--- base_model: facebook/w2v-bert-2.0 tags: - generated_from_trainer datasets: - fleurs metrics: - wer model-index: - name: w2v2-bert-Wolof-10-hours-Google-Fleurs-dataset results: - task: name: Automatic Speech Recognition type: automatic-speech-recognition dataset: name: fleurs type: fleurs config: wo_sn split: None args: wo_sn metrics: - name: Wer type: wer value: 0.39968350853396634 --- # w2v2-bert-Wolof-10-hours-Google-Fleurs-dataset This model is a fine-tuned version of [facebook/w2v-bert-2.0](https://huggingface.co/facebook/w2v-bert-2.0) on the fleurs dataset. It achieves the following results on the evaluation set: - Loss: 1.1192 - Wer: 0.3997 - Cer: 0.1251 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0003 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 32 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 31 ### Training results | Training Loss | Epoch | Step | Cer | Validation Loss | Wer | |:-------------:|:-----:|:----:|:------:|:---------------:|:------:| | 1.403 | 5.23 | 400 | 0.1672 | 0.6614 | 0.4857 | | 0.4459 | 10.46 | 800 | 0.1432 | 0.6289 | 0.4476 | | 0.2611 | 15.69 | 1200 | 0.1402 | 0.6713 | 0.4298 | | 0.1019 | 21.01 | 1600 | 0.8813 | 0.4052 | 0.1288 | | 0.0291 | 26.24 | 2000 | 1.1192 | 0.3997 | 0.1251 | ### Framework versions - Transformers 4.38.1 - Pytorch 2.1.0+cu118 - Datasets 2.17.0 - Tokenizers 0.15.2