958034753799438,
|
| 2953 |
+
"learning_rate": 8.528545291682839e-06,
|
| 2954 |
+
"loss": 0.1725,
|
| 2955 |
+
"step": 414
|
| 2956 |
+
},
|
| 2957 |
+
{
|
| 2958 |
+
"epoch": 1.6960081883316276,
|
| 2959 |
+
"grad_norm": 0.7882540822029114,
|
| 2960 |
+
"learning_rate": 8.484295274087077e-06,
|
| 2961 |
+
"loss": 0.1332,
|
| 2962 |
+
"step": 415
|
| 2963 |
+
},
|
| 2964 |
+
{
|
| 2965 |
+
"epoch": 1.7001023541453428,
|
| 2966 |
+
"grad_norm": 0.9401816725730896,
|
| 2967 |
+
"learning_rate": 8.440075612131823e-06,
|
| 2968 |
+
"loss": 0.1482,
|
| 2969 |
+
"step": 416
|
| 2970 |
+
},
|
| 2971 |
+
{
|
| 2972 |
+
"epoch": 1.7041965199590583,
|
| 2973 |
+
"grad_norm": 0.8681234121322632,
|
| 2974 |
+
"learning_rate": 8.395887191422397e-06,
|
| 2975 |
+
"loss": 0.1563,
|
| 2976 |
+
"step": 417
|
| 2977 |
+
},
|
| 2978 |
+
{
|
| 2979 |
+
"epoch": 1.7082906857727738,
|
| 2980 |
+
"grad_norm": 0.953637957572937,
|
| 2981 |
+
"learning_rate": 8.351730896938438e-06,
|
| 2982 |
+
"loss": 0.1548,
|
| 2983 |
+
"step": 418
|
| 2984 |
+
},
|
| 2985 |
+
{
|
| 2986 |
+
"epoch": 1.7123848515864892,
|
| 2987 |
+
"grad_norm": 0.9913907051086426,
|
| 2988 |
+
"learning_rate": 8.307607613016166e-06,
|
| 2989 |
+
"loss": 0.151,
|
| 2990 |
+
"step": 419
|
| 2991 |
+
},
|
| 2992 |
+
{
|
| 2993 |
+
"epoch": 1.7164790174002047,
|
| 2994 |
+
"grad_norm": 0.9096423983573914,
|
| 2995 |
+
"learning_rate": 8.263518223330698e-06,
|
| 2996 |
+
"loss": 0.1425,
|
| 2997 |
+
"step": 420
|
| 2998 |
+
},
|
| 2999 |
+
{
|
| 3000 |
+
"epoch": 1.7205731832139202,
|
| 3001 |
+
"grad_norm": 0.8913793563842773,
|
| 3002 |
+
"learning_rate": 8.219463610878336e-06,
|
| 3003 |
+
"loss": 0.1445,
|
| 3004 |
+
"step": 421
|
| 3005 |
+
},
|
| 3006 |
+
{
|
| 3007 |
+
"epoch": 1.7246673490276356,
|
| 3008 |
+
"grad_norm": 0.8762878775596619,
|
| 3009 |
+
"learning_rate": 8.175444657958875e-06,
|
| 3010 |
+
"loss": 0.1328,
|
| 3011 |
+
"step": 422
|
| 3012 |
+
},
|
| 3013 |
+
{
|
| 3014 |
+
"epoch": 1.728761514841351,
|
| 3015 |
+
"grad_norm": 0.906721830368042,
|
| 3016 |
+
"learning_rate": 8.131462246157953e-06,
|
| 3017 |
+
"loss": 0.1432,
|
| 3018 |
+
"step": 423
|
| 3019 |
+
},
|
| 3020 |
+
{
|
| 3021 |
+
"epoch": 1.7328556806550666,
|
| 3022 |
+
"grad_norm": 0.9558602571487427,
|
| 3023 |
+
"learning_rate": 8.087517256329376e-06,
|
| 3024 |
+
"loss": 0.1556,
|
| 3025 |
+
"step": 424
|
| 3026 |
+
},
|
| 3027 |
+
{
|
| 3028 |
+
"epoch": 1.736949846468782,
|
| 3029 |
+
"grad_norm": 1.0226850509643555,
|
| 3030 |
+
"learning_rate": 8.043610568577497e-06,
|
| 3031 |
+
"loss": 0.1526,
|
| 3032 |
+
"step": 425
|
| 3033 |
+
},
|
| 3034 |
+
{
|
| 3035 |
+
"epoch": 1.7410440122824973,
|
| 3036 |
+
"grad_norm": 0.8428735136985779,
|
| 3037 |
+
"learning_rate": 7.999743062239557e-06,
|
| 3038 |
+
"loss": 0.1394,
|
| 3039 |
+
"step": 426
|
| 3040 |
+
},
|
| 3041 |
+
{
|
| 3042 |
+
"epoch": 1.7451381780962127,
|
| 3043 |
+
"grad_norm": 0.8992868065834045,
|
| 3044 |
+
"learning_rate": 7.95591561586811e-06,
|
| 3045 |
+
"loss": 0.1467,
|
| 3046 |
+
"step": 427
|
| 3047 |
+
},
|
| 3048 |
+
{
|
| 3049 |
+
"epoch": 1.7492323439099282,
|
| 3050 |
+
"grad_norm": 0.8938621878623962,
|
| 3051 |
+
"learning_rate": 7.912129107213417e-06,
|
| 3052 |
+
"loss": 0.1436,
|
| 3053 |
+
"step": 428
|
| 3054 |
+
},
|
| 3055 |
+
{
|
| 3056 |
+
"epoch": 1.7533265097236437,
|
| 3057 |
+
"grad_norm": 0.9230063557624817,
|
| 3058 |
+
"learning_rate": 7.868384413205842e-06,
|
| 3059 |
+
"loss": 0.1428,
|
| 3060 |
+
"step": 429
|
| 3061 |
+
},
|
| 3062 |
+
{
|
| 3063 |
+
"epoch": 1.7574206755373591,
|
| 3064 |
+
"grad_norm": 1.0105928182601929,
|
| 3065 |
+
"learning_rate": 7.824682409938328e-06,
|
| 3066 |
+
"loss": 0.1624,
|
| 3067 |
+
"step": 430
|
| 3068 |
+
},
|
| 3069 |
+
{
|
| 3070 |
+
"epoch": 1.7615148413510746,
|
| 3071 |
+
"grad_norm": 0.9786428213119507,
|
| 3072 |
+
"learning_rate": 7.781023972648826e-06,
|
| 3073 |
+
"loss": 0.1508,
|
| 3074 |
+
"step": 431
|
| 3075 |
+
},
|
| 3076 |
+
{
|
| 3077 |
+
"epoch": 1.76560900716479,
|
| 3078 |
+
"grad_norm": 0.9351881742477417,
|
| 3079 |
+
"learning_rate": 7.73740997570278e-06,
|
| 3080 |
+
"loss": 0.1473,
|
| 3081 |
+
"step": 432
|
| 3082 |
+
},
|
| 3083 |
+
{
|
| 3084 |
+
"epoch": 1.7697031729785055,
|
| 3085 |
+
"grad_norm": 0.9618210196495056,
|
| 3086 |
+
"learning_rate": 7.6938412925756e-06,
|
| 3087 |
+
"loss": 0.1374,
|
| 3088 |
+
"step": 433
|
| 3089 |
+
},
|
| 3090 |
+
{
|
| 3091 |
+
"epoch": 1.773797338792221,
|
| 3092 |
+
"grad_norm": 0.9136247634887695,
|
| 3093 |
+
"learning_rate": 7.650318795835179e-06,
|
| 3094 |
+
"loss": 0.1457,
|
| 3095 |
+
"step": 434
|
| 3096 |
+
},
|
| 3097 |
+
{
|
| 3098 |
+
"epoch": 1.7778915046059365,
|
| 3099 |
+
"grad_norm": 1.2237149477005005,
|
| 3100 |
+
"learning_rate": 7.606843357124426e-06,
|
| 3101 |
+
"loss": 0.1448,
|
| 3102 |
+
"step": 435
|
| 3103 |
+
},
|
| 3104 |
+
{
|
| 3105 |
+
"epoch": 1.781985670419652,
|
| 3106 |
+
"grad_norm": 1.0644303560256958,
|
| 3107 |
+
"learning_rate": 7.563415847143782e-06,
|
| 3108 |
+
"loss": 0.1618,
|
| 3109 |
+
"step": 436
|
| 3110 |
+
},
|
| 3111 |
+
{
|
| 3112 |
+
"epoch": 1.7860798362333674,
|
| 3113 |
+
"grad_norm": 0.992850661277771,
|
| 3114 |
+
"learning_rate": 7.520037135633817e-06,
|
| 3115 |
+
"loss": 0.1432,
|
| 3116 |
+
"step": 437
|
| 3117 |
+
},
|
| 3118 |
+
{
|
| 3119 |
+
"epoch": 1.7901740020470829,
|
| 3120 |
+
"grad_norm": 0.8789179921150208,
|
| 3121 |
+
"learning_rate": 7.476708091357783e-06,
|
| 3122 |
+
"loss": 0.1593,
|
| 3123 |
+
"step": 438
|
| 3124 |
+
},
|
| 3125 |
+
{
|
| 3126 |
+
"epoch": 1.7942681678607983,
|
| 3127 |
+
"grad_norm": 0.8858450055122375,
|
| 3128 |
+
"learning_rate": 7.433429582084233e-06,
|
| 3129 |
+
"loss": 0.1421,
|
| 3130 |
+
"step": 439
|
| 3131 |
+
},
|
| 3132 |
+
{
|
| 3133 |
+
"epoch": 1.7983623336745138,
|
| 3134 |
+
"grad_norm": 0.8538363575935364,
|
| 3135 |
+
"learning_rate": 7.39020247456963e-06,
|
| 3136 |
+
"loss": 0.1368,
|
| 3137 |
+
"step": 440
|
| 3138 |
+
},
|
| 3139 |
+
{
|
| 3140 |
+
"epoch": 1.8024564994882293,
|
| 3141 |
+
"grad_norm": 0.9794362187385559,
|
| 3142 |
+
"learning_rate": 7.347027634540993e-06,
|
| 3143 |
+
"loss": 0.1568,
|
| 3144 |
+
"step": 441
|
| 3145 |
+
},
|
| 3146 |
+
{
|
| 3147 |
+
"epoch": 1.8065506653019447,
|
| 3148 |
+
"grad_norm": 0.9608176350593567,
|
| 3149 |
+
"learning_rate": 7.303905926678565e-06,
|
| 3150 |
+
"loss": 0.1736,
|
| 3151 |
+
"step": 442
|
| 3152 |
+
},
|
| 3153 |
+
{
|
| 3154 |
+
"epoch": 1.8106448311156602,
|
| 3155 |
+
"grad_norm": 0.9341726303100586,
|
| 3156 |
+
"learning_rate": 7.260838214598475e-06,
|
| 3157 |
+
"loss": 0.1559,
|
| 3158 |
+
"step": 443
|
| 3159 |
+
},
|
| 3160 |
+
{
|
| 3161 |
+
"epoch": 1.8147389969293757,
|
| 3162 |
+
"grad_norm": 0.9113818407058716,
|
| 3163 |
+
"learning_rate": 7.217825360835475e-06,
|
| 3164 |
+
"loss": 0.154,
|
| 3165 |
+
"step": 444
|
| 3166 |
+
},
|
| 3167 |
+
{
|
| 3168 |
+
"epoch": 1.8188331627430911,
|
| 3169 |
+
"grad_norm": 0.8818947076797485,
|
| 3170 |
+
"learning_rate": 7.174868226825631e-06,
|
| 3171 |
+
"loss": 0.1391,
|
| 3172 |
+
"step": 445
|
| 3173 |
+
},
|
| 3174 |
+
{
|
| 3175 |
+
"epoch": 1.8229273285568066,
|
| 3176 |
+
"grad_norm": 0.8737187385559082,
|
| 3177 |
+
"learning_rate": 7.131967672889101e-06,
|
| 3178 |
+
"loss": 0.1508,
|
| 3179 |
+
"step": 446
|
| 3180 |
+
},
|
| 3181 |
+
{
|
| 3182 |
+
"epoch": 1.827021494370522,
|
| 3183 |
+
"grad_norm": 0.9715389609336853,
|
| 3184 |
+
"learning_rate": 7.089124558212872e-06,
|
| 3185 |
+
"loss": 0.1368,
|
| 3186 |
+
"step": 447
|
| 3187 |
+
},
|
| 3188 |
+
{
|
| 3189 |
+
"epoch": 1.8311156601842375,
|
| 3190 |
+
"grad_norm": 0.936271607875824,
|
| 3191 |
+
"learning_rate": 7.04633974083359e-06,
|
| 3192 |
+
"loss": 0.1468,
|
| 3193 |
+
"step": 448
|
| 3194 |
+
},
|
| 3195 |
+
{
|
| 3196 |
+
"epoch": 1.835209825997953,
|
| 3197 |
+
"grad_norm": 0.8608719110488892,
|
| 3198 |
+
"learning_rate": 7.003614077620348e-06,
|
| 3199 |
+
"loss": 0.1405,
|
| 3200 |
+
"step": 449
|
| 3201 |
+
},
|
| 3202 |
+
{
|
| 3203 |
+
"epoch": 1.8393039918116685,
|
| 3204 |
+
"grad_norm": 1.0865558385849,
|
| 3205 |
+
"learning_rate": 6.960948424257532e-06,
|
| 3206 |
+
"loss": 0.141,
|
| 3207 |
+
"step": 450
|
| 3208 |
+
},
|
| 3209 |
+
{
|
| 3210 |
+
"epoch": 1.843398157625384,
|
| 3211 |
+
"grad_norm": 0.8026862740516663,
|
| 3212 |
+
"learning_rate": 6.918343635227694e-06,
|
| 3213 |
+
"loss": 0.1264,
|
| 3214 |
+
"step": 451
|
| 3215 |
+
},
|
| 3216 |
+
{
|
| 3217 |
+
"epoch": 1.8474923234390994,
|
| 3218 |
+
"grad_norm": 0.9582161903381348,
|
| 3219 |
+
"learning_rate": 6.8758005637944245e-06,
|
| 3220 |
+
"loss": 0.1599,
|
| 3221 |
+
"step": 452
|
| 3222 |
+
},
|
| 3223 |
+
{
|
| 3224 |
+
"epoch": 1.8515864892528149,
|
| 3225 |
+
"grad_norm": 1.0018301010131836,
|
| 3226 |
+
"learning_rate": 6.833320061985278e-06,
|
| 3227 |
+
"loss": 0.155,
|
| 3228 |
+
"step": 453
|
| 3229 |
+
},
|
| 3230 |
+
{
|
| 3231 |
+
"epoch": 1.8556806550665303,
|
| 3232 |
+
"grad_norm": 0.9807232618331909,
|
| 3233 |
+
"learning_rate": 6.7909029805746855e-06,
|
| 3234 |
+
"loss": 0.1519,
|
| 3235 |
+
"step": 454
|
| 3236 |
+
},
|
| 3237 |
+
{
|
| 3238 |
+
"epoch": 1.8597748208802458,
|
| 3239 |
+
"grad_norm": 0.8871752023696899,
|
| 3240 |
+
"learning_rate": 6.7485501690669495e-06,
|
| 3241 |
+
"loss": 0.1231,
|
| 3242 |
+
"step": 455
|
| 3243 |
+
},
|
| 3244 |
+
{
|
| 3245 |
+
"epoch": 1.863868986693961,
|
| 3246 |
+
"grad_norm": 0.9024534225463867,
|
| 3247 |
+
"learning_rate": 6.706262475679205e-06,
|
| 3248 |
+
"loss": 0.1472,
|
| 3249 |
+
"step": 456
|
| 3250 |
+
},
|
| 3251 |
+
{
|
| 3252 |
+
"epoch": 1.8679631525076765,
|
| 3253 |
+
"grad_norm": 1.037083387374878,
|
| 3254 |
+
"learning_rate": 6.664040747324437e-06,
|
| 3255 |
+
"loss": 0.149,
|
| 3256 |
+
"step": 457
|
| 3257 |
+
},
|
| 3258 |
+
{
|
| 3259 |
+
"epoch": 1.872057318321392,
|
| 3260 |
+
"grad_norm": 1.0350216627120972,
|
| 3261 |
+
"learning_rate": 6.62188582959453e-06,
|
| 3262 |
+
"loss": 0.151,
|
| 3263 |
+
"step": 458
|
| 3264 |
+
},
|
| 3265 |
+
{
|
| 3266 |
+
"epoch": 1.8761514841351075,
|
| 3267 |
+
"grad_norm": 0.8358607292175293,
|
| 3268 |
+
"learning_rate": 6.579798566743314e-06,
|
| 3269 |
+
"loss": 0.1331,
|
| 3270 |
+
"step": 459
|
| 3271 |
+
},
|
| 3272 |
+
{
|
| 3273 |
+
"epoch": 1.880245649948823,
|
| 3274 |
+
"grad_norm": 0.9464243054389954,
|
| 3275 |
+
"learning_rate": 6.537779801669677e-06,
|
| 3276 |
+
"loss": 0.1338,
|
| 3277 |
+
"step": 460
|
| 3278 |
+
},
|
| 3279 |
+
{
|
| 3280 |
+
"epoch": 1.8843398157625384,
|
| 3281 |
+
"grad_norm": 0.9431869983673096,
|
| 3282 |
+
"learning_rate": 6.495830375900665e-06,
|
| 3283 |
+
"loss": 0.1404,
|
| 3284 |
+
"step": 461
|
| 3285 |
+
},
|
| 3286 |
+
{
|
| 3287 |
+
"epoch": 1.8884339815762539,
|
| 3288 |
+
"grad_norm": 0.9446228742599487,
|
| 3289 |
+
"learning_rate": 6.453951129574644e-06,
|
| 3290 |
+
"loss": 0.1598,
|
| 3291 |
+
"step": 462
|
| 3292 |
+
},
|
| 3293 |
+
{
|
| 3294 |
+
"epoch": 1.8925281473899693,
|
| 3295 |
+
"grad_norm": 0.9133023023605347,
|
| 3296 |
+
"learning_rate": 6.41214290142447e-06,
|
| 3297 |
+
"loss": 0.1415,
|
| 3298 |
+
"step": 463
|
| 3299 |
+
},
|
| 3300 |
+
{
|
| 3301 |
+
"epoch": 1.8966223132036848,
|
| 3302 |
+
"grad_norm": 0.8346714377403259,
|
| 3303 |
+
"learning_rate": 6.370406528760675e-06,
|
| 3304 |
+
"loss": 0.1384,
|
| 3305 |
+
"step": 464
|
| 3306 |
+
},
|
| 3307 |
+
{
|
| 3308 |
+
"epoch": 1.9007164790174,
|
| 3309 |
+
"grad_norm": 0.9194797277450562,
|
| 3310 |
+
"learning_rate": 6.3287428474547256e-06,
|
| 3311 |
+
"loss": 0.1451,
|
| 3312 |
+
"step": 465
|
| 3313 |
+
},
|
| 3314 |
+
{
|
| 3315 |
+
"epoch": 1.9048106448311155,
|
| 3316 |
+
"grad_norm": 1.0291615724563599,
|
| 3317 |
+
"learning_rate": 6.287152691922264e-06,
|
| 3318 |
+
"loss": 0.143,
|
| 3319 |
+
"step": 466
|
| 3320 |
+
},
|
| 3321 |
+
{
|
| 3322 |
+
"epoch": 1.908904810644831,
|
| 3323 |
+
"grad_norm": 0.9120848178863525,
|
| 3324 |
+
"learning_rate": 6.245636895106403e-06,
|
| 3325 |
+
"loss": 0.1471,
|
| 3326 |
+
"step": 467
|
| 3327 |
+
},
|
| 3328 |
+
{
|
| 3329 |
+
"epoch": 1.9129989764585464,
|
| 3330 |
+
"grad_norm": 0.9780627489089966,
|
| 3331 |
+
"learning_rate": 6.204196288461037e-06,
|
| 3332 |
+
"loss": 0.1532,
|
| 3333 |
+
"step": 468
|
| 3334 |
+
},
|
| 3335 |
+
{
|
| 3336 |
+
"epoch": 1.917093142272262,
|
| 3337 |
+
"grad_norm": 0.9170928597450256,
|
| 3338 |
+
"learning_rate": 6.162831701934203e-06,
|
| 3339 |
+
"loss": 0.1428,
|
| 3340 |
+
"step": 469
|
| 3341 |
+
},
|
| 3342 |
+
{
|
| 3343 |
+
"epoch": 1.9211873080859774,
|
| 3344 |
+
"grad_norm": 0.8668283224105835,
|
| 3345 |
+
"learning_rate": 6.121543963951453e-06,
|
| 3346 |
+
"loss": 0.1375,
|
| 3347 |
+
"step": 470
|
| 3348 |
+
},
|
| 3349 |
+
{
|
| 3350 |
+
"epoch": 1.9252814738996928,
|
| 3351 |
+
"grad_norm": 0.9142316579818726,
|
| 3352 |
+
"learning_rate": 6.080333901399252e-06,
|
| 3353 |
+
"loss": 0.1376,
|
| 3354 |
+
"step": 471
|
| 3355 |
+
},
|
| 3356 |
+
{
|
| 3357 |
+
"epoch": 1.9293756397134083,
|
| 3358 |
+
"grad_norm": 0.9596243500709534,
|
| 3359 |
+
"learning_rate": 6.039202339608432e-06,
|
| 3360 |
+
"loss": 0.1519,
|
| 3361 |
+
"step": 472
|
| 3362 |
+
},
|
| 3363 |
+
{
|
| 3364 |
+
"epoch": 1.9334698055271238,
|
| 3365 |
+
"grad_norm": 0.8200681209564209,
|
| 3366 |
+
"learning_rate": 5.998150102337665e-06,
|
| 3367 |
+
"loss": 0.1294,
|
| 3368 |
+
"step": 473
|
| 3369 |
+
},
|
| 3370 |
+
{
|
| 3371 |
+
"epoch": 1.9375639713408392,
|
| 3372 |
+
"grad_norm": 0.9270857572555542,
|
| 3373 |
+
"learning_rate": 5.957178011756952e-06,
|
| 3374 |
+
"loss": 0.1455,
|
| 3375 |
+
"step": 474
|
| 3376 |
+
},
|
| 3377 |
+
{
|
| 3378 |
+
"epoch": 1.9416581371545547,
|
| 3379 |
+
"grad_norm": 1.033295750617981,
|
| 3380 |
+
"learning_rate": 5.9162868884311596e-06,
|
| 3381 |
+
"loss": 0.1554,
|
| 3382 |
+
"step": 475
|
| 3383 |
+
},
|
| 3384 |
+
{
|
| 3385 |
+
"epoch": 1.9457523029682702,
|
| 3386 |
+
"grad_norm": 0.8937323689460754,
|
| 3387 |
+
"learning_rate": 5.875477551303596e-06,
|
| 3388 |
+
"loss": 0.151,
|
| 3389 |
+
"step": 476
|
| 3390 |
+
},
|
| 3391 |
+
{
|
| 3392 |
+
"epoch": 1.9498464687819856,
|
| 3393 |
+
"grad_norm": 0.9521363377571106,
|
| 3394 |
+
"learning_rate": 5.834750817679606e-06,
|
| 3395 |
+
"loss": 0.1327,
|
| 3396 |
+
"step": 477
|
| 3397 |
+
},
|
| 3398 |
+
{
|
| 3399 |
+
"epoch": 1.953940634595701,
|
| 3400 |
+
"grad_norm": 0.9314703941345215,
|
| 3401 |
+
"learning_rate": 5.794107503210187e-06,
|
| 3402 |
+
"loss": 0.1425,
|
| 3403 |
+
"step": 478
|
| 3404 |
+
},
|
| 3405 |
+
{
|
| 3406 |
+
"epoch": 1.9580348004094166,
|
| 3407 |
+
"grad_norm": 0.975556492805481,
|
| 3408 |
+
"learning_rate": 5.753548421875686e-06,
|
| 3409 |
+
"loss": 0.1439,
|
| 3410 |
+
"step": 479
|
| 3411 |
+
},
|
| 3412 |
+
{
|
| 3413 |
+
"epoch": 1.962128966223132,
|
| 3414 |
+
"grad_norm": 0.952316164970398,
|
| 3415 |
+
"learning_rate": 5.713074385969457e-06,
|
| 3416 |
+
"loss": 0.1403,
|
| 3417 |
+
"step": 480
|
| 3418 |
+
},
|
| 3419 |
+
{
|
| 3420 |
+
"epoch": 1.9662231320368475,
|
| 3421 |
+
"grad_norm": 0.8896644115447998,
|
| 3422 |
+
"learning_rate": 5.672686206081638e-06,
|
| 3423 |
+
"loss": 0.1353,
|
| 3424 |
+
"step": 481
|
| 3425 |
+
},
|
| 3426 |
+
{
|
| 3427 |
+
"epoch": 1.970317297850563,
|
| 3428 |
+
"grad_norm": 0.9095272421836853,
|
| 3429 |
+
"learning_rate": 5.632384691082874e-06,
|
| 3430 |
+
"loss": 0.137,
|
| 3431 |
+
"step": 482
|
| 3432 |
+
},
|
| 3433 |
+
{
|
| 3434 |
+
"epoch": 1.9744114636642784,
|
| 3435 |
+
"grad_norm": 0.823320746421814,
|
| 3436 |
+
"learning_rate": 5.5921706481081405e-06,
|
| 3437 |
+
"loss": 0.1366,
|
| 3438 |
+
"step": 483
|
| 3439 |
+
},
|
| 3440 |
+
{
|
| 3441 |
+
"epoch": 1.978505629477994,
|
| 3442 |
+
"grad_norm": 0.8442295789718628,
|
| 3443 |
+
"learning_rate": 5.55204488254059e-06,
|
| 3444 |
+
"loss": 0.1337,
|
| 3445 |
+
"step": 484
|
| 3446 |
+
},
|
| 3447 |
+
{
|
| 3448 |
+
"epoch": 1.9825997952917094,
|
| 3449 |
+
"grad_norm": 0.9687731266021729,
|
| 3450 |
+
"learning_rate": 5.512008197995379e-06,
|
| 3451 |
+
"loss": 0.1487,
|
| 3452 |
+
"step": 485
|
| 3453 |
+
},
|
| 3454 |
+
{
|
| 3455 |
+
"epoch": 1.9866939611054248,
|
| 3456 |
+
"grad_norm": 0.8544232249259949,
|
| 3457 |
+
"learning_rate": 5.47206139630363e-06,
|
| 3458 |
+
"loss": 0.1433,
|
| 3459 |
+
"step": 486
|
| 3460 |
+
},
|
| 3461 |
+
{
|
| 3462 |
+
"epoch": 1.9907881269191403,
|
| 3463 |
+
"grad_norm": 1.0014803409576416,
|
| 3464 |
+
"learning_rate": 5.432205277496327e-06,
|
| 3465 |
+
"loss": 0.1402,
|
| 3466 |
+
"step": 487
|
| 3467 |
+
},
|
| 3468 |
+
{
|
| 3469 |
+
"epoch": 1.9948822927328558,
|
| 3470 |
+
"grad_norm": 0.9409521222114563,
|
| 3471 |
+
"learning_rate": 5.3924406397883174e-06,
|
| 3472 |
+
"loss": 0.1374,
|
| 3473 |
+
"step": 488
|
| 3474 |
+
}
|
| 3475 |
+
],
|
| 3476 |
+
"logging_steps": 1,
|
| 3477 |
+
"max_steps": 732,
|
| 3478 |
+
"num_input_tokens_seen": 0,
|
| 3479 |
+
"num_train_epochs": 3,
|
| 3480 |
+
"save_steps": 244,
|
| 3481 |
+
"stateful_callbacks": {
|
| 3482 |
+
"TrainerControl": {
|
| 3483 |
+
"args": {
|
| 3484 |
+
"should_epoch_stop": false,
|
| 3485 |
+
"should_evaluate": false,
|
| 3486 |
+
"should_log": false,
|
| 3487 |
+
"should_save": true,
|
| 3488 |
+
"should_training_stop": false
|
| 3489 |
+
},
|
| 3490 |
+
"attributes": {}
|
| 3491 |
+
}
|
| 3492 |
+
},
|
| 3493 |
+
"total_flos": 7.874994391608197e+17,
|
| 3494 |
+
"train_batch_size": 8,
|
| 3495 |
+
"trial_name": null,
|
| 3496 |
+
"trial_params": null
|
| 3497 |
+
}
|
3b-w-cot+/checkpoint-488/training_args.bin
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:632e641a15180cc852702434a272df94b8012efb84c5e296eb59b1554cdab170
|
| 3 |
+
size 10744
|
3b-w-cot+/checkpoint-488/vocab.json
ADDED
|
The diff for this file is too large to render.
See raw diff
|
|
|
3b-w-cot+/checkpoint-488/zero_to_fp32.py
ADDED
|
@@ -0,0 +1,760 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
#!/usr/bin/env python
|
| 2 |
+
|
| 3 |
+
# Copyright (c) Microsoft Corporation.
|
| 4 |
+
# SPDX-License-Identifier: Apache-2.0
|
| 5 |
+
|
| 6 |
+
# DeepSpeed Team
|
| 7 |
+
|
| 8 |
+
# This script extracts fp32 consolidated weights from a zero 1, 2 and 3 DeepSpeed checkpoints. It gets
|
| 9 |
+
# copied into the top level checkpoint dir, so the user can easily do the conversion at any point in
|
| 10 |
+
# the future. Once extracted, the weights don't require DeepSpeed and can be used in any
|
| 11 |
+
# application.
|
| 12 |
+
#
|
| 13 |
+
# example:
|
| 14 |
+
# python zero_to_fp32.py . output_dir/
|
| 15 |
+
# or
|
| 16 |
+
# python zero_to_fp32.py . output_dir/ --safe_serialization
|
| 17 |
+
|
| 18 |
+
import argparse
|
| 19 |
+
import torch
|
| 20 |
+
import glob
|
| 21 |
+
import math
|
| 22 |
+
import os
|
| 23 |
+
import re
|
| 24 |
+
import gc
|
| 25 |
+
import json
|
| 26 |
+
import numpy as np
|
| 27 |
+
from tqdm import tqdm
|
| 28 |
+
from collections import OrderedDict
|
| 29 |
+
from dataclasses import dataclass
|
| 30 |
+
|
| 31 |
+
# while this script doesn't use deepspeed to recover data, since the checkpoints are pickled with
|
| 32 |
+
# DeepSpeed data structures it has to be available in the current python environment.
|
| 33 |
+
from deepspeed.utils import logger
|
| 34 |
+
from deepspeed.checkpoint.constants import (DS_VERSION, OPTIMIZER_STATE_DICT, SINGLE_PARTITION_OF_FP32_GROUPS,
|
| 35 |
+
FP32_FLAT_GROUPS, ZERO_STAGE, PARTITION_COUNT, PARAM_SHAPES, BUFFER_NAMES,
|
| 36 |
+
FROZEN_PARAM_SHAPES, FROZEN_PARAM_FRAGMENTS)
|
| 37 |
+
|
| 38 |
+
|
| 39 |
+
@dataclass
|
| 40 |
+
class zero_model_state:
|
| 41 |
+
buffers: dict()
|
| 42 |
+
param_shapes: dict()
|
| 43 |
+
shared_params: list
|
| 44 |
+
ds_version: int
|
| 45 |
+
frozen_param_shapes: dict()
|
| 46 |
+
frozen_param_fragments: dict()
|
| 47 |
+
|
| 48 |
+
|
| 49 |
+
debug = 0
|
| 50 |
+
|
| 51 |
+
# load to cpu
|
| 52 |
+
device = torch.device('cpu')
|
| 53 |
+
|
| 54 |
+
|
| 55 |
+
def atoi(text):
|
| 56 |
+
return int(text) if text.isdigit() else text
|
| 57 |
+
|
| 58 |
+
|
| 59 |
+
def natural_keys(text):
|
| 60 |
+
'''
|
| 61 |
+
alist.sort(key=natural_keys) sorts in human order
|
| 62 |
+
http://nedbatchelder.com/blog/200712/human_sorting.html
|
| 63 |
+
(See Toothy's implementation in the comments)
|
| 64 |
+
'''
|
| 65 |
+
return [atoi(c) for c in re.split(r'(\d+)', text)]
|
| 66 |
+
|
| 67 |
+
|
| 68 |
+
def get_model_state_file(checkpoint_dir, zero_stage):
|
| 69 |
+
if not os.path.isdir(checkpoint_dir):
|
| 70 |
+
raise FileNotFoundError(f"Directory '{checkpoint_dir}' doesn't exist")
|
| 71 |
+
|
| 72 |
+
# there should be only one file
|
| 73 |
+
if zero_stage <= 2:
|
| 74 |
+
file = os.path.join(checkpoint_dir, "mp_rank_00_model_states.pt")
|
| 75 |
+
elif zero_stage == 3:
|
| 76 |
+
file = os.path.join(checkpoint_dir, "zero_pp_rank_0_mp_rank_00_model_states.pt")
|
| 77 |
+
|
| 78 |
+
if not os.path.exists(file):
|
| 79 |
+
raise FileNotFoundError(f"can't find model states file at '{file}'")
|
| 80 |
+
|
| 81 |
+
return file
|
| 82 |
+
|
| 83 |
+
|
| 84 |
+
def get_checkpoint_files(checkpoint_dir, glob_pattern):
|
| 85 |
+
# XXX: need to test that this simple glob rule works for multi-node setup too
|
| 86 |
+
ckpt_files = sorted(glob.glob(os.path.join(checkpoint_dir, glob_pattern)), key=natural_keys)
|
| 87 |
+
|
| 88 |
+
if len(ckpt_files) == 0:
|
| 89 |
+
raise FileNotFoundError(f"can't find {glob_pattern} files in directory '{checkpoint_dir}'")
|
| 90 |
+
|
| 91 |
+
return ckpt_files
|
| 92 |
+
|
| 93 |
+
|
| 94 |
+
def get_optim_files(checkpoint_dir):
|
| 95 |
+
return get_checkpoint_files(checkpoint_dir, "*_optim_states.pt")
|
| 96 |
+
|
| 97 |
+
|
| 98 |
+
def get_model_state_files(checkpoint_dir):
|
| 99 |
+
return get_checkpoint_files(checkpoint_dir, "*_model_states.pt")
|
| 100 |
+
|
| 101 |
+
|
| 102 |
+
def parse_model_states(files):
|
| 103 |
+
zero_model_states = []
|
| 104 |
+
for file in files:
|
| 105 |
+
state_dict = torch.load(file, map_location=device, weights_only=False)
|
| 106 |
+
|
| 107 |
+
if BUFFER_NAMES not in state_dict:
|
| 108 |
+
raise ValueError(f"{file} is not a model state checkpoint")
|
| 109 |
+
buffer_names = state_dict[BUFFER_NAMES]
|
| 110 |
+
if debug:
|
| 111 |
+
print("Found buffers:", buffer_names)
|
| 112 |
+
|
| 113 |
+
# recover just the buffers while restoring them to fp32 if they were saved in fp16
|
| 114 |
+
buffers = {k: v.float() for k, v in state_dict["module"].items() if k in buffer_names}
|
| 115 |
+
param_shapes = state_dict[PARAM_SHAPES]
|
| 116 |
+
|
| 117 |
+
# collect parameters that are included in param_shapes
|
| 118 |
+
param_names = []
|
| 119 |
+
for s in param_shapes:
|
| 120 |
+
for name in s.keys():
|
| 121 |
+
param_names.append(name)
|
| 122 |
+
|
| 123 |
+
# update with frozen parameters
|
| 124 |
+
frozen_param_shapes = state_dict.get(FROZEN_PARAM_SHAPES, None)
|
| 125 |
+
if frozen_param_shapes is not None:
|
| 126 |
+
if debug:
|
| 127 |
+
print(f"Found frozen_param_shapes: {frozen_param_shapes}")
|
| 128 |
+
param_names += list(frozen_param_shapes.keys())
|
| 129 |
+
|
| 130 |
+
# handle shared params
|
| 131 |
+
shared_params = [[k, v] for k, v in state_dict["shared_params"].items()]
|
| 132 |
+
|
| 133 |
+
ds_version = state_dict.get(DS_VERSION, None)
|
| 134 |
+
|
| 135 |
+
frozen_param_fragments = state_dict.get(FROZEN_PARAM_FRAGMENTS, None)
|
| 136 |
+
|
| 137 |
+
z_model_state = zero_model_state(buffers=buffers,
|
| 138 |
+
param_shapes=param_shapes,
|
| 139 |
+
shared_params=shared_params,
|
| 140 |
+
ds_version=ds_version,
|
| 141 |
+
frozen_param_shapes=frozen_param_shapes,
|
| 142 |
+
frozen_param_fragments=frozen_param_fragments)
|
| 143 |
+
zero_model_states.append(z_model_state)
|
| 144 |
+
|
| 145 |
+
return zero_model_states
|
| 146 |
+
|
| 147 |
+
|
| 148 |
+
def parse_optim_states(files, ds_checkpoint_dir):
|
| 149 |
+
total_files = len(files)
|
| 150 |
+
state_dicts = []
|
| 151 |
+
for f in tqdm(files, desc='Loading checkpoint shards'):
|
| 152 |
+
state_dict = torch.load(f, map_location=device, mmap=True, weights_only=False)
|
| 153 |
+
# immediately discard the potentially huge 2 optimizer states as we only care for fp32 master weights
|
| 154 |
+
# and also handle the case where it was already removed by another helper script
|
| 155 |
+
state_dict["optimizer_state_dict"].pop("optimizer_state_dict", None)
|
| 156 |
+
state_dicts.append(state_dict)
|
| 157 |
+
|
| 158 |
+
if not ZERO_STAGE in state_dicts[0][OPTIMIZER_STATE_DICT]:
|
| 159 |
+
raise ValueError(f"{files[0]} is not a zero checkpoint")
|
| 160 |
+
zero_stage = state_dicts[0][OPTIMIZER_STATE_DICT][ZERO_STAGE]
|
| 161 |
+
world_size = state_dicts[0][OPTIMIZER_STATE_DICT][PARTITION_COUNT]
|
| 162 |
+
|
| 163 |
+
# For ZeRO-2 each param group can have different partition_count as data parallelism for expert
|
| 164 |
+
# parameters can be different from data parallelism for non-expert parameters. So we can just
|
| 165 |
+
# use the max of the partition_count to get the dp world_size.
|
| 166 |
+
|
| 167 |
+
if type(world_size) is list:
|
| 168 |
+
world_size = max(world_size)
|
| 169 |
+
|
| 170 |
+
if world_size != total_files:
|
| 171 |
+
raise ValueError(
|
| 172 |
+
f"Expected {world_size} of '*_optim_states.pt' under '{ds_checkpoint_dir}' but found {total_files} files. "
|
| 173 |
+
"Possibly due to an overwrite of an old checkpoint, or a checkpoint didn't get saved by one or more processes."
|
| 174 |
+
)
|
| 175 |
+
|
| 176 |
+
# the groups are named differently in each stage
|
| 177 |
+
if zero_stage <= 2:
|
| 178 |
+
fp32_groups_key = SINGLE_PARTITION_OF_FP32_GROUPS
|
| 179 |
+
elif zero_stage == 3:
|
| 180 |
+
fp32_groups_key = FP32_FLAT_GROUPS
|
| 181 |
+
else:
|
| 182 |
+
raise ValueError(f"unknown zero stage {zero_stage}")
|
| 183 |
+
|
| 184 |
+
fp32_flat_groups = [state_dicts[i][OPTIMIZER_STATE_DICT][fp32_groups_key] for i in range(len(state_dicts))]
|
| 185 |
+
return zero_stage, world_size, fp32_flat_groups
|
| 186 |
+
|
| 187 |
+
|
| 188 |
+
def _get_fp32_state_dict_from_zero_checkpoint(ds_checkpoint_dir, exclude_frozen_parameters):
|
| 189 |
+
"""
|
| 190 |
+
Returns fp32 state_dict reconstructed from ds checkpoint
|
| 191 |
+
|
| 192 |
+
Args:
|
| 193 |
+
- ``ds_checkpoint_dir``: path to the deepspeed checkpoint folder (where the optimizer files are)
|
| 194 |
+
|
| 195 |
+
"""
|
| 196 |
+
print(f"Processing zero checkpoint '{ds_checkpoint_dir}'")
|
| 197 |
+
|
| 198 |
+
optim_files = get_optim_files(ds_checkpoint_dir)
|
| 199 |
+
zero_stage, world_size, fp32_flat_groups = parse_optim_states(optim_files, ds_checkpoint_dir)
|
| 200 |
+
print(f"Detected checkpoint of type zero stage {zero_stage}, world_size: {world_size}")
|
| 201 |
+
|
| 202 |
+
model_files = get_model_state_files(ds_checkpoint_dir)
|
| 203 |
+
|
| 204 |
+
zero_model_states = parse_model_states(model_files)
|
| 205 |
+
print(f'Parsing checkpoint created by deepspeed=={zero_model_states[0].ds_version}')
|
| 206 |
+
|
| 207 |
+
if zero_stage <= 2:
|
| 208 |
+
return _get_fp32_state_dict_from_zero2_checkpoint(world_size, fp32_flat_groups, zero_model_states,
|
| 209 |
+
exclude_frozen_parameters)
|
| 210 |
+
elif zero_stage == 3:
|
| 211 |
+
return _get_fp32_state_dict_from_zero3_checkpoint(world_size, fp32_flat_groups, zero_model_states,
|
| 212 |
+
exclude_frozen_parameters)
|
| 213 |
+
|
| 214 |
+
|
| 215 |
+
def _zero2_merge_frozen_params(state_dict, zero_model_states):
|
| 216 |
+
if zero_model_states[0].frozen_param_shapes is None or len(zero_model_states[0].frozen_param_shapes) == 0:
|
| 217 |
+
return
|
| 218 |
+
|
| 219 |
+
frozen_param_shapes = zero_model_states[0].frozen_param_shapes
|
| 220 |
+
frozen_param_fragments = zero_model_states[0].frozen_param_fragments
|
| 221 |
+
|
| 222 |
+
if debug:
|
| 223 |
+
num_elem = sum(s.numel() for s in frozen_param_shapes.values())
|
| 224 |
+
print(f'rank 0: {FROZEN_PARAM_SHAPES}.numel = {num_elem}')
|
| 225 |
+
|
| 226 |
+
wanted_params = len(frozen_param_shapes)
|
| 227 |
+
wanted_numel = sum(s.numel() for s in frozen_param_shapes.values())
|
| 228 |
+
avail_numel = sum([p.numel() for p in frozen_param_fragments.values()])
|
| 229 |
+
print(f'Frozen params: Have {avail_numel} numels to process.')
|
| 230 |
+
print(f'Frozen params: Need {wanted_numel} numels in {wanted_params} params')
|
| 231 |
+
|
| 232 |
+
total_params = 0
|
| 233 |
+
total_numel = 0
|
| 234 |
+
for name, shape in frozen_param_shapes.items():
|
| 235 |
+
total_params += 1
|
| 236 |
+
unpartitioned_numel = shape.numel()
|
| 237 |
+
total_numel += unpartitioned_numel
|
| 238 |
+
|
| 239 |
+
state_dict[name] = frozen_param_fragments[name]
|
| 240 |
+
|
| 241 |
+
if debug:
|
| 242 |
+
print(f"{name} full shape: {shape} unpartitioned numel {unpartitioned_numel} ")
|
| 243 |
+
|
| 244 |
+
print(f"Reconstructed Frozen fp32 state dict with {total_params} params {total_numel} elements")
|
| 245 |
+
|
| 246 |
+
|
| 247 |
+
def _has_callable(obj, fn):
|
| 248 |
+
attr = getattr(obj, fn, None)
|
| 249 |
+
return callable(attr)
|
| 250 |
+
|
| 251 |
+
|
| 252 |
+
def _zero2_merge_trainable_params(state_dict, world_size, fp32_flat_groups, zero_model_states):
|
| 253 |
+
param_shapes = zero_model_states[0].param_shapes
|
| 254 |
+
|
| 255 |
+
# Reconstruction protocol:
|
| 256 |
+
#
|
| 257 |
+
# XXX: document this
|
| 258 |
+
|
| 259 |
+
if debug:
|
| 260 |
+
for i in range(world_size):
|
| 261 |
+
for j in range(len(fp32_flat_groups[0])):
|
| 262 |
+
print(f"{FP32_FLAT_GROUPS}[{i}][{j}].shape={fp32_flat_groups[i][j].shape}")
|
| 263 |
+
|
| 264 |
+
# XXX: memory usage doubles here (zero2)
|
| 265 |
+
num_param_groups = len(fp32_flat_groups[0])
|
| 266 |
+
merged_single_partition_of_fp32_groups = []
|
| 267 |
+
for i in range(num_param_groups):
|
| 268 |
+
merged_partitions = [sd[i] for sd in fp32_flat_groups]
|
| 269 |
+
full_single_fp32_vector = torch.cat(merged_partitions, 0)
|
| 270 |
+
merged_single_partition_of_fp32_groups.append(full_single_fp32_vector)
|
| 271 |
+
avail_numel = sum(
|
| 272 |
+
[full_single_fp32_vector.numel() for full_single_fp32_vector in merged_single_partition_of_fp32_groups])
|
| 273 |
+
|
| 274 |
+
if debug:
|
| 275 |
+
wanted_params = sum([len(shapes) for shapes in param_shapes])
|
| 276 |
+
wanted_numel = sum([sum(shape.numel() for shape in shapes.values()) for shapes in param_shapes])
|
| 277 |
+
# not asserting if there is a mismatch due to possible padding
|
| 278 |
+
print(f"Have {avail_numel} numels to process.")
|
| 279 |
+
print(f"Need {wanted_numel} numels in {wanted_params} params.")
|
| 280 |
+
|
| 281 |
+
# params
|
| 282 |
+
# XXX: for huge models that can't fit into the host's RAM we will have to recode this to support
|
| 283 |
+
# out-of-core computing solution
|
| 284 |
+
total_numel = 0
|
| 285 |
+
total_params = 0
|
| 286 |
+
for shapes, full_single_fp32_vector in zip(param_shapes, merged_single_partition_of_fp32_groups):
|
| 287 |
+
offset = 0
|
| 288 |
+
avail_numel = full_single_fp32_vector.numel()
|
| 289 |
+
for name, shape in shapes.items():
|
| 290 |
+
|
| 291 |
+
unpartitioned_numel = shape.numel() if _has_callable(shape, 'numel') else math.prod(shape)
|
| 292 |
+
total_numel += unpartitioned_numel
|
| 293 |
+
total_params += 1
|
| 294 |
+
|
| 295 |
+
if debug:
|
| 296 |
+
print(f"{name} full shape: {shape} unpartitioned numel {unpartitioned_numel} ")
|
| 297 |
+
state_dict[name] = full_single_fp32_vector.narrow(0, offset, unpartitioned_numel).view(shape)
|
| 298 |
+
offset += unpartitioned_numel
|
| 299 |
+
|
| 300 |
+
# Z2 started to align to 2*world_size to improve nccl performance. Therefore both offset and
|
| 301 |
+
# avail_numel can differ by anywhere between 0..2*world_size. Due to two unrelated complex
|
| 302 |
+
# paddings performed in the code it's almost impossible to predict the exact numbers w/o the
|
| 303 |
+
# live optimizer object, so we are checking that the numbers are within the right range
|
| 304 |
+
align_to = 2 * world_size
|
| 305 |
+
|
| 306 |
+
def zero2_align(x):
|
| 307 |
+
return align_to * math.ceil(x / align_to)
|
| 308 |
+
|
| 309 |
+
if debug:
|
| 310 |
+
print(f"original offset={offset}, avail_numel={avail_numel}")
|
| 311 |
+
|
| 312 |
+
offset = zero2_align(offset)
|
| 313 |
+
avail_numel = zero2_align(avail_numel)
|
| 314 |
+
|
| 315 |
+
if debug:
|
| 316 |
+
print(f"aligned offset={offset}, avail_numel={avail_numel}")
|
| 317 |
+
|
| 318 |
+
# Sanity check
|
| 319 |
+
if offset != avail_numel:
|
| 320 |
+
raise ValueError(f"consumed {offset} numels out of {avail_numel} - something is wrong")
|
| 321 |
+
|
| 322 |
+
print(f"Reconstructed fp32 state dict with {total_params} params {total_numel} elements")
|
| 323 |
+
|
| 324 |
+
|
| 325 |
+
def _get_fp32_state_dict_from_zero2_checkpoint(world_size, fp32_flat_groups, zero_model_states,
|
| 326 |
+
exclude_frozen_parameters):
|
| 327 |
+
state_dict = OrderedDict()
|
| 328 |
+
|
| 329 |
+
# buffers
|
| 330 |
+
buffers = zero_model_states[0].buffers
|
| 331 |
+
state_dict.update(buffers)
|
| 332 |
+
if debug:
|
| 333 |
+
print(f"added {len(buffers)} buffers")
|
| 334 |
+
|
| 335 |
+
if not exclude_frozen_parameters:
|
| 336 |
+
_zero2_merge_frozen_params(state_dict, zero_model_states)
|
| 337 |
+
|
| 338 |
+
_zero2_merge_trainable_params(state_dict, world_size, fp32_flat_groups, zero_model_states)
|
| 339 |
+
|
| 340 |
+
# recover shared parameters
|
| 341 |
+
for pair in zero_model_states[0].shared_params:
|
| 342 |
+
if pair[1] in state_dict:
|
| 343 |
+
state_dict[pair[0]] = state_dict[pair[1]]
|
| 344 |
+
|
| 345 |
+
return state_dict
|
| 346 |
+
|
| 347 |
+
|
| 348 |
+
def zero3_partitioned_param_info(unpartitioned_numel, world_size):
|
| 349 |
+
remainder = unpartitioned_numel % world_size
|
| 350 |
+
padding_numel = (world_size - remainder) if remainder else 0
|
| 351 |
+
partitioned_numel = math.ceil(unpartitioned_numel / world_size)
|
| 352 |
+
return partitioned_numel, padding_numel
|
| 353 |
+
|
| 354 |
+
|
| 355 |
+
def _zero3_merge_frozen_params(state_dict, world_size, zero_model_states):
|
| 356 |
+
if zero_model_states[0].frozen_param_shapes is None or len(zero_model_states[0].frozen_param_shapes) == 0:
|
| 357 |
+
return
|
| 358 |
+
|
| 359 |
+
if debug:
|
| 360 |
+
for i in range(world_size):
|
| 361 |
+
num_elem = sum(s.numel() for s in zero_model_states[i].frozen_param_fragments.values())
|
| 362 |
+
print(f'rank {i}: {FROZEN_PARAM_SHAPES}.numel = {num_elem}')
|
| 363 |
+
|
| 364 |
+
frozen_param_shapes = zero_model_states[0].frozen_param_shapes
|
| 365 |
+
wanted_params = len(frozen_param_shapes)
|
| 366 |
+
wanted_numel = sum(s.numel() for s in frozen_param_shapes.values())
|
| 367 |
+
avail_numel = sum([p.numel() for p in zero_model_states[0].frozen_param_fragments.values()]) * world_size
|
| 368 |
+
print(f'Frozen params: Have {avail_numel} numels to process.')
|
| 369 |
+
print(f'Frozen params: Need {wanted_numel} numels in {wanted_params} params')
|
| 370 |
+
|
| 371 |
+
total_params = 0
|
| 372 |
+
total_numel = 0
|
| 373 |
+
for name, shape in zero_model_states[0].frozen_param_shapes.items():
|
| 374 |
+
total_params += 1
|
| 375 |
+
unpartitioned_numel = shape.numel()
|
| 376 |
+
total_numel += unpartitioned_numel
|
| 377 |
+
|
| 378 |
+
param_frags = tuple(model_state.frozen_param_fragments[name] for model_state in zero_model_states)
|
| 379 |
+
state_dict[name] = torch.cat(param_frags, 0).narrow(0, 0, unpartitioned_numel).view(shape)
|
| 380 |
+
|
| 381 |
+
partitioned_numel, partitioned_padding_numel = zero3_partitioned_param_info(unpartitioned_numel, world_size)
|
| 382 |
+
|
| 383 |
+
if debug:
|
| 384 |
+
print(
|
| 385 |
+
f"Frozen params: {total_params} {name} full shape: {shape} partition0 numel={partitioned_numel} partitioned_padding_numel={partitioned_padding_numel}"
|
| 386 |
+
)
|
| 387 |
+
|
| 388 |
+
print(f"Reconstructed Frozen fp32 state dict with {total_params} params {total_numel} elements")
|
| 389 |
+
|
| 390 |
+
|
| 391 |
+
class GatheredTensor:
|
| 392 |
+
"""
|
| 393 |
+
A pseudo tensor that collects partitioned weights.
|
| 394 |
+
It is more memory efficient when there are multiple groups.
|
| 395 |
+
"""
|
| 396 |
+
|
| 397 |
+
def __init__(self, flat_groups, flat_groups_offset, offset, partitioned_numel, shape):
|
| 398 |
+
self.flat_groups = flat_groups
|
| 399 |
+
self.flat_groups_offset = flat_groups_offset
|
| 400 |
+
self.offset = offset
|
| 401 |
+
self.partitioned_numel = partitioned_numel
|
| 402 |
+
self.shape = shape
|
| 403 |
+
self.dtype = self.flat_groups[0][0].dtype
|
| 404 |
+
|
| 405 |
+
def contiguous(self):
|
| 406 |
+
"""
|
| 407 |
+
Merge partitioned weights from flat_groups into a single tensor.
|
| 408 |
+
"""
|
| 409 |
+
end_idx = self.offset + self.partitioned_numel
|
| 410 |
+
world_size = len(self.flat_groups)
|
| 411 |
+
pad_flat_param_chunks = []
|
| 412 |
+
|
| 413 |
+
for rank_i in range(world_size):
|
| 414 |
+
# for each rank, we need to collect weights from related group/groups
|
| 415 |
+
flat_groups_at_rank_i = self.flat_groups[rank_i]
|
| 416 |
+
start_group_id = None
|
| 417 |
+
end_group_id = None
|
| 418 |
+
for group_id in range(len(self.flat_groups_offset)):
|
| 419 |
+
if self.flat_groups_offset[group_id] <= self.offset < self.flat_groups_offset[group_id + 1]:
|
| 420 |
+
start_group_id = group_id
|
| 421 |
+
if self.flat_groups_offset[group_id] < end_idx <= self.flat_groups_offset[group_id + 1]:
|
| 422 |
+
end_group_id = group_id
|
| 423 |
+
break
|
| 424 |
+
# collect weights from related group/groups
|
| 425 |
+
for group_id in range(start_group_id, end_group_id + 1):
|
| 426 |
+
flat_tensor = flat_groups_at_rank_i[group_id]
|
| 427 |
+
start_offset = self.offset - self.flat_groups_offset[group_id]
|
| 428 |
+
end_offset = min(end_idx, self.flat_groups_offset[group_id + 1]) - self.flat_groups_offset[group_id]
|
| 429 |
+
pad_flat_param_chunks.append(flat_tensor[start_offset:end_offset])
|
| 430 |
+
|
| 431 |
+
# collect weights from all ranks
|
| 432 |
+
pad_flat_param = torch.cat(pad_flat_param_chunks, dim=0)
|
| 433 |
+
param = pad_flat_param[:self.shape.numel()].view(self.shape).contiguous()
|
| 434 |
+
return param
|
| 435 |
+
|
| 436 |
+
|
| 437 |
+
def _zero3_merge_trainable_params(state_dict, world_size, fp32_flat_groups, zero_model_states):
|
| 438 |
+
param_shapes = zero_model_states[0].param_shapes
|
| 439 |
+
avail_numel = sum([flat_group.numel() for flat_group in fp32_flat_groups[0]]) * world_size
|
| 440 |
+
|
| 441 |
+
# Reconstruction protocol: For zero3 we need to zip the partitions together at boundary of each
|
| 442 |
+
# param, re-consolidating each param, while dealing with padding if any
|
| 443 |
+
|
| 444 |
+
# merge list of dicts, preserving order
|
| 445 |
+
param_shapes = {k: v for d in param_shapes for k, v in d.items()}
|
| 446 |
+
|
| 447 |
+
if debug:
|
| 448 |
+
for i in range(world_size):
|
| 449 |
+
print(f"{FP32_FLAT_GROUPS}[{i}].shape={fp32_flat_groups[i].shape}")
|
| 450 |
+
|
| 451 |
+
wanted_params = len(param_shapes)
|
| 452 |
+
wanted_numel = sum(shape.numel() for shape in param_shapes.values())
|
| 453 |
+
# not asserting if there is a mismatch due to possible padding
|
| 454 |
+
avail_numel = fp32_flat_groups[0].numel() * world_size
|
| 455 |
+
print(f"Trainable params: Have {avail_numel} numels to process.")
|
| 456 |
+
print(f"Trainable params: Need {wanted_numel} numels in {wanted_params} params.")
|
| 457 |
+
|
| 458 |
+
# params
|
| 459 |
+
# XXX: for huge models that can't fit into the host's RAM we will have to recode this to support
|
| 460 |
+
# out-of-core computing solution
|
| 461 |
+
offset = 0
|
| 462 |
+
total_numel = 0
|
| 463 |
+
total_params = 0
|
| 464 |
+
flat_groups_offset = [0] + list(np.cumsum([flat_tensor.numel() for flat_tensor in fp32_flat_groups[0]]))
|
| 465 |
+
for name, shape in tqdm(param_shapes.items(), desc='Gathering sharded weights'):
|
| 466 |
+
unpartitioned_numel = shape.numel()
|
| 467 |
+
total_numel += unpartitioned_numel
|
| 468 |
+
total_params += 1
|
| 469 |
+
partitioned_numel, partitioned_padding_numel = zero3_partitioned_param_info(unpartitioned_numel, world_size)
|
| 470 |
+
|
| 471 |
+
if debug:
|
| 472 |
+
print(
|
| 473 |
+
f"Trainable params: {total_params} {name} full shape: {shape} partition0 numel={partitioned_numel} partitioned_padding_numel={partitioned_padding_numel}"
|
| 474 |
+
)
|
| 475 |
+
|
| 476 |
+
# memory efficient tensor
|
| 477 |
+
tensor = GatheredTensor(fp32_flat_groups, flat_groups_offset, offset, partitioned_numel, shape)
|
| 478 |
+
state_dict[name] = tensor
|
| 479 |
+
offset += partitioned_numel
|
| 480 |
+
|
| 481 |
+
offset *= world_size
|
| 482 |
+
|
| 483 |
+
# Sanity check
|
| 484 |
+
if offset != avail_numel:
|
| 485 |
+
raise ValueError(f"consumed {offset} numels out of {avail_numel} - something is wrong")
|
| 486 |
+
|
| 487 |
+
print(f"Reconstructed Trainable fp32 state dict with {total_params} params {total_numel} elements")
|
| 488 |
+
|
| 489 |
+
|
| 490 |
+
def _get_fp32_state_dict_from_zero3_checkpoint(world_size, fp32_flat_groups, zero_model_states,
|
| 491 |
+
exclude_frozen_parameters):
|
| 492 |
+
state_dict = OrderedDict()
|
| 493 |
+
|
| 494 |
+
# buffers
|
| 495 |
+
buffers = zero_model_states[0].buffers
|
| 496 |
+
state_dict.update(buffers)
|
| 497 |
+
if debug:
|
| 498 |
+
print(f"added {len(buffers)} buffers")
|
| 499 |
+
|
| 500 |
+
if not exclude_frozen_parameters:
|
| 501 |
+
_zero3_merge_frozen_params(state_dict, world_size, zero_model_states)
|
| 502 |
+
|
| 503 |
+
_zero3_merge_trainable_params(state_dict, world_size, fp32_flat_groups, zero_model_states)
|
| 504 |
+
|
| 505 |
+
# recover shared parameters
|
| 506 |
+
for pair in zero_model_states[0].shared_params:
|
| 507 |
+
if pair[1] in state_dict:
|
| 508 |
+
state_dict[pair[0]] = state_dict[pair[1]]
|
| 509 |
+
|
| 510 |
+
return state_dict
|
| 511 |
+
|
| 512 |
+
|
| 513 |
+
def to_torch_tensor(state_dict, return_empty_tensor=False):
|
| 514 |
+
"""
|
| 515 |
+
Convert state_dict of GatheredTensor to torch tensor
|
| 516 |
+
"""
|
| 517 |
+
torch_state_dict = {}
|
| 518 |
+
converted_tensors = {}
|
| 519 |
+
for name, tensor in state_dict.items():
|
| 520 |
+
tensor_id = id(tensor)
|
| 521 |
+
if tensor_id in converted_tensors: # shared tensors
|
| 522 |
+
shared_tensor = torch_state_dict[converted_tensors[tensor_id]]
|
| 523 |
+
torch_state_dict[name] = shared_tensor
|
| 524 |
+
else:
|
| 525 |
+
converted_tensors[tensor_id] = name
|
| 526 |
+
if return_empty_tensor:
|
| 527 |
+
torch_state_dict[name] = torch.empty(tensor.shape, dtype=tensor.dtype)
|
| 528 |
+
else:
|
| 529 |
+
torch_state_dict[name] = tensor.contiguous()
|
| 530 |
+
return torch_state_dict
|
| 531 |
+
|
| 532 |
+
|
| 533 |
+
def get_fp32_state_dict_from_zero_checkpoint(checkpoint_dir,
|
| 534 |
+
tag=None,
|
| 535 |
+
exclude_frozen_parameters=False,
|
| 536 |
+
lazy_mode=False):
|
| 537 |
+
"""
|
| 538 |
+
Convert ZeRO 2 or 3 checkpoint into a single fp32 consolidated state_dict that can be loaded with
|
| 539 |
+
``load_state_dict()`` and used for training without DeepSpeed or shared with others, for example
|
| 540 |
+
via a model hub.
|
| 541 |
+
|
| 542 |
+
Args:
|
| 543 |
+
- ``checkpoint_dir``: path to the desired checkpoint folder
|
| 544 |
+
- ``tag``: checkpoint tag used as a unique identifier for checkpoint. If not provided will attempt to load tag in 'latest' file. e.g., ``global_step14``
|
| 545 |
+
- ``exclude_frozen_parameters``: exclude frozen parameters
|
| 546 |
+
- ``lazy_mode``: get state_dict in lazy mode. It returns a dict of pesduo tensor instead of torch tensor, which is more memory efficient.
|
| 547 |
+
Convert the pesduo tensor to torch tensor by ``.contiguous()``
|
| 548 |
+
|
| 549 |
+
Returns:
|
| 550 |
+
- pytorch ``state_dict``
|
| 551 |
+
|
| 552 |
+
A typical usage might be ::
|
| 553 |
+
|
| 554 |
+
from deepspeed.utils.zero_to_fp32 import get_fp32_state_dict_from_zero_checkpoint
|
| 555 |
+
# do the training and checkpoint saving
|
| 556 |
+
state_dict = get_fp32_state_dict_from_zero_checkpoint(checkpoint_dir) # already on cpu
|
| 557 |
+
model = model.cpu() # move to cpu
|
| 558 |
+
model.load_state_dict(state_dict)
|
| 559 |
+
# submit to model hub or save the model to share with others
|
| 560 |
+
|
| 561 |
+
In this example the ``model`` will no longer be usable in the deepspeed context of the same
|
| 562 |
+
application. i.e. you will need to re-initialize the deepspeed engine, since
|
| 563 |
+
``model.load_state_dict(state_dict)`` will remove all the deepspeed magic from it.
|
| 564 |
+
|
| 565 |
+
If you want it all done for you, use ``load_state_dict_from_zero_checkpoint`` instead.
|
| 566 |
+
|
| 567 |
+
Note: the above usage may not work if your application doesn't have sufficient free CPU memory.
|
| 568 |
+
You may need to use the offline approach using the ``zero_to_fp32.py`` script that is saved with
|
| 569 |
+
the checkpoint. Or you can load state_dict in lazy mode ::
|
| 570 |
+
|
| 571 |
+
from deepspeed.utils.zero_to_fp32 import get_fp32_state_dict_from_zero_checkpoint
|
| 572 |
+
state_dict = get_fp32_state_dict_from_zero_checkpoint(checkpoint_dir, lazy_mode=True) # not on cpu
|
| 573 |
+
for name, lazy_tensor in state_dict.item():
|
| 574 |
+
tensor = lazy_tensor.contiguous() # to cpu
|
| 575 |
+
print(name, tensor)
|
| 576 |
+
# del tensor to release memory if it no longer in use
|
| 577 |
+
"""
|
| 578 |
+
if tag is None:
|
| 579 |
+
latest_path = os.path.join(checkpoint_dir, 'latest')
|
| 580 |
+
if os.path.isfile(latest_path):
|
| 581 |
+
with open(latest_path, 'r') as fd:
|
| 582 |
+
tag = fd.read().strip()
|
| 583 |
+
else:
|
| 584 |
+
raise ValueError(f"Unable to find 'latest' file at {latest_path}")
|
| 585 |
+
|
| 586 |
+
ds_checkpoint_dir = os.path.join(checkpoint_dir, tag)
|
| 587 |
+
|
| 588 |
+
if not os.path.isdir(ds_checkpoint_dir):
|
| 589 |
+
raise FileNotFoundError(f"Directory '{ds_checkpoint_dir}' doesn't exist")
|
| 590 |
+
|
| 591 |
+
state_dict = _get_fp32_state_dict_from_zero_checkpoint(ds_checkpoint_dir, exclude_frozen_parameters)
|
| 592 |
+
if lazy_mode:
|
| 593 |
+
return state_dict
|
| 594 |
+
else:
|
| 595 |
+
return to_torch_tensor(state_dict)
|
| 596 |
+
|
| 597 |
+
|
| 598 |
+
def convert_zero_checkpoint_to_fp32_state_dict(checkpoint_dir,
|
| 599 |
+
output_dir,
|
| 600 |
+
max_shard_size="5GB",
|
| 601 |
+
safe_serialization=False,
|
| 602 |
+
tag=None,
|
| 603 |
+
exclude_frozen_parameters=False):
|
| 604 |
+
"""
|
| 605 |
+
Convert ZeRO 2 or 3 checkpoint into a single fp32 consolidated ``state_dict`` file that can be
|
| 606 |
+
loaded with ``torch.load(file)`` + ``load_state_dict()`` and used for training without DeepSpeed.
|
| 607 |
+
|
| 608 |
+
Args:
|
| 609 |
+
- ``checkpoint_dir``: path to the desired checkpoint folder. (one that contains the tag-folder, like ``global_step14``)
|
| 610 |
+
- ``output_dir``: directory to the pytorch fp32 state_dict output files
|
| 611 |
+
- ``max_shard_size``: the maximum size for a checkpoint before being sharded, default value is 5GB
|
| 612 |
+
- ``safe_serialization``: whether to save the model using `safetensors` or the traditional PyTorch way (that uses `pickle`).
|
| 613 |
+
- ``tag``: checkpoint tag used as a unique identifier for checkpoint. If not provided will attempt to load tag in the file named ``latest`` in the checkpoint folder, e.g., ``global_step14``
|
| 614 |
+
- ``exclude_frozen_parameters``: exclude frozen parameters
|
| 615 |
+
"""
|
| 616 |
+
|
| 617 |
+
# Dependency pre-check
|
| 618 |
+
if safe_serialization:
|
| 619 |
+
try:
|
| 620 |
+
from safetensors.torch import save_file
|
| 621 |
+
except ImportError:
|
| 622 |
+
print('If you want to use `safe_serialization`, please `pip install safetensors`')
|
| 623 |
+
raise
|
| 624 |
+
if max_shard_size is not None:
|
| 625 |
+
try:
|
| 626 |
+
from huggingface_hub import split_torch_state_dict_into_shards
|
| 627 |
+
except ImportError:
|
| 628 |
+
print('If you want to use `max_shard_size`, please `pip install huggingface_hub`')
|
| 629 |
+
raise
|
| 630 |
+
|
| 631 |
+
# Convert zero checkpoint to state_dict
|
| 632 |
+
state_dict = get_fp32_state_dict_from_zero_checkpoint(checkpoint_dir,
|
| 633 |
+
tag,
|
| 634 |
+
exclude_frozen_parameters,
|
| 635 |
+
lazy_mode=True)
|
| 636 |
+
|
| 637 |
+
# Shard the model if it is too big.
|
| 638 |
+
weights_name = "model.safetensors" if safe_serialization else "pytorch_model.bin"
|
| 639 |
+
if max_shard_size is not None:
|
| 640 |
+
filename_pattern = weights_name.replace(".bin", "{suffix}.bin").replace(".safetensors", "{suffix}.safetensors")
|
| 641 |
+
# an memory-efficient approach for sharding
|
| 642 |
+
empty_state_dict = to_torch_tensor(state_dict, return_empty_tensor=True)
|
| 643 |
+
state_dict_split = split_torch_state_dict_into_shards(empty_state_dict,
|
| 644 |
+
filename_pattern=filename_pattern,
|
| 645 |
+
max_shard_size=max_shard_size)
|
| 646 |
+
else:
|
| 647 |
+
from collections import namedtuple
|
| 648 |
+
StateDictSplit = namedtuple("StateDictSplit", ["is_sharded", "filename_to_tensors"])
|
| 649 |
+
state_dict_split = StateDictSplit(is_sharded=False,
|
| 650 |
+
filename_to_tensors={weights_name: list(state_dict.keys())})
|
| 651 |
+
|
| 652 |
+
# Save the model by shard
|
| 653 |
+
os.makedirs(output_dir, exist_ok=True)
|
| 654 |
+
filename_to_tensors = state_dict_split.filename_to_tensors.items()
|
| 655 |
+
for shard_file, tensors in tqdm(filename_to_tensors, desc="Saving checkpoint shards"):
|
| 656 |
+
shard_state_dict = {tensor_name: state_dict[tensor_name] for tensor_name in tensors}
|
| 657 |
+
shard_state_dict = to_torch_tensor(shard_state_dict)
|
| 658 |
+
output_path = os.path.join(output_dir, shard_file)
|
| 659 |
+
if safe_serialization:
|
| 660 |
+
save_file(shard_state_dict, output_path, metadata={"format": "pt"})
|
| 661 |
+
else:
|
| 662 |
+
torch.save(shard_state_dict, output_path)
|
| 663 |
+
# release the memory of current shard
|
| 664 |
+
for tensor_name in list(shard_state_dict.keys()):
|
| 665 |
+
del state_dict[tensor_name]
|
| 666 |
+
del shard_state_dict[tensor_name]
|
| 667 |
+
del shard_state_dict
|
| 668 |
+
gc.collect()
|
| 669 |
+
|
| 670 |
+
# Save index if sharded
|
| 671 |
+
if state_dict_split.is_sharded:
|
| 672 |
+
index = {
|
| 673 |
+
"metadata": state_dict_split.metadata,
|
| 674 |
+
"weight_map": state_dict_split.tensor_to_filename,
|
| 675 |
+
}
|
| 676 |
+
save_index_file = "model.safetensors.index.json" if safe_serialization else "pytorch_model.bin.index.json"
|
| 677 |
+
save_index_file = os.path.join(output_dir, save_index_file)
|
| 678 |
+
with open(save_index_file, "w", encoding="utf-8") as f:
|
| 679 |
+
content = json.dumps(index, indent=2, sort_keys=True) + "\n"
|
| 680 |
+
f.write(content)
|
| 681 |
+
|
| 682 |
+
|
| 683 |
+
def load_state_dict_from_zero_checkpoint(model, checkpoint_dir, tag=None):
|
| 684 |
+
"""
|
| 685 |
+
1. Put the provided model to cpu
|
| 686 |
+
2. Convert ZeRO 2 or 3 checkpoint into a single fp32 consolidated ``state_dict``
|
| 687 |
+
3. Load it into the provided model
|
| 688 |
+
|
| 689 |
+
Args:
|
| 690 |
+
- ``model``: the model object to update
|
| 691 |
+
- ``checkpoint_dir``: path to the desired checkpoint folder. (one that contains the tag-folder, like ``global_step14``)
|
| 692 |
+
- ``tag``: checkpoint tag used as a unique identifier for checkpoint. If not provided will attempt to load tag in the file named ``latest`` in the checkpoint folder, e.g., ``global_step14``
|
| 693 |
+
|
| 694 |
+
Returns:
|
| 695 |
+
- ``model`: modified model
|
| 696 |
+
|
| 697 |
+
Make sure you have plenty of CPU memory available before you call this function. If you don't
|
| 698 |
+
have enough use the ``zero_to_fp32.py`` utility to do the conversion. You will find it
|
| 699 |
+
conveniently placed for you in the checkpoint folder.
|
| 700 |
+
|
| 701 |
+
A typical usage might be ::
|
| 702 |
+
|
| 703 |
+
from deepspeed.utils.zero_to_fp32 import load_state_dict_from_zero_checkpoint
|
| 704 |
+
model = load_state_dict_from_zero_checkpoint(trainer.model, checkpoint_dir)
|
| 705 |
+
# submit to model hub or save the model to share with others
|
| 706 |
+
|
| 707 |
+
Note, that once this was run, the ``model`` will no longer be usable in the deepspeed context
|
| 708 |
+
of the same application. i.e. you will need to re-initialize the deepspeed engine, since
|
| 709 |
+
``model.load_state_dict(state_dict)`` will remove all the deepspeed magic from it.
|
| 710 |
+
|
| 711 |
+
"""
|
| 712 |
+
logger.info(f"Extracting fp32 weights")
|
| 713 |
+
state_dict = get_fp32_state_dict_from_zero_checkpoint(checkpoint_dir, tag)
|
| 714 |
+
|
| 715 |
+
logger.info(f"Overwriting model with fp32 weights")
|
| 716 |
+
model = model.cpu()
|
| 717 |
+
model.load_state_dict(state_dict, strict=False)
|
| 718 |
+
|
| 719 |
+
return model
|
| 720 |
+
|
| 721 |
+
|
| 722 |
+
if __name__ == "__main__":
|
| 723 |
+
parser = argparse.ArgumentParser()
|
| 724 |
+
parser.add_argument("checkpoint_dir",
|
| 725 |
+
type=str,
|
| 726 |
+
help="path to the desired checkpoint folder, e.g., path/checkpoint-12")
|
| 727 |
+
parser.add_argument("output_dir",
|
| 728 |
+
type=str,
|
| 729 |
+
help="directory to the pytorch fp32 state_dict output files"
|
| 730 |
+
"(e.g. path/checkpoint-12-output/)")
|
| 731 |
+
parser.add_argument(
|
| 732 |
+
"--max_shard_size",
|
| 733 |
+
type=str,
|
| 734 |
+
default="5GB",
|
| 735 |
+
help="The maximum size for a checkpoint before being sharded. Checkpoints shard will then be each of size"
|
| 736 |
+
"lower than this size. If expressed as a string, needs to be digits followed by a unit (like `5MB`"
|
| 737 |
+
"We default it to 5GB in order for models to be able to run easily on free-tier google colab instances"
|
| 738 |
+
"without CPU OOM issues.")
|
| 739 |
+
parser.add_argument(
|
| 740 |
+
"--safe_serialization",
|
| 741 |
+
default=False,
|
| 742 |
+
action='store_true',
|
| 743 |
+
help="Whether to save the model using `safetensors` or the traditional PyTorch way (that uses `pickle`).")
|
| 744 |
+
parser.add_argument("-t",
|
| 745 |
+
"--tag",
|
| 746 |
+
type=str,
|
| 747 |
+
default=None,
|
| 748 |
+
help="checkpoint tag used as a unique identifier for checkpoint. e.g., global_step1")
|
| 749 |
+
parser.add_argument("--exclude_frozen_parameters", action='store_true', help="exclude frozen parameters")
|
| 750 |
+
parser.add_argument("-d", "--debug", action='store_true', help="enable debug")
|
| 751 |
+
args = parser.parse_args()
|
| 752 |
+
|
| 753 |
+
debug = args.debug
|
| 754 |
+
|
| 755 |
+
convert_zero_checkpoint_to_fp32_state_dict(args.checkpoint_dir,
|
| 756 |
+
args.output_dir,
|
| 757 |
+
max_shard_size=args.max_shard_size,
|
| 758 |
+
safe_serialization=args.safe_serialization,
|
| 759 |
+
tag=args.tag,
|
| 760 |
+
exclude_frozen_parameters=args.exclude_frozen_parameters)
|
3b-w-cot+/checkpoint-732/added_tokens.json
ADDED
|
@@ -0,0 +1,24 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"</tool_call>": 151658,
|
| 3 |
+
"<tool_call>": 151657,
|
| 4 |
+
"<|box_end|>": 151649,
|
| 5 |
+
"<|box_start|>": 151648,
|
| 6 |
+
"<|endoftext|>": 151643,
|
| 7 |
+
"<|file_sep|>": 151664,
|
| 8 |
+
"<|fim_middle|>": 151660,
|
| 9 |
+
"<|fim_pad|>": 151662,
|
| 10 |
+
"<|fim_prefix|>": 151659,
|
| 11 |
+
"<|fim_suffix|>": 151661,
|
| 12 |
+
"<|im_end|>": 151645,
|
| 13 |
+
"<|im_start|>": 151644,
|
| 14 |
+
"<|image_pad|>": 151655,
|
| 15 |
+
"<|object_ref_end|>": 151647,
|
| 16 |
+
"<|object_ref_start|>": 151646,
|
| 17 |
+
"<|quad_end|>": 151651,
|
| 18 |
+
"<|quad_start|>": 151650,
|
| 19 |
+
"<|repo_name|>": 151663,
|
| 20 |
+
"<|video_pad|>": 151656,
|
| 21 |
+
"<|vision_end|>": 151653,
|
| 22 |
+
"<|vision_pad|>": 151654,
|
| 23 |
+
"<|vision_start|>": 151652
|
| 24 |
+
}
|
3b-w-cot+/checkpoint-732/config.json
ADDED
|
@@ -0,0 +1,28 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"_name_or_path": "ckpt/3b-w-cot/checkpoint-747",
|
| 3 |
+
"architectures": [
|
| 4 |
+
"Qwen2ForCausalLM"
|
| 5 |
+
],
|
| 6 |
+
"attention_dropout": 0.0,
|
| 7 |
+
"eos_token_id": 151645,
|
| 8 |
+
"hidden_act": "silu",
|
| 9 |
+
"hidden_size": 2048,
|
| 10 |
+
"initializer_range": 0.02,
|
| 11 |
+
"intermediate_size": 11008,
|
| 12 |
+
"max_position_embeddings": 32768,
|
| 13 |
+
"max_window_layers": 70,
|
| 14 |
+
"model_type": "qwen2",
|
| 15 |
+
"num_attention_heads": 16,
|
| 16 |
+
"num_hidden_layers": 36,
|
| 17 |
+
"num_key_value_heads": 2,
|
| 18 |
+
"rms_norm_eps": 1e-06,
|
| 19 |
+
"rope_scaling": null,
|
| 20 |
+
"rope_theta": 1000000.0,
|
| 21 |
+
"sliding_window": null,
|
| 22 |
+
"tie_word_embeddings": true,
|
| 23 |
+
"torch_dtype": "bfloat16",
|
| 24 |
+
"transformers_version": "4.49.0",
|
| 25 |
+
"use_cache": false,
|
| 26 |
+
"use_sliding_window": false,
|
| 27 |
+
"vocab_size": 151936
|
| 28 |
+
}
|
3b-w-cot+/checkpoint-732/generation_config.json
ADDED
|
@@ -0,0 +1,14 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"bos_token_id": 151643,
|
| 3 |
+
"do_sample": true,
|
| 4 |
+
"eos_token_id": [
|
| 5 |
+
151645,
|
| 6 |
+
151643
|
| 7 |
+
],
|
| 8 |
+
"pad_token_id": 151643,
|
| 9 |
+
"repetition_penalty": 1.05,
|
| 10 |
+
"temperature": 0.7,
|
| 11 |
+
"top_k": 20,
|
| 12 |
+
"top_p": 0.8,
|
| 13 |
+
"transformers_version": "4.49.0"
|
| 14 |
+
}
|
3b-w-cot+/checkpoint-732/global_step730/bf16_zero_pp_rank_0_mp_rank_00_optim_states.pt
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:d2dd01b4273d756f834d5ebd3324e6d0d71312aa8d814f35c6dda8790c5006ba
|
| 3 |
+
size 9306058322
|
3b-w-cot+/checkpoint-732/global_step730/bf16_zero_pp_rank_1_mp_rank_00_optim_states.pt
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:3e4804f00f9eba5efd889917e4724e26646bac2c402dbc35ec9f1288ebb4160a
|
| 3 |
+
size 9306060690
|
3b-w-cot+/checkpoint-732/global_step730/mp_rank_00_model_states.pt
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:530e07a5d4c948fb79b8e599c4a31ff8c53744a24058e20367218f137b22a48e
|
| 3 |
+
size 6171993592
|