ao-ot1231231 commited on
Commit
b2b6483
·
verified ·
1 Parent(s): 7e37edf

Add new SentenceTransformer model

Browse files
1_Pooling/config.json ADDED
@@ -0,0 +1,10 @@
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "word_embedding_dimension": 768,
3
+ "pooling_mode_cls_token": false,
4
+ "pooling_mode_mean_tokens": true,
5
+ "pooling_mode_max_tokens": false,
6
+ "pooling_mode_mean_sqrt_len_tokens": false,
7
+ "pooling_mode_weightedmean_tokens": false,
8
+ "pooling_mode_lasttoken": false,
9
+ "include_prompt": true
10
+ }
README.md ADDED
@@ -0,0 +1,855 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ language:
3
+ - en
4
+ license: apache-2.0
5
+ tags:
6
+ - sentence-transformers
7
+ - sentence-similarity
8
+ - feature-extraction
9
+ - dense
10
+ - generated_from_trainer
11
+ - dataset_size:5822
12
+ - loss:MatryoshkaLoss
13
+ - loss:MultipleNegativesRankingLoss
14
+ base_model: nomic-ai/modernbert-embed-base
15
+ widget:
16
+ - source_sentence: "court opined that the Board exercised “substantial independent\
17
+ \ authority” and thus was also a \nFOIA “agency” under Soucie’s functional test.\
18
+ \ Id. at 584–85. \nThis Court’s previous opinion followed Energy Research’s analytical\
19
+ \ steps. As with the \nBoard, Congress made the Commission an “establishment\
20
+ \ in the executive branch,” one of the"
21
+ sentences:
22
+ - How does the Court describe the CIA's work?
23
+ - Which test was used to determine that the Board was a FOIA 'agency'?
24
+ - What is the estimated value range of the contract in question?
25
+ - source_sentence: "• The Court grants in part and denies in part summary judgment\
26
+ \ to the CIA on Count Three \nin No. 11-445. The Court denies summary judgment\
27
+ \ to the CIA with respect to (1) the \nCIA’s withholding of responsive information\
28
+ \ under FOIA Exemption 3 and the CIA Act, \n50 U.S.C. § 403g, see supra Part III.H.;\
29
+ \ and (2) the CIA’s withholding of responsive \n161"
30
+ sentences:
31
+ - Under what condition can the parties file renewed motions?
32
+ - What legislation is referenced in connection with the CIA's withholding of information?
33
+ - What does the Government not dispute regarding § 340.403?
34
+ - source_sentence: "for a specific procurement through separate joint ventures with\
35
+ \ different protégés.” Id. The SBA \nunderscored this purpose by highlighting\
36
+ \ that in acquiring a second protégé, the mentor “has \nalready assured SBA that\
37
+ \ the two protégés would not be competitors. If the two mentor-protégé \nrelationships\
38
+ \ were approved in the same [North American Industry Classification System] code,"
39
+ sentences:
40
+ - What is the title of section D?
41
+ - What does the mentor assure the SBA about the two protégés?
42
+ - Where can specific details about the plaintiff's opposition be found?
43
+ - source_sentence: "moving party has shown a privacy interest outweighing the public’s\
44
+ \ interest in open judicial \nproceedings. Doe, 282 Ill. App. 3d at 1088. The\
45
+ \ standard of review for the trial court’s \ndetermination stands, absent an abuse\
46
+ \ of discretion. Northwestern Memorial Hospital, 2014 IL \nApp (1st) 140212, ¶\
47
+ \ 36. \n¶ 51"
48
+ sentences:
49
+ - What is mentioned as the standard of review for the trial court’s determination?
50
+ - When did the plaintiff file a motion?
51
+ - What does recognizing assignments of FOIA request rights result in?
52
+ - source_sentence: "Williams Decl. Exs. D–I, ECF No. 53-1. In Counts Five and Six\
53
+ \ of No. 11-445, the plaintiff \nchallenges the DIA’s and the ODNI’s withholding\
54
+ \ determinations, respectively, made under \n10 \n \nFOIA Exemptions 1, 2, 3,\
55
+ \ 5, and 6. See 445 FAC ¶¶ 38–54; Defs.’ First 445 Mem. at 4–6; Pl.’s \nFirst\
56
+ \ 445 Opp’n at 6, 17–22, 24.7 \nB. \n2010 FOIA Requests \n1."
57
+ sentences:
58
+ - What did the forum a quo determine it would do after the parties exposed their
59
+ positions?
60
+ - Under which FOIA exemptions are the withholding determinations made?
61
+ - How many remaining claims does the plaintiff have?
62
+ pipeline_tag: sentence-similarity
63
+ library_name: sentence-transformers
64
+ metrics:
65
+ - cosine_accuracy@1
66
+ - cosine_accuracy@3
67
+ - cosine_accuracy@5
68
+ - cosine_accuracy@10
69
+ - cosine_precision@1
70
+ - cosine_precision@3
71
+ - cosine_precision@5
72
+ - cosine_precision@10
73
+ - cosine_recall@1
74
+ - cosine_recall@3
75
+ - cosine_recall@5
76
+ - cosine_recall@10
77
+ - cosine_ndcg@10
78
+ - cosine_mrr@10
79
+ - cosine_map@100
80
+ model-index:
81
+ - name: ModernBERT Embed base Legal Matryoshka
82
+ results:
83
+ - task:
84
+ type: information-retrieval
85
+ name: Information Retrieval
86
+ dataset:
87
+ name: dim 768
88
+ type: dim_768
89
+ metrics:
90
+ - type: cosine_accuracy@1
91
+ value: 0.5440494590417311
92
+ name: Cosine Accuracy@1
93
+ - type: cosine_accuracy@3
94
+ value: 0.58887171561051
95
+ name: Cosine Accuracy@3
96
+ - type: cosine_accuracy@5
97
+ value: 0.6877897990726429
98
+ name: Cosine Accuracy@5
99
+ - type: cosine_accuracy@10
100
+ value: 0.7619783616692427
101
+ name: Cosine Accuracy@10
102
+ - type: cosine_precision@1
103
+ value: 0.5440494590417311
104
+ name: Cosine Precision@1
105
+ - type: cosine_precision@3
106
+ value: 0.5151983513652756
107
+ name: Cosine Precision@3
108
+ - type: cosine_precision@5
109
+ value: 0.3984544049459042
110
+ name: Cosine Precision@5
111
+ - type: cosine_precision@10
112
+ value: 0.23616692426584238
113
+ name: Cosine Precision@10
114
+ - type: cosine_recall@1
115
+ value: 0.19448737764039153
116
+ name: Cosine Recall@1
117
+ - type: cosine_recall@3
118
+ value: 0.5047655847501289
119
+ name: Cosine Recall@3
120
+ - type: cosine_recall@5
121
+ value: 0.6329211746522411
122
+ name: Cosine Recall@5
123
+ - type: cosine_recall@10
124
+ value: 0.7434312210200927
125
+ name: Cosine Recall@10
126
+ - type: cosine_ndcg@10
127
+ value: 0.6499814474424818
128
+ name: Cosine Ndcg@10
129
+ - type: cosine_mrr@10
130
+ value: 0.5917923995976541
131
+ name: Cosine Mrr@10
132
+ - type: cosine_map@100
133
+ value: 0.6349937117655203
134
+ name: Cosine Map@100
135
+ - task:
136
+ type: information-retrieval
137
+ name: Information Retrieval
138
+ dataset:
139
+ name: dim 512
140
+ type: dim_512
141
+ metrics:
142
+ - type: cosine_accuracy@1
143
+ value: 0.5316846986089645
144
+ name: Cosine Accuracy@1
145
+ - type: cosine_accuracy@3
146
+ value: 0.5826893353941267
147
+ name: Cosine Accuracy@3
148
+ - type: cosine_accuracy@5
149
+ value: 0.6893353941267388
150
+ name: Cosine Accuracy@5
151
+ - type: cosine_accuracy@10
152
+ value: 0.7619783616692427
153
+ name: Cosine Accuracy@10
154
+ - type: cosine_precision@1
155
+ value: 0.5316846986089645
156
+ name: Cosine Precision@1
157
+ - type: cosine_precision@3
158
+ value: 0.5100463678516228
159
+ name: Cosine Precision@3
160
+ - type: cosine_precision@5
161
+ value: 0.3993817619783616
162
+ name: Cosine Precision@5
163
+ - type: cosine_precision@10
164
+ value: 0.23817619783616692
165
+ name: Cosine Precision@10
166
+ - type: cosine_recall@1
167
+ value: 0.18663060278207108
168
+ name: Cosine Recall@1
169
+ - type: cosine_recall@3
170
+ value: 0.49613601236476046
171
+ name: Cosine Recall@3
172
+ - type: cosine_recall@5
173
+ value: 0.6312467800103039
174
+ name: Cosine Recall@5
175
+ - type: cosine_recall@10
176
+ value: 0.7480680061823802
177
+ name: Cosine Recall@10
178
+ - type: cosine_ndcg@10
179
+ value: 0.6470109167633091
180
+ name: Cosine Ndcg@10
181
+ - type: cosine_mrr@10
182
+ value: 0.583873064939525
183
+ name: Cosine Mrr@10
184
+ - type: cosine_map@100
185
+ value: 0.6280912185452766
186
+ name: Cosine Map@100
187
+ - task:
188
+ type: information-retrieval
189
+ name: Information Retrieval
190
+ dataset:
191
+ name: dim 256
192
+ type: dim_256
193
+ metrics:
194
+ - type: cosine_accuracy@1
195
+ value: 0.5069551777434312
196
+ name: Cosine Accuracy@1
197
+ - type: cosine_accuracy@3
198
+ value: 0.5486862442040186
199
+ name: Cosine Accuracy@3
200
+ - type: cosine_accuracy@5
201
+ value: 0.652241112828439
202
+ name: Cosine Accuracy@5
203
+ - type: cosine_accuracy@10
204
+ value: 0.7357032457496137
205
+ name: Cosine Accuracy@10
206
+ - type: cosine_precision@1
207
+ value: 0.5069551777434312
208
+ name: Cosine Precision@1
209
+ - type: cosine_precision@3
210
+ value: 0.4863472436888202
211
+ name: Cosine Precision@3
212
+ - type: cosine_precision@5
213
+ value: 0.37712519319938176
214
+ name: Cosine Precision@5
215
+ - type: cosine_precision@10
216
+ value: 0.2282843894899536
217
+ name: Cosine Precision@10
218
+ - type: cosine_recall@1
219
+ value: 0.17362184441009787
220
+ name: Cosine Recall@1
221
+ - type: cosine_recall@3
222
+ value: 0.4719216898505925
223
+ name: Cosine Recall@3
224
+ - type: cosine_recall@5
225
+ value: 0.5965996908809892
226
+ name: Cosine Recall@5
227
+ - type: cosine_recall@10
228
+ value: 0.7174137042761463
229
+ name: Cosine Recall@10
230
+ - type: cosine_ndcg@10
231
+ value: 0.6158619070528558
232
+ name: Cosine Ndcg@10
233
+ - type: cosine_mrr@10
234
+ value: 0.555434115944162
235
+ name: Cosine Mrr@10
236
+ - type: cosine_map@100
237
+ value: 0.6000656985096435
238
+ name: Cosine Map@100
239
+ - task:
240
+ type: information-retrieval
241
+ name: Information Retrieval
242
+ dataset:
243
+ name: dim 128
244
+ type: dim_128
245
+ metrics:
246
+ - type: cosine_accuracy@1
247
+ value: 0.4327666151468315
248
+ name: Cosine Accuracy@1
249
+ - type: cosine_accuracy@3
250
+ value: 0.47449768160741884
251
+ name: Cosine Accuracy@3
252
+ - type: cosine_accuracy@5
253
+ value: 0.5703245749613601
254
+ name: Cosine Accuracy@5
255
+ - type: cosine_accuracy@10
256
+ value: 0.6646058732612056
257
+ name: Cosine Accuracy@10
258
+ - type: cosine_precision@1
259
+ value: 0.4327666151468315
260
+ name: Cosine Precision@1
261
+ - type: cosine_precision@3
262
+ value: 0.41576506955177744
263
+ name: Cosine Precision@3
264
+ - type: cosine_precision@5
265
+ value: 0.3316846986089645
266
+ name: Cosine Precision@5
267
+ - type: cosine_precision@10
268
+ value: 0.20819165378670787
269
+ name: Cosine Precision@10
270
+ - type: cosine_recall@1
271
+ value: 0.148634724368882
272
+ name: Cosine Recall@1
273
+ - type: cosine_recall@3
274
+ value: 0.3999227202472952
275
+ name: Cosine Recall@3
276
+ - type: cosine_recall@5
277
+ value: 0.5211231324059763
278
+ name: Cosine Recall@5
279
+ - type: cosine_recall@10
280
+ value: 0.6510819165378671
281
+ name: Cosine Recall@10
282
+ - type: cosine_ndcg@10
283
+ value: 0.5456391631379686
284
+ name: Cosine Ndcg@10
285
+ - type: cosine_mrr@10
286
+ value: 0.48163317877382794
287
+ name: Cosine Mrr@10
288
+ - type: cosine_map@100
289
+ value: 0.5298973764645131
290
+ name: Cosine Map@100
291
+ - task:
292
+ type: information-retrieval
293
+ name: Information Retrieval
294
+ dataset:
295
+ name: dim 64
296
+ type: dim_64
297
+ metrics:
298
+ - type: cosine_accuracy@1
299
+ value: 0.3323029366306028
300
+ name: Cosine Accuracy@1
301
+ - type: cosine_accuracy@3
302
+ value: 0.37094281298299847
303
+ name: Cosine Accuracy@3
304
+ - type: cosine_accuracy@5
305
+ value: 0.44513137557959814
306
+ name: Cosine Accuracy@5
307
+ - type: cosine_accuracy@10
308
+ value: 0.5239567233384853
309
+ name: Cosine Accuracy@10
310
+ - type: cosine_precision@1
311
+ value: 0.3323029366306028
312
+ name: Cosine Precision@1
313
+ - type: cosine_precision@3
314
+ value: 0.32096857290056674
315
+ name: Cosine Precision@3
316
+ - type: cosine_precision@5
317
+ value: 0.25718701700154567
318
+ name: Cosine Precision@5
319
+ - type: cosine_precision@10
320
+ value: 0.16306027820710975
321
+ name: Cosine Precision@10
322
+ - type: cosine_recall@1
323
+ value: 0.11669242658423493
324
+ name: Cosine Recall@1
325
+ - type: cosine_recall@3
326
+ value: 0.3104070066975786
327
+ name: Cosine Recall@3
328
+ - type: cosine_recall@5
329
+ value: 0.4031427099433281
330
+ name: Cosine Recall@5
331
+ - type: cosine_recall@10
332
+ value: 0.5090159711488923
333
+ name: Cosine Recall@10
334
+ - type: cosine_ndcg@10
335
+ value: 0.42514271233181616
336
+ name: Cosine Ndcg@10
337
+ - type: cosine_mrr@10
338
+ value: 0.37330168543460646
339
+ name: Cosine Mrr@10
340
+ - type: cosine_map@100
341
+ value: 0.4208075319076454
342
+ name: Cosine Map@100
343
+ ---
344
+
345
+ # ModernBERT Embed base Legal Matryoshka
346
+
347
+ This is a [sentence-transformers](https://www.SBERT.net) model finetuned from [nomic-ai/modernbert-embed-base](https://huggingface.co/nomic-ai/modernbert-embed-base) on the json dataset. It maps sentences & paragraphs to a 768-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.
348
+
349
+ ## Model Details
350
+
351
+ ### Model Description
352
+ - **Model Type:** Sentence Transformer
353
+ - **Base model:** [nomic-ai/modernbert-embed-base](https://huggingface.co/nomic-ai/modernbert-embed-base) <!-- at revision d556a88e332558790b210f7bdbe87da2fa94a8d8 -->
354
+ - **Maximum Sequence Length:** 8192 tokens
355
+ - **Output Dimensionality:** 768 dimensions
356
+ - **Similarity Function:** Cosine Similarity
357
+ - **Training Dataset:**
358
+ - json
359
+ - **Language:** en
360
+ - **License:** apache-2.0
361
+
362
+ ### Model Sources
363
+
364
+ - **Documentation:** [Sentence Transformers Documentation](https://sbert.net)
365
+ - **Repository:** [Sentence Transformers on GitHub](https://github.com/huggingface/sentence-transformers)
366
+ - **Hugging Face:** [Sentence Transformers on Hugging Face](https://huggingface.co/models?library=sentence-transformers)
367
+
368
+ ### Full Model Architecture
369
+
370
+ ```
371
+ SentenceTransformer(
372
+ (0): Transformer({'max_seq_length': 8192, 'do_lower_case': False, 'architecture': 'ModernBertModel'})
373
+ (1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
374
+ (2): Normalize()
375
+ )
376
+ ```
377
+
378
+ ## Usage
379
+
380
+ ### Direct Usage (Sentence Transformers)
381
+
382
+ First install the Sentence Transformers library:
383
+
384
+ ```bash
385
+ pip install -U sentence-transformers
386
+ ```
387
+
388
+ Then you can load this model and run inference.
389
+ ```python
390
+ from sentence_transformers import SentenceTransformer
391
+
392
+ # Download from the 🤗 Hub
393
+ model = SentenceTransformer("ao-ot1231231/modernbert-embed-base-legal-matryoshka-2")
394
+ # Run inference
395
+ sentences = [
396
+ 'Williams Decl. Exs. D–I, ECF No. 53-1. In Counts Five and Six of No. 11-445, the plaintiff \nchallenges the DIA’s and the ODNI’s withholding determinations, respectively, made under \n10 \n \nFOIA Exemptions 1, 2, 3, 5, and 6. See 445 FAC ¶¶ 38–54; Defs.’ First 445 Mem. at 4–6; Pl.’s \nFirst 445 Opp’n at 6, 17–22, 24.7 \nB. \n2010 FOIA Requests \n1.',
397
+ 'Under which FOIA exemptions are the withholding determinations made?',
398
+ 'What did the forum a quo determine it would do after the parties exposed their positions?',
399
+ ]
400
+ embeddings = model.encode(sentences)
401
+ print(embeddings.shape)
402
+ # [3, 768]
403
+
404
+ # Get the similarity scores for the embeddings
405
+ similarities = model.similarity(embeddings, embeddings)
406
+ print(similarities)
407
+ # tensor([[1.0000, 0.4481, 0.1215],
408
+ # [0.4481, 1.0000, 0.1083],
409
+ # [0.1215, 0.1083, 1.0000]])
410
+ ```
411
+
412
+ <!--
413
+ ### Direct Usage (Transformers)
414
+
415
+ <details><summary>Click to see the direct usage in Transformers</summary>
416
+
417
+ </details>
418
+ -->
419
+
420
+ <!--
421
+ ### Downstream Usage (Sentence Transformers)
422
+
423
+ You can finetune this model on your own dataset.
424
+
425
+ <details><summary>Click to expand</summary>
426
+
427
+ </details>
428
+ -->
429
+
430
+ <!--
431
+ ### Out-of-Scope Use
432
+
433
+ *List how the model may foreseeably be misused and address what users ought not to do with the model.*
434
+ -->
435
+
436
+ ## Evaluation
437
+
438
+ ### Metrics
439
+
440
+ #### Information Retrieval
441
+
442
+ * Dataset: `dim_768`
443
+ * Evaluated with [<code>InformationRetrievalEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.InformationRetrievalEvaluator) with these parameters:
444
+ ```json
445
+ {
446
+ "truncate_dim": 768
447
+ }
448
+ ```
449
+
450
+ | Metric | Value |
451
+ |:--------------------|:---------|
452
+ | cosine_accuracy@1 | 0.544 |
453
+ | cosine_accuracy@3 | 0.5889 |
454
+ | cosine_accuracy@5 | 0.6878 |
455
+ | cosine_accuracy@10 | 0.762 |
456
+ | cosine_precision@1 | 0.544 |
457
+ | cosine_precision@3 | 0.5152 |
458
+ | cosine_precision@5 | 0.3985 |
459
+ | cosine_precision@10 | 0.2362 |
460
+ | cosine_recall@1 | 0.1945 |
461
+ | cosine_recall@3 | 0.5048 |
462
+ | cosine_recall@5 | 0.6329 |
463
+ | cosine_recall@10 | 0.7434 |
464
+ | **cosine_ndcg@10** | **0.65** |
465
+ | cosine_mrr@10 | 0.5918 |
466
+ | cosine_map@100 | 0.635 |
467
+
468
+ #### Information Retrieval
469
+
470
+ * Dataset: `dim_512`
471
+ * Evaluated with [<code>InformationRetrievalEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.InformationRetrievalEvaluator) with these parameters:
472
+ ```json
473
+ {
474
+ "truncate_dim": 512
475
+ }
476
+ ```
477
+
478
+ | Metric | Value |
479
+ |:--------------------|:----------|
480
+ | cosine_accuracy@1 | 0.5317 |
481
+ | cosine_accuracy@3 | 0.5827 |
482
+ | cosine_accuracy@5 | 0.6893 |
483
+ | cosine_accuracy@10 | 0.762 |
484
+ | cosine_precision@1 | 0.5317 |
485
+ | cosine_precision@3 | 0.51 |
486
+ | cosine_precision@5 | 0.3994 |
487
+ | cosine_precision@10 | 0.2382 |
488
+ | cosine_recall@1 | 0.1866 |
489
+ | cosine_recall@3 | 0.4961 |
490
+ | cosine_recall@5 | 0.6312 |
491
+ | cosine_recall@10 | 0.7481 |
492
+ | **cosine_ndcg@10** | **0.647** |
493
+ | cosine_mrr@10 | 0.5839 |
494
+ | cosine_map@100 | 0.6281 |
495
+
496
+ #### Information Retrieval
497
+
498
+ * Dataset: `dim_256`
499
+ * Evaluated with [<code>InformationRetrievalEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.InformationRetrievalEvaluator) with these parameters:
500
+ ```json
501
+ {
502
+ "truncate_dim": 256
503
+ }
504
+ ```
505
+
506
+ | Metric | Value |
507
+ |:--------------------|:-----------|
508
+ | cosine_accuracy@1 | 0.507 |
509
+ | cosine_accuracy@3 | 0.5487 |
510
+ | cosine_accuracy@5 | 0.6522 |
511
+ | cosine_accuracy@10 | 0.7357 |
512
+ | cosine_precision@1 | 0.507 |
513
+ | cosine_precision@3 | 0.4863 |
514
+ | cosine_precision@5 | 0.3771 |
515
+ | cosine_precision@10 | 0.2283 |
516
+ | cosine_recall@1 | 0.1736 |
517
+ | cosine_recall@3 | 0.4719 |
518
+ | cosine_recall@5 | 0.5966 |
519
+ | cosine_recall@10 | 0.7174 |
520
+ | **cosine_ndcg@10** | **0.6159** |
521
+ | cosine_mrr@10 | 0.5554 |
522
+ | cosine_map@100 | 0.6001 |
523
+
524
+ #### Information Retrieval
525
+
526
+ * Dataset: `dim_128`
527
+ * Evaluated with [<code>InformationRetrievalEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.InformationRetrievalEvaluator) with these parameters:
528
+ ```json
529
+ {
530
+ "truncate_dim": 128
531
+ }
532
+ ```
533
+
534
+ | Metric | Value |
535
+ |:--------------------|:-----------|
536
+ | cosine_accuracy@1 | 0.4328 |
537
+ | cosine_accuracy@3 | 0.4745 |
538
+ | cosine_accuracy@5 | 0.5703 |
539
+ | cosine_accuracy@10 | 0.6646 |
540
+ | cosine_precision@1 | 0.4328 |
541
+ | cosine_precision@3 | 0.4158 |
542
+ | cosine_precision@5 | 0.3317 |
543
+ | cosine_precision@10 | 0.2082 |
544
+ | cosine_recall@1 | 0.1486 |
545
+ | cosine_recall@3 | 0.3999 |
546
+ | cosine_recall@5 | 0.5211 |
547
+ | cosine_recall@10 | 0.6511 |
548
+ | **cosine_ndcg@10** | **0.5456** |
549
+ | cosine_mrr@10 | 0.4816 |
550
+ | cosine_map@100 | 0.5299 |
551
+
552
+ #### Information Retrieval
553
+
554
+ * Dataset: `dim_64`
555
+ * Evaluated with [<code>InformationRetrievalEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.InformationRetrievalEvaluator) with these parameters:
556
+ ```json
557
+ {
558
+ "truncate_dim": 64
559
+ }
560
+ ```
561
+
562
+ | Metric | Value |
563
+ |:--------------------|:-----------|
564
+ | cosine_accuracy@1 | 0.3323 |
565
+ | cosine_accuracy@3 | 0.3709 |
566
+ | cosine_accuracy@5 | 0.4451 |
567
+ | cosine_accuracy@10 | 0.524 |
568
+ | cosine_precision@1 | 0.3323 |
569
+ | cosine_precision@3 | 0.321 |
570
+ | cosine_precision@5 | 0.2572 |
571
+ | cosine_precision@10 | 0.1631 |
572
+ | cosine_recall@1 | 0.1167 |
573
+ | cosine_recall@3 | 0.3104 |
574
+ | cosine_recall@5 | 0.4031 |
575
+ | cosine_recall@10 | 0.509 |
576
+ | **cosine_ndcg@10** | **0.4251** |
577
+ | cosine_mrr@10 | 0.3733 |
578
+ | cosine_map@100 | 0.4208 |
579
+
580
+ <!--
581
+ ## Bias, Risks and Limitations
582
+
583
+ *What are the known or foreseeable issues stemming from this model? You could also flag here known failure cases or weaknesses of the model.*
584
+ -->
585
+
586
+ <!--
587
+ ### Recommendations
588
+
589
+ *What are recommendations with respect to the foreseeable issues? For example, filtering explicit content.*
590
+ -->
591
+
592
+ ## Training Details
593
+
594
+ ### Training Dataset
595
+
596
+ #### json
597
+
598
+ * Dataset: json
599
+ * Size: 5,822 training samples
600
+ * Columns: <code>positive</code> and <code>anchor</code>
601
+ * Approximate statistics based on the first 1000 samples:
602
+ | | positive | anchor |
603
+ |:--------|:------------------------------------------------------------------------------------|:----------------------------------------------------------------------------------|
604
+ | type | string | string |
605
+ | details | <ul><li>min: 28 tokens</li><li>mean: 97.25 tokens</li><li>max: 170 tokens</li></ul> | <ul><li>min: 7 tokens</li><li>mean: 16.57 tokens</li><li>max: 49 tokens</li></ul> |
606
+ * Samples:
607
+ | positive | anchor |
608
+ |:-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|:---------------------------------------------------------------------------------------------------|
609
+ | <code>personnel.” See id. The answer to that question remains unclear, and the Court need not decide <br>113 <br> <br>it here.52 It suffices to conclude that the names withheld by the CIA are at least arguably <br>protected from disclosure under the interpretation of § 403g announced in Halperin, and thus <br>withholding those names does not rise to the level of “general sloppiness” that would caution</code> | <code>Under which interpretation are the names at least arguably protected from disclosure?</code> |
610
+ | <code>last of these motions became ripe on June 11, 2013. Additionally, on November 21, 2012, the <br>plaintiff filed a motion for leave to file a second amended complaint in No. 11-445, and on <br>January 11, 2013, the plaintiff filed a motion for sanctions in No. 11-443. Thus, currently <br>pending before the Court in these related actions are ten motions: eight motions or cross-motions <br>28</code> | <code>When did the last of the motions become ripe?</code> |
611
+ | <code>the parties to confer, once this report is final, and submit any remaining areas of <br>disagreement on the scope of the inspection to the Court. <br>33 D.I. 1, Ex. 2. <br>34 Id. <br>Senetas Corporation, Ltd. v. DeepRadiology Corporation <br>C.A. No. 2019-0170-PWG <br>July 30, 2019 <br> <br>9 <br> <br>accurate financial records; failed to keep the Board reasonably informed about</code> | <code>What is the case number for Senetas Corporation, Ltd. v. DeepRadiology Corporation?</code> |
612
+ * Loss: [<code>MatryoshkaLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#matryoshkaloss) with these parameters:
613
+ ```json
614
+ {
615
+ "loss": "MultipleNegativesRankingLoss",
616
+ "matryoshka_dims": [
617
+ 768,
618
+ 512,
619
+ 256,
620
+ 128,
621
+ 64
622
+ ],
623
+ "matryoshka_weights": [
624
+ 1,
625
+ 1,
626
+ 1,
627
+ 1,
628
+ 1
629
+ ],
630
+ "n_dims_per_step": -1
631
+ }
632
+ ```
633
+
634
+ ### Training Hyperparameters
635
+ #### Non-Default Hyperparameters
636
+
637
+ - `eval_strategy`: epoch
638
+ - `per_device_train_batch_size`: 32
639
+ - `per_device_eval_batch_size`: 16
640
+ - `gradient_accumulation_steps`: 16
641
+ - `learning_rate`: 2e-05
642
+ - `num_train_epochs`: 4
643
+ - `lr_scheduler_type`: cosine
644
+ - `warmup_ratio`: 0.1
645
+ - `bf16`: True
646
+ - `tf32`: True
647
+ - `load_best_model_at_end`: True
648
+ - `batch_sampler`: no_duplicates
649
+
650
+ #### All Hyperparameters
651
+ <details><summary>Click to expand</summary>
652
+
653
+ - `overwrite_output_dir`: False
654
+ - `do_predict`: False
655
+ - `eval_strategy`: epoch
656
+ - `prediction_loss_only`: True
657
+ - `per_device_train_batch_size`: 32
658
+ - `per_device_eval_batch_size`: 16
659
+ - `per_gpu_train_batch_size`: None
660
+ - `per_gpu_eval_batch_size`: None
661
+ - `gradient_accumulation_steps`: 16
662
+ - `eval_accumulation_steps`: None
663
+ - `torch_empty_cache_steps`: None
664
+ - `learning_rate`: 2e-05
665
+ - `weight_decay`: 0.0
666
+ - `adam_beta1`: 0.9
667
+ - `adam_beta2`: 0.999
668
+ - `adam_epsilon`: 1e-08
669
+ - `max_grad_norm`: 1.0
670
+ - `num_train_epochs`: 4
671
+ - `max_steps`: -1
672
+ - `lr_scheduler_type`: cosine
673
+ - `lr_scheduler_kwargs`: {}
674
+ - `warmup_ratio`: 0.1
675
+ - `warmup_steps`: 0
676
+ - `log_level`: passive
677
+ - `log_level_replica`: warning
678
+ - `log_on_each_node`: True
679
+ - `logging_nan_inf_filter`: True
680
+ - `save_safetensors`: True
681
+ - `save_on_each_node`: False
682
+ - `save_only_model`: False
683
+ - `restore_callback_states_from_checkpoint`: False
684
+ - `no_cuda`: False
685
+ - `use_cpu`: False
686
+ - `use_mps_device`: False
687
+ - `seed`: 42
688
+ - `data_seed`: None
689
+ - `jit_mode_eval`: False
690
+ - `bf16`: True
691
+ - `fp16`: False
692
+ - `fp16_opt_level`: O1
693
+ - `half_precision_backend`: auto
694
+ - `bf16_full_eval`: False
695
+ - `fp16_full_eval`: False
696
+ - `tf32`: True
697
+ - `local_rank`: 0
698
+ - `ddp_backend`: None
699
+ - `tpu_num_cores`: None
700
+ - `tpu_metrics_debug`: False
701
+ - `debug`: []
702
+ - `dataloader_drop_last`: False
703
+ - `dataloader_num_workers`: 0
704
+ - `dataloader_prefetch_factor`: None
705
+ - `past_index`: -1
706
+ - `disable_tqdm`: False
707
+ - `remove_unused_columns`: True
708
+ - `label_names`: None
709
+ - `load_best_model_at_end`: True
710
+ - `ignore_data_skip`: False
711
+ - `fsdp`: []
712
+ - `fsdp_min_num_params`: 0
713
+ - `fsdp_config`: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}
714
+ - `fsdp_transformer_layer_cls_to_wrap`: None
715
+ - `accelerator_config`: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}
716
+ - `parallelism_config`: None
717
+ - `deepspeed`: None
718
+ - `label_smoothing_factor`: 0.0
719
+ - `optim`: adamw_torch_fused
720
+ - `optim_args`: None
721
+ - `adafactor`: False
722
+ - `group_by_length`: False
723
+ - `length_column_name`: length
724
+ - `project`: huggingface
725
+ - `trackio_space_id`: trackio
726
+ - `ddp_find_unused_parameters`: None
727
+ - `ddp_bucket_cap_mb`: None
728
+ - `ddp_broadcast_buffers`: False
729
+ - `dataloader_pin_memory`: True
730
+ - `dataloader_persistent_workers`: False
731
+ - `skip_memory_metrics`: True
732
+ - `use_legacy_prediction_loop`: False
733
+ - `push_to_hub`: False
734
+ - `resume_from_checkpoint`: None
735
+ - `hub_model_id`: None
736
+ - `hub_strategy`: every_save
737
+ - `hub_private_repo`: None
738
+ - `hub_always_push`: False
739
+ - `hub_revision`: None
740
+ - `gradient_checkpointing`: False
741
+ - `gradient_checkpointing_kwargs`: None
742
+ - `include_inputs_for_metrics`: False
743
+ - `include_for_metrics`: []
744
+ - `eval_do_concat_batches`: True
745
+ - `fp16_backend`: auto
746
+ - `push_to_hub_model_id`: None
747
+ - `push_to_hub_organization`: None
748
+ - `mp_parameters`:
749
+ - `auto_find_batch_size`: False
750
+ - `full_determinism`: False
751
+ - `torchdynamo`: None
752
+ - `ray_scope`: last
753
+ - `ddp_timeout`: 1800
754
+ - `torch_compile`: False
755
+ - `torch_compile_backend`: None
756
+ - `torch_compile_mode`: None
757
+ - `include_tokens_per_second`: False
758
+ - `include_num_input_tokens_seen`: no
759
+ - `neftune_noise_alpha`: None
760
+ - `optim_target_modules`: None
761
+ - `batch_eval_metrics`: False
762
+ - `eval_on_start`: False
763
+ - `use_liger_kernel`: False
764
+ - `liger_kernel_config`: None
765
+ - `eval_use_gather_object`: False
766
+ - `average_tokens_across_devices`: True
767
+ - `prompts`: None
768
+ - `batch_sampler`: no_duplicates
769
+ - `multi_dataset_batch_sampler`: proportional
770
+ - `router_mapping`: {}
771
+ - `learning_rate_mapping`: {}
772
+
773
+ </details>
774
+
775
+ ### Training Logs
776
+ | Epoch | Step | Training Loss | dim_768_cosine_ndcg@10 | dim_512_cosine_ndcg@10 | dim_256_cosine_ndcg@10 | dim_128_cosine_ndcg@10 | dim_64_cosine_ndcg@10 |
777
+ |:-------:|:------:|:-------------:|:----------------------:|:----------------------:|:----------------------:|:----------------------:|:---------------------:|
778
+ | 0.8791 | 10 | 5.7061 | - | - | - | - | - |
779
+ | 1.0 | 12 | - | 0.6031 | 0.5863 | 0.5621 | 0.4889 | 0.3463 |
780
+ | 1.7033 | 20 | 2.6671 | - | - | - | - | - |
781
+ | 2.0 | 24 | - | 0.6410 | 0.6341 | 0.6047 | 0.5248 | 0.4071 |
782
+ | 2.5275 | 30 | 2.0092 | - | - | - | - | - |
783
+ | 3.0 | 36 | - | 0.6489 | 0.6465 | 0.6154 | 0.5391 | 0.4261 |
784
+ | 3.3516 | 40 | 1.6698 | - | - | - | - | - |
785
+ | **4.0** | **48** | **-** | **0.65** | **0.647** | **0.6159** | **0.5456** | **0.4251** |
786
+
787
+ * The bold row denotes the saved checkpoint.
788
+
789
+ ### Framework Versions
790
+ - Python: 3.10.12
791
+ - Sentence Transformers: 5.1.2
792
+ - Transformers: 4.57.3
793
+ - PyTorch: 2.9.1+cu128
794
+ - Accelerate: 1.12.0
795
+ - Datasets: 4.4.1
796
+ - Tokenizers: 0.22.1
797
+
798
+ ## Citation
799
+
800
+ ### BibTeX
801
+
802
+ #### Sentence Transformers
803
+ ```bibtex
804
+ @inproceedings{reimers-2019-sentence-bert,
805
+ title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
806
+ author = "Reimers, Nils and Gurevych, Iryna",
807
+ booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
808
+ month = "11",
809
+ year = "2019",
810
+ publisher = "Association for Computational Linguistics",
811
+ url = "https://arxiv.org/abs/1908.10084",
812
+ }
813
+ ```
814
+
815
+ #### MatryoshkaLoss
816
+ ```bibtex
817
+ @misc{kusupati2024matryoshka,
818
+ title={Matryoshka Representation Learning},
819
+ author={Aditya Kusupati and Gantavya Bhatt and Aniket Rege and Matthew Wallingford and Aditya Sinha and Vivek Ramanujan and William Howard-Snyder and Kaifeng Chen and Sham Kakade and Prateek Jain and Ali Farhadi},
820
+ year={2024},
821
+ eprint={2205.13147},
822
+ archivePrefix={arXiv},
823
+ primaryClass={cs.LG}
824
+ }
825
+ ```
826
+
827
+ #### MultipleNegativesRankingLoss
828
+ ```bibtex
829
+ @misc{henderson2017efficient,
830
+ title={Efficient Natural Language Response Suggestion for Smart Reply},
831
+ author={Matthew Henderson and Rami Al-Rfou and Brian Strope and Yun-hsuan Sung and Laszlo Lukacs and Ruiqi Guo and Sanjiv Kumar and Balint Miklos and Ray Kurzweil},
832
+ year={2017},
833
+ eprint={1705.00652},
834
+ archivePrefix={arXiv},
835
+ primaryClass={cs.CL}
836
+ }
837
+ ```
838
+
839
+ <!--
840
+ ## Glossary
841
+
842
+ *Clearly define terms in order to be accessible across audiences.*
843
+ -->
844
+
845
+ <!--
846
+ ## Model Card Authors
847
+
848
+ *Lists the people who create the model card, providing recognition and accountability for the detailed work that goes into its construction.*
849
+ -->
850
+
851
+ <!--
852
+ ## Model Card Contact
853
+
854
+ *Provides a way for people who have updates to the Model Card, suggestions, or questions, to contact the Model Card authors.*
855
+ -->
config.json ADDED
@@ -0,0 +1,45 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "architectures": [
3
+ "ModernBertModel"
4
+ ],
5
+ "attention_bias": false,
6
+ "attention_dropout": 0.0,
7
+ "bos_token_id": 50281,
8
+ "classifier_activation": "gelu",
9
+ "classifier_bias": false,
10
+ "classifier_dropout": 0.0,
11
+ "classifier_pooling": "mean",
12
+ "cls_token_id": 50281,
13
+ "decoder_bias": true,
14
+ "deterministic_flash_attn": false,
15
+ "dtype": "float32",
16
+ "embedding_dropout": 0.0,
17
+ "eos_token_id": 50282,
18
+ "global_attn_every_n_layers": 3,
19
+ "global_rope_theta": 160000.0,
20
+ "gradient_checkpointing": false,
21
+ "hidden_activation": "gelu",
22
+ "hidden_size": 768,
23
+ "initializer_cutoff_factor": 2.0,
24
+ "initializer_range": 0.02,
25
+ "intermediate_size": 1152,
26
+ "layer_norm_eps": 1e-05,
27
+ "local_attention": 128,
28
+ "local_rope_theta": 10000.0,
29
+ "max_position_embeddings": 8192,
30
+ "mlp_bias": false,
31
+ "mlp_dropout": 0.0,
32
+ "model_type": "modernbert",
33
+ "norm_bias": false,
34
+ "norm_eps": 1e-05,
35
+ "num_attention_heads": 12,
36
+ "num_hidden_layers": 22,
37
+ "pad_token_id": 50283,
38
+ "position_embedding_type": "absolute",
39
+ "repad_logits_with_grad": false,
40
+ "sep_token_id": 50282,
41
+ "sparse_pred_ignore_index": -100,
42
+ "sparse_prediction": false,
43
+ "transformers_version": "4.57.3",
44
+ "vocab_size": 50368
45
+ }
config_sentence_transformers.json ADDED
@@ -0,0 +1,14 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "__version__": {
3
+ "sentence_transformers": "5.1.2",
4
+ "transformers": "4.57.3",
5
+ "pytorch": "2.9.1+cu128"
6
+ },
7
+ "prompts": {
8
+ "query": "",
9
+ "document": ""
10
+ },
11
+ "default_prompt_name": null,
12
+ "similarity_fn_name": "cosine",
13
+ "model_type": "SentenceTransformer"
14
+ }
model.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:c70a504c7c11decd1dd53dea4c5c89bbd659f2da546c995c7acd4c6bffa32395
3
+ size 596070136
modules.json ADDED
@@ -0,0 +1,20 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ [
2
+ {
3
+ "idx": 0,
4
+ "name": "0",
5
+ "path": "",
6
+ "type": "sentence_transformers.models.Transformer"
7
+ },
8
+ {
9
+ "idx": 1,
10
+ "name": "1",
11
+ "path": "1_Pooling",
12
+ "type": "sentence_transformers.models.Pooling"
13
+ },
14
+ {
15
+ "idx": 2,
16
+ "name": "2",
17
+ "path": "2_Normalize",
18
+ "type": "sentence_transformers.models.Normalize"
19
+ }
20
+ ]
sentence_bert_config.json ADDED
@@ -0,0 +1,4 @@
 
 
 
 
 
1
+ {
2
+ "max_seq_length": 8192,
3
+ "do_lower_case": false
4
+ }
special_tokens_map.json ADDED
@@ -0,0 +1,37 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "cls_token": {
3
+ "content": "[CLS]",
4
+ "lstrip": false,
5
+ "normalized": false,
6
+ "rstrip": false,
7
+ "single_word": false
8
+ },
9
+ "mask_token": {
10
+ "content": "[MASK]",
11
+ "lstrip": true,
12
+ "normalized": false,
13
+ "rstrip": false,
14
+ "single_word": false
15
+ },
16
+ "pad_token": {
17
+ "content": "[PAD]",
18
+ "lstrip": false,
19
+ "normalized": false,
20
+ "rstrip": false,
21
+ "single_word": false
22
+ },
23
+ "sep_token": {
24
+ "content": "[SEP]",
25
+ "lstrip": false,
26
+ "normalized": false,
27
+ "rstrip": false,
28
+ "single_word": false
29
+ },
30
+ "unk_token": {
31
+ "content": "[UNK]",
32
+ "lstrip": false,
33
+ "normalized": false,
34
+ "rstrip": false,
35
+ "single_word": false
36
+ }
37
+ }
tokenizer.json ADDED
The diff for this file is too large to render. See raw diff
 
tokenizer_config.json ADDED
@@ -0,0 +1,945 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "added_tokens_decoder": {
3
+ "0": {
4
+ "content": "|||IP_ADDRESS|||",
5
+ "lstrip": false,
6
+ "normalized": true,
7
+ "rstrip": false,
8
+ "single_word": false,
9
+ "special": false
10
+ },
11
+ "1": {
12
+ "content": "<|padding|>",
13
+ "lstrip": false,
14
+ "normalized": false,
15
+ "rstrip": false,
16
+ "single_word": false,
17
+ "special": true
18
+ },
19
+ "50254": {
20
+ "content": " ",
21
+ "lstrip": false,
22
+ "normalized": true,
23
+ "rstrip": false,
24
+ "single_word": false,
25
+ "special": false
26
+ },
27
+ "50255": {
28
+ "content": " ",
29
+ "lstrip": false,
30
+ "normalized": true,
31
+ "rstrip": false,
32
+ "single_word": false,
33
+ "special": false
34
+ },
35
+ "50256": {
36
+ "content": " ",
37
+ "lstrip": false,
38
+ "normalized": true,
39
+ "rstrip": false,
40
+ "single_word": false,
41
+ "special": false
42
+ },
43
+ "50257": {
44
+ "content": " ",
45
+ "lstrip": false,
46
+ "normalized": true,
47
+ "rstrip": false,
48
+ "single_word": false,
49
+ "special": false
50
+ },
51
+ "50258": {
52
+ "content": " ",
53
+ "lstrip": false,
54
+ "normalized": true,
55
+ "rstrip": false,
56
+ "single_word": false,
57
+ "special": false
58
+ },
59
+ "50259": {
60
+ "content": " ",
61
+ "lstrip": false,
62
+ "normalized": true,
63
+ "rstrip": false,
64
+ "single_word": false,
65
+ "special": false
66
+ },
67
+ "50260": {
68
+ "content": " ",
69
+ "lstrip": false,
70
+ "normalized": true,
71
+ "rstrip": false,
72
+ "single_word": false,
73
+ "special": false
74
+ },
75
+ "50261": {
76
+ "content": " ",
77
+ "lstrip": false,
78
+ "normalized": true,
79
+ "rstrip": false,
80
+ "single_word": false,
81
+ "special": false
82
+ },
83
+ "50262": {
84
+ "content": " ",
85
+ "lstrip": false,
86
+ "normalized": true,
87
+ "rstrip": false,
88
+ "single_word": false,
89
+ "special": false
90
+ },
91
+ "50263": {
92
+ "content": " ",
93
+ "lstrip": false,
94
+ "normalized": true,
95
+ "rstrip": false,
96
+ "single_word": false,
97
+ "special": false
98
+ },
99
+ "50264": {
100
+ "content": " ",
101
+ "lstrip": false,
102
+ "normalized": true,
103
+ "rstrip": false,
104
+ "single_word": false,
105
+ "special": false
106
+ },
107
+ "50265": {
108
+ "content": " ",
109
+ "lstrip": false,
110
+ "normalized": true,
111
+ "rstrip": false,
112
+ "single_word": false,
113
+ "special": false
114
+ },
115
+ "50266": {
116
+ "content": " ",
117
+ "lstrip": false,
118
+ "normalized": true,
119
+ "rstrip": false,
120
+ "single_word": false,
121
+ "special": false
122
+ },
123
+ "50267": {
124
+ "content": " ",
125
+ "lstrip": false,
126
+ "normalized": true,
127
+ "rstrip": false,
128
+ "single_word": false,
129
+ "special": false
130
+ },
131
+ "50268": {
132
+ "content": " ",
133
+ "lstrip": false,
134
+ "normalized": true,
135
+ "rstrip": false,
136
+ "single_word": false,
137
+ "special": false
138
+ },
139
+ "50269": {
140
+ "content": " ",
141
+ "lstrip": false,
142
+ "normalized": true,
143
+ "rstrip": false,
144
+ "single_word": false,
145
+ "special": false
146
+ },
147
+ "50270": {
148
+ "content": " ",
149
+ "lstrip": false,
150
+ "normalized": true,
151
+ "rstrip": false,
152
+ "single_word": false,
153
+ "special": false
154
+ },
155
+ "50271": {
156
+ "content": " ",
157
+ "lstrip": false,
158
+ "normalized": true,
159
+ "rstrip": false,
160
+ "single_word": false,
161
+ "special": false
162
+ },
163
+ "50272": {
164
+ "content": " ",
165
+ "lstrip": false,
166
+ "normalized": true,
167
+ "rstrip": false,
168
+ "single_word": false,
169
+ "special": false
170
+ },
171
+ "50273": {
172
+ "content": " ",
173
+ "lstrip": false,
174
+ "normalized": true,
175
+ "rstrip": false,
176
+ "single_word": false,
177
+ "special": false
178
+ },
179
+ "50274": {
180
+ "content": " ",
181
+ "lstrip": false,
182
+ "normalized": true,
183
+ "rstrip": false,
184
+ "single_word": false,
185
+ "special": false
186
+ },
187
+ "50275": {
188
+ "content": " ",
189
+ "lstrip": false,
190
+ "normalized": true,
191
+ "rstrip": false,
192
+ "single_word": false,
193
+ "special": false
194
+ },
195
+ "50276": {
196
+ "content": " ",
197
+ "lstrip": false,
198
+ "normalized": true,
199
+ "rstrip": false,
200
+ "single_word": false,
201
+ "special": false
202
+ },
203
+ "50277": {
204
+ "content": "|||EMAIL_ADDRESS|||",
205
+ "lstrip": false,
206
+ "normalized": true,
207
+ "rstrip": false,
208
+ "single_word": false,
209
+ "special": false
210
+ },
211
+ "50278": {
212
+ "content": "|||PHONE_NUMBER|||",
213
+ "lstrip": false,
214
+ "normalized": true,
215
+ "rstrip": false,
216
+ "single_word": false,
217
+ "special": false
218
+ },
219
+ "50279": {
220
+ "content": "<|endoftext|>",
221
+ "lstrip": false,
222
+ "normalized": false,
223
+ "rstrip": false,
224
+ "single_word": false,
225
+ "special": true
226
+ },
227
+ "50280": {
228
+ "content": "[UNK]",
229
+ "lstrip": false,
230
+ "normalized": false,
231
+ "rstrip": false,
232
+ "single_word": false,
233
+ "special": true
234
+ },
235
+ "50281": {
236
+ "content": "[CLS]",
237
+ "lstrip": false,
238
+ "normalized": false,
239
+ "rstrip": false,
240
+ "single_word": false,
241
+ "special": true
242
+ },
243
+ "50282": {
244
+ "content": "[SEP]",
245
+ "lstrip": false,
246
+ "normalized": false,
247
+ "rstrip": false,
248
+ "single_word": false,
249
+ "special": true
250
+ },
251
+ "50283": {
252
+ "content": "[PAD]",
253
+ "lstrip": false,
254
+ "normalized": false,
255
+ "rstrip": false,
256
+ "single_word": false,
257
+ "special": true
258
+ },
259
+ "50284": {
260
+ "content": "[MASK]",
261
+ "lstrip": true,
262
+ "normalized": false,
263
+ "rstrip": false,
264
+ "single_word": false,
265
+ "special": true
266
+ },
267
+ "50285": {
268
+ "content": "[unused0]",
269
+ "lstrip": false,
270
+ "normalized": true,
271
+ "rstrip": false,
272
+ "single_word": false,
273
+ "special": false
274
+ },
275
+ "50286": {
276
+ "content": "[unused1]",
277
+ "lstrip": false,
278
+ "normalized": true,
279
+ "rstrip": false,
280
+ "single_word": false,
281
+ "special": false
282
+ },
283
+ "50287": {
284
+ "content": "[unused2]",
285
+ "lstrip": false,
286
+ "normalized": true,
287
+ "rstrip": false,
288
+ "single_word": false,
289
+ "special": false
290
+ },
291
+ "50288": {
292
+ "content": "[unused3]",
293
+ "lstrip": false,
294
+ "normalized": true,
295
+ "rstrip": false,
296
+ "single_word": false,
297
+ "special": false
298
+ },
299
+ "50289": {
300
+ "content": "[unused4]",
301
+ "lstrip": false,
302
+ "normalized": true,
303
+ "rstrip": false,
304
+ "single_word": false,
305
+ "special": false
306
+ },
307
+ "50290": {
308
+ "content": "[unused5]",
309
+ "lstrip": false,
310
+ "normalized": true,
311
+ "rstrip": false,
312
+ "single_word": false,
313
+ "special": false
314
+ },
315
+ "50291": {
316
+ "content": "[unused6]",
317
+ "lstrip": false,
318
+ "normalized": true,
319
+ "rstrip": false,
320
+ "single_word": false,
321
+ "special": false
322
+ },
323
+ "50292": {
324
+ "content": "[unused7]",
325
+ "lstrip": false,
326
+ "normalized": true,
327
+ "rstrip": false,
328
+ "single_word": false,
329
+ "special": false
330
+ },
331
+ "50293": {
332
+ "content": "[unused8]",
333
+ "lstrip": false,
334
+ "normalized": true,
335
+ "rstrip": false,
336
+ "single_word": false,
337
+ "special": false
338
+ },
339
+ "50294": {
340
+ "content": "[unused9]",
341
+ "lstrip": false,
342
+ "normalized": true,
343
+ "rstrip": false,
344
+ "single_word": false,
345
+ "special": false
346
+ },
347
+ "50295": {
348
+ "content": "[unused10]",
349
+ "lstrip": false,
350
+ "normalized": true,
351
+ "rstrip": false,
352
+ "single_word": false,
353
+ "special": false
354
+ },
355
+ "50296": {
356
+ "content": "[unused11]",
357
+ "lstrip": false,
358
+ "normalized": true,
359
+ "rstrip": false,
360
+ "single_word": false,
361
+ "special": false
362
+ },
363
+ "50297": {
364
+ "content": "[unused12]",
365
+ "lstrip": false,
366
+ "normalized": true,
367
+ "rstrip": false,
368
+ "single_word": false,
369
+ "special": false
370
+ },
371
+ "50298": {
372
+ "content": "[unused13]",
373
+ "lstrip": false,
374
+ "normalized": true,
375
+ "rstrip": false,
376
+ "single_word": false,
377
+ "special": false
378
+ },
379
+ "50299": {
380
+ "content": "[unused14]",
381
+ "lstrip": false,
382
+ "normalized": true,
383
+ "rstrip": false,
384
+ "single_word": false,
385
+ "special": false
386
+ },
387
+ "50300": {
388
+ "content": "[unused15]",
389
+ "lstrip": false,
390
+ "normalized": true,
391
+ "rstrip": false,
392
+ "single_word": false,
393
+ "special": false
394
+ },
395
+ "50301": {
396
+ "content": "[unused16]",
397
+ "lstrip": false,
398
+ "normalized": true,
399
+ "rstrip": false,
400
+ "single_word": false,
401
+ "special": false
402
+ },
403
+ "50302": {
404
+ "content": "[unused17]",
405
+ "lstrip": false,
406
+ "normalized": true,
407
+ "rstrip": false,
408
+ "single_word": false,
409
+ "special": false
410
+ },
411
+ "50303": {
412
+ "content": "[unused18]",
413
+ "lstrip": false,
414
+ "normalized": true,
415
+ "rstrip": false,
416
+ "single_word": false,
417
+ "special": false
418
+ },
419
+ "50304": {
420
+ "content": "[unused19]",
421
+ "lstrip": false,
422
+ "normalized": true,
423
+ "rstrip": false,
424
+ "single_word": false,
425
+ "special": false
426
+ },
427
+ "50305": {
428
+ "content": "[unused20]",
429
+ "lstrip": false,
430
+ "normalized": true,
431
+ "rstrip": false,
432
+ "single_word": false,
433
+ "special": false
434
+ },
435
+ "50306": {
436
+ "content": "[unused21]",
437
+ "lstrip": false,
438
+ "normalized": true,
439
+ "rstrip": false,
440
+ "single_word": false,
441
+ "special": false
442
+ },
443
+ "50307": {
444
+ "content": "[unused22]",
445
+ "lstrip": false,
446
+ "normalized": true,
447
+ "rstrip": false,
448
+ "single_word": false,
449
+ "special": false
450
+ },
451
+ "50308": {
452
+ "content": "[unused23]",
453
+ "lstrip": false,
454
+ "normalized": true,
455
+ "rstrip": false,
456
+ "single_word": false,
457
+ "special": false
458
+ },
459
+ "50309": {
460
+ "content": "[unused24]",
461
+ "lstrip": false,
462
+ "normalized": true,
463
+ "rstrip": false,
464
+ "single_word": false,
465
+ "special": false
466
+ },
467
+ "50310": {
468
+ "content": "[unused25]",
469
+ "lstrip": false,
470
+ "normalized": true,
471
+ "rstrip": false,
472
+ "single_word": false,
473
+ "special": false
474
+ },
475
+ "50311": {
476
+ "content": "[unused26]",
477
+ "lstrip": false,
478
+ "normalized": true,
479
+ "rstrip": false,
480
+ "single_word": false,
481
+ "special": false
482
+ },
483
+ "50312": {
484
+ "content": "[unused27]",
485
+ "lstrip": false,
486
+ "normalized": true,
487
+ "rstrip": false,
488
+ "single_word": false,
489
+ "special": false
490
+ },
491
+ "50313": {
492
+ "content": "[unused28]",
493
+ "lstrip": false,
494
+ "normalized": true,
495
+ "rstrip": false,
496
+ "single_word": false,
497
+ "special": false
498
+ },
499
+ "50314": {
500
+ "content": "[unused29]",
501
+ "lstrip": false,
502
+ "normalized": true,
503
+ "rstrip": false,
504
+ "single_word": false,
505
+ "special": false
506
+ },
507
+ "50315": {
508
+ "content": "[unused30]",
509
+ "lstrip": false,
510
+ "normalized": true,
511
+ "rstrip": false,
512
+ "single_word": false,
513
+ "special": false
514
+ },
515
+ "50316": {
516
+ "content": "[unused31]",
517
+ "lstrip": false,
518
+ "normalized": true,
519
+ "rstrip": false,
520
+ "single_word": false,
521
+ "special": false
522
+ },
523
+ "50317": {
524
+ "content": "[unused32]",
525
+ "lstrip": false,
526
+ "normalized": true,
527
+ "rstrip": false,
528
+ "single_word": false,
529
+ "special": false
530
+ },
531
+ "50318": {
532
+ "content": "[unused33]",
533
+ "lstrip": false,
534
+ "normalized": true,
535
+ "rstrip": false,
536
+ "single_word": false,
537
+ "special": false
538
+ },
539
+ "50319": {
540
+ "content": "[unused34]",
541
+ "lstrip": false,
542
+ "normalized": true,
543
+ "rstrip": false,
544
+ "single_word": false,
545
+ "special": false
546
+ },
547
+ "50320": {
548
+ "content": "[unused35]",
549
+ "lstrip": false,
550
+ "normalized": true,
551
+ "rstrip": false,
552
+ "single_word": false,
553
+ "special": false
554
+ },
555
+ "50321": {
556
+ "content": "[unused36]",
557
+ "lstrip": false,
558
+ "normalized": true,
559
+ "rstrip": false,
560
+ "single_word": false,
561
+ "special": false
562
+ },
563
+ "50322": {
564
+ "content": "[unused37]",
565
+ "lstrip": false,
566
+ "normalized": true,
567
+ "rstrip": false,
568
+ "single_word": false,
569
+ "special": false
570
+ },
571
+ "50323": {
572
+ "content": "[unused38]",
573
+ "lstrip": false,
574
+ "normalized": true,
575
+ "rstrip": false,
576
+ "single_word": false,
577
+ "special": false
578
+ },
579
+ "50324": {
580
+ "content": "[unused39]",
581
+ "lstrip": false,
582
+ "normalized": true,
583
+ "rstrip": false,
584
+ "single_word": false,
585
+ "special": false
586
+ },
587
+ "50325": {
588
+ "content": "[unused40]",
589
+ "lstrip": false,
590
+ "normalized": true,
591
+ "rstrip": false,
592
+ "single_word": false,
593
+ "special": false
594
+ },
595
+ "50326": {
596
+ "content": "[unused41]",
597
+ "lstrip": false,
598
+ "normalized": true,
599
+ "rstrip": false,
600
+ "single_word": false,
601
+ "special": false
602
+ },
603
+ "50327": {
604
+ "content": "[unused42]",
605
+ "lstrip": false,
606
+ "normalized": true,
607
+ "rstrip": false,
608
+ "single_word": false,
609
+ "special": false
610
+ },
611
+ "50328": {
612
+ "content": "[unused43]",
613
+ "lstrip": false,
614
+ "normalized": true,
615
+ "rstrip": false,
616
+ "single_word": false,
617
+ "special": false
618
+ },
619
+ "50329": {
620
+ "content": "[unused44]",
621
+ "lstrip": false,
622
+ "normalized": true,
623
+ "rstrip": false,
624
+ "single_word": false,
625
+ "special": false
626
+ },
627
+ "50330": {
628
+ "content": "[unused45]",
629
+ "lstrip": false,
630
+ "normalized": true,
631
+ "rstrip": false,
632
+ "single_word": false,
633
+ "special": false
634
+ },
635
+ "50331": {
636
+ "content": "[unused46]",
637
+ "lstrip": false,
638
+ "normalized": true,
639
+ "rstrip": false,
640
+ "single_word": false,
641
+ "special": false
642
+ },
643
+ "50332": {
644
+ "content": "[unused47]",
645
+ "lstrip": false,
646
+ "normalized": true,
647
+ "rstrip": false,
648
+ "single_word": false,
649
+ "special": false
650
+ },
651
+ "50333": {
652
+ "content": "[unused48]",
653
+ "lstrip": false,
654
+ "normalized": true,
655
+ "rstrip": false,
656
+ "single_word": false,
657
+ "special": false
658
+ },
659
+ "50334": {
660
+ "content": "[unused49]",
661
+ "lstrip": false,
662
+ "normalized": true,
663
+ "rstrip": false,
664
+ "single_word": false,
665
+ "special": false
666
+ },
667
+ "50335": {
668
+ "content": "[unused50]",
669
+ "lstrip": false,
670
+ "normalized": true,
671
+ "rstrip": false,
672
+ "single_word": false,
673
+ "special": false
674
+ },
675
+ "50336": {
676
+ "content": "[unused51]",
677
+ "lstrip": false,
678
+ "normalized": true,
679
+ "rstrip": false,
680
+ "single_word": false,
681
+ "special": false
682
+ },
683
+ "50337": {
684
+ "content": "[unused52]",
685
+ "lstrip": false,
686
+ "normalized": true,
687
+ "rstrip": false,
688
+ "single_word": false,
689
+ "special": false
690
+ },
691
+ "50338": {
692
+ "content": "[unused53]",
693
+ "lstrip": false,
694
+ "normalized": true,
695
+ "rstrip": false,
696
+ "single_word": false,
697
+ "special": false
698
+ },
699
+ "50339": {
700
+ "content": "[unused54]",
701
+ "lstrip": false,
702
+ "normalized": true,
703
+ "rstrip": false,
704
+ "single_word": false,
705
+ "special": false
706
+ },
707
+ "50340": {
708
+ "content": "[unused55]",
709
+ "lstrip": false,
710
+ "normalized": true,
711
+ "rstrip": false,
712
+ "single_word": false,
713
+ "special": false
714
+ },
715
+ "50341": {
716
+ "content": "[unused56]",
717
+ "lstrip": false,
718
+ "normalized": true,
719
+ "rstrip": false,
720
+ "single_word": false,
721
+ "special": false
722
+ },
723
+ "50342": {
724
+ "content": "[unused57]",
725
+ "lstrip": false,
726
+ "normalized": true,
727
+ "rstrip": false,
728
+ "single_word": false,
729
+ "special": false
730
+ },
731
+ "50343": {
732
+ "content": "[unused58]",
733
+ "lstrip": false,
734
+ "normalized": true,
735
+ "rstrip": false,
736
+ "single_word": false,
737
+ "special": false
738
+ },
739
+ "50344": {
740
+ "content": "[unused59]",
741
+ "lstrip": false,
742
+ "normalized": true,
743
+ "rstrip": false,
744
+ "single_word": false,
745
+ "special": false
746
+ },
747
+ "50345": {
748
+ "content": "[unused60]",
749
+ "lstrip": false,
750
+ "normalized": true,
751
+ "rstrip": false,
752
+ "single_word": false,
753
+ "special": false
754
+ },
755
+ "50346": {
756
+ "content": "[unused61]",
757
+ "lstrip": false,
758
+ "normalized": true,
759
+ "rstrip": false,
760
+ "single_word": false,
761
+ "special": false
762
+ },
763
+ "50347": {
764
+ "content": "[unused62]",
765
+ "lstrip": false,
766
+ "normalized": true,
767
+ "rstrip": false,
768
+ "single_word": false,
769
+ "special": false
770
+ },
771
+ "50348": {
772
+ "content": "[unused63]",
773
+ "lstrip": false,
774
+ "normalized": true,
775
+ "rstrip": false,
776
+ "single_word": false,
777
+ "special": false
778
+ },
779
+ "50349": {
780
+ "content": "[unused64]",
781
+ "lstrip": false,
782
+ "normalized": true,
783
+ "rstrip": false,
784
+ "single_word": false,
785
+ "special": false
786
+ },
787
+ "50350": {
788
+ "content": "[unused65]",
789
+ "lstrip": false,
790
+ "normalized": true,
791
+ "rstrip": false,
792
+ "single_word": false,
793
+ "special": false
794
+ },
795
+ "50351": {
796
+ "content": "[unused66]",
797
+ "lstrip": false,
798
+ "normalized": true,
799
+ "rstrip": false,
800
+ "single_word": false,
801
+ "special": false
802
+ },
803
+ "50352": {
804
+ "content": "[unused67]",
805
+ "lstrip": false,
806
+ "normalized": true,
807
+ "rstrip": false,
808
+ "single_word": false,
809
+ "special": false
810
+ },
811
+ "50353": {
812
+ "content": "[unused68]",
813
+ "lstrip": false,
814
+ "normalized": true,
815
+ "rstrip": false,
816
+ "single_word": false,
817
+ "special": false
818
+ },
819
+ "50354": {
820
+ "content": "[unused69]",
821
+ "lstrip": false,
822
+ "normalized": true,
823
+ "rstrip": false,
824
+ "single_word": false,
825
+ "special": false
826
+ },
827
+ "50355": {
828
+ "content": "[unused70]",
829
+ "lstrip": false,
830
+ "normalized": true,
831
+ "rstrip": false,
832
+ "single_word": false,
833
+ "special": false
834
+ },
835
+ "50356": {
836
+ "content": "[unused71]",
837
+ "lstrip": false,
838
+ "normalized": true,
839
+ "rstrip": false,
840
+ "single_word": false,
841
+ "special": false
842
+ },
843
+ "50357": {
844
+ "content": "[unused72]",
845
+ "lstrip": false,
846
+ "normalized": true,
847
+ "rstrip": false,
848
+ "single_word": false,
849
+ "special": false
850
+ },
851
+ "50358": {
852
+ "content": "[unused73]",
853
+ "lstrip": false,
854
+ "normalized": true,
855
+ "rstrip": false,
856
+ "single_word": false,
857
+ "special": false
858
+ },
859
+ "50359": {
860
+ "content": "[unused74]",
861
+ "lstrip": false,
862
+ "normalized": true,
863
+ "rstrip": false,
864
+ "single_word": false,
865
+ "special": false
866
+ },
867
+ "50360": {
868
+ "content": "[unused75]",
869
+ "lstrip": false,
870
+ "normalized": true,
871
+ "rstrip": false,
872
+ "single_word": false,
873
+ "special": false
874
+ },
875
+ "50361": {
876
+ "content": "[unused76]",
877
+ "lstrip": false,
878
+ "normalized": true,
879
+ "rstrip": false,
880
+ "single_word": false,
881
+ "special": false
882
+ },
883
+ "50362": {
884
+ "content": "[unused77]",
885
+ "lstrip": false,
886
+ "normalized": true,
887
+ "rstrip": false,
888
+ "single_word": false,
889
+ "special": false
890
+ },
891
+ "50363": {
892
+ "content": "[unused78]",
893
+ "lstrip": false,
894
+ "normalized": true,
895
+ "rstrip": false,
896
+ "single_word": false,
897
+ "special": false
898
+ },
899
+ "50364": {
900
+ "content": "[unused79]",
901
+ "lstrip": false,
902
+ "normalized": true,
903
+ "rstrip": false,
904
+ "single_word": false,
905
+ "special": false
906
+ },
907
+ "50365": {
908
+ "content": "[unused80]",
909
+ "lstrip": false,
910
+ "normalized": true,
911
+ "rstrip": false,
912
+ "single_word": false,
913
+ "special": false
914
+ },
915
+ "50366": {
916
+ "content": "[unused81]",
917
+ "lstrip": false,
918
+ "normalized": true,
919
+ "rstrip": false,
920
+ "single_word": false,
921
+ "special": false
922
+ },
923
+ "50367": {
924
+ "content": "[unused82]",
925
+ "lstrip": false,
926
+ "normalized": true,
927
+ "rstrip": false,
928
+ "single_word": false,
929
+ "special": false
930
+ }
931
+ },
932
+ "clean_up_tokenization_spaces": true,
933
+ "cls_token": "[CLS]",
934
+ "extra_special_tokens": {},
935
+ "mask_token": "[MASK]",
936
+ "model_input_names": [
937
+ "input_ids",
938
+ "attention_mask"
939
+ ],
940
+ "model_max_length": 8192,
941
+ "pad_token": "[PAD]",
942
+ "sep_token": "[SEP]",
943
+ "tokenizer_class": "PreTrainedTokenizerFast",
944
+ "unk_token": "[UNK]"
945
+ }